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Asymptotic Behavior of Pseudo-Resolvents
on Some Grothendieck Spaces

By

Sen-Yen SHAW*

Abstract

For a pseudo-resolvent {J);A€2cCC} of operators on a Grothendieck space X, it is
proved that the strong convergence of AJx as A—0 [resp. || —o] is equivalent to that
11AJal] =O(1) (2 ->0) [resp. |A]—oo] and RGJTF—I%) = w—cl(R(AJF—1I%)) [resp. R(JF) =
wE—cl(RUF)]. If, in addition, X has the Dunford-Pettis property, then the strong con-
vergence implies the uniform convergence. Itis also shown that if a semigroup of class (E) on
such a space is strongly Abel-ergodic at zero, then it must be uniformly continuous.

§ 1. Introduction

Let B(X) denote the set of all bounded linear operators on a Banach space
X. A family {J,; A& £} of operators in B(X) is called a pseudo-resolvent
on 2cCif

Jo—Jp = (e—DNJu @, ne9).
It is known that the ranges R(J,), R(AJ,—I), and the null spaces N(J,), N(AJ,—1I)
are independent of the parameter 2 (cf. [6, p. 215]).

The strong convergence and the uniform convergence of AJ, as 2—0 or
|A] — oo have been studied in Yosida [7] and Shaw [5], respectively. The
results were obtained for general Banach spaces. In this note we investigate
the strong convergence of 1J, on a Grothendieck space and the uniform con-
vergence on a Grothendieck space with the Dunford-Pettis property.

A Banach space X is called a Grothendieck space if every w*-convergent
sequence in the dual space X* is weakly convergent. X is said to have the
Dunford-Pettis property if <{x,, xf>—0 whenever {x,} CX tends weakly to 0
and {x}} C X* tends weakly to 0. Examples of a Grothendieck space with the
Dunford-Pettis property include L=, B(S, =), H*(D), etc. (see [3].) On such a
space, the weak convergence, the strong convergence, and the uniform con-

Communicated by S. Matsuura, August 14, 1987.
* Department of Mathematics, National Central University, Chung-Li, Taiwan, Republic
of China.



278 SEN-YEN SHAW

vergence of 1J, are seen to be equivalent. This is similar to the recent results
of Lotz [2, 3] and of Shaw [4] on the continuity and the ergodicity of operator
semigroups and of cosine operator functions, repectively.

§ 2. Strong Ergodic Theorems
We shall denote by P [resp. Q] the mapping: x—s-lim AJ,x [resp. s-llim AJ,x].
A0 Al>o

First, for the sake of convenience we state Yosida’s theorem [7, pp. 217-218]
in the following form:

Theorem 1. If ||AJ,]|=0(1) (3—0) [resp. |A|—>cc] and 02 [resp. 2 is
unbounded], then P [resp. Q) is a bounded linear projection with R(P)=N(AJ,—I)
and N(P)=R(J,—I) [resp. R(Q)=R(J,) and N(Q)=N(J,)]. Moreover, x& D(P)
[resp. D(Q)] if and only if there is a sequence 2, tending to 0 [resp. o] such that
w-'liiig .d5, X exists.

It follows from the last assertion that strong convergence and weak con-
vergence are equivalent. Also, 1J, is strongly convergent whenever X is
a reflexive space. Since D(P)* = {NQJ,—I)@BRA,—D)}*=N@AJ,—D"N
N(QAJ¥—I%), 2J, is strongly convergent as 2—0 if and only if ||2J,]|=0(1) (A—0),
and N(2J,—1) separates NQAJ¥—1I%*) (i.e. N(AJ,—I)*" N NQJ¥—1*)={0}).

The following theorem gives another characterization of the strong con-
vergence of 1J, in the case that X is a Grothendieck space.

Theorem 2. Let X be a Grothendieck space, AJ, is convergent in the
strong operator topology as A—>0 [resp. |2|—>oo] if and only if ||AJ||=0(1)
(A—0) [resp. |A]|—>o00] and RQAJF—I%)=w*—cl(R(AJ¥—I%)) [resp. RUT¥F) =
w*—cl(R(TF))].

Proof. We only prove the case “A—0;” a similar argument works for the
other case “|1]|—c0.”
First, suppose that P==so-lim 1J, exists. Then clearly one has [|AJ,]||=0(1)

A0
(A—0), by the uniform boundedness principle. X being Grothendieck, it follows

that w-lim 2,J%x*=w*-lim 2, Jix*=P*x* for any sequence {1,}—0 and any

n-»o0 n-roo

x*& X*. Applying Theorem 1 to the pseudo-resolvent {J¥} we see that

P*=g0-lim 2J¥. Hence we have
A0

RQJT¥—I¥) = N(P¥)=R(P)* = NGJ,—I)*
= [*RQJF-I]" = w*—cl(RAJF—1%)) .
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Conversely, if ||2,]]=0(1) (2—0) and RQAJF—I*)=w*—cl(R(AJ¥—I%)
(=N@J,—I)*"), then Theorem 1, applied to {/,} and {J¥}, implies that
D(P)= N(AJ,— D)@ RQJ,—1) and RQAJ¥—I*)N N(AJ¥—I*)={0}, so that
D(Py*+={0}. This shows that D(P)=X because it is closed.

§3. Uniform Ergodic Theorems

For a pseudo-resolvent {J/,} on a general Banach space X, the uniform
convergence of 1J, is characterized in the following theorem, which was proved
in [5].

Theorem 3. (i) wuo-lim AJ, exists if and only if ||32J,||—>0 as A—0 and
A>0

R(QAJ,—1) is closed.
(i) wo-lim AJ,=Q exists if and only if ||J,]|=0 as |2|—>co and R(J,) is
IAl>e

closed, if and only if Jy=0@I—A)™* where Q*=Q, ASB(X) and AQ=0QA=A.

In general the strong convergence of 1J, is weaker than the uniform con-
vergence. But it is to be shown that these two kinds of convergence coincide
in the class of Grothendieck spaces with the Dunford-Pettis property. To
prove this we need the following lemma of Lotz [3].

Lemma 4. Let {V,} be a sequence of operators on a Banach space X with
the Dunford-Pettis property. Suppose that w-lim V,x,=0 for every bounded
sequence {x,} in X and w-lim V¥x¥=0 for every bounded sequence {x}} in X*.
Then ||VZ%|—0. In particular, V,—I and V,-+1I are invertible for large n.

Theorem 5. Let {J,} be a pseudo-resolvent on a Grothendieck space X with
the Dunford-Pettis property. The following statements are equivalent:

(M) |]AL]l=0Q) (2—0) and for each x& X there is a sequence 2,—> 0 such
that w-lim 2,J, x exists.

(2) P:=so-lim AJ, exists.
A0
3) ||A,—P||—=0 as 2—0.
4) ||2J,||—=0 as 2—0, and R(AJ,—1) is closed.
(5) |AL]l=0(1) A= 0) and RAT¥ —I*)=w*—cl(R(AJ ¥ —I*)).

Proof. “(1)=(2)”, “(2)=(5)”, and “(3)«<(4)” are contained in Theorem 1,
Theorem 2, and Theorem 3 (i), respectively. Thus it remains to show that (2)
implies (3).

Suppose (2) holds. Then Theorem 1 implies that X=R(P)PN(P) and
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R(P)=N(aJ,—I) for all 2€8. So, in order to prove that |[AJ,—P||—0, it is
no loss of generality to assume that P=0.

Let V,=n"'J,,. Then s-lim V,x=Px=0 for all x& X so that {V;Fx}} con-
verges weakly* and hence weakly to zero for any bounded sequence {x}} in
X*. In particular, {n~'J¥,x*} converges weakly to zero for all x* €X*. Now
Theorem 1 applies to {J¥} to yield that {V¥x*} converges strongly to zero for
all x*X*. Hence {V,x,} converges weakly to zero for any bounded sequence
{x,} in X. It follows from Lemma 4 that ¥,—I is invertible for large .

Finally, it follows from the estimate

RN IR Gy DI Va1
=| (=) A Jirm

that [|2J,]|—0 as ~—0. This proves the theorem.

If we let V, be nJ,—I, then a similar argument as above, together with
Theorems 1, 2, and 3 (ii), will give the following uniform ergodic theorem for
the case “[1]|—o0”. This is a slight extension of a result of Lotz [2] which
treated the case Q=1 and did not include conditions (4) and (5).

Theorem 6. Let X be a Grothendieck space with the Dunford-Pettis property.
The following statements are equivalent:

1) ||aL]|l=0Q) (|2]|—>0), and for each xE X there is a sequence {2,},
[2,|— o0, such that w-”ligl 2,0 % exists.

(2) Q:=so-lim 2J, exists.

IAl>e0
3 12, —0ll—>0as [2]|—>co.

4 ||All—=0as |2]|—o0, and R(J,) is closed.

(5) [IA4lI=0Q1) (12| —>00) and R(JF)=w*—cl(RIJ)).

6) JL,=0I—A)! for some Q, A€ B(X) satisfying Q*=Q AQ=QA=A.

§4. Uniform Continuity of Semigroups and Cosine Functions

Lotz [2] has proved that every semigroup of class (4) in the sense of [1, p.
342] on a Grothendieck space with the Dunford-Pettis property is uniformly
continuous. In what follows we shall apply Theorem 6 and a theorem of Hille
[1, Theorem 18.8.3] to deduce a slight generalization.

A semigroup {7(r); >0} of type w, is said to be of class (E) if
(@) T(-)is strongly continuous on (0, c0);
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1
(b) X,:={x; S |IT (¢)x]||dt<< oo} is dense in X;
0
(c) the linear operator R(l)x:zf e M T(1)xdt is defined on X; for each
0

A>w,, (see [1, p. 509]). It is known that {R(2); A>wg} is a pseudo-resolvent
(cf. [1, p. 510]).

T(-) is said to be strongly (resp. uniformly) Abel-ergodic to Q at zero if
2R(2) converges to Q in the strong (resp. uniform) operator topology as 2 tends to
infinity. Theorem 18.8.3 of [1] asserts that if 7°(-) is of class (£) and is uniformly
Abel-ergodic to Q at zero, then T(1)=Q exp(tA) with 0*=0Q, A€ B(X) and
AQ=QA=A. We combine this with Theorem 6 to formulate the following
result.

Corollary 7. Let T(-) be a semigroup of class (E) on a Grothendieck space
with the Dunford-Pettis property. If T(-) is strongly Abel-ergodic o Q at zero,
then T(t)=Q exp(tA) where Q*=Q, A= B(X) and AQ=QA=A.

In particular, if 7(-) is a semigroup of class (4), then 7(-) belongs to the
class (E) and it is strongly Abel-ergodic to I at zero. Corollary 7 shows that
T(t)=exp(14) with A€ B(X) and so is uniformly continuous.

We close this section with another application of Theorems 1 & 6. Let 4
be the generator of a strongly continuous cosine operator function C(-) on a
Grothendieck space with the Dunford-Pettis property. Then D(4)=X, and
there are constants M >0 and w>0 such that 22€p(4) and [[A(2*—A4)7}|<
M|(A—w) for all A>w. With J,:=(—A)"", Theorems 1 & 6 show that
A is bounded and hence C(-) is uniformly continuous (cf. [6]). This proves
the following corollary which has appeared in [4] with a different proof.

Corollary 8. Every strongly continuous cosine operator function on a Gro-
thendieck space with the Dunford-Pettis property is uniformly continuous.
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