
Publ. RIMS, Kyoto Univ.
24 (1988), 277-282

of
on

By

Sen- Yen SHAW*

Abstract

For a pseudo-resolvent {/x;/leJ2cC} of operators on a Grothendieck space X, it is
proved that the strong convergence of U\ as ^-»0 [resp. ]^|-»oo] is equivalent to that

=0(1) W-O) [resp. U| -oo] and *(*/*-/*) = w*-c/(^/J-/*)) [resp. *(7»~=
w*— c/CR(/J))]. If, in addition, Jf has the Dunford-Pettis property, then the strong con-
vergence implies the uniform convergence. It is also shown that if a semigroup of class (E) on
such a space is strongly Abel-ergodic at zero, then it must be uniformly continuous.

§ 1.

Let SB(X) denote the set of all bounded linear operators on a Banach space
X. A family {/x; ̂ e<£} of operators in SB(X) is called a pseudo-resolvent
on

It is known that the ranges R(J^), R(U^—I), and the null spaces 7V(/X)5 N(1JX—I)
are independent of the parameter X (cf. [6, p. 215]).

The strong convergence and the uniform convergence of Ux as /I -> 0 or
m -> oo have been studied in Yosida [7] and Shaw [5], respectively. The
results were obtained for general Banach spaces. In this note we investigate
the strong convergence of UK on a Grothendieck space and the uniform con-
vergence on a Grothendieck space with the Dunford-Pettis property.

A Banach space X is called a Grothendieck space if every w*-convergent
sequence in the dual space X* is weakly convergent. X is said to have the
Dunford-Pettis property if <X, x*>-»0 whenever {xn} dX tends weakly to 0
and {x%} cX* tends weakly to 0. Examples of a Grothendieck space with the
Dunford-Pettis property include L°°, B(S, 2), H°°(D)y etc. (see [3].) On such a

space, the weak convergence, the strong convergence, and the uniform con-
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vergence of /L/x are seen to be equivalent. This is similar to the recent results
of Lotz [2, 3] and of Shaw [4] on the continuity and the ergodicity of operator
semigroups and of cosine operator functions, repectively.

§ 20 Strong Ergodic Theorems

We shall denote by P [resp. Q] the mapping: *-»s-lim MKx [resp. s-lim Uxx].
x-x> ixi-*°°

First, for the sake of convenience we state Yosida's theorem [7, pp. 217-218]
in the following form:

Theorem 1. If \\UK\\ = O(\) 0*-»0) [resp. U|-*°°] and G<E£ [resp. Q is
unbounded], then P [resp. Q] is a bounded linear projection with R(P)=N(UK—I)

and N(P)=R(UK-I) [resp. R(Q)=R(JJ and N(Q)=N(JJ\. Moreover, x<=D(P)
[resp. D(Q)] if and only if there is a sequence ln tending to 0 [resp. oo] such that
w-lim Xnjx x exists.

«-*<*» "

It follows from the last assertion that strong convergence and weak con-
vergence are equivalent. Also, ^/x is strongly convergent whenever X is
a reflexive space. Since ~

/*), Ux is strongly convergent as J->0 if and only if ||^/X|| = O(1) (/l->0),

and N(*Ji-I) separates N(*J$-I*) (i.e. ^/x-/)-
Ln^/?-/*)={0}).

The following theorem gives another characterization of the strong con-
vergence of /l/x in the case that X is a Grothendieck space.

Theorem 20 Let X be a Grothendieck space, Ux is convergent in the

strong operator topology as /l-»0 [resp. M|-»°°] // and only if
[resp. |^|->oo] and tf (*/*-/*)= w* - d(R(Uf-I*)) [resp. R(Jf) =

Proof. We only prove the case "^-»0;" a similar argument works for the
other case "|Jl|->oo."

First, suppose that P=so-lim Ux exists. Then clearly one has ||^/X|| = O(1)
\->0

(/l->0), by the uniform boundedness principle. X being Grothendieck, it follows

that w-lim ^/*^*=w*-lim^JI/x*^*=P*A:* for any sequence {^}->0 and any
»->o* n M-?>oo tl

x* e X*. Applying Theorem 1 to the pseudo-resolvent {Jf} we see that
P*=so-lim AJ£. Hence we have
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Conversely, if \\U^\\ = O(}) (^0) and R(M$-I*)=w*—cl(R(M$-I*)
I)^), then Theorem 1, applied to {/J and {/?}, implies that

D(P) = N(*JX-T)®R(MX-I) and R(Uf-I*) fl N(M$-I*) = {0} , so that
D(P)^-= {0} . This shows that D(P)=;r because it is closed.

§ 3« Uniform Ergodic Theorems

For a pseudo-resolvent {/x} on a general Banach space X, the uniform
convergence of Ux is characterized in the following theorem, which was proved
in [5].

Theorem 3, (i) uo-lim^/A exists if and only if ||^2/x||-»0 as J-*0 cr/irf
x->o

X—I) is closed.
(ii) uo-lim^./x=2 o:/̂  if and only if ||/x||-*0 ^ |^|->oo and R(J^) is

|X|->oo

, if and only if JK=Q(U-Ayl where Q2=Q, A^B(X) and AQ=QA=A.

In general the strong convergence of ^/x is weaker than the uniform con-
vergence. But it is to be shown that these two kinds of convergence coincide
in the class of Grothendieck spaces with the Dunford-Pettis property. To
prove this we need the following lemma of Lotz [3],

Lemma 4. Let { ¥n} be a sequence of operators on a Banach space X with

the Dunford-Pettis property. Suppose that w-lim Vnxn=Q for every bounded
sequence {xn} in X and w-lim V%x*=Qfor every bounded sequence {x%} in X*.

Then \\Vl\\-*Q. In particular, Vn—I and Vn+I are invertible for large n.

Theorem 5* Let {/A} be a pseudo-resolvent on a Grothendieck space X with
ihe Dunford-Pettis property. The following statements are equivalent'.

(1) ||^/X|| = O(1) 0*-»0) and for each x&X there is a sequence ̂ ->0 such
that w-lim XnJK x exists.

M-*-oo H

(2) P : = so-lim Ux exists.
A-*0

(3) |U/X-P||->0 as J-»

(4) | |JVX| |-> 0 as 1 -> 0, and R(UX-I) is closed.

(5) ||J/X|| = 0(1) (^->0) andR(M*-I*)=w*-cl(R(U*-I*)).

Proof. "(1)»(2)", "(2)«(5)", and "(3)«(4)" are contained in Theorem 1,
Theorem 2, and Theorem 3 (i), respectively. Thus it remains to show that (2)
implies (3).

Suppose (2) holds. Then Theorem 1 implies that X=R(P)®N(P) and
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R(P)=N(*Ji—I) for all -*e£. So, in order to prove that ||^/x— Pl|-*0, it is
no loss of generality to assume that P=0.

Let Vn=n~lJl/n. Then s-lim VHx=Px=0 for all x^X so that {K*jc*} con-
verges weakly* and hence weakly to zero for any bounded sequence {x%} in
X*. In particular, {n"lJ^/nx*} converges weakly to zero for all x*&X*. Now
Theorem 1 applies to {/̂ } to yield that {FJ%*} converges strongly to zero for
all x*&X*. Hence {Vnxn} converges weakly to zero for any bounded sequence
{xn} in X. It follows from Lemma 4 that Vn— /is invertible for large n.

Finally, it follows from the estimate

V-ll!

that |M/X||-»0 as ^-»0. This proves the theorem.
If we let Vn be nJH—I, then a similar argument as above, together with

Theorems 1, 2, and 3 (ii), will give the following uniform ergodic theorem for
the case "|^|->oo". This is a slight extension of a result of Lotz [2] which
treated the case Q=I and did not include conditions (4) and (5).

Theorem 6. Let Xbea Grothendieck space with the Dunford-Pettis property.

The following statements are equivalent:

(1) IM/A|| = O(1) (U|-*°°), and for each x^X there is a sequence {^},
| An | -» oo, such that w-lim AttJx x exists.

»-*°° "
(2) Q :=so-lim ^/x exists.

|M-»oo

(3) ||J/x-fil|-*Oo*U|-*oo.

(4) 1 1 Al I-* ° as

(5)

(6) 7x=e(A/-^)-1/o'i ^/we gs ^e^(Z) satisfying Q2=Qt AQ=QA=A.

§ 4, Uniform Continuity of Semigroups and Cosine Functions

Lotz [2] has proved that every semigroup of class (^4) in the sense of [1, p.
342] on a Grothendieck space with the Dunford-Pettis property is uniformly
continuous. In what follows we shall apply Theorem 6 and a theorem of Hille
[1, Theorem 18.8.3] to deduce a slight generalization.

A semigroup {T(f)\ £>0} of type w0 is said to be of class (E) if
(a) T(e) is strongly continuous on (0, oo);
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(b) X0:= {x; ||r(0*||<*< <*>} is dense in X\
Jo

{00
e~xt T(t)xdt is defined on XQ for each

o
Q, (see [1, p. 509]). It is known that {#00; /I>w0} is a pseudo-resolvent

(cf. [1, p. 510]).
jT(-) is said to be strongly (resp. uniformly) Abel-ergodic to Q at zero if

AR(X) converges to Q in the strong (resp. uniform) operator topology as /I tends to
infinity. Theorem 18.8.3 of [1] asserts that if T(-) is of class (E) and is uniformly
Abel-ergodic to Q at zero, then T(t)=Q exp(tA) with g2=g, A^<B(X) and
>4g=2,4=,4. We combine this with Theorem 6 to formulate the following
result.

Corollary 7. Let T(«) be a semigroup of class (E) on a Grothendieck space

with the Dunford-Pettis property. If T( • ) is strongly Abel-ergodic to Q at zero,
then T(t)=Q exp(tA) where Q2=Q, A<=$(X) and AQ=QA=A.

In particular, if !T(*) is a semigroup of class (/4), then T(*) belongs to the
class (E) and it is strongly Abel-ergodic to / at zero. Corollary 7 shows that
T(t)=exp(tA) with A^<B(X) and so is uniformly continuous.

We close this section with another application of Theorems 1 & 6. Let A
be the generator of a strongly continuous cosine operator function C(-) on a
Grothendieck space with the Dunford-Pettis property. Then D(A)=X, and
there are constants Af>0 and w>0 such that A2^p(A) and ||^(^2— ̂ )~1||<
M/(l—w) for "all ^>w. With J^ = (^—A)-\ Theorems 1 & 6 show that
A is bounded and hence C(-) is uniformly continuous (cf. [6]). This proves
the following corollary which has appeared in [4] with a different proof.

Corollary 8- Every strongly continuous cosine operator function on a Gro-
thendieck space with the Dunford-Pettis property is uniformly continuous.
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