Asymptotic Behavior of Pseudo-Resolvents on Some Grothendieck Spaces

Ву

Sen-Yen Shaw*

Abstract

For a pseudo-resolvent $\{J_{\lambda}; \lambda \in \mathcal{Q} \subset C\}$ of operators on a Grothendieck space X, it is proved that the strong convergence of λJ_{λ} as $\lambda \to 0$ [resp. $|\lambda| \to \infty$] is equivalent to that $||\lambda J_{\lambda}|| = O(1)$ ($\lambda \to 0$) [resp. $|\lambda| \to \infty$] and $\overline{R(\lambda J_{\lambda}^* - I^*)} = w^* - cl(R(\lambda J_{\lambda}^* - I^*))$ [resp. $\overline{R(J_{\lambda}^*)} = w^* - cl(R(J_{\lambda}^*))$]. If, in addition, X has the Dunford-Pettis property, then the strong convergence implies the uniform convergence. It is also shown that if a semigroup of class (E) on such a space is strongly Abel-ergodic at zero, then it must be uniformly continuous.

§1. Introduction

Let $\mathscr{B}(X)$ denote the set of all bounded linear operators on a Banach space X. A family $\{J_{\lambda}; \lambda \in \mathcal{Q}\}$ of operators in $\mathscr{B}(X)$ is called a *pseudo-resolvent* on $\mathcal{Q} \subset \mathcal{C}$ if

$$J_{\lambda} - J_{\mu} = (\mu - \lambda) J_{\lambda} J_{\mu} , \qquad (\lambda, \, \mu \in \mathcal{Q}) \, .$$

It is known that the ranges $R(J_{\lambda})$, $R(\lambda J_{\lambda} - I)$, and the null spaces $N(J_{\lambda})$, $N(\lambda J_{\lambda} - I)$ are independent of the parameter λ (cf. [6, p. 215]).

The strong convergence and the uniform convergence of λJ_{λ} as $\lambda \to 0$ or $|\lambda| \to \infty$ have been studied in Yosida [7] and Shaw [5], respectively. The results were obtained for general Banach spaces. In this note we investigate the strong convergence of λJ_{λ} on a Grothendieck space and the uniform convergence on a Grothendieck space with the Dunford-Pettis property.

A Banach space X is called a *Grothendieck space* if every w*-convergent sequence in the dual space X* is weakly convergent. X is said to have the *Dunford-Pettis property* if $\langle x_n, x_n^* \rangle \rightarrow 0$ whenever $\{x_n\} \subset X$ tends weakly to 0 and $\{x_n^*\} \subset X^*$ tends weakly to 0. Examples of a Grothendieck space with the Dunford-Pettis property include L^{∞} , $B(S, \Sigma)$, $H^{\infty}(D)$, etc. (see [3].) On such a space, the weak convergence, the strong convergence, and the uniform con-

Communicated by S. Matsuura, August 14, 1987.

^{*} Department of Mathematics, National Central University, Chung-Li, Taiwan, Republic of China.

SEN-YEN SHAW

vergence of λJ_{λ} are seen to be equivalent. This is similar to the recent results of Lotz [2, 3] and of Shaw [4] on the continuity and the ergodicity of operator semigroups and of cosine operator functions, repectively.

§ 2. Strong Ergodic Theorems

We shall denote by P [resp. Q] the mapping: $x \rightarrow s-\lim_{\lambda \to 0} \lambda J_{\lambda} x$ [resp. $s-\lim_{|\lambda| \to \infty} \lambda J_{\lambda} x$]. First, for the sake of convenience we state Yosida's theorem [7, pp. 217–218] in the following form:

Theorem 1. If $||\lambda J_{\lambda}|| = O(1)$ $(\lambda \to 0)$ [resp. $|\lambda| \to \infty$] and $0 \in \overline{\Omega}$ [resp. Ω is unbounded], then P [resp. Q] is a bounded linear projection with $R(P) = N(\lambda J_{\lambda} - I)$ and $N(P) = \overline{R(\lambda J_{\lambda} - I)}$ [resp. $R(Q) = \overline{R(J_{\lambda})}$ and $N(Q) = N(J_{\lambda})$]. Moreover, $x \in D(P)$ [resp. D(Q)] if and only if there is a sequence λ_n tending to 0 [resp. ∞] such that w-lim $\lambda_n J_{\lambda_n} x$ exists.

It follows from the last assertion that strong convergence and weak convergence are equivalent. Also, λJ_{λ} is strongly convergent whenever X is a reflexive space. Since $D(P)^{\perp} = \{N(\lambda J_{\lambda} - I) \oplus \overline{R(\lambda J_{\lambda} - I)}\}^{\perp} = N(\lambda J_{\lambda} - I)^{\perp} \cap N(\lambda J_{\lambda}^* - I^*), \lambda J_{\lambda}$ is strongly convergent as $\lambda \rightarrow 0$ if and only if $||\lambda J_{\lambda}|| = O(1)$ ($\lambda \rightarrow 0$), and $N(\lambda J_{\lambda} - I)$ separates $N(\lambda J_{\lambda}^* - I^*)$ (i.e. $N(\lambda J_{\lambda} - I)^{\perp} \cap N(\lambda J_{\lambda}^* - I^*) = \{0\}$).

The following theorem gives another characterization of the strong convergence of λJ_{λ} in the case that X is a Grothendieck space.

Theorem 2. Let X be a Grothendieck space, λJ_{λ} is convergent in the strong operator topology as $\lambda \rightarrow 0$ [resp. $|\lambda| \rightarrow \infty$] if and only if $||\lambda J_{\lambda}|| = O(1)$ $(\lambda \rightarrow 0)$ [resp. $|\lambda| \rightarrow \infty$] and $\overline{R(\lambda J_{\lambda}^* - I^*)} = w^* - cl(R(\lambda J_{\lambda}^* - I^*))$ [resp. $\overline{R(J_{\lambda}^*)} = w^* - cl(R(J_{\lambda}^*))$].

Proof. We only prove the case " $\lambda \rightarrow 0$;" a similar argument works for the other case " $|\lambda| \rightarrow \infty$."

First, suppose that $P = \operatorname{so-lim}_{\lambda \to 0} \lambda J_{\lambda}$ exists. Then clearly one has $||\lambda J_{\lambda}|| = O(1)$ $(\lambda \to 0)$, by the uniform boundedness principle. X being Grothendieck, it follows that w-lim $\lambda_n J_{\lambda_n}^* x^* = w^*$ -lim $\lambda_n J_{\lambda_n}^* x^* = P^* x^*$ for any sequence $\{\lambda_n\} \to 0$ and any $x^* \in X^*$. Applying Theorem 1 to the pseudo-resolvent $\{J_{\lambda}^*\}$ we see that $P^* = \operatorname{so-lim}_{\lambda \to 0} \lambda J_{\lambda}^*$. Hence we have

$$\overline{R(\lambda J_{\lambda}^{*} - I^{*})} = N(P^{*}) = R(P)^{\perp} = N(\lambda J_{\lambda} - I)^{\perp}$$
$$= [^{\perp}R(\lambda J_{\lambda}^{*} - I^{*})]^{\perp} = w^{*} - cl(R(\lambda J_{\lambda}^{*} - I^{*}))$$

Conversely, if $||\lambda J_{\lambda}|| = O(1)$ $(\lambda \to 0)$ and $\overline{R(\lambda J_{\lambda}^* - I^*)} = w^* - cl(R(\lambda J_{\lambda}^* - I^*))$ $(=N(\lambda J_{\lambda} - I)^{\perp})$, then Theorem 1, applied to $\{J_{\lambda}\}$ and $\{J_{\lambda}^*\}$, implies that $D(P) = N(\lambda J_{\lambda} - I) \bigoplus \overline{R(\lambda J_{\lambda} - I)}$ and $\overline{R(\lambda J_{\lambda}^* - I^*)} \cap N(\lambda J_{\lambda}^* - I^*) = \{0\}$, so that $D(P)^{\perp} = \{0\}$. This shows that D(P) = X because it is closed.

§ 3. Uniform Ergodic Theorems

For a pseudo-resolvent $\{J_{\lambda}\}$ on a general Banach space X, the uniform convergence of λJ_{λ} is characterized in the following theorem, which was proved in [5].

Theorem 3. (i) uo- $\lim_{\lambda \to 0} \lambda J_{\lambda}$ exists if and only if $||\lambda^2 J_{\lambda}|| \to 0$ as $\lambda \to 0$ and $R(\lambda J_{\lambda} - I)$ is closed.

(ii) uo- $\lim_{|\lambda|\to\infty} \lambda J_{\lambda} = Q$ exists if and only if $||J_{\lambda}|| \to 0$ as $|\lambda| \to \infty$ and $R(J_{\lambda})$ is closed, if and only if $J_{\lambda} = Q(\lambda I - A)^{-1}$ where $Q^2 = Q$, $A \in B(X)$ and AQ = QA = A.

In general the strong convergence of λJ_{λ} is weaker than the uniform convergence. But it is to be shown that these two kinds of convergence coincide in the class of Grothendieck spaces with the Dunford-Pettis property. To prove this we need the following lemma of Lotz [3].

Lemma 4. Let $\{V_n\}$ be a sequence of operators on a Banach space X with the Dunford-Pettis property. Suppose that w-lim $V_n x_n = 0$ for every bounded sequence $\{x_n\}$ in X and w-lim $V_n^* x_n^* = 0$ for every bounded sequence $\{x_n^*\}$ in X*. Then $||V_n^2|| \rightarrow 0$. In particular, $V_n - I$ and $V_n + I$ are invertible for large n.

Theorem 5. Let $\{J_{\lambda}\}$ be a pseudo-resolvent on a Grothendieck space X with the Dunford-Pettis property. The following statements are equivalent:

(1) $||\lambda J_{\lambda}|| = O(1) \ (\lambda \to 0)$ and for each $x \in X$ there is a sequence $\lambda_n \to 0$ such that w-lim $\lambda_n J_{\lambda_n} x$ exists.

- (2) $P:=\text{so-lim}_{\lambda \to 0} \lambda J_{\lambda} \text{ exists.}$
- (3) $||\lambda J_{\lambda} P|| \rightarrow 0 \text{ as } \lambda \rightarrow 0.$
- (4) $||\lambda^2 J_{\lambda}|| \rightarrow 0 \text{ as } \lambda \rightarrow 0, \text{ and } \overline{R(\lambda J_{\lambda} I)} \text{ is closed.}$
- (5) $||\lambda J_{\lambda}|| = O(1) \ (\lambda \to 0) \text{ and } R(\lambda J_{\lambda}^* I^*) = w^* cl(R(\lambda J_{\lambda}^* I^*)).$

Proof. "(1) \Leftrightarrow (2)", "(2) \Leftrightarrow (5)", and "(3) \Leftrightarrow (4)" are contained in Theorem 1, Theorem 2, and Theorem 3 (i), respectively. Thus it remains to show that (2) implies (3).

Suppose (2) holds. Then Theorem 1 implies that $X = R(P) \oplus N(P)$ and

 $R(P) = N(\lambda J_{\lambda} - I)$ for all $\lambda \in \mathcal{Q}$. So, in order to prove that $||\lambda J_{\lambda} - P|| \rightarrow 0$, it is no loss of generality to assume that P=0.

Let $V_n = n^{-1}J_{1/n}$. Then s-lim $V_n x = Px = 0$ for all $x \in X$ so that $\{V_n^* x_n^*\}$ converges weakly* and hence weakly to zero for any bounded sequence $\{x_n^*\}$ in X^* . In particular, $\{n^{-1}J_{1/n}^*x^*\}$ converges weakly to zero for all $x^* \in X^*$. Now Theorem 1 applies to $\{J_{\lambda}^*\}$ to yield that $\{V_n^*x^*\}$ converges strongly to zero for all $x^* \in X^*$. Hence $\{V_n x_n\}$ converges weakly to zero for any bounded sequence $\{x_n\}$ in X. It follows from Lemma 4 that $V_n - I$ is invertible for large n.

Finally, it follows from the estimate

$$\begin{aligned} ||\lambda J_{\lambda}|| &\leq ||\lambda J_{\lambda}(n^{-1}J_{1/n}-I)|| ||(V_n-I)^{-1}|| \\ &= \left\| \left(\frac{1}{n}-\lambda\right)^{-1} \left[\lambda^2 J_{\lambda}-\frac{\lambda}{n}J_{1/n} \right] \right\| ||(V_n-I)^{-1}|| \end{aligned}$$

that $||\lambda J_{\lambda}|| \rightarrow 0$ as $\lambda \rightarrow 0$. This proves the theorem.

If we let V_n be nJ_n-I , then a similar argument as above, together with Theorems 1, 2, and 3 (ii), will give the following uniform ergodic theorem for the case " $|\lambda| \rightarrow \infty$ ". This is a slight extension of a result of Lotz [2] which treated the case Q=I and did not include conditions (4) and (5).

Theorem 6. Let X be a Grothendieck space with the Dunford-Pettis property. The following statements are equivalent:

(1) $||\lambda J_{\lambda}|| = O(1) (|\lambda| \to \infty)$, and for each $x \in X$ there is a sequence $\{\lambda_n\}$, $|\lambda_n| \to \infty$, such that w-lim $\lambda_n J_{\lambda_n} x$ exists.

- (2) $Q:=so-\lim_{|\lambda|\to\infty}\lambda J_{\lambda}$ exists.
- (3) $||\lambda J_{\lambda} Q|| \rightarrow 0 \text{ as } |\lambda| \rightarrow \infty.$
- (4) $||J_{\lambda}|| \rightarrow 0$ as $|\lambda| \rightarrow \infty$, and $R(J_{\lambda})$ is closed.
- (5) $||\lambda J_{\lambda}|| = O(1) (|\lambda| \rightarrow \infty) \text{ and } \overline{R(J_{\lambda}^*)} = w^* cl(R(J_{\lambda}^*)).$
- (6) $J_{\lambda} = Q(\lambda I A)^{-1}$ for some $Q, A \in \mathcal{B}(X)$ satisfying $Q^2 = Q, AQ = QA = A$.

§ 4. Uniform Continuity of Semigroups and Cosine Functions

Lotz [2] has proved that every semigroup of class (A) in the sense of [1, p. 342] on a Grothendieck space with the Dunford-Pettis property is uniformly continuous. In what follows we shall apply Theorem 6 and a theorem of Hille [1, Theorem 18.8.3] to deduce a slight generalization.

A semigroup $\{T(t); t>0\}$ of type w_0 is said to be of class (E) if (a) $T(\cdot)$ is strongly continuous on $(0, \infty)$;

(b)
$$X_0 := \{x; \int_0^1 ||T(t)x|| dt < \infty\}$$
 is dense in X;

(c) the linear operator $R(\lambda)x := \int_{0}^{\infty} e^{-\lambda t} T(t)x dt$ is defined on X_0 for each $\lambda > w_0$, (see [1, p. 509]). It is known that $\{R(\lambda); \lambda > w_0\}$ is a pseudo-resolvent (cf. [1, p. 510]).

 $T(\cdot)$ is said to be *strongly* (resp. *uniformly*) Abel-ergodic to Q at zero if $\lambda R(\lambda)$ converges to Q in the strong (resp. uniform) operator topology as λ tends to infinity. Theorem 18.8.3 of [1] asserts that if $T(\cdot)$ is of class (E) and is uniformly Abel-ergodic to Q at zero, then $T(t)=Q \exp(tA)$ with $Q^2=Q$, $A \in \mathcal{B}(X)$ and AQ=QA=A. We combine this with Theorem 6 to formulate the following result.

Corollary 7. Let $T(\cdot)$ be a semigroup of class (E) on a Grothendieck space with the Dunford-Pettis property. If $T(\cdot)$ is strongly Abel-ergodic to Q at zero, then $T(t)=Q \exp(tA)$ where $Q^2=Q$, $A \in \mathcal{B}(X)$ and AQ=QA=A.

In particular, if $T(\cdot)$ is a semigroup of class (A), then $T(\cdot)$ belongs to the class (E) and it is strongly Abel-ergodic to I at zero. Corollary 7 shows that T(t)=exp(tA) with $A \in \mathcal{B}(X)$ and so is uniformly continuous.

We close this section with another application of Theorems 1 & 6. Let A be the generator of a strongly continuous cosine operator function $C(\cdot)$ on a Grothendieck space with the Dunford-Pettis property. Then $\overline{D(A)}=X$, and there are constants M>0 and w>0 such that $\lambda^2 \in \rho(A)$ and $||\lambda(\lambda^2 - A)^{-1}|| \leq M/(\lambda - w)$ for all $\lambda > w$. With $J_{\lambda} := (\lambda - A)^{-1}$, Theorems 1 & 6 show that A is bounded and hence $C(\cdot)$ is uniformly continuous (cf. [6]). This proves the following corollary which has appeared in [4] with a different proof.

Corollary 8. Every strongly continuous cosine operator function on a Grothendieck space with the Dunford-Pettis property is uniformly continuous.

References

- Hille, E. and Phillips, R.S., Functional Analysis and Semi-groups, Amer. Math. Soc. Colloq. Publ., vol. 31, Amer. Math. Soc., Providence, R.I., 1957.
- [2] Lotz, H.P., Uniform convergence of operators on L[∞] and similar spaces, Math. Z., 190 (1985), 207–220.
- [3] _____, Tauberian theorems for operators on L^{∞} and similar spaces, Functional Analysis: Surveys and Recent Results, 111 (1984), 117–133.
- [4] Shaw, S.-Y., On w*-continuous cosine operator functions, J. Funct. Anal. 66 (1986), 73–95.
- [5] ———, Uniform ergodic theorems for locally integrable semigroups and pseudoresolvents, *Proc. Amer. Math. Soc.*, **98** (1986), 61–67.

SEN-YEN SHAW

- [6] Travis, C.C. and Webb, G.F., Compactness, regularity, and uniform continuity properties of strongly continuous cosine families, *Houston J. Math.*, 3 (1977), 555-567.
- [7] Yosida, K., Functional Analysis, 3rd ed., Springer-Verlag, New York, 1971.

282