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Abstract

Operator norm inequalities due to Ando-Kittaneh-Kosaki for positive operators A, B and
a non-negative operator monotone function /on [0, oo) are discussed: Main inequality is
\\f(A)-f(B)\^\\f(\A-B\)\\. It is shown that the equality holds for invertible A, B and
non-linear / if and only if A = B and /(O) =0. Similarly, from the Kittaneh-Kosaki inequality,
we show that \\f(A)-f(B)\\ =f'(t)\\A-B\\ for A, B^t>0 and nonlinear /if and only if A = B.

§ 1. Introduction

From the viewpoint of the Schatten/7-norm, Kittaneh and Kosaki [2] showed
some inequalities for the operator norm. Recently, T. Ando [1] showed two
comparison theorems for unitarily invariant norms of positive semi-definite
matrices making use of Ky Fan norm technique, and summed up the interesting
inequalities related to operator monotone functions.

A real function /is called operator monotone (on [0, oo)) if A^B implies
f(A)^f(B) for (bounded linear) positive operators A, B on a Hilbert space. In
the below, we assume an operator monotone function is non-negative. Then, a
main inequality of the Ando-Kittaneh-Kosaki is as follows:

(a) \\f(A)-f(B)\\^\\f(\A-B\)\\.

On the other hand, Kittaneh and Kosaki discussed an equation :

(b) For A, B^t>Q, 2t\\A-B\\ = \\A2-BZ\\ if and only if A = B.

Note that (b) is the equality case for f(t)=t1/2 in the following inequality by
them:

(c) \\f(A)-f(B)\\^f(t)\\A-B\\ for
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In this note, by examining such inequalities, we shall consider the equality
conditions for non-linear/. It is shown that equality in (a) holds for invertible
A, B if and only if A=B. The condition A=B is also equivalent to the equality
in the Kittaneh-Kosaki inequality (c). In addition, as an application of the
inequality (a), we shall give an improvement of [2; Theorem 3.4]:

||log(^+0-log(^+OII<log(2p-^||/0 for 0<t<\\A-B\\ .

§ 2, Ando-Ktttaneh-Kosaki Inequalities

First, we shall consider the equality condition

(d)

for the inequality (a) which is stated in [1 ; Theorem 1], [2; Theorem 2.3]. Since
the equation (d) always holds for linear/, we assume that/is non-linear. Then,
it is natural to expect that (d) implies A=B. But, even in a commutative case,

a counter-example is given: The equality (d) holds for f(t)=t1/2, A= L QJ

and ^ = (Q i )• In this example, it should be noted that A is not invertible.

As a matter of fact, we have the following:

Theorem 1. Iff is a non-linear non-negative operator monotone function on
[0, oo), then \\f(A)-f(S)\\ = \\f(\A-E\)\\ for positive invertible operators A
and B if and only if A=B andf(0)=0.

Proof. Since a non-linear operator monotone function is strictly concave,
for any t > 0 and positive invertible X there is e = e (t , X) > 0 such that
f(t+X)-f(X)+e^f(t)-m, hence

\\f(t+X}-f(X)\\<f(t)-m.

Therefore, if either \\A-B\\>Q or/(0)>0, then

a = \m*-B\\+A)-f(A)\\<f(\\A-B\\) , and

b = \\f(\\A-B\\+B)-f(B)\\<f (\\A-B\\) .

Putting c=max{a, b}, we have

f(A)-f(B) =f(A-B+B)-f(B)£f(\\A-B\\+B)-f(B)£c ,

and similarly f(B)-f(A)^c. Since | f(A)-f(B) | ̂ c, it follows that

\\f(A)-f(B)\\^c<f(\\A-B\\)=\\f(\A-B\)\\.
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Thus the equality shows that \\A— B\\=Q and/(0)=0. The converse is clear,

Now, we apply Theorem 1 and the inequality (a) to typical operator mono-
tone functions. The following inequalities are due to Ando [1]:

Corollary 1.1. The following inequalities hold for positive operators A and

B, and the equality for invert ible A, B holds only when A=B:

(i) \\A*-B*\\^\\\A-B\*\\forQ<p<\9and
(ii)

The inequality (ii) in the above leads us an improvement of [2; Theorem
3.4]. From the viewpoint of this note, the following inequality shows that the
equality condition itself is not reasonable in their theorem.

Corollary 1.2. For positive operators A, B with Q<t<\\A— B\\ for some
constant t,

Proof. Since ||C— D\\ >1 for C=A/t and D=B/t9 Corollary 1.1. (ii) implies
that

£ ||log(| C-D\ +1)|| = log(||C-0|| + 1)

§ 3. Inverse Inequalities

Symmetrically, we shall discuss an inverse inequality for the inverse
function of operator monotone one, cf. [1; Theorem 3]:

Corollary 1.3. If a continuous increasing unbounded function g on [0, oo)
with g(0)=0 has the inverse function f which is operator monotone, then
\\g(A)—g(B')\\'^\\g(\A—B\)\\ for positive operators A and B. Moreover, the
equality for invert ible A, B holds for nonlinear g if and only if A=B.

Proof. Applying the inequality (a) for g(A) and g(B\ we have

f(\\g(A)-g(B)\\)^\\f(g(A))-f(g(BM = \\A-B\\ .
Jt follows from monotonity of g that

\\g(A)-g(B)\\ = g(f(\\g(A)-g(Bm^g(\\A-B\\) = \\g(\A-B\)\\ .

The second statement follows from Theorem 1.

Like Corollary LI, we can get the operator norm version of [1; Corollary 4]
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(cf. [1; Lemma 5]):

Corollary 1.4. The following inequalities hold for positive operators A and
B, and the equality for invertible A, B holds only when A=B:

(i) ||^-e*||^||eut-*i-i||,

(ii) \\A*-B*\\^\\\A-B\*\\forp^\9and
(iii)

§ 4. Estimation by Derivative

As a generalization of the van Hemmen-Ando theorem [3; Proposition
4.1], Kittaneh and Kosaki established the following inequality [2; Theorem
3.1]: Let f be a non-negative continuous operator monotone function on [0, oo)5

and A, B positive operators with Q^a^A, Q^b^B. Then, for every operator
X, \\f(A)X-Xf(B}\\^C(a,b)\\AX-XB\\ where C(a,b)=f(a) when a = b,
=(f(a)—f(bj)/(a—b) otherwise. In this section, we shall consider the equality
condition in (c), that is, the case X= 1 and a=b in the above. We note that (b)
is a special case of this: Let/(0=*1/2- Since A2, B2^c2, we have that \\A—B\\ <:
(2tYl\\A2—Bz\\ by (c). In this case, the equality is eqivalent to A=B. More
generally:

Theorem 2. Let f be a non-negative non-linear operator monotone function
on (0, oo)3 and A, B positive operators with A, B^oQfor some scalar c. Then,

\\AA)-f(B)\\=f'(c)\\A-B\\ if and only if A=B.

Proof. Suppose \\f(A)—f(B)\\=f(c)\\A—B\\. Here we use the integral

representation of /: f(x)=a+ftx+\ (t:x)dm(t) where t:x means the parallel
Jo

sum txj(t+x\ a=f(Q), ft=]imf(t)/t and djj,(t)= {t/(l+t)}dm(t) is a positive

Radon measure. Notice that the support of m is non-trivial since/is non-affine.

Putting X=(t+AY\A-B)(t+BYl=t-*(t:A-t:B\ we have

\ = \\ft(A-B)+\(t:A-t:B)dm(t)\\

W £P\\A-B\\ + t*\\(t+Arl\\ \\A-B\\ \\(t+BYl\\dm(t)
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=f'(c)\\A-B\\ = \\KA)-f(B)\\ ,

where a^min a(A) and b=mm a(B). Therefore, on the support of m, we
have two equations up to null sets :

( 1 ) imiHKH-^ni \\A~B\\ \\(t+B)-l\\ by (*),
( 2 ) (t+ar^+br^A-BU = (t+c)-'\\A-B\\ by (**).

Here suppose A 3=B to the contrary. Then (2) implies a=b=c. We may assume
that there exists a state o> with <w(J5Q=(y(|Ar|)=||JST|| since the condition is
symmetric for A, B and X=X*. Noting that o>(| YZ |)^||F||o>(|Z |), it
follows from (1) that the following:

imply cy((r+5)-1)-||(r+5)-1||-:l/(f+^). Since t:B=t(l-t(t-i-B)-'1)9 we have
co(t: B)=t: b. Similarly, since

\\x\\ =

by the self-adjointness of X, we have o)(t:A)=t:a. Therefore,

t*o>(X) = a>(t:A-t:B) = G>(t:A)-o>(t:B) =t:a-t:b = Q,

which implies X=0, hence A=B. This is a contradiction, that is, the equality
implies A=B. The converse is clear.

Remark. It is essential that/'(c) dominates C(a, b) and/'(0 on the spectra
of A and B. Indeed, the equation \\f(A)—f(B)\\ = C(a9 b)\\A—B\\ does not
always imply A=B. For example, Iet/(r)=r1/2, A = l and B= l®e for 0<e<l.
Then, \\A-B\\ = l-e and ||/(^)-/(^)||-l-£1/2. Since C(a,b)=(l-£l/2)/(l-6)

for a=l and b=e, we have the equation \\f(A)-f(B)\\ = C(a, b)\\A-B\\
although A^F B.
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