On the representation of the Picard modular function by θ constants I-II

Dedicated to Professor Kôtaro Oikawa on his 60th birthday

By

Hironori SHIGA*

§ 0. Introduction

In this paper the author shows the representation of the Picard modular function by θ constants, and characterizes this function as modular forms on the domain

$$D = \{(u, v) \in \mathbb{C}^2: 2 \operatorname{Re} v + |u|^2 < 0\} = \{[\eta_0, \eta_1, \eta_2] \in \mathbb{P}^2(\mathbb{C}): t\eta H \bar{\eta} < 0\}$$

relative to a certain arithmetic discontinuous group,

where $H = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

We divide the paper in two parts. In Part I we discuss the former subject and in Part II we study the latter.

This modular function was constructed originally by [P], and was investigated by several mathematicians recently [D-M], [F], [H], [Sh] and [T]. This modular function is defined as the inverse mapping of the period mapping Φ for the family of the complex algebraic curves in (z, w)-space

$$C(\xi): w^{3} = z(z - \xi_{0}) (z - \xi_{1}) (z - \xi_{2}),$$

where $\hat{\varsigma} = [\hat{\varsigma}_0, \hat{\varsigma}_1, \hat{\varsigma}_2]$ is a parameter on the domain

$$\Lambda = \{\xi; \,\xi_0\xi_1\xi_2(\xi_0 - \xi_1) \, (\xi_1 - \xi_2) \, (\xi_2 - \xi_0) \neq 0\}$$

of $P^2(C)$. As easily shown $C(\xi)$ can be regarded as a compact Riemann surface of genus 3. Then Φ is a multivalued analytic

Communicated by M. Kashiwara, April 15, 1987.

^{*} Department of Mathematics, Faculty of Science, Chiba University, Chiba 260, Japan.

mapping from Λ to the Siegel upper half space \mathfrak{S}_3 of degree 3. The image of Φ is contained as an open dense subset in a nonsingular subvariety, which is biholomorphically equivalent to the domain D, of \mathfrak{S}_3 . The inverse mapping of Φ is given as a single valued holomorphic mapping $[\xi_0, \xi_1, \xi_2] = [f_0, f_1, f_2]$ defined on D. The period mapping Φ induces a biholomorphic correspondence between the ξ -space P^2 and the compactification $\widetilde{D}/\widetilde{\Gamma}_1$ of D/Γ_1 , where Γ_1 is an arithmetic group defined afterwards. Hence $f_k/f_0(u, v)$ (k=1, 2)are meromorphic automorphic functions relative to Γ_1 and they are the generators of the function field on $\widehat{D/\Gamma_1}$. As the conclusion of Part I we show the representation $f_k = \varphi_k(u, v)$ by θ constants of the Riemann theta function on \mathfrak{S}_3 (Proposition I-3). And this representation enables us to get an explicit Fourier expansion of the Picard modular function (Proposition I-4). As already shown in [Sh] the Picard modular function is a typical K3 modular function. So we wish to investigate it as a model case of the theory of the K3 modular functions. Hence we tried to obtain such a expansion of this modular function. In 1902 Alezais [A] has studied this representation but it contains essential faults, contrally our investigation is direct and Our result can be considered as an extension of the complete. classical Jacobi's representation $\lambda = \theta_2^4/\theta_3^4(\theta_i(z,\tau))$ indicates Jacobi's theta function and θ_i is the convention for $\theta_i(0, \tau)$) for the elliptic modular function $\lambda(\tau)$ to the special case of genus 3 (for the genus 2 case there is Rosenhein's representation, for the hyperelliptic case there is Thomae's representation).

We use several results of the theory of Riemann θ function. They are summed up as the Appendix at the end of this paper.

Next we give the summing up of Part II.

Putting $\Gamma(C) = \{g \in PGL(3, C): {}^{t}gH\bar{g} = H\}$ we consider the following transformation groups acting on D:

 $\Gamma_1 = \{g \in \Gamma(C) \cap PGL(3, \mathbb{Z}[\omega]) \colon g \equiv I \pmod{(\sqrt{-3})}\},\$

where $\omega = \exp(-2\pi i/3)$.

 $\Gamma = \Gamma(\mathbf{C}) \cap PGL(3, \mathbf{Z}[\boldsymbol{\omega}]),$ $\Gamma_0 = \Gamma(\mathbf{C}) \cap PSL(3, \mathbf{Z}[\boldsymbol{\omega}]),$ $\Gamma' = \Gamma_1 \cap PSL(3, \mathbf{Z}[\boldsymbol{\omega}]).$

Where PGL(3, *)(PSL(3, *)) indicates the group of projective trans-

formations induced from GL(3, *)(SL(3, *)), respectively, and $g \equiv I$ (mod. $(\sqrt{-3})$) means that g represents the identity in $PGL(3, \mathbb{Z}[\omega]/(\sqrt{-3}))$.

In Part II we characterize the theta constants $\varphi_k(u, v)$ (k=0, 1, 2)as modular forms on D relative to Γ' (II-§3 Proposition II-3). And we determine the structure and the generator system of A(*) in terms of $\varphi_k(u, v)$, where A(*) indicates the graded ring of modular forms on D with respect to $*=\Gamma'$ and Γ (II-§4 Proposition II-4 and II-5). There we use the transformation formula of theta functions as the main tool.

The results in Part II are also obtained by Holzapfel and Feustel [F], [H] independently in a different way.

Table of contents

- I. Representation by θ constants.
 - §1. The Picard's modular function and his theta representation
 - §2. Observation of the variables in the theta representation
 - §3. Determination of \varDelta and the conclusion

II. θ constants $\varphi_k(u, v)$ as modular forms

- §1. The Picard modular group
- §2. Modular forms of weight 1
- §3. The possibility of common zeros of theta constants
- §4. Characterization of $\varphi_k(u, v)$ as modular forms

§5. The generator system of the graded ring of modular forms A. Appendix.

I. Representation by θ Constants

§ 1. Picard's Modular Function and His θ Representation

We consider an algebraic curve $C(\xi)$ in (z, w)-space \mathbb{C}^2 defined by

(1-1)
$$C(\xi): w^3 = z(z-\xi_0)(z-\xi_1)(z-\xi_2),$$

where the parameter $\xi = [\xi_0, \xi_1, \xi_2]$ is supposed to lie in the domain

$$\Lambda = \{\xi : \xi_0 \xi_1 \xi_2 (\xi_0 - \xi_1) (\xi_1 - \xi_2) (\xi_2 - \xi_0) \neq 0\}$$

of the complex projective space $P^2(C)$. Then we know that $C(\xi)$ can be considered as a compact Riemann surface of genus 3. Let us call $C(\xi)$ a Picard curve. And let us denote the totality of Picard curves by F.

Picard [P] constructed the period mapping for F and he showed that the inverse mapping defines a single valued automorphic function on a domain D which is biholomorphically equivalent to a complex 2 dimensional hyperball. Moreover he gave a representation of these functions by the Riemann θ function. Our aim is to get a representation by θ constant through a precise observation of Picard's result.

For this purpose we give a concrete description of the Picard's work in this section (the main part is owing to the private note of Wakabayashi [W]).

Let us fix the parameter $\Xi = [\xi_0, \xi_1, \xi_2]$ with $0 < \xi_0 < \xi_1 < \xi_2$ and let us denote the corresponding Picard curve by C_0 . In the sequel we construct a homology basis $\{A_i, B_i\}$ (i=1, 2, 3) of C_0 . We regard C_0 as a three sheeted covering surface over the z-sphere, and let π be the projection mapping from C_0 to the z-sphere. Then we get $Q_1 = (z, w) = (0, 0), \ Q_2 = (z, w) = (\xi_0, 0), \ Q_3 = (z, w) = (\xi_1, 0), \ Q_4 =$ $(z, w) = (\xi_2, 0), \ Q_5 = (z, w) = (\infty, \infty)$ as ramifying points. Put $Q_i =$ $\pi(Q_i)$ $(i=1,\ldots,5)$, and let t_0 be a fixed point on the z-plane with Im $t_0 < 0$. Let γ_i be a line segment connecting t_0 and Q_i on the z-plane. Then we have three connected components σ_1, σ_2 and σ_3 of

$$\pi^{-1}(z ext{-sphere}-\bigcup_{i=1}^{\mathfrak{s}}\gamma_i),$$

and they are simply connected.

Let ρ be the automorphism of C_0 defined by $\rho(z, w) = (z, \omega w)$, where ω indicates $\exp(2\pi i/3)$. And the indices of σ are supposed to satisfy $\rho(\sigma_1) = \sigma_2$, $\rho(\sigma_2) = \sigma_3$. Let $\alpha^{(k)}(i, j)$ be the oriented arc from Q_i to Q_j on σ_k . Using above notations we define 1-cycles A_i , B_i on C_0 as follows:

(1-2)
$$\begin{cases} A_1 = \alpha^{(2)}(2,3) + \alpha^{(3)}(3,4) + \alpha^{(1)}(4,2), \\ A_2 = \alpha^{(3)}(2,3) + \alpha^{(1)}(3,2), \\ A_3 = \alpha^{(3)}(2,4) + \alpha^{(2)}(4,3) + \alpha^{(1)}(3,2), \\ B_1 = \alpha^{(1)}(1,3) + \alpha^{(3)}(3,2) + \alpha^{(2)}(2,1), \\ B_2 = \alpha^{(3)}(2,3) + \alpha^{(2)}(3,2), \\ B_3 = \alpha^{(2)}(1,3) + \alpha^{(1)}(3,2) + \alpha^{(3)}(2,1). \end{cases}$$

They satisfy the relations $A_i \cdot A_j = B_i \cdot B_j = 0$ and $A_i \cdot B_j = \delta_{ij}$ $(1 \le i, j \le 3)$, so $\{A_i, B_j\}$ is a basis of $H_1(C_0, \mathbb{Z})$. Let us consider a path s on Λ from Ξ to a variable point ξ . Because F is a locally trivial topological fibre space over Λ , we can define a homology basis $\{A_i(\xi), B_i(\xi)\}$ of $H_1(C(\xi), \mathbb{Z})$ by the continuation of $\{A_i, B_i\}$ along s.

Let $\{\omega_i\}_{1 \le i \le 3}$ be a basis of Abelian differentials of first kind on $C(\xi)$ so that we have

$$\int_{A_j} \omega_i = \delta_{ij}.$$

Then we get a multivalued analytic mapping from Λ to the Siegel upper half space \mathfrak{S}_3 by the correspondence

$$\mathcal{Q}(\xi) = (\mathcal{Q}_{ij}(\xi)) = \left(\int_{B_j} \omega_i\right).$$

Remark 1-1. We get a basis of Abelian differentials of first kind $\varphi_1 = dz/w$, $\varphi_2 = dz/(w^2)$, $\varphi_3 = zdz/(w^2)$, but they do not coincide with $\{\omega_i\}$.

According to Picard the period matrix $\Omega(\xi)$ has a concrete description as follows:

(1-3)
$$\Omega(\xi) = \begin{bmatrix} (u^2 + 2\omega^2 v)/(1-\omega) & \omega^2 u & (\omega u^2 - \omega^2 v)/(1-\omega) \\ \omega^2 u & -\omega^2 & u \\ (\omega u^2 - \omega^2 v)/(1-\omega) & u & (u^2 - 2v)/(\omega - \omega^2) \end{bmatrix},$$

where we use the notations

$$\eta_0 = \int_{A_1} \varphi_1, \ \eta_1 = -\omega^2 \int_{B_1} \varphi_1, \ \eta_2 = \int_{A_2} \varphi_1, \ v = \eta_1/\eta_0, \ u = \eta_2/\eta_0.$$

So we can regard the correspondence $\Phi: \xi \mapsto (u, v)$ as the period mapping for the family F.

We have the following properties about Φ (cf. [P], [T], [D-M], [H], [Sh]).

(1) The image of Φ is open-dense in the domain

$$D = \{(u, v) \in \mathbb{C}^2 : 2 \text{ Re } v + |u|^2 < 0\} = \{\eta \in \mathbb{P}^2 : {}^t\eta H \bar{\eta} < 0\},\$$

where H indicates the matrix

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

(2) Let Γ_1 be the monodromy group in Aut D, the group of

biholomorphic transformations of D, induced from $\pi_1(\Lambda, *)$. Then we have

$$\Gamma_1 = \{g \in PGL(3, \mathbb{Z}[\omega]): {}^tgH\bar{g} = H, g \equiv id \pmod{(\sqrt{-3})}\},\$$

where g acts on P^2 from left and \equiv means that g represents the identity in $PGL(3, \mathbb{Z}[\omega]/(\sqrt{-3}))$.

(3) Φ induces an injective mapping from Λ to D/Γ_1 .

(4) If we take an affine coordinate $x = \xi_1/\xi_0$, $y = \xi_2/\xi_0$, then the system $\{\eta_i(x, y)\}$ (i=0, 1, 2) gives a fundamental solution of the Appell's hypergeometric differential equation $F_1(1/3, 1/3, 1/3, 1; x, y)$.

(5) Φ extends to a biholomorphic correspondence between ξ -space P^2 and the Satake-Baily-Borel compactification of D/Γ_1 (it is obtained by attaching 4 points corresponding to

 $P_0 = [1, 0, 0], P_1 = [0, 1, 0], P_2 = [0, 0, 1], P_3 = [1, 1, 1]$

on the ξ -space.)

Now let us relate the θ representation of Picard. For this purpose we apply Theorem A-5, A indicates the Appendix, for the Picard curve $X: w^3 = z(z-1)(z-x)(z-y)$. Let us take a meromorphic function f=z on X. It is a function of order 3 and we have $(f) = 3Q_1 - 3Q_5((*)$ indicates the divisor defined by *). Let us consider the divisor $2Q_2+Q_3$ on X, then Q_2+Q_3 is a general divisor (see Appendix). In fact we have $(dz/w) = Q_1+Q_2+Q_3+Q_4$. If we take Q_5 as the initial point of the Abelian integral, we have

$$Ex = \prod_{k=1}^{3} \left\{ \frac{\theta\left(2\int_{Q_{5}}^{Q_{2}} \omega + \int_{Q_{5}}^{Q_{3}} \omega - \int_{\alpha^{(k)}(5,1)} \omega - \mathcal{A}, \mathcal{Q}(\xi)\right)}{\theta\left(2\int_{Q_{5}}^{Q_{2}} \omega + \int_{Q_{5}}^{Q_{3}} \omega - \mathcal{A}, \mathcal{Q}(\xi)\right)} - \frac{\theta\left(\xi\right)}{\theta\left(2\int_{Q_{5}}^{Q_{2}} \omega + \int_{Q_{5}}^{Q_{3}} \omega - \mathcal{A}, \mathcal{Q}(\xi)\right)} \right\}.$$

Owing to Remark A-5 the denominator and the numerator are different from zero. If we take the divisor Q_2+2Q_3 instead of $2Q_2+Q_3$, we have

$$Ex^{2} = \prod_{k=1}^{3} \left\{ \frac{\theta\left(\int_{Q_{5}}^{Q_{2}} \omega + 2\int_{Q_{5}}^{Q_{3}} \omega - \int_{\alpha^{(k)}(5,1)} \omega - \mathcal{A}, \mathcal{Q}(\xi)\right)}{\theta\left(\int_{Q_{5}}^{Q_{2}} \omega + 2\int_{Q_{5}}^{Q_{3}} \omega - \mathcal{A}, \mathcal{Q}(\xi)\right)} \right\}.$$

By the similar argument we get

$$E_{\mathcal{Y}} = \prod_{k=1}^{3} \left\{ \frac{\theta \left(2 \int_{Q_{5}}^{Q_{2}} \omega + \int_{Q_{5}}^{Q_{4}} \omega - \int_{\alpha^{(k)}(5,1)} \omega - \mathcal{A}, \mathcal{Q}(\xi) \right)}{\theta \left(2 \int_{Q_{5}}^{Q_{2}} \omega + \int_{Q_{5}}^{Q_{4}} \omega - \mathcal{A}, \mathcal{Q}(\xi) \right)} \right\},$$

$$Ey^{2} = \prod_{k=1}^{3} \left\{ \frac{\theta\left(\int_{Q_{5}}^{Q_{2}} \omega + 2\int_{Q_{5}}^{Q_{4}} \omega - \int_{\alpha^{(k)}(5,1)} \omega - \mathcal{A}, \mathcal{Q}(\xi)\right)}{\theta\left(\int_{Q_{5}}^{Q_{2}} \omega + 2\int_{Q_{5}}^{Q_{4}} \omega - \mathcal{A}, \mathcal{Q}(\xi)\right)} \right\}.$$

By elliminating E from the above equalities we obtain

$$(1-4) \qquad x = \prod_{k=1}^{3} \left\{ \frac{\theta\left(\int_{Q_{5}}^{Q_{2}} \omega + 2\int_{Q_{5}}^{Q_{3}} \omega - \int_{...(k)}^{...(k)} \omega - \mathcal{A}, \mathcal{Q}(\xi)\right)}{\theta\left(\int_{Q_{5}}^{Q_{2}} \omega + 2\int_{Q_{5}}^{Q_{3}} \omega - \mathcal{A}, \mathcal{Q}(\xi)\right)} \right\} \\ \times \prod_{k=1}^{3} \left\{ \frac{\theta\left(2\int_{Q_{5}}^{Q_{2}} \omega + 2\int_{Q_{5}}^{Q_{3}} \omega - \mathcal{A}, \mathcal{Q}(\xi)\right)}{\theta\left(2\int_{Q_{5}}^{Q_{2}} \omega + \int_{Q_{5}}^{Q_{3}} \omega - \int_{\alpha}^{...(k)} \omega - \mathcal{A}, \mathcal{Q}(\xi)\right)} \right\}, \\ y = \prod_{k=1}^{3} \left\{ \frac{\theta\left(\int_{Q_{5}}^{Q_{2}} \omega + 2\int_{Q_{5}}^{Q_{4}} \omega - \int_{\alpha}^{...(k)} \omega - \mathcal{A}, \mathcal{Q}(\xi)\right)}{\theta\left(\int_{Q_{5}}^{Q_{2}} \omega + 2\int_{Q_{5}}^{Q_{4}} \omega - \mathcal{A}, \mathcal{Q}(\xi)\right)} \right\} \\ \times \prod_{k=1}^{3} \left\{ \frac{\theta\left(2\int_{Q_{5}}^{Q_{2}} \omega + 2\int_{Q_{5}}^{Q_{4}} \omega - \mathcal{A}, \mathcal{Q}(\xi)\right)}{\theta\left(2\int_{Q_{5}}^{Q_{2}} \omega + 2\int_{Q_{5}}^{Q_{4}} \omega - \mathcal{A}, \mathcal{Q}(\xi)\right)} \right\}.$$

This is the θ representation of Picard.

§ 2. Observation of the Variables in the θ Representation

Now our aim is to express the parameters x and y in (1-4) as explicit functions of (u, v). The right hand sides are determined by the moduli variable $\Omega(\xi)$, the Riemann constant Δ and the Abelian integrals along certain arcs. The matrix $\Omega(\xi)$ in (1-4) is determined by the point (u, v) on D, in fact (1-3) gives the embedding of D in \mathfrak{S}_3 . Hence it is determined by the periods on $C(\xi)$. The Riemann constant Δ (cf. (A-3)) is determined by the homology basis of $C(\xi)$ and the initial point P_0 of the Abelian integral as noted in Remark A-2. By Corollary to Theorem A-3, Δ is a half period if there exists an Abelian differential ω of first kind with $(\omega) = 4P_0$. We already set $P_0 = Q_5$ on $C(\xi)$. On the other hand if we consider $\varphi_2 = dz/w^2$, we have $(\varphi_2) = 4Q_5$. By Corollary 2 to Theorem A-3, the Riemann constant Δ in (1-4) is a half period on Jac $C(\xi)$. Namely we have $\Delta = \Omega(\xi) n_1 + n_2$ for certain vectors n_1 , n_2 of $(\mathbb{Z}/2)^3/\mathbb{Z}^3$. Here we note that n_1 and n_2 are independent of the parameter ξ , because Δ is a continuous function of ξ (see (A-3)). We shall investigate Δ precisely in the next section.

So we determine the Abelian integrals of the form

$$\int_{\alpha^{(k)}(i,j)}\omega$$

in (1-4). At first we have the following:

Lemma 1.
$$\int_{\alpha^{(1)}(i,j)} \omega = \frac{1}{3} \int_{C-C'} \omega_{i}$$

Where we set $C = \alpha^{(1)}(i, j) - \alpha^{(2)}(i, j)$ and $C' = \alpha^{(3)}(i, j) - \alpha^{(1)}(i, j)$, they are 1-cycles on $C(\xi)$. Hence the left hand side of the above equality is one thirds of a certain period.

Proof. It is sufficient to show the equality for φ_i (i=1, 2, 3). We have

$$\int_{c} \varphi_{1} = \int_{\alpha^{(1)}(i,j)} \frac{dz}{w} - \int_{\alpha^{(1)}(i,j)} \frac{dz}{ww} = (1 - \omega^{2}) \int_{\alpha^{(1)}(i,j)} \varphi_{1}.$$

Hence we obtain

$$\int_{\alpha^{(1)}(i,j)} \varphi_1 = \frac{1}{1-\omega^2} \int_c \varphi_1 = \frac{1-\omega}{3} \int_c \varphi_1 = \frac{1}{3} \int_{c-c'} \varphi_1.$$

The argument is almost same as for φ_2 and φ_3 . q. e. d.

By the above consideration the θ variables in (1-4) can be represented by one sixths of the periods. In the sequel we find the exact values of them.

As for the cycles of type C we have:

Lemma 2.

$$\begin{split} &\alpha^{(1)}(5,1) - \alpha^{(2)}(5,1) = A_1 - A_3, \\ &\alpha^{(1)}(5,2) - \alpha^{(2)}(5,2) = B_1 + A_1 + A_2 - A_3, \\ &\alpha^{(1)}(5,3) - \alpha^{(2)}(5,3) = B_1 + B_2 + A_1 - A_3, \\ &\alpha^{(1)}(5,4) - \alpha^{(2)}(5,4) = B_1. \end{split}$$

The automorphism ρ (in §1) of $C(\xi)$ acts on $H_1(C(\xi), \mathbb{Z})$. We denote this automorphism by the same notation. Then we have:

Lemma 3.

$$\rho^{2} \begin{pmatrix} A_{1} \\ A_{2} \\ A_{3} \\ B_{1} \\ B_{2} \\ B_{3} \end{pmatrix} = \begin{pmatrix} 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 \\ 1 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & -1 \\ 0 & 1 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} A_{1} \\ A_{2} \\ A_{3} \\ B_{1} \\ B_{2} \\ B_{3} \end{pmatrix}$$

By the above three Lemmas, we can describe the integral of the form

$$\int_{\alpha^{(k)}(i,j)}\omega$$

in (1-4) by the periods on $C(\xi)$. Namely we have:

Proposition I-1.

$$\begin{split} & \int_{\alpha} \int_{\alpha} \int_{(1)} \omega = \frac{1}{3} \left\{ \mathcal{Q} \begin{bmatrix} 2\\1\\1 \end{bmatrix} + \begin{bmatrix} 2\\1\\-1 \end{bmatrix} \right\}, \\ & \int_{\alpha} \int_{(1)} \omega = \frac{1}{3} \left\{ \mathcal{Q} \begin{bmatrix} 2\\2\\1 \end{bmatrix} + \begin{bmatrix} 2\\-1\\-1 \end{bmatrix} \right\}, \\ & \int_{\alpha} \int_{\alpha} \int_{(1)} \omega = \frac{1}{3} \begin{bmatrix} 2\\0\\-1 \end{bmatrix}, \int_{\alpha} \int_{\alpha} \int_{(1)} \omega = \frac{1}{3} \begin{bmatrix} 2\\0\\-1 \end{bmatrix}, \\ & \int_{\alpha} \int_{\alpha} \int_{(2)} \omega = \frac{1}{3} \begin{bmatrix} -1\\0\\2 \end{bmatrix}, \int_{\alpha} \int_{\alpha} \int_{(3)} \omega = \frac{1}{3} \begin{bmatrix} -1\\0\\-1 \end{bmatrix}. \end{split}$$

Next let us observe the Riemann constant Δ . The corresponding half integral vectors n_1 and n_2 do not depend on the parameter ξ . So we consider the fixed Picard curve

$$X_1: w^3 = z^4 - 1.$$

It is a three sheeted covering over the z-sphere. And we regard five ramifying points $Q_1 = (z, w) = (1, 0), Q_2 = (z, w) = (i, 0), Q_3 = (z, w)$

•

HIRONORI SHIGA

 $=(-1, 0), Q_4 = (z, w) = (-i, 0), Q_5 = (z, w) = (\infty, \infty)$ are deformed from Q_i on C_0 , respectively. And we suppose the deformed arc from line segment γ_i does not intersect the open unit disc $\{z: |z| < 1\}$.

If we regard X_1 as a four sheeted covering over the *w*-sphere, we obtain 4 ramifying points $R_1 = (z, w) = (\infty, \infty) = Q_5$, $R_2 = (z, w) = (0, -\omega^2)$, $R_3 = (z, w) = (0, -1)$, $R_4 = (z, w) = (0, -\omega)$.

Here let us consider a deformation of Riemann surfaces:

$$(2-1) \qquad X(t) : \exp(\pi i t) \cdot z^4$$

 $= \{w + \omega^2 t + (t-1)i\} \{w + \omega t + (1-t)i\} \{(1-t)w - 1\} (w+1),\$

where t varies on the interval [0, 1]. Then we obtain $X(1) = X_1$ and $X(0) = X_0$. As for the Fermat curve $X_0: z^4 = w^4 - 1$ we have 4 ramifying points

$$R'_1 = (z, w) = (0, 1), \ R'_2 = (z, w) = (0, i), \ R'_3 = (z, w) = (0, -1), \ R'_4 = (z, w) = (0, -i)$$

corresponding to R_1, R_2, R_3, R_4 respectively. In the next section we determine the Riemann constant Δ for X_0 , and we get the one for X_1 by the deformation of Riemann surfaces (2-1).

§ 3. Determination of Δ and the Conclusion

For the simplicity we denote R'_i by R_i in the sequel. Let π be the projection $(z, w) \mapsto w$ and set $\underline{R}_i = \pi(R_i)$. Let γ_i be the line segment connecting \underline{R}_i and ∞ on the *w*-sphere. We denote the connected component of $\pi^{-1}(\mathbf{P} - \bigcup_{j=1}^{4} \gamma_j)$ by Σ_i (*i* is an element of $\mathbf{Z}/4\mathbf{Z}$). Here we suppose that it holds $\tau \Sigma_i = \Sigma_{i+1}$ relative to the automorphism

$$\tau: \begin{cases} z'=iz\\ w'=w \end{cases}$$

Let $\alpha^{(k)}(i,j)$ be the oriented arc on Σ_k from R_i to R_j . Using this notation we define the following 1-cycles on X_0 :

$$(3-1) \begin{cases} A'_{1} = \alpha^{(2)}(4, 1) + \alpha^{(4)}(1, 4) + \alpha^{(3)}(1, 2) + \alpha^{(1)}(2, 1), \\ A'_{2} = \alpha^{(4)}(2, 4) + \alpha^{(2)}(4, 2), \\ A'_{3} = \alpha^{(1)}(2, 3) + \alpha^{(3)}(2, 3) + \alpha^{(2)}(3, 2) + \alpha^{(4)}(3, 2), \\ B'_{1} = \alpha^{(2)}(2, 3) + \alpha^{(1)}(3, 2), \\ B'_{2} = \alpha^{(1)}(1, 4) + \alpha^{(4)}(4, 1), \\ B'_{3} = \alpha^{(2)}(1, 2) + \alpha^{(3)}(2, 1). \end{cases}$$

Then we have $A'_i \cdot A'_j = B'_i \cdot B'_j = 0$ and $A'_i \cdot B'_j = \delta_{ij}$. Hence they constitute a basis of $H_1(X_0, \mathbb{Z})$. If we set

$$\varphi_1 = wz^{-3}dw, \quad \varphi_2 = z^{-3}dw, \quad \varphi_3 = z^{-2}dw,$$

we obtain

$$\left[\int_{A_{j}'} \varphi_{i}\right] = D$$

and

$$\mathcal{Q}' \coloneqq \left[\int_{B'_j} \varphi_i \right] = \frac{1}{2} D \begin{bmatrix} i & -1 & -1 \\ -1 & i & -1 \\ -1 & -1 & i \end{bmatrix},$$

for a certain diagonal matrix D. And put

$$Q_1 = (z, w) = (1, 0), \quad Q_2 = (z, w) = (i, 0),$$

 $Q_3 = (z, w) = (-1, 0), \quad Q_4 = (z, w) = (-i, 0).$

These are the deformations of Q_1 , Q_2 , Q_3 , Q_4 on X_1 relative to (2-1) respectively.

And we may assume Q_k is situated on Σ_k . By

$$\int_{Q_k}^{R_i} \varphi_j$$

we indicates the integral of φ , along the arc from Q_k to R_i on Σ_k . And put

$$c_{J} = \int_{Q_{1}}^{R_{1}} \varphi_{J}.$$

By considering the automorphisms

$$\begin{cases} z'=z\\ w'=iw \end{cases}, \quad \begin{cases} z'=iz\\ w'=w \end{cases}$$

of X_0 we obtain the following table of

$$P_{ijk} = c_j^{-1} \int_{Q_k}^{R_i} \varphi_j:$$

Table 1											
$\binom{i}{k}$	$ \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix} \begin{pmatrix} 4 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} \begin{pmatrix} 4 \\ 2 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \end{pmatrix} \begin{pmatrix} 3 \\ 3 \end{pmatrix} \begin{pmatrix} 4 \\ 3 \end{pmatrix} \begin{pmatrix} 1 \\ 4 \end{pmatrix} \begin{pmatrix} 2 \\ 4 \end{pmatrix} \begin{pmatrix} 3 \\ 4 \end{pmatrix} \begin{pmatrix} 4 \\ 4 \end{pmatrix} \begin{pmatrix} 4$										
[1	1 i - 1 -i i - 1 -i 1 -1 -										
j = 2	1 $i-1$ $-i$ -1 $-i$ 1 i 1 i -1 $-i$ -1 $-i$ 1 i										
3	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										

According to Table 1 we obtain the following:

Lemma 4.

$$\begin{split} &\frac{1}{2} \int_{A_1'} \varphi \equiv 2 \int_{Q_1}^{Q_4} \varphi, \quad \frac{1}{2} \int_{A_2'} \varphi \equiv \int_{R_1}^{Q_1} \varphi + \int_{R_3}^{Q_3} \varphi, \\ &\frac{1}{2} \int_{A_3'} \varphi \equiv 2 \int_{R_1}^{R_4} \varphi, \quad \frac{1}{2} \int_{B_1' - B_3'} \varphi \equiv \int_{Q_1}^{Q_3} \varphi + \int_{R_1}^{R_3} \varphi, \end{split}$$

where we set $\varphi = {}^{t}(\varphi_1, \varphi_2, \varphi_3)$ and \equiv indicates the equivalence modulo periods.

Proof. Set

$$C' = \begin{bmatrix} c_1^{-1} & 0 \\ & c_2^{-1} & \\ 0 & & c_3^{-1} \end{bmatrix},$$

using (3-1) we have

$$C' \int_{A'_{1}} \varphi = C' \left\{ \left[\int_{q_{1}}^{R_{1}} + \int_{q_{3}}^{R_{3}} + \int_{q_{2}}^{R_{1}} + \int_{q_{4}}^{R_{4}} \right] - \left[\int_{q_{1}}^{R_{2}} + \int_{q_{3}}^{R_{1}} + \int_{q_{2}}^{R_{4}} + \int_{q_{4}}^{R_{1}} \right] \right\} \varphi,$$

where we set $\varphi = {}^{t}(\varphi_1, \varphi_2, \varphi_3)$. By Table 1, we obtain:

the right hand side

$$= \left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} + \begin{bmatrix} 1\\-i\\i\\1 \end{bmatrix} + \begin{bmatrix} i\\i\\-1\\-1 \end{bmatrix} + \begin{bmatrix} i\\-1\\i\\i \end{bmatrix} \right\} - \left\{ \begin{bmatrix} -1\\i\\i\\1 \end{bmatrix} + \begin{bmatrix} -1\\-1\\1\\1 \end{bmatrix} + \begin{bmatrix} -i\\1\\i\\-1 \end{bmatrix} + \begin{bmatrix} -i\\-i\\-1\\-1 \end{bmatrix} \right\}$$
$$= \begin{bmatrix} 4+4i\\0\\0 \end{bmatrix}.$$

On the other hand we have

$$2C' \int_{q_1}^{q_4} \varphi \equiv C' \left[\int_{q_1}^{R_1} + \int_{R_1}^{q_4} + \int_{q_1}^{R_3} + \int_{R_3}^{q_4} \right] \varphi = \begin{bmatrix} 2+2i \\ 0 \\ 0 \end{bmatrix}.$$

Hence we have the first equality. By the similar computation we get the rests. q. e. d.

On the Picard curve X_1 we have the homology basis $\{A_i, B_i\}$ which is obtained by the continuation of (1-2). We can define the continuation of this basis relative to the deformation (2-1). Let us denote this shifted basis on X_0 by $\{A_i, B_i\}$ also. So we have two basis systems of $H_1(X_0, \mathbb{Z})$. They are changed each other by the following symplectic transformation:

Lemma 5.

1	B_1		$\begin{pmatrix} 1 \end{pmatrix}$	-1	1	0	0	1)	ſ	B'_1	
	B_2		0	0	-1	-1	0	0		B'_2	
	B_3	_	-1	0	-1	0	0	$ \begin{array}{c} 1 \\ 0 \\ -1 \\ 0 \\ -1 \\ -1 \\ -1 \end{array} \right) $		B'_3	
	A_1		0	0	1	1	-1	0		A_1'	
	A_2		0	1	-1	0	0	-1		A'_2	
	A_3		l –1	0	0	0	-1	_1 J	L	A'_3	

Proof. It is sufficient to know the intersection multiplicities between these two systems. In fact we obtain the description:

$$\begin{split} A_1 &= \alpha^{(2)} (2, 3) + \alpha^{(3)} (3, 4) + \alpha^{(4)} (4, 2), \\ A_2 &= \alpha^{(2)} (2, 4) + \alpha^{(3)} (4, 2), \\ A_3 &= \alpha^{(2)} (2, 4) + \alpha^{(4)} (4, 3) + \alpha^{(3)} (3, 2), \\ B_1 &= \alpha^{(1)} (3, 2) + \alpha^{(3)} (2, 4) + \alpha^{(2)} (4, 3), \\ B_2 &= \alpha^{(2)} (3, 4) + \alpha^{(3)} (4, 3), \\ B_3 &= \alpha^{(1)} (4, 3) + \alpha^{(3)} (3, 2) + \alpha^{(2)} (2, 4). \end{split}$$

So the above numbers are easily obtained by the geometric configuration. q. e. d.

Let E_0, E_1, \ldots, E_{63} be the totality of the linear equivalence classes of the divisor E on X_0 with $2E \equiv 0$. Put

$$d_i = \dim H^0(X_0, \mathcal{O}([E_i + 2R_1])),$$

where [] indicates the corresponding line bundle. By Remark A-4, we have $d_i=0$ or 1. Set

$$\Omega_0 = \int_{B_j} \omega_i \qquad 1 \leq i, \ j \leq 3,$$

where $\omega = {}^{t}(\omega_1, \omega_2, \omega_3)$ is a basis of Abelian differentials of first kind with

$$\int_{A_j} \omega_i = \delta_{ij} \, .$$

The Riemann constant Δ on X_0 relative to the homology basis $\{A_i, B_i\}$ and the initial point R_1 is also a half period, because we have $(\varphi_1) = (z^{-3}dw) = 4R_1$. So Δ is represented by the form $\Omega_0\eta_1 + \eta_2$ with certain elements η_1 and η_2 of $(\mathbb{Z}/2)^3/\mathbb{Z}^3$. Set

$$\int_{E_{i}} \omega = \Omega_{0} \eta_{1}^{(i)} + \eta_{2}^{(i)},$$

the notation is defined in Appendix, with vectors $\eta_1^{(i)}$ and $\eta_2^{(i)}$ of $(\mathbb{Z}/2)^3/\mathbb{Z}^3$. By the corollary to Theorem A-3, (η_1, η_2) is characterized by the condition:

(3-2)
$$4^t(\eta_1 + \eta_1^{(i)}) (\eta_2 + \eta_2^{(i)}) \equiv d_i \pmod{2}$$

for arbitrary index i.

Set $E_0=0$, $E_1=2Q_4-2Q_1$, $E_2=Q_1+Q_3-R_1-R_3$, $E_3=2R_4-2R_1$, $E_4=Q_3+R_3-Q_1-R_1$. Then we have $2E_i\equiv 0$ $(i=0,\ldots,4)$ because of Lemma 4. Let us examine the condition (3-2) for these divisors.

Lemma 6. We have $d_0 = d_3 = 1$ and $d_1 = d_2 = d_4 = 0$.

Proof. By the definition of d_i we obtain the required equalities. q. e. d.

Using Lemma 4 we have the following representation relative to the homology basis $\{A'_i, B'_i\}$:

$$\begin{split} & C'\!\!\int_{E_0} \varphi \!=\! 0, \ C'\!\!\int_{E_1} \varphi \!=\! \frac{1}{2} \! \begin{bmatrix} 1\\0\\0 \end{bmatrix}\!\!, \ C'\!\!\int_{E_2} \varphi \!=\! \frac{1}{2} \! \begin{bmatrix} 0\\1\\0 \\1 \end{bmatrix}\!\!, \\ & C'\!\!\int_{E_3} \varphi \!=\! \frac{1}{2} \! \begin{bmatrix} 0\\0\\1 \\1 \end{bmatrix}\!\!, \ C'\!\!\int_{E_4} \varphi \!=\! \frac{1}{2} \! \begin{bmatrix} 1\\0\\1 \\1 \end{bmatrix}\!\!. \end{split}$$

Using the transformation formula (A-7) we obtain:

Lemma 7.

$${}^{*}(\eta_{1}^{(1)},\eta_{2}^{(1)}) = \frac{1}{2} \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}, \ {}^{*}(\eta_{1}^{(2)},\eta_{2}^{(2)}) = \frac{1}{2} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix},$$

$${}^{*}(\eta_{1}^{(3)},\eta_{2}^{(3)}) = \frac{1}{2} \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}, \ {}^{*}(\eta_{1}^{(4)},\eta_{2}^{(4)}) = \frac{1}{2} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}.$$

The condition (3-2) for E_0, \ldots, E_4 induces only two possibilities:

$$\mathcal{A}_1 = {}^t(\eta_1, \eta_2) = \frac{1}{2} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \ \mathcal{A}_2 = {}^t(\eta_1, \eta_2) = \frac{1}{2} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}.$$

Next we examine the condition for the divisor E_5 with

(*)
$$\int_{E_5} \varphi = \frac{1}{2} \Omega \begin{bmatrix} 0\\1\\1 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 1\\0\\1 \end{bmatrix}.$$

Put $d_5 = \dim H^0(X_0, \mathcal{O}([E_5+2R_1]))$, then we have $\Delta = \Delta_1$ provided $d_5 = 1$. At first we determine E_5 and next we calculate d_5 . By the definition of B'_3 and Table 1 we have

$$C' \int_{B'_{3}} \varphi = C' \left[\int_{Q_{2}}^{R_{2}} + \int_{Q_{3}}^{R_{1}} - \int_{Q_{3}}^{R_{2}} - \int_{Q_{2}}^{R_{1}} \right] \varphi = \left[\begin{array}{c} -2 - 2i \\ -2 \\ 2 - 2i \end{array} \right].$$

On the other hand we have

$$C'\left[\int_{q_2}^{R_2} + \int_{q_3}^{R_1}\right]\varphi = \begin{bmatrix} -1-i\\-2\\1-i \end{bmatrix}, \quad C'\left[\int_{q_1}^{R_1} + \int_{q_3}^{R_3}\right]\varphi = \begin{bmatrix} 0\\2\\0 \end{bmatrix}.$$

Now we choose a point $R'_1 = (a, b)$ on X_0 so that it holds

$$\int_{Q_1}^{R_1'} \varphi_2 = \frac{1}{2} \int_{Q_1}^{R_1} \varphi_2,$$

and put $R'_3 = (-a, -b)$. Then it holds

$$C'\left[\int_{q_1}^{R'_1} + \int_{q_3}^{R'_3}\right]\varphi = \left[\begin{array}{c} 0\\1\\0\end{array}\right].$$

Hence we have

for $E_5 = R_1' + R_3' + R_1 + R_2 - (Q_1 + Q_2 + 2Q_3)$.

Using the symplectic transformation in Lemma 5 we get the equality (*).

To obtain $d_5=1$ it is enough we construct a meromorphic function $f(\equiv 0)$ with $(f) \ge -(E_5+2R_1)$.

Let L_1 , L_2 and L_3 be linear forms as the following:

- (i) R'_1 and R'_3 belong to $L_1=0$,
- (ii) $L_2=0$ is tangent to X_0 at R_1 ,
- (iii) $L_3 = w$.

Then we have

 $(L_1)_{|X_0} = R_1' + R_2' + R_3' + R_4',$

where $R'_2 = (ia, ib), R'_4 = (-ia, -ib),$

$$(L_2)_{|X_0|=4R_1}, (L_3)_{|X_0|=Q_1+Q_2+Q_3+Q_4}.$$

Put $D = R'_2 + R'_4 + 2R_1 + Q_1 + Q_2 + 2Q_3 + R_3 + R_4$. If we find a cubic form *F* with

 $(**) (F)_{|X_0} \ge D$

then $f = F/(L_1L_2L_3)$ is a required function.

Let us regard 10 parameters of F as unknowns, then (**) induces 10 linear equations about these unknowns. We can calculate the determinant of the matrix of their coefficients and we see it vanishes. Hence we can find a solution F of (**). It shows $d_5 = 1$.

Hence Δ_1 is the Riemann constant on X_0 relative to the homology basis $\{A_i, B_i\}$ and the initial point $R_1 = (z, w) = (1, 0)$. By the shifting of Δ_1 along the deformation (2-1) we get the following.

Proposition I-2. The Riemann constant Δ on the Picard curve X_1 relative to the homology basis $\{A_i, B_i\}$ and the initial point $Q_5 = R_1 = (z, w) = (\infty, \infty)$ of the Abelian integral is given by

$$\Delta = \frac{1}{2} \mathcal{Q} \begin{bmatrix} 0\\1\\0 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 0\\1\\0 \end{bmatrix}.$$

By substituting the results Proposition I-1 and I-2 in the θ representation (1-4) we obtain the θ constant representation of the projective parameter ξ_i :

Proposition I-3.

$$[\xi_2, \xi_1, \xi_0] = \begin{bmatrix} \theta^3 \begin{bmatrix} 0 & \frac{1}{6} & 0 \\ 0 & \frac{1}{6} & 0 \end{bmatrix}, \quad \theta^3 \begin{bmatrix} 0 & \frac{1}{6} & 0 \\ \frac{1}{3} & \frac{1}{6} & \frac{1}{3} \end{bmatrix}, \quad \theta^3 \begin{bmatrix} 0 & \frac{1}{6} & 0 \\ \frac{2}{3} & \frac{1}{6} & \frac{2}{3} \end{bmatrix} \end{bmatrix},$$
we use the conventional notation $\theta \begin{bmatrix} a \\ b \end{bmatrix}$ for $\theta \begin{bmatrix} a \\ b \end{bmatrix}$ (0, Ω).

Remark 3-1. The above θ constants are holomorphic on the whole domain D, because they are holomorphic on \mathfrak{S}_3 . And we show that the theta constants in the right hand side have no common zero in Proposition 2 of II §3.

Henceforth we use the notation

$$\varphi_{k}(u, v) = \theta^{3} \begin{bmatrix} 0 & 1/6 & 0 \\ k/3 & 1/6 & k/3 \end{bmatrix} \quad (0, \Omega(u, v)),$$

k=0, 1, 2. If we write down $\varphi_k(u, v)$ explicitly using (1-3), we obtain the following Fourier expansion.

Proposition I-4.

$$\varphi_{k}(u,v) = \sum_{\nu=0}^{\infty} \left\{ \sum_{\nu=N(\mu)} (H_{\mu}^{(k)+}(u) + H_{\mu}^{(k)-}(u)) \right\} q^{\nu},$$

where

wher

$$H_{\mu}^{(k)\pm}(u) = \sum_{\mu} \exp\left\{\pi i \frac{\mu^2 u^2}{\sqrt{-3}}\right\} \theta \left[\frac{\pm 1/6}{\pm 1/6} \right] (\mu u, -\omega^2) \cdot \exp\left\{\pm \frac{2}{3} \pi i k \ tr(\mu)\right\}$$

and $N(\mu) = \mu \bar{\mu}$, $tr(\mu) = \mu + \bar{\mu}$.

Remark 3-2. The coefficient $f_{\mu}^{\pm}(u) = H_{\mu}^{(k)\pm} \cdot \exp\left\{\pm \frac{2}{3}\pi i k \ tr(\mu)\right\}$ is a θ function of 1 variable satisfying the periodic property:

(3-2)
$$\begin{cases} f_{\mu}(u+(1-\omega^{2})) = \exp\{2\pi i\nu\omega^{2}(1+u)\}f_{\mu}(u), \\ f_{\mu}(u+(\omega-1)) = \exp\{2\pi i\nu\omega(u+\omega)\}f_{\mu}(u) \\ f_{\mu}(u+3) = \exp\{-2\pi i\nu u\sqrt{-3}-3\omega^{2})\}f_{\mu}(u). \end{cases}$$

II. θ Constants $\varphi_k(u, v)$ as Modular Forms

§1. The Picard Modular Group

Let us begin with the situation of Part I §1. We considered a reference Picard curve C_0 corresponding to a fixed point Ξ on Λ . If we take an element δ of $\pi_1(\Lambda, \Xi)$, it is induced an automorphism δ^* of $H_1(C_0, \mathbb{Z})$ by the deformation of C_0 along δ . Let $N(\delta)$ be a matrix of δ^* relative to the basis $\{B_i, A_i\}$ given by (1-2) in Part I. The transformation $N(\delta)$ preserves the intersection matrix of the system $\{B_i, A_i\}$, so it belongs to $Sp(3, \mathbb{Z})$. Namely $N(\delta)$ is a modular transformation of \mathfrak{S}_3 . Here let us recall the definitions of η_i (j=1, 2, 3), φ_1 and $\{B_i, A_i\}$ (see I§1), so we obtain the relation;

(1-1)
$$\begin{cases} \int_{A_3} \varphi_1 = -\omega \eta_1, \\ \int_{B_3} \varphi_1 = -\eta_2 \\ \int_{B_2} \varphi_1 = -\omega \eta_3. \end{cases}$$

Therefore $N(\delta)$ induces an element $g(\delta)$ of $PGL(3, \mathbb{Z}[\omega])$, it acts on the domain

$$D = \{\eta \in \mathbf{P}^2 : \eta_1 \bar{\eta}_2 + \bar{\eta}_1 \eta_2 + \eta_3 \bar{\eta}_3 < 0\}.$$

Set

$$G_1 = \{ N(\delta) \in Sp(3\mathbb{Z}) : \delta \in \pi_1(\Lambda, \mathbb{Z}) \},\$$

$$\Gamma_1 = \{ g(\delta) \in PGL(3, \mathbb{Z}[\omega]) : \delta \in \pi_1(\Lambda, \mathbb{Z}) \}.$$

Let us write down the generator systems of G_1 and Γ_1 . Let $(x_0, y_0) = (\xi_1/\xi_0, \xi_2/\xi_0)$ be the inhomogeneous coordinate of Ξ , then we have $1 < x_0 < y_0$. And set

$$L_{x} = \{(x, y) \in \mathbb{C}^{2}: y = y_{0}\},\$$

$$L_{y} = \{(x, y) \in \mathbb{C}^{2}: x = x_{0}\}.$$

We define the following closed arcs δ_i $(i=1,\ldots,5)$ of $\pi_1(\Lambda,\Xi)$

 δ_1 ; the loop goes around x=1 in the positive sense on L_x , δ_2 ; the loop goes around y=0 in the positive sense on L_y , δ_3 ; the loop goes around $x=y_0$ in the positive sense on L_x , To make clear the way of construction we assume every δ_i is situated in the upper half plane of L_x (L_y respectively) except the lacet near the turning point. When we deform C_0 along δ_i , the branch locus ξ_i (j=0, 1, 2) varies as Figure 1 on the z-plane.

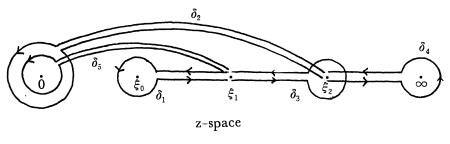
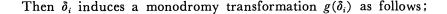


Figure 1



$$g(\delta_{1}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \omega \end{pmatrix}, \qquad g(\delta_{2}) = \begin{pmatrix} -2\omega^{2} & \omega - 1 & 0 \\ \omega - 1 & \omega^{2} & 0 \\ 0 & 0 & 1 \end{pmatrix},$$
$$g(\delta_{3}) = \begin{pmatrix} 1 & 0 & 0 \\ \omega - 1 & 1 & 1 - \omega^{2} \\ \omega^{2} - \omega & 0 & \omega \end{pmatrix}, \qquad g(\delta_{4}) = \begin{pmatrix} 1 & \omega - \omega^{2} & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$
$$g(\delta_{5}) = \begin{pmatrix} 1 & \omega - 1 & \omega - 1 \\ 0 & 1 & 0 \\ 0 & \omega - 1 & \omega \end{pmatrix},$$

these matrices are supposed to act to the system ${}^{t}(\eta_{1}, \eta_{2}, \eta_{3})$ from left. We can examine the above transformation observing the deformation of C_{0} along δ_{i} . The method is described also in the original paper of Picard (Reference [2] of Part I). So we omit the detail of an argument. And we choose the following generator system $\{\delta'_{1}, \ldots, \delta'_{5}\}$ of $\pi_{1}(\Lambda, \Xi)$; $\delta'_{1} = \delta_{1}, \ \delta'_{2} = (\delta_{1}\delta_{4}\delta_{2})^{-1}, \ \delta'_{3} = \delta_{1}\delta_{3}\delta_{1}, \ \delta'_{4} = \delta_{4}, \ \delta'_{5} = \delta'_{1}\delta_{5},$ where the composition is supposed to perform from left to right. Then we obtain the corresponding transformations $g_{i} = g(\delta'_{i})$ as follows;

$$(1-2) \begin{cases} g_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \omega \end{pmatrix}, & g_2 = \begin{pmatrix} 1 & 0 & 0 \\ \omega - \omega^2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \\ g_3 = \begin{pmatrix} 1 & 0 & 0 \\ \omega - 1 & 1 & \omega - 1 \\ 1 - \omega^2 & 0 & 1 \end{pmatrix}, & g_4 = \begin{pmatrix} 1 & \omega - \omega^2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \\ g_5 = \begin{pmatrix} 1 & \omega - 1 & \omega - 1 \\ 0 & 1 & 0 \\ 0 & 1 - \omega^2 & 1 \end{pmatrix}.$$

And we obtain the corresponding symplectic transformation $N_i = N(\delta'_i)$ as follows;

where N_i is supposed to act to the system ${}^t(B_1, B_2, B_3, A_1, A_2, A_3)$ from left. Naturally the systems (1-2) and (1-3) give generator systems of Γ_1 and G_1 respectively. The characterization of the group Γ_1 is obtained by several mathematicians independently. The result is already related in Part I §1 (2).

Now we set

(1-3)
$$\begin{cases} \Gamma = \{g \in PGL(3, \mathbb{Z}[\omega]) : {}^{t}gH\bar{g} = H\}, \\ \Gamma_{0} = \{g \in SL(3, \mathbb{Z}[\omega]) : {}^{t}gH\bar{g} = H\}, \\ \Gamma' = \{g \in SL(3, \mathbb{Z}[\omega]) : {}^{t}gH\bar{g}H, g \equiv E \pmod{\sqrt{3}\iota}\}, \end{cases}$$

where the notation $g \equiv E \pmod{\sqrt{3}i}$ means that every entry of cg-E belongs to the principal ideal $(\sqrt{3}i)$ of $\mathbb{Z}[\omega]$ for a certain complex number c. If we recall the relation (1-1), we obtain that Γ and Γ' induce subgroups of $Sp(3, \mathbb{Z})$. Let us denote them G and G' respectively.

Remark 1-1. (1) The following fact is already known; we have $\Gamma/\Gamma_1 \cong S_4$ (the symmetric group) and the isomorphism $\rho: S_4 \cong \Gamma/\Gamma_1$ is given by

$$(1-4) \begin{cases} \rho((12)) = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \\ \rho((123)) = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \\ \rho((12) (34)) = \begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & -1 \\ 0 & 0 & -1 \end{pmatrix}, \\ \rho((1234)) = \begin{pmatrix} 0 & 0 & -1 \\ 1 & 0 & -1 \\ 0 & 1 & -1 \end{pmatrix}. \end{cases}$$

(2) Clearly we have $[\Gamma_1; \Gamma'] = 3$ and g_1 represents the generator of Γ_1/Γ' .

(3) Γ'/Γ_0 is isomorphic to S_4 .

Perhaps it is better to explain the above fact (1) by a geometric meaning. Let us consider the parameter space $\Lambda/S_4 = T$ instead of Λ , where σ of S_4 acts on Λ as the projective linear transformation $L(\sigma)$ which induces the permutation of

 $\{P_0, P_1, P_2, P_3\}$

by σ , where we use the notation

$$P_0 = [1, 0, 0], P_1 = [0, 1, 0], P_2 = [0, 0, 1], P_3 = [1, 1, 1].$$

In fact (1-4) gives the $L(\sigma)$ for a generator system of S_4 . If we consider the monodromy transformation group induced from $\pi_1(T, *)$, it coincides with Γ . We denote an element g of Γ by

(1-5)
$$g = \begin{pmatrix} p_1(g) & q_1(g) & r_1(g) \\ p_2(g) & q_2(g) & r_2(g) \\ p_3(g) & q_3(g) & r_3(g) \end{pmatrix},$$

and we denote an element N of Sp(3, Z) by four (3, 3) blocks;

(1-6)
$$N = \begin{bmatrix} A(N) & B(N) \\ C(N) & D(N) \end{bmatrix}.$$

Suppose a discontinuous group H acting on D. If a holomorphic or meromorphic function f(u, v) on D satisfies

(1-7)
$$f(g(u, v)) (\det g) = \{p_1(g) + q_1(g)v + r_1(g)u\}^{3k} f(u, v)$$

for any point (u, v) of D and for any element g of H, we call f(u, v) is a modular form or meromorphic modular form of weight k relative to H respectively. Here we note that it holds

(1-8)
$$\frac{\partial(u',v')}{\partial(u,v)} = \frac{\det g}{(p_1(g)+q_1(g)v+r_1(g)u)^3},$$

where (u', v') indicates g(u, v).

Let us denote the *C*-vector space of holomorphic modular forms of weight k relative to H by $A(H)_k$ and the graded ring $\bigoplus_{k=0}^{\infty} A(H)_k$ by A(H).

§2. Modular Forms of Weight 1

In this section we show the following:

Proposition II-1. (1) $\dim_{\mathbb{C}}(A(\Gamma_1)_1) = 0$, $\dim_{\mathbb{C}}(A(\Gamma_1)_2) = 1$ and (2) $\dim_{\mathbb{C}}(A(\Gamma')_1) = 3$.

Let us introduce an affine coordinate of the ξ -space by $x = \xi_1/\xi_0$, $y = \xi_2/\xi_0$. According to the fact related in I§1(5) we may regard them as meromorphic modular functions on D relative to Γ_1 . At first we note the following.

Lemma 2-1. (1) The field of rational functions on the ξ -space P^2 and the field of meromorphic modular functions on D relative to Γ_1 are isomorphic.

(2) We identify the above two fields and denote it by K_0 . Then the K_0 vector space K_m of meromorphic modular forms of weight m on D relative to Γ_1 is isomorphic to K_0 . And the isomorphism τ_m from K_0 to K_m is given by

(2-1)
$$\tau_m(f) = f(x(u,v), y(u,v)) \left[\frac{\partial(x,y)}{\partial(u,v)}\right]^m.$$

Proof. (1) is obvious. (2) follows from an easy observation. q. e. d.

 $P^2 - \Lambda$ is constituted of 6 lines. So we denote them as follows: $H_0 = \{\xi_0 = 0\}, \ H_1 = \{\xi_1 = 0\}, \ H_2 = \{\xi_2 = 0\}, \ H_3 = \{\xi_1 = \xi_2\}, \ H_4 = \{\xi_0 = \xi_2\}, \ H_5 = \{\xi_0 = \xi_1\}.$

Here we obtain the following criterion for a meromorphic modular form $\tau_m(f)$ to be holomorphic.

Lemma 2–2. $\tau_m(f)$ is a holomorphic modular form if and only if we have

(2-2)
$$(f) \ge \frac{7m}{3} H_0 - \frac{2m}{3} \sum_{i=1}^5 H_i$$

where (f) indicates the divisor on the ξ -space defined by f.

Proof. Let us consider the factor $\left[\frac{\partial(x, y)}{\partial(u, v)}\right]^m = A(u, v)$. The mapping (x, y) = (x(u, v), y(u, v)) is locally biholomorphic except the inverse image of H_i , and there it has a ramifying locus of order 3. Hence A(u, v) has zeros of order 2 along the inverse image of H_i $(i \neq 0)$. Let $\alpha = (u, v)$ be a point on the inverse image of H_0 , and set an affine coordinate $(x_1, y_1) = (1/x, y/x)$ which is valid on H_0 . On the other hand let (u_1, v_1) be a local coordinate at α so that we have

 $x_1 = u_1^3 \times \text{unit function}, y_1 = v_1 \times \text{unit function}.$

Then we have

HIRONORI SHIGA

$$\frac{\partial(x, y)}{\partial(u, v)} = \frac{\partial(x, y)}{\partial(x_1, y_1)} \frac{\partial(x_1, y_1)}{\partial(u_1, v_1)} \frac{\partial(u_1, v_1)}{\partial(u, v)}$$
$$= (u_1)^2 (x_1)^{-3} \times \text{unit factor.}$$

Therefore A(u, v) has a pole of order 7m along $u_1=0$. From the above observation we induce the required condition. q. e. d.

Proof of Proposition 1(1). It is a direct consequence of Lemma 2-2. q. e. d.

Next let us consider the modular forms relative to Γ' . According to Remark 1-1(2) the quatient space D/Γ' is a 3 sheeted ramified covering over D/Γ_1 . So it defines a 3 sheeted ramified covering V of the ξ -space P^2 as its compactification. The monodromy transformation g_1 shows that V has a ramifying locus along H_2 of degree 3. The situation is the same for every H_i . As easily shown V has 7 singular points over the points P_i (i=0, 1, 2, 3) and $R_0=[0, 1, 1]$, $R_1=[1, 0, 1]$, $R_2=[1, 1, 0]$. We denote those singular points by the same notation as their projections (Figure 2).

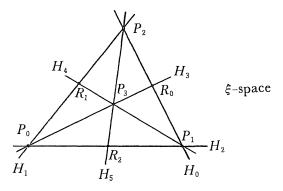


Figure 2

V has an affine representation

(2-3) $V: w^3 = xy(x-1)(y-1)(x-y),$

so let V' be the inverse image of Λ relative to the covering mapping $\pi:(x, y, w) \rightarrow (x, y).$

335

Lemma 2-3. (1) The field of meromorphic functions on V and the field of meromorphic modular functions on D relative to Γ' are isomorphic.

(2) We identify the above two fields and denote it by K'_0 . Then the K'_0 -vector space K'_m of meromorphic modular forms of weight m on D relative to Γ' is isomorphic to K'_0 . And the isomorphism $\tau'_m: K'_0 \to K'_m$ is given by

(2-4)
$$\tau'_{m}(f) = f(P(u, v)) \left[\frac{\partial(x, y)}{\partial(u, v)} \right]^{n}$$

where P(u, v) indicates the point on V corresponding to (u, v) of D.

Proof. (1) is obvious. So we show (2). Let f be a meromorphic function on V. Then $\tau'_m(f)$ determines a meromorphic function on D. And it has the automorphic factor $\left[\frac{\partial(u, v)}{\partial(u', v')}\right]^m$ for every point (u, v) of D corresponding to a point of V' and for every transformation g(u, v) = (u', v') of Γ' . So it determines an element of K'_m . As easily shown it is an injective isomorphism. Next let us take an element $\psi(u, v)$ of K'_m , then

(*)
$$\psi(u,v) \left[\frac{\partial(u,v)}{\partial(x,y)} \right]^m$$

defines a meromorphic function on V' because (x, y) is a local coordinate on V'. And it defines an algebraic function on the ξ -space P^2 , so it is single valued meromorphic on V. Therefore τ'_m maps (*) to $\psi(u, v)$, namely τ'_m is surjective. q. e. d.

Lemma 2-4. Let f be a meromorphic function on V, then $\tau'_m(f)$ is a holomorphic modular form if and only if we have

(2-5)
$$(f) \ge 7mH_0 - 2m\sum_{i=1}^5 H_i.$$

Proof. We can show the above condition by the same way as the proof of Lemma 2-2. q. e. d.

Next let us investigate the minimal nonsingular model \tilde{V} of V. The singular point of V over R_i (i=0, 1, 2) is a rational double singularity A_2 . So we obtain two rational curves Θ_{i1} and Θ_{i2} as the exceptional divisor of its resolution, where we suppose Θ_{i1} intersects the proper image \hat{H}_i of H_i and Θ_{i2} intersects \hat{H}_{i+3} (that of H_{i+3}).

HIRONORI SHIGA

The singular point P_k (k=0, 1, 2, 3) of V is a simple elliptic singularity \tilde{E}_6 . So we obtain an elliptic curve E_k as the exceptional divisor of its resolution. The resolution of the singularity A_2 and \tilde{E}_6 is wellknown, so we omitted the detailed discussion.

Let \hat{V} be the surface obtained after the performance of these resolutions. Then \hat{H}_i $(0 \le i \le 5)$ is an exceptional curve of first kind. So let us blow down \hat{H}_{k+3} , Θ_{k2} and Θ_{k1} (k=0, 1, 2) in this order (note that Θ_{ki} is a -2 curve). Let us denote the consequent surface by \underline{V} . Let us consider a complex line $l_t = l(t_1, t_2) = \{\xi \in \mathbf{P}^2 : t_1\xi_1 + t_2 + \xi_2 =$ $(t_1+t_2)\xi_0\}$ on the ξ -space, so we get an elliptic curve $\pi^{-1}(l_i)$ for general value t. And moreover its invariant is always equal to 0, because $\pi^{-1}(l_t)$ is a 3 sheeted covering over \mathbf{P}^1 with three ramifying points of degree 3. Here we note that $\pi^{-1}(l_i)$ intersects E_0 except the case $l_t = \hat{H}_3$, \hat{H}_4 and \hat{H}_5 . It is easy to show that every proper image of $\pi^{-1}(l_t)$ on \underline{V} is an elliptic curve of the invariant 0. So we obtain a trivial fibration of elliptic curves on \underline{V} , therefore we know the following.

Lemma 2-5. The minimal nonsingular model \tilde{V} of V is isomorphic to $P \times E$, where E is an elliptic curve of the invariant 0.

Let us denote the image of E_i in \tilde{V} by \tilde{E}_i and that of \hat{H}_i by \tilde{H}_i .

Remark 2-1. The elliptic curve \tilde{E}_3 is a three sheeted section of this fibration. The fibre \tilde{E}_i (i=0, 1, 2) has one double contact with \tilde{E}_3 at $R_{ii} = \tilde{E}_i \cap \tilde{H}_i$. On the other hand \tilde{H}_i (i=0, 1, 2) is an one sheeted section in \tilde{V} (Figure 3).

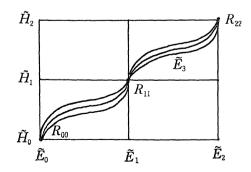


Figure 3

Lemma 2-6. Suppose a meromorphic function f on V with

$$(f) = \sum_{i=0}^{5} m_i H_i + D_1$$

where D_1 is an effective divisor with its support situated outside of H_i . And let \tilde{f} be the corresponding function on \tilde{V} . Then it holds

$$(\tilde{f}) = m_0 H_0 + m_1 H_1 + m_2 H_2 + \left(\frac{1}{3}(m_1 + m_2 + m_3) + \delta_0\right) E_0$$
$$+ \left(\frac{1}{3}(m_0 + m_2 + m_4) + \delta_1\right) E_1 + \left(\frac{1}{3}(m_0 + m_1 + m_5) + \delta_2\right) E_2$$
$$+ \left(\frac{1}{3}(m_3 + m_4 + m_5) + \delta_3\right) E_3$$

for certain nonnegative integers $\delta_0, \ldots, \delta_3$.

Proof. If we follow the resolution process at P_i , the assertion is induced directly. q. e. d.

Lemma 2-7. Suppose a meromorphic function F on \tilde{V} with

$$(F) = \sum_{i=0}^{2} m_i H_i + \sum_{j=0}^{3} n_j E_j + \tilde{D}$$

where \tilde{D} is an effective divisor. Let \bar{F} be the corresponding function on V. Then we have

$$(\bar{F}) = \sum_{i=0}^{2} m_i H_i + \sum_{i=0}^{2} (3(n_3 + n_i) + m_i + \varepsilon_i) H_{i+3} + \bar{D}$$

for certain nonnegative integers ε_i and the divisor \overline{D} is effective and its support is situated outside of H_i $(0 \le i \le 5)$.

Lemma 2-8. Let l_i be the intersection multiplicity between \tilde{D} and \tilde{E}_i at R_{ii} . Then we have $\varepsilon_i = l_i$.

Proofs of Lemma 2-7 and Lemma 2-8. By the fact related in Remark 2-1 we know that H_{i+3} is obtained after 3 times of blow up processes at R_{ii} (by the first and the second processes we get Θ_{i1} and Θ_{i2} respectively). The assertion follows from the observation of this process. q. e. d.

Proof of Proposition 1(2). Let A be the vector space of meromor-

phic functions on V satisfying the condition (2-5) for m=1. Then it is sufficient to know dim_cA. Let f be an element of A and let \tilde{f} be the meromorphic function on \tilde{V} which corresponds to f. By Lemma 2-6 we have

(2-6)
$$(\tilde{f}) \ge 7\tilde{H}_0 - 2\tilde{H}_1 - 2\tilde{H}_2 - 2\tilde{E}_3 - 2\tilde{E}_0 + \tilde{E}_1 + \tilde{E}_2.$$

Here we note the following linear equivalence relations for divisors on \tilde{V} :

(i) $\tilde{E}_0 \equiv \tilde{E}_1 \equiv \tilde{E}_2$, (ii) $3\tilde{H}_0 \equiv 3\tilde{H}_1 \equiv 3\tilde{H}_2$, (iii) $\tilde{E}_3 \equiv \tilde{E}_i + 3\tilde{H}_j$ $(0 \le i, j \le 2)$, (iv) $2\tilde{H}_i \equiv \tilde{H}_j + \tilde{H}_k$ ($\{i, j, k\} = \{0, 1, 2\}$). Hence (2-6) reduces to (2-7) (G) $\ge -3\tilde{H}_0 - 2\tilde{E}_1$,

for a certain meromorphic function G on \tilde{V} . Using the Riemann-Roch theorem and the Serre duality theorem we get

(2-8)
$$\dim H^0(\tilde{V}, \mathcal{O}(3\tilde{H}_0+2\tilde{E}_1))=9.$$

So we consider the linear systems

$$L' \coloneqq \{\delta \ge 0 | \delta \equiv 3\tilde{H}_0 + 2\tilde{E}_0, \ \delta \cdot \tilde{E}_i |_{R_{ii}} \ge 3\},$$
$$L = |3H_0 + 2E_0| = \{\delta \ge 0 | \delta \equiv 3H_0 + 2E_0\} \quad (i = 0, 1, 2)$$

From (2-8) we have dim L=8. Let g be a meromorphic function with $(g) = \delta - (3\tilde{H}_0 + 2\tilde{E}_0)$. Then g is a linear combination of

1, 1/z, $1/z^2$, \mathfrak{p} , \mathfrak{p}/z , \mathfrak{p}/z^2 , \mathfrak{p}' , \mathfrak{p}'/z , \mathfrak{p}'/z^2 ,

where z is an affine coordinate of P and p is the Weierstrass p function on the elliptic curve E.

So the contact condition $\delta \cdot E_i|_{R_{ii}} \ge 3$ for δ of L imposes two linearly independent restrictions for each *i*. Hence we have

$$\dim L' = \dim A - 1 = 2.$$

q. e. d.

§ 3. The Possibility of Common Zeros of Theta Constants

Henceforth we use the following notations:

$$\alpha_{k} = \begin{bmatrix} 0 & \frac{1}{6} & 0 \\ \frac{k}{3} & \frac{1}{6} & \frac{k}{3} \end{bmatrix} \quad (k = 0, 1, 2)$$

$$\theta_k(u, v) = \theta[\alpha_k](0, \Omega(u, v))$$

$$\varphi_k(u, v) = \{\theta_k(u, v)\}^3.$$

And let us denote the inverse of the period mapping Φ by

$$\Xi = [\xi_0(u, v), \xi_1(u, v), \xi_2(u, v)] = [\varphi_0(u, v), \varphi_1(u, v), \varphi_2(u, v)].$$

We discuss about the property of $\theta_k(u, v)$ in §3 and §4. For this purpose we cite the following transformation formula of theta constants (see [R-F] and [I]).

Theorem 3-1. Let $M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$ be an element of $Sp(g, \mathbb{Z})$ and suppose a characteristic $\varepsilon = \begin{bmatrix} \varepsilon' \\ \varepsilon'' \end{bmatrix}$ of $\mathbb{Q}^g \times \mathbb{Q}^g$. Set $M \circ \Omega = (A\Omega + B) (C\Omega + D)^{-1}$ $M \circ \varepsilon = \begin{bmatrix} D\varepsilon' - C\varepsilon'' + \frac{1}{2} \operatorname{dv} (C^t D) \\ -B\varepsilon' + D\varepsilon'' + \frac{1}{2} \operatorname{dv} (A^t B) \end{bmatrix}$,

where dv(*) indicates the diagonal vector of *. Then we have

$$\theta[M \circ \varepsilon](0, M \circ \Omega) = K(M, \varepsilon) \sqrt{\det(C\Omega + D)} \theta[\varepsilon](0, \Omega),$$

where $K(M, \epsilon)$ is a certain complex number with modulus 1 depending on M and ϵ .

Remark 3-1. We shall relate the definition of the factor K and the branch of $\sqrt{\det(C\Omega+D)}$ aftarwards (see (4-5) and (4-6)).

Remark 3-2. We note here the following relation also:

$$\theta \begin{bmatrix} \varepsilon' + n' \\ \varepsilon'' + n'' \end{bmatrix} (z, \Omega) = \exp \left\{ 2\pi i \langle \varepsilon', n'' \rangle \right\} \theta \begin{bmatrix} \varepsilon' \\ \varepsilon'' \end{bmatrix} (z, \Omega)$$

for n', n'' of Z^{g} , where \langle , \rangle indicates the Euclidean inner product.

Now let us investigate the possibility of common zeros of $\varphi_k(u, v)$. Suppose the parameter ξ is situated on $H_5 - \{P_2, P_3\}$, then the Picard curve degenerates to the curve

$$C': w^3 = z(z - \xi_0)^2 (z - \xi_2).$$

And 1-cycles A_2 and B_2 vanish on C', moreover the system $\{A_1, A_3, A_3, A_3, A_3, A_4, A_{12}, A_{13}, A_{13}$

 B_1, B_3 becomes a canonical basis (see Part I (1-2)). In this case we have

$$\eta_3 = \int_{A_2} \varphi = 0,$$

so it holds $u = \eta_3/\eta_1 = 0$. Set a complex line $L = \{(u, v) \in D | u = 0\}$. Then we have

$$\Phi(H_5 - \{P_2, P_3\}) = \Gamma_1$$
-orbit of L,

namely

$$\Xi(L) = H_5 - \{P_2, P_3\}.$$

Let us observe the behavior of θ_k on L. According to Part I Proposition 3 it holds

$$\theta_1(0,v) = \zeta_3 \theta_2(0,v)$$

on L, where ζ_3 is a cubic root of 1 (we can show directly the equality $\theta_1(0, v) = \theta_2(0, v)$ also). And we have the following decomposition of theta constants:

Lemma 3-1.

$$\theta \begin{bmatrix} 0 & g_2 & 0 \\ h_1 & h_2 & h_3 \end{bmatrix} \left(0, \begin{pmatrix} \tau_1 & 0 & \varepsilon \\ 0 & \tau_2 & 0 \\ \varepsilon & 0 & \tau_3 \end{pmatrix} \right) = \theta \begin{bmatrix} g_2 \\ h_2 \end{bmatrix} (0, \tau_2) \ \theta \begin{bmatrix} 0 & 0 \\ h_1 & h_2 \end{bmatrix} \left(0, \begin{pmatrix} \tau_1 & \varepsilon \\ \varepsilon & \tau_3 \end{pmatrix} \right).$$

Proof. The left hand term equals to

$$\begin{bmatrix}\sum_{n_{1}\in\mathbf{Z}}\exp\left\{\pi i\left(n_{2}+g_{2}\right)^{2}\tau_{2}+2\pi i\left(n_{2}+g_{2}\right)h_{2}\right\}\end{bmatrix} \\ \times \begin{bmatrix}\sum_{n_{1},n_{3}\in\mathbf{Z}}\exp\left\{\pi i n_{1}^{2}\tau_{1}+\pi i n_{3}^{2}\tau_{3}+2\pi i n_{1}n_{3}\varepsilon+2\pi i\left(n_{1}h_{1}+n_{3}h_{3}\right)\right\}\end{bmatrix}.$$

Two parentheses are equal to the first and the second factors in the right hand term respectively. q. e. d.

If we recall the matrix $\Omega(u, v)$ in I (1-3), we have

$$(3-1) \qquad \theta[\alpha_k](0, \mathcal{Q}(0, v)) = \theta \left[\begin{array}{c} \frac{1}{6} \\ \frac{1}{6} \end{array} \right] (0, -\omega^2) \theta \left[\begin{array}{c} 0 & 0 \\ \frac{k}{3} & \frac{k}{3} \end{array} \right] (0, \mathcal{Q}'(v))$$

by Lemma 3-1, where

$$\Omega'(v) = \begin{pmatrix} -\frac{2i}{\sqrt{3}}v & \frac{i}{\sqrt{3}}v \\ \frac{i}{\sqrt{3}}v & -\frac{2i}{\sqrt{3}}v \end{pmatrix}.$$

Let F and G_k be the first and the second factors in the right hand term of (3-1). It holds

$$F= heta\left(\frac{1}{6}(1-\omega^2), -\omega^2\right)\times$$
unit.

On the other hand $\theta(z, \tau)$ has only one zero represented by $(1+\tau)/2$ on the Jacobi variety $C/Z + Z\tau$. Thus we have $F \neq 0$.

Moreover we have:

Lemma 3–2. $\theta_0(u, v)$ has no zero on L.

Proof. If we assume $\theta_0(0, v) = 0$ for a certain value v, then it induces $G_0 = \theta(0, \Omega'(v)) = 0$. According to Theorem A-2 there is a point P on C' with

$$(*) \qquad \qquad \varDelta = \int_{P_0}^{P} \omega,$$

where P_0 is a certain fixed point and Δ is the Riemann constant determined by the homology basis $\{A_1, A_3, B_1, B_3\}$ and P_0 (see (A-3)). Here we note the condition (*) is independent of P_0 and the choice of a homology basis. According to Theorem A-3 we have $D_0 = P$, and D_0 corresponds to $(\eta', \eta'') = (0, 0)$. Now let us recall Theorem A-4, obviously we have

$$d(D_0) = \dim H^0(C', \mathcal{O}(D_0)) = 1$$

on the other hand we must have

$$d(D_0) \equiv 4^t \eta' \eta'' \equiv 0 \pmod{2}.$$

This is a contradiction.

Proposition II-2. There is no common zero of $\theta_k(u, v)$ (k=0, 1, 2) on D.

Proof. When $\Xi(u, v)$ belongs to Λ the assertion is already obtained by [5]. We can get his result by applying Remark A-5 for the

q. e. d.

HIRONORI SHIGA

representation I (1-4), because this representation (x, y) coincides with

$$(\xi_1/\xi_2, \xi_0/\xi_2) = (\varphi_1/\varphi_2, \varphi_0/\varphi_2).$$

So we suppose $\Xi(u, v)$ belongs to H_i $(0 \le i \le 5)$. The case i=5 is already shown in Lemma 3-2. For general i set $\Xi(u, v) = [a_0, a_1, a_2]$. Then we can find a parameter $b = [b_0, b_1, b_2]$ on H_5 so that we have $C(a) \cong$ C(b), where \cong indicates the biholomorphic equivalence relation.

Let σ be the isomorphism from C(a) to C(b). And let $\{\gamma_i\}$ and $\{\gamma'_i\}$ $(1 \leq i \leq 6)$ be the homology basis on C(a) and C(b) corresponding to the point (u, v) and a point (u', v') on L respectively. So we can find an element M of $Sp(3, \mathbb{Z})$ with $(\sigma\gamma_i) = M(\gamma'_i)$. Then it holds

$$\theta[\alpha_k](0, \Omega(u, v)) = \theta[\alpha_k](0, M \circ \Omega(u', v')).$$

On the other hand we have

$$\theta[\alpha_k](0, M \circ \Omega(u', v')) = unit \times \theta[\alpha_k](0, \Omega(u', v'))$$

for a point (u', v') of L from Theorem 3-1. Hence the problem is reduced to Lemma 3-2. q. e. d.

Remark 3-3. Using the above result we can easily show that $\theta_i(u, v)$ and $\theta_k(u, v)$ has no common zero on D for any pair (j, k) with $j \neq k$.

§ 4. Characterization of $\varphi_k(u, v)$ as Modular Forms

Now let us observe the automorphic factor of $\theta_k(u, v)$ relative to the transformation g_1, \ldots, g_5 . We have:

Lemma 4-1. $\theta[\alpha_k](0, N_j \circ \Omega) = \rho_j \theta[N_j \circ \alpha_k](0, N_j \circ \Omega)$ ($1 \leq j \leq 5, k = 0, 1.2$),

where $\rho_1 = \exp\left(\frac{1}{3}\pi i\right)$ and $\rho_2 = \rho_3 = \rho_4 = \rho_5 = 1$.

Proof. By an elementary calculation we have $N_j \circ \alpha_k = \alpha_k + n_{jk}$ as follows:

$$n_{1k} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}, \quad n_{2k} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix}, \quad n_{3k} = \begin{bmatrix} 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix},$$
$$n_{4k} = \begin{bmatrix} k-1 & 0 & k-1 \\ 0 & 0 & 0 \end{bmatrix}, \quad n_{5k} = \begin{bmatrix} 0 & k & k-1 \\ 0 & 0 & 0 \end{bmatrix}.$$

Considering Remark 3-2 we have the assertion. q. e. d.

Combining Lemma 4-1 and Theorem 3-1 we deduce that

(4-1) $\theta[\alpha_k](0, N_j \circ \Omega) = \rho_j K(N_j, \alpha_k) \sqrt{\det \{C(N_j)\Omega + D(N_j)\}} \theta[\alpha_k](0, \Omega).$ Namely it indicates the required automorphic factor. According to [R-F] we have the method to determine it.

We choose a generator system of Sp(g, Z) as the following:

$${}^{\pm}B_{i} \coloneqq I \pm E_{i,g+i} (1 \le i \le g), \ {}^{\pm}C_{i} \coloneqq {}^{t}(\pm B_{i}),$$

$${}^{\pm}A_{ij} \coloneqq I \pm (E_{i,j} - E_{g+j,g+i}) \ (1 \le i, j \le g, i \ne j),$$

$$D_{i} \coloneqq I - 2(E_{i,i} + E_{g+i,g+i}) \ (1 \le i \le g),$$

where $E_{i,j}$ indicates the matrix (m_{kl})

with
$$m_{kl} = \begin{cases} 1 & (i, j) = (k, l) \\ 0 & \text{otherwise} \end{cases}$$

We denote this system by S, and the element M of S will be called of type B, type C, type A or type D neglecting the signature and the subscript.

For an element M of S we define the following:

$$(4-2) \qquad \gamma(M) \coloneqq \begin{cases} 1 & \text{for } M \text{ of type } A, B \text{ and } C. \\ -i & \text{for } M \text{ of type } D, \end{cases}$$

$$(4-3) \qquad \coloneqq \begin{cases} 1 & \text{for } M \text{ of type } A \text{ and } B \\ i & \text{for } M \text{ of type } D \\ \text{the branch in the right half plane} \\ \{z \in C : Re \ z > 0\} \text{ for } M \text{ of type } C \end{cases}$$

Remark 4-1. For the type C case the determination of (4-3) is given more precisely: namely it belongs to the upper half plane for ^+C type, and it belongs to the lower half plane for ^-C type.

For an element $M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$ of $Sp(g, \mathbb{Z})$ and a characteristic $\varepsilon = \begin{bmatrix} \varepsilon' \\ \varepsilon'' \end{bmatrix}$ we set

$$\varphi(M,\varepsilon) \coloneqq -{}^t \varepsilon'{}^t DB\varepsilon' + 2{}^t \varepsilon''{}^t CB\varepsilon' - {}^t \varepsilon''{}^t CA\varepsilon'' + {}^t (D\varepsilon' - C\varepsilon'') \operatorname{dv}(A{}^t B).$$

And for elements M_1, M_2 of $Sp(g, \mathbb{Z})$ we set

$$\begin{bmatrix} m_1 \\ m_2 \end{bmatrix} := (M_2 M_1) \circ \begin{bmatrix} 0 \\ 0 \end{bmatrix} - M_2 \circ M_1 \circ \begin{bmatrix} 0 \\ 0 \end{bmatrix},$$

HIRONORI SHIGA

$$\begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} \coloneqq 2 (M_2 M_1) \circ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \\ \begin{bmatrix} M_2, M_1 \end{bmatrix} \coloneqq (-1) \langle \lambda_1, m_2 \rangle$$

When M' and M'' belong to S we define

$$\gamma(M'M'') := [M', M'']\gamma(M')\gamma(M'') \exp\left\{\pi i\varphi M', M'' \circ \begin{bmatrix} 0\\ 0 \end{bmatrix}\right\}.$$

For a general element M of $Sp(g, \mathbb{Z})$ let

$$(4-4) M = M_r \cdots M_1$$

be a decomposition by the elements of S. Then we can define

$$\gamma(M) = [M_r, M_{r-1} \cdots M_1] \gamma(M_r) \gamma(M_{r-1} \cdots M_1) \\ \times \exp\left\{ \pi i \varphi \left(M_r, M_{r-1} \cdots M_1 \circ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right) \right\}$$

by the induction relative to r. If we set $S_k = M_k \cdots M_1$ ($S_0 = I$), we have

$$C(M) \mathcal{Q} + D(M) = [(C(S_r) \mathcal{Q} + D(S_r)) (C(S_{r-1}) \mathcal{Q} + D(S_{r-1}))^{-1}]$$

× ... × [(C(S_2) \mathcal{Q} + D(S_2)) (C(S_1) \mathcal{Q} + D(S_1))^{-1}][C(S_1) \mathcal{Q} + D(S_1)]
= \prod_{k=1}^{r} \{C(M_k) (S_{k-1} \circ \mathcal{Q}) + D(M_k)\}.

So we define

(4-5)
$$\sqrt{\det \{C(M) \ \Omega + D(M)\}} \coloneqq \prod_{k=1}^r \sqrt{\det \{C(M_k) \ (S_{k-1} \circ \Omega) + D(M_k)\}}.$$

Remark 4-2. The values of $\gamma(M)$ and $\sqrt{det\{C(M)\Omega + D(M)\}}$ are dependent of the decomposition (4-4).

According to [R-F] the unit factor in Theorem 3-1 is given by (4-6) $K(M, \varepsilon) = \gamma(M) \exp \{\pi i \varphi(M, \varepsilon)\}.$

Remark 4-3. If every M_k is of type A or of type B for the decomposition (4-4), we have $K(M, \varepsilon) = 1$ and $\sqrt{\det \{C(M) \, \Omega + D(M)\}} = 1$.

To determine $K(N_j, \alpha_k)$ and $\sqrt{\det \{C(N_j)\mathcal{Q} + D(N_j)\}}$ we use the following decomposition:

(4-7)
$$\begin{cases} N_1 = {}^+C_2 D_2 {}^-B_2, \\ N_2 = {}^-A_{13} {}^+B_1 {}^+B_3 {}^+A_{13} {}^+B_3, \\ N_3 = ({}^-A_{12})^2 ({}^+B_1)^{3+}B_3 {}^-B_2 {}^+A_{12} {}^+A_{32} {}^+B_2 {}^-B_1 {}^-A_{12}, \\ N_4 = {}^-C_1 {}^-C_3 {}^-A_{13} {}^-C_1 {}^+A_{13}, \\ N_5 = {}^-A_{13} {}^-A_{23} {}^-C_2 {}^+A_{21} {}^-C_1 ({}^+C_2)^{2+}A_{13} {}^-A_{23} {}^-C_2. \end{cases}$$

Then we have:

Lemma 4-2.
$$K(N_1, \alpha_k) = -1$$
, $K(N_2, \alpha_k) = K(N_3, \alpha_k) = 1$,
 $K(N_4, \alpha_k) = \exp\left(\frac{2\pi i}{3}k^2\right)$ and $K(N_5, \alpha_k) = \exp\left(\frac{\pi i}{3}k(k+1)\right)$.

Proof. Following the definition of $\gamma(M)$ we obtain

$$\gamma(N_1) = \gamma({}^+C_2D_2{}^-B_2) = \exp\left(-\frac{3}{4}\pi i\right).$$

Next we consider $\gamma(N_j)$ (j=2, 3, 4, 5). Suppose both M_1 and M_2 of system S are of type A or of type B. Then it holds $C(M_2M_1)=0$. It induces $2(M_2M_1) \circ \begin{bmatrix} 0\\0 \end{bmatrix} = \begin{bmatrix} 0\\\varepsilon' \end{bmatrix}$ for certain ε'' . Hence it follows $[M_2, M_1] = 1$. And if we suppose both M_1 and M_2 are of type A or of type C. Then we have $B(M_1) = B(M_2) = B(M_2M_1) = 0$. So it induces

$$(M_2M_1) \circ \begin{bmatrix} 0\\0 \end{bmatrix} - M_2 \circ M_1 \circ \begin{bmatrix} 0\\0 \end{bmatrix} = \begin{bmatrix} \varepsilon'\\0 \end{bmatrix}$$

for some ε' . Hence it follows $[M_2, M_1] = 1$ also. And for the former case we have

$$\varphi\left(M_2, M_1 \circ \begin{bmatrix} 0\\ 0 \end{bmatrix}\right) = \varphi\left(M_2, \begin{bmatrix} 0\\ \varepsilon^{"} \end{bmatrix}\right)$$

= $-{}^t \varepsilon^{"t} C(M_2) A(M_2) \varepsilon^{"} - ({}^t (C(M_2) \varepsilon^{"}) \operatorname{dv} (A(M_2) {}^t B(M_2)) = 0,$

because it holds $C(M_2) = 0$. By a similar argument we obtain

$$\varphi\!\left(M_2, M_1\circ\begin{bmatrix}0\\0\end{bmatrix}\right)=0$$

for the latter case also.

Recalling the decomposition (4-7) we have $\gamma(N_j) = 1$ (j=2, 3, 4, 5). By the definition of $\varphi(M, \varepsilon)$ we can calculate $\varphi(N_j, \alpha_k)$, namely we have:

$$\begin{split} \varphi(N_1, \alpha_k) &= -\frac{1}{4}, \\ \varphi(N_2, \alpha_k) &= \varphi(N_3, \alpha_k) = 0, \\ \varphi(N_4, \alpha_k) &= \frac{2}{3}k^2, \\ \varphi(N_5, \alpha_k) &= \frac{1}{3}k(k+1). \end{split}$$

Now the assertion is clear, because we have (4-6). q. e. d.

Now we obtain:

Lemma 4-3.

 $\{\theta[\alpha_k](0, M \circ \Omega)\}^3 = \left[\sqrt{\det \{C(M)\Omega + D(M)\}}\right]^3 \{\theta[\alpha_k](0, \Omega)\}^3$ for any element M of G'.

Proof. It is sufficient to prove the equality for the generator system $\{N_1N_2N_1^{-1}, N_2, \ldots, N_5\}$ of G'. Recalling (4-1), Lemma 4-1 and Lemma 4-2 we get the required equality. q. e. d.

Remark 4-4. We can check easily the following:

- (1) det { $C(N_1) \Omega(u, v) + D(N_1)$ } = ω^2 and $p_1(g_1) + q_1(g_1)v + r_1(g_1)u = 1$,
- (2) $\det \{C(N_j) \mathcal{Q}(u, v) + D(N_j)\} = \{p_1(g_k) + q_1(g_k)v + r_1(g_k)u\}^2.$

Moreover we can determine the square root of $det \{C(N_i) \mathcal{Q}(u, v) + D(N_i)\}$:

Lemma 4-4. Set $T_j = \sqrt{\det \{C(N_j) \Omega(u, v) + D(N_j)\}}$ then we have

$$T_{j} = \begin{cases} \omega & \text{for } j = 1, \\ 1 & \text{for } j = 2, 3, \\ 1 + (\omega - \omega^{2})v & \text{for } j = 4, \\ 1 + (\omega - 1)v + (\omega - 1)u & \text{for } j = 5. \end{cases}$$

Especially it holds

$$T_j^{-3} = \{ p_1(g_j) + q_1(g_j)v + r_1(g_j)u \}^{-3}$$

And also it holds

$$T_j = p_1(g_j) + q_1(g_j)v + r_1(g_j)u$$

for j=2, 3, 4, 5.

Proof. For the case j=1 we have

$$\sqrt{\det \{C(^{-}B_{2})\mathcal{Q}(0, v) + D(^{-}B_{2})\}} = 1,$$

$$\sqrt{\det \{C(D_{2})(^{-}B_{2}\circ\mathcal{Q}(0, v)) + D(D_{2})\}} = \exp\left(\frac{1}{2}\pi i\right),$$

$$\sqrt{\det \{C(^{+}C_{2})((D_{2}^{-}B_{2})\circ\mathcal{Q}(0, v)) + D(^{+}C_{2})\}} = \exp\left(\frac{1}{6}\pi i\right).$$

Then by the definition (4-5) we have $T_1 = \omega$.

For the case j=2, 3 the assertion is obvious. The arguments are same for both cases j=4 and j=5, so we discuss only the latter. Let us denote the decomposition of N_5 in (4-7) by $N_5=M_{10}\ldots M_1$, and set

$$L_{k} = \sqrt{\det\left\{\left(C\left(S_{k}\right)\mathcal{Q} + D\left(S_{k}\right)\right)\left(C\left(S_{k-1}\right)\mathcal{Q} + D\left(S_{k-1}\right)\right)^{-1}\right\}} = \sqrt{\det\left\{C\left(M_{k}\right)\left(S_{k-1}\circ\mathcal{Q}\right) + D\left(M_{k}\right)\right\}}.$$

The ambiguity of T_i comes only from the signature of the square root.

Therefore it is sufficient to show the equality for $\Omega(0, v)$ (v is a real negative variable). From Remark 4-3 we get $L_{10}=L_9=L_7=L_3=L_2=1$. If we set

$$\theta_k = \lim_{v \to -\infty} \operatorname{Arg} L_k,$$

we obtain

$$\theta_1 = -\frac{1}{6}\pi, \ \theta_4 = \frac{1}{4}\pi, \ \theta_5 = 0, \ \theta_6 = -\frac{1}{4}\pi, \ \theta_8 = 0.$$

On the other hand if we set

$$\beta(u, v) = p_1(g_5) + q_1(g_5)v + r_1(g_5)u,$$

we can check directly

$$\lim_{v\to-\infty} Arg \ \beta(0, v) = -\frac{1}{6}\pi.$$

Thus we get the assertion for the case j=5. q.e.d.

Now we can state

Proposition II-3. (1) The system $\{\varphi_k(u, v)\}\ (k=0, 1, 2)$ gives a basis of $A(\Gamma')_1$.

(2) We have $\theta_k(g_1(u, v)) = \theta_k(u, v)$ (k=0, 1, 2), especially it holds $\varphi_k(g_1(u, v)) = \varphi_k(u, v)$.

Proof. (1) Combining Lemma 4-3 and Lemma 4-4 we get

(*)
$$\varphi_k(g(u, v)) = \{p_1(g) + q_1(g)v + r_1(g)u\} \, {}^{3}\varphi_k(u, v)$$

for $g=g_j$ (j=2, 3, 4, 5). Because $\{g_1g_2g_1^{-1}, g_2, \ldots, g_5\}$ is a generator system of Γ' , the equality (*) holds for any g of Γ' . Recalling the

relation (1-8) and the fact det(g) = 1 for any g of Γ' it is clear that $\varphi_k(u, v)$ belongs to $A(\Gamma')_1$. According to I Proposition 3 the system $\{\varphi_0, \varphi_1, \varphi_2\}$ is linearly independent. Combining this fact with Proposition II-1 we get the assertion.

(2) Recalling (4-1) we know that it is sufficient to determine ρ_1 , $K(N_1, \alpha_k)$ and $\sqrt{\det C(N_1)\Omega + D(N_1)}$. Lemma 4-1, Lemma 4-2 and Lemma 4-4 give these values. q. e. d.

Remark 4-5. (1) We can deduce the fact that $\varphi_k(g_1(u, v)) = \varphi_k(u, v)$ from the fact that $g_1^3 = id$ and that the automorphic factor (4-1) of $\theta[\alpha_k]$ for N_1 is a complex number of modulus 1. (2) We note that

(4-8)
$$\varphi_k(g_1(u, v)) \frac{\partial(u', v')}{\partial(u, v)} = \omega \varphi_k(u, v)$$

for k=0, 1, 2, because we have

$$\frac{\partial(g_1(u, v))}{\partial(u, v)} = \omega$$

from Lemma 4-4 and (1-8).

§ 5. The Generator System of the Graded Ring of Modular Forms

If we set $x = \frac{\xi_1}{\xi_0}$, $y = \frac{\xi_2}{\xi_0}$, $w = \frac{\xi_3}{\xi_0}$ in the affine representation (2-3) of D/Γ' , we get a projective representation

(5-1)
$$V_1:\xi_3^3\xi_2^2 = \xi_1\xi_2(\xi_0 - \xi_1)(\xi_1 - \xi_2)(\xi_2 - \xi_0).$$

We may regard w as a meromorphic function on D/Γ' . Therefore it may be considered as a meromorphic modular function on Drelative to Γ' . Combining (5-1) and I Proposition 3 we obtain

$$w = \varphi_0^{-2} \{ \varphi_0 \varphi_1 \varphi_2 (\varphi_0 - \varphi_1) (\varphi_1 - \varphi_2) (\varphi_2 - \varphi_0) \}^{(1/3)}.$$

And set

(5-2)
$$\zeta = \{\varphi_0\varphi_1\varphi_2(\varphi_0-\varphi_1)(\varphi_1-\varphi_2)(\varphi_2-\varphi_0)\}^{(1/3)},$$

then we have $\zeta = w\varphi_0^2$. Hence ζ is a single valued meromorphic modular form of weight 2 relative to Γ' . On the other hand it is clear that ζ has no pole on D because of its definition. Therefore ζ belongs to $A(\Gamma')_2$.

Lemma 5-1. $A(\Gamma')$ is generated by $\varphi_0, \varphi_1, \varphi_2, \zeta$.

Proof. Let σ be an element of $A(\Gamma')_m$, and suppose that φ_1 is not a factor of σ . Then $\sigma \varphi_1^{-m}$ can be regarded as a meromorphic function on V_1 . Hence we can describe it as

$$\sigma\varphi_1^{-m} = \frac{P(\varphi_0, \varphi_1, \varphi_2, \zeta)}{Q(\varphi_0, \varphi_1, \varphi_2, \zeta)},$$

where P and Q are polynomials of φ_0 , φ_1 , φ_2 and ζ without common factor. At first we suppose that the divisor (σ) and $m(\varphi_1)$ on V have no common component. Then we have $m(\varphi_1) \leq (Q(\varphi_0, \varphi_1, \varphi_2, \zeta))$. According to Remark 3-3 it holds $(\varphi_1) = H_1$, and φ_1 is irreducible. Therefore we must have $m(\varphi_1) = (Q(\varphi_0, \varphi_1, \varphi_2, \zeta))$. Namely we have

$$(\boldsymbol{\sigma}) = (P(\varphi_0, \varphi_1, \varphi_2, \zeta)).$$

It implicates that σ belongs to $C[\varphi_0, \varphi_1, \varphi_2, \zeta]$. For general element σ we can choose a certain linear form l of φ_0, φ_1 and φ_2 so that (σ) and (l) has no common component. Then we can proceed the argument by the same way as the above. q. e. d.

Remark 5-1. From (4-8) we may suppose that

$$\zeta(g_1(u, v)) = w(g_1(u, v))\varphi_0^2(g_1(u, v)) = \omega \zeta(u, v).$$

Proposition II-4. We have

 $A(\Gamma') = C[\varphi_0, \varphi_1, \varphi_2, \zeta] / (\zeta^3 - \varphi_0 \varphi_1 \varphi_2 (\varphi_0 - \varphi_1) (\varphi_1 - \varphi_2) (\varphi_2 - \varphi_0)).$

Proof. It is sufficient only to discuss that $A(\Gamma')$ is not a proper quatient ring of the right hand term (saying R). But it is clear because R is the graded ring of homogeneous polynomials on V_1 . q. e. d.

Here we note that two Picard curves $C(\xi)$ and $C(\xi')$ are biholomorphically equivalent if and only if ξ and ξ' belongs to a same orbit of the action $\rho(S_4)$ of (1-4) (see [N]). Hence if we consider $\hat{T} = \mathbf{P}/\rho(S_4)$, it is the parameter space which determines the biholomorphic equivalence class of $\{C(\xi)\}$. From Remark 1-1 we have

$$T = \Lambda/\rho(S_4) \cong (D/\Gamma_1)/(\Gamma/\Gamma_1) = D/\Gamma,$$

hence it holds

for every

(5-3)
$$\widehat{T} \cong (D/\Gamma).$$

 $(\hat{D/\Gamma})$ has 4 boundary points which correspond to P_i (i=0, 1, 2, 3). And these 4 points belong to a same orbit of the action $\rho(S_4)$. Hence $(\hat{D/\Gamma})$ has only one boundary point.

Here we use the following notations:

$$\Lambda^{a} = C^{3} - \{ (\xi_{0}, \xi_{1}, \xi_{2}) \in C^{3} : \xi_{0}\xi_{1}\xi_{2} \prod_{i < j} (\xi_{i} - \xi_{j}) = 0 \}$$

 Γ_1^a : the group of affine transformations on the vector space

$$V = C \eta_0 \oplus C \eta_1 \oplus C \eta_2$$

induced from the element of $\pi_1(\Lambda, *) (=\pi_1(\Lambda^a, *))$. For an element l of $\pi_1(\Lambda, *)$ we denote g(l) the element of Γ_1^a above mentioned. And we say g(l) an affine monodromy induced from l. Here we note we already have

(5-4)
$$\Gamma_1^a = \langle g_1, \ldots, g_5 \rangle.$$

 Γ^a : the group of affine monodromies induced from the element of $\pi_1(\Lambda^a/S_4, *)$, where we define the action of S_4 on Λ^a as follows:

(5-5)
$$\begin{cases} \rho((12))^{t}(\xi_{0}, \xi_{1}, \xi_{2}) = {}^{t}(\xi_{1}, \xi_{0}, \xi_{2}), \\ \rho((13))^{t}(\xi_{0}, \xi_{1}, \xi_{2}) = {}^{t}(\xi_{0}, \xi_{2}, \xi_{1}), \\ \rho((14))^{t}(\xi_{0}, \xi_{1}, \xi_{2}) = {}^{t}(-\xi_{0}, \xi_{1} - \xi_{0}, \xi_{2} - \xi_{0}). \end{cases}$$

 $\hat{A}_k(\Gamma_1^a)$: the vector space of holomorphic automorphic forms of weight k of Neben type. Namely a holomorphic function f(v, u) on D belongs to $\hat{A}_k(\Gamma_1^a)$ when it holds

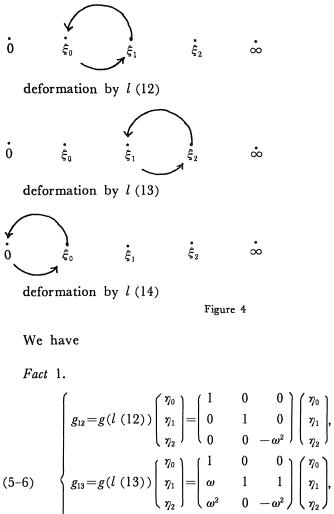
$$f(g(v, u)) |\det g|^{k} (a_{1}+b_{1}v+c_{1}u)^{-3k} = f(v, u)$$

element $g = \begin{pmatrix} a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3} \end{pmatrix}$ of Γ_{1}^{a} .

And we set $\hat{A}(\Gamma_1^a) = \bigoplus_{k=0}^{\infty} \hat{A}_k(\Gamma_1^a)$. By the similar way we define $\hat{A}(\Gamma^a) = \bigoplus_{k=0}^{\infty} \hat{A}_k(\Gamma^a)$.

Let us fix a point $\xi = {}^{t}(\xi_0, \xi_1, \xi_2)$ of Λ^{a} with $0 < \xi_0 < \xi_1 < \xi_2$. And let l(12), l(13) and l(14) be the loops on Λ^{a}/S_4 defined by the arcs on Λ^{a} start from ξ and go to $\sigma(12)\xi$, $\sigma(13)\xi$ and $\sigma(14)\xi$, respectively.

We may suppose l(12), l(13) and l(14) induce the permutations of $\{0, \xi_0, \xi_1, \xi_2, \infty\}$ as Figure 4.



$$\begin{pmatrix} \eta_2 \end{pmatrix} \begin{pmatrix} \omega^2 & 0 & -\omega^2 \end{pmatrix} \begin{pmatrix} \eta_2 \end{pmatrix} \\ g_{14} = g(l(14)) \begin{pmatrix} \eta_0 \\ \eta_1 \\ \eta_2 \end{pmatrix} = \begin{pmatrix} 1 & -\omega & 1 \\ 0 & 1 & 0 \\ 0 & -\omega^2 - \omega^2 \end{pmatrix} \begin{pmatrix} \eta_0 \\ \eta_1 \\ \eta_2 \end{pmatrix}$$

By considering

$$\begin{pmatrix} \varphi_2(g(l(\tau))(u,v))\\ \varphi_1(g(l(\tau))(u,v))\\ \varphi_0(g(l(\tau))(u,v)) \end{pmatrix} du'_{\wedge} dv' = \det(g(l(\tau)))A(\tau) \begin{pmatrix} \varphi_2\\ \varphi_1\\ \varphi_0 \end{pmatrix} du_{\wedge} dv$$

for every element τ of S_4 , where $(u', v') = g(l(\tau))(u, v)$, we obtain a representation $\rho: \tau \mapsto A(\tau)$ of S_4 on ξ -space \mathbb{C}^3 .

Fact 2. The representation ρ is given by (1-4).

Fact 3. The affine monodromy group Γ^a is generated by the system $\{g_1, \ldots, g_5, g_{12}, g_{13}, g_{14}\}$. And Γ_0 is generated by the system $\{g_{1}g_{2}g_{1}^{-1}, g_{2}, \ldots, g_{5}, -g_{12}^{3}, -g_{13}^{3}, -g_{13}^{3}\}$.

Fact 4. We have
$$C[\xi_0, \xi_1, \xi_2]^{\rho_4(S_4)} = C[G_2, G_3, G_4].$$

Proof of the Facts.

We obtain the first part of Fact 3 from (5-4) and Fact 1. And the second part is induced from $\Gamma_0/\Gamma'\cong S_4$.

So let us examine Fact 2. By the representation theory there are only two different representations, up to conjugate representations, of S_4 to GL(3, C) (cf. Serre's book). So we have only two possibilities for ρ , namely one is ρ of (1-4) and another (saying ρ') is given by $\operatorname{sgn}(\tau)\rho(\tau)$ for τ of S_4 . If we set $\tau = (12)$ then it is easy to check

$$A((12)) = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Next let us consider Fact 4. If we set

(5-7)
$$\begin{pmatrix} \zeta_{0} \\ \zeta_{1} \\ \zeta_{2} \end{pmatrix} = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix} \begin{pmatrix} \xi_{0} \\ \xi_{1} \\ \xi_{2} \end{pmatrix},$$

we get an equivalent representation ρ_4 :

$$\rho_4((12)) = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \ \rho_4(123)) = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix},$$
$$\rho_4((12)(34)) = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \ \rho_4((1234)) = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}.$$

The representation ρ_4 induces the permutation group of 4 points

$$\hat{P}_0 = [1, 1, 1], \ \hat{P}_1 = [1, -1, -1], \ \hat{P}_2 = [-1, 1, -1], \ \hat{P}_3 = [-1, -1, 1].$$

By the classical invariant theory the invariant subring of $C[\zeta_0, \zeta_1, \zeta_2]$ under the action ρ_4 is given as:

$$C[\zeta_0, \zeta_1, \zeta_2]^{\rho_4(S_4)} = C[\hat{G}_2, \hat{G}_3, \hat{G}_4],$$

where

$$\begin{split} \hat{G}_2 = & \zeta_0^2 + \zeta_1^2 + \zeta_2^2, \quad \hat{G}_3 = & \zeta_0 \zeta_1 \zeta_2, \\ \hat{G}_4 = & \zeta_0 \zeta_1 + \zeta_1 \zeta_2 + \zeta_2 \zeta_0, \quad \Delta = (\zeta_0^2 - \zeta_1^2) \left(\zeta_1^2 - \zeta_2^2\right) \left(\zeta_2^2 - \zeta_0^2\right). \end{split}$$

And if we consider the representation ρ' , the transformation (5-7) induces

 $\rho_5(\tau) = (\operatorname{sgn} \tau) \rho_4(\tau) \quad \text{for } \tau \in S_4.$

By the same argument we have

$$C[\zeta_0, \zeta_1, \zeta_2]^{\rho_5(S_4)} = C[\hat{G}_2, \hat{G}_4, \hat{G}_3^2, \hat{G}_3A].$$

So we can conclude ρ is given by (1-4).

Finally let us consider Fact 1. We investigate the case $\tau = (12)$. Set $\xi' = {}^{t}(\xi'_{0}, \xi'_{1}, \xi'_{2}) = \sigma((12))\xi = {}^{t}(\xi_{1}, \xi_{0}, \xi_{2})$. And we identify

$$C(\xi): w^3 = z(z-\xi_0)(z-\xi_1)(z-\xi_2)$$

and

$$C(\xi'): w'^{3} = z'(z' - \xi'_{0}) (z' - \xi'_{1}) (z' - \xi'_{2})$$

by z'=z and w'=w. Next we deform $C(\xi)$ to $C(\xi')$ along the arc l (12) from ξ to ξ' . By this procedure the branch points $\{\xi_0, \xi_1, \xi_2\}$ moves like Figure 5.

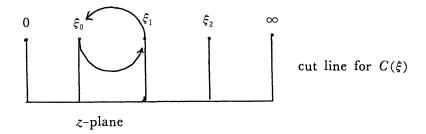
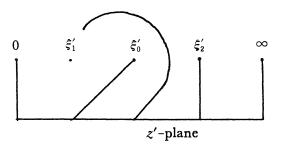


Figure 5

As a consequence we get $C(\xi')$ like Figure 6

HIRONORI SHIGA



Let us draw the homology basis $\{A_i, B_i\}$ on Figure 5 and deform them to Figure 6. And change the cut line with the original one on $C(\xi')$.

Then we can check A_1 , A_3 , B_1 and B_3 are invariant under this deformation. And A_2 is deformed to A'_2 of Figure 7 (the encircled number means the branch).

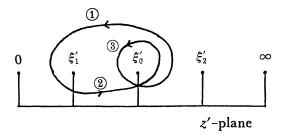


Figure 7

Hence we have

$$\eta_2' = \int_{A_2'} \varphi = -\omega^2 \int_{A_2} \varphi = -\omega^2 \eta_2.$$

As for $\tau = (13)$ and (14) we can proceed the similar trick. q. e. d.

Using the above facts we obtain the characterization of monodromy invariant subrings:

Proposition II-5. (1) $\hat{A}(\Gamma_{1}^{a}) = C[\varphi_{0}, \varphi_{1}, \varphi_{2}],$ (2) $\hat{A}(\Gamma^{a}) = C[G_{2}, G_{3}, G_{4}],$

where

$$\begin{split} G_2 &= (\xi_0 - \xi_1 - \xi_2)^2 + (-\xi_0 + \xi_1 - \xi_2)^2 + (-\xi_0 - \xi_1 + \xi_2)^2. \\ G_3 &= (\xi_0 - \xi_1 - \xi_2) \left(-\xi_0 + \xi_1 - \xi_2\right) \left(-\xi_0 - \xi_1 + \xi_2\right) \\ G_4 &= (\xi_0 - \xi_1 - \xi_2)^2 \left(-\xi_0 + \xi_1 - \xi_2\right)^2 + (-\xi_0 + \xi_1 - \xi_2)^2 \left(-\xi_0 - \xi_1 + \xi_2\right)^2 \\ &+ (-\xi_0 - \xi_1 + \xi_2)^2 \left(\xi_0 - \xi_1 - \xi_2\right)^2. \end{split}$$

Proof. (1) Already we know φ_i belongs to $A(\Gamma')$ (i=0, 1, 2), so it is sufficient to examine $\varphi_i(g_1(u, v)) = \varphi_i(u, v)$. But it is obtained in Remark 4-8. Conversely let φ be an element of $\hat{A}(\Gamma')$, especially it belongs to $A(\Gamma')$. Using Proposition 4 we can write in the form

$$\hat{\varphi} = \sum_{i=0}^{2} P_i(\varphi_0, \varphi_1, \varphi_2) \zeta^i.$$

But we have $\zeta(g_1(u, v)) = \omega \zeta(u, v)$ by Remark 5-1. Therefore P_1 and P_2 must be 0.

(2) it is the direct consequence of Fact 2, Fact 3 and Fact 4.

Combining the definition (5-3) of T and the above argument we obtain that \hat{T} is a twisted projective space given by

$$\hat{T} = \operatorname{Proj} \boldsymbol{C}[G_2, G_3, G_4]$$

Hence we have

Proposition II-6. The field of modular functions on D relative to Γ is given by $C(G_4/G_2^2, G_3^2/G_2^3)$.

Appendix

Here we cite up the theorems concerning the θ functions which we used in the preceding sections, for precise arguments see [M], [R-F].

The θ function is defined by

$$\theta(z,\Omega) = \sum_{n \in \mathbf{Z}^{g}} \exp\left(\pi i^{t} n \Omega n + 2\pi i^{t} n z\right)$$

for a θ variable z of C^{g} and a moduli variable Ω of the Siegel upper half space \mathfrak{S}_{g} . It is holomorphic on $C^{g} \times \mathfrak{S}_{g}$ and satisfies the periodic relation

(A-1)
$$\begin{cases} \theta(z+e_j, \Omega) = \theta(z, \Omega), \\ \theta(z+\Omega e_j, \Omega) = \exp(-\pi i \Omega_{jj} - 2\pi i z_j) \cdot \theta(z, \Omega), \end{cases}$$

where we use the notations

$$e_j = {}^t (0, \ldots, 0, 1, 0, \ldots, 0),$$

 $\Omega = (\Omega_{ij})_{1 \le i, j \le g} j,$
 $z = {}^t (z_1, \ldots, z_g).$

For rational g vectors a, b of Q^{g} the θ function with a characteristic $\begin{bmatrix} a \\ b \end{bmatrix}$ is defined by

(A-2)
$$\theta \begin{bmatrix} a \\ b \end{bmatrix} (z, \Omega) = \exp \left\{ \pi i^{t} a \Omega a + 2\pi i^{t} a (z+b) \right\} \cdot \theta \left((z+\Omega a+b), \Omega \right)$$
$$= \sum_{n \in \mathbb{Z}^{g}} \exp \left\{ \pi i^{t} (n+a) \Omega (n+a) + 2\pi i^{t} (n+a) (z+b) \right\}.$$

Remark A-1. For half integral vectors η' , η'' of $(\mathbb{Z}/2)^{g}$ the function $\theta \begin{bmatrix} \eta' \\ \eta'' \end{bmatrix} (z, \Omega)$ of z is even (odd) if $4^{t}\eta'\eta''$ is even (odd), respectively. Next let us consider a compact Riemann surface X of genus g. Let $\{A_{1}, \ldots, A_{g}, B_{1}, \ldots, B_{g}\}$ be a basis of $H_{1}(X, \mathbb{Z})$ and let $\omega_{1}, \ldots, \omega_{g}$ be a basis of Abelian differentials of first kind with the properties;

$$A_i \cdot A_j = B_i \cdot B_j = 0,$$

$$A_i \cdot B_j = \delta_{ij},$$

$$\int_{A_j} \omega_i = \delta_{ij}.$$

And set

$$\Omega = (\Omega_{ij}) = \left(\int_{B_j} \omega_i\right)_{1 \le i, j \le g}$$

For arbitrary points P and Q of X we denote the column vector of Abelian integrals

$${}^{t}\left(\int_{P}^{Q}\omega_{1},\ldots,\int_{P}^{Q}\omega_{g}\right)$$

by

$$\int_{P}^{Q} \omega.$$
And for a divisor $D = \sum_{i=1}^{m} P_i - \sum_{i=1}^{m} Q_i$ of degree 0 we use the notation
$$\sum_{i=1}^{m} \int_{Q_i}^{P_i} \omega = \int_{D} \omega \text{ or } I(D).$$

The Jacobi variety $C^{g}/(\Omega Z^{g} + Z^{g})$ of X shall be denoted by Jac X. The point P_{0} is supposed to be fixed as the common terminal of A_{i} and B_{i} on X.

Theorem A-1. We suppose z is a fixed point on Jac X. The multivalued function

$$\theta(z + \int_{P_0}^{P} \omega, \Omega)$$

of P on X has g zeros Q_1, \ldots, Q_g provided not to be constantly zero. And we have the Jacobi inverse relation between z and the divisor $\sum_{i=1}^{g} Q_i$:

$$z = \Delta - \sum_{i=1}^{g} \int_{P_0}^{Q_i} \omega,$$

where Δ is a constant defined by

(A-3)
$$\mathcal{A} = -\frac{1}{2} \begin{pmatrix} \mathcal{Q}_{11} \\ \vdots \\ \mathcal{Q}_{gg} \end{pmatrix} - \sum_{k=1}^{g} \int_{A_k} \left(\int_{P_0}^{P} \omega \right) \omega_k .$$

Let us call Δ the Riemann constant.

Remark A-2. The Riemann constant Δ is determined by the homology basis $\{A_i, B_i\}$ and the terminal point P_0 .

Theorem A-2. We have $\theta(z, \Omega) = 0$ if and only if there is an effective divisor $P_1 + \cdots + P_{g-1}$ with the property

$$z = \Delta - \sum_{i=1}^{g-1} \int_{P_0}^{P_i} \omega.$$

Here we use the notation

 $\Sigma = \{ a \text{ divisor } D \text{ on } X: 2D \equiv K \},\$

where \equiv indicates the linear equivalence and K is a canonical divisor.

Remark A-3. If we fix an element D_1 of Σ , then we have $\Sigma = \{D_1 + E : 2E \equiv 0\}$. Moreover we know that Σ has 2^{2g} elements because of Abel's theorem.

Theorem A-3. We have $\Delta = I(D_0 - (g-1)P_0)$ for a certain divisor D_0 of Σ .

For a divisor D of Σ let us consider a pair of half integral vectors (η', η'') with the property

HIRONORI SHIGA

$$\Omega\eta' + \eta'' \equiv I(D_0 - D).$$

It defines a bijective correspondence between Σ and $(\mathbb{Z}/2)^{2g}/\mathbb{Z}^{2g}$.

Corollary 1. We have $\theta(\Omega \eta' + \eta'', \Omega) = 0$ for a pair of half integral vectors (η', η'') if and only if the corresponding divisor D of Σ is effective.

Corollary 2. The Riemann constant Δ is a half period on Jac X if and only if we have $(2g-2)P_0 \equiv K$.

Theorem A-4. Set $d(D) = \dim H^0(X, \mathcal{O}([D]))$. Then the divisor D_0 is characterized as an element of Σ with the condition

$$d(D_0+E) \equiv 4^t \eta' \eta'' \pmod{2}$$

for every $D=D_0+E$ of Σ , where (η', η'') is a pair of half integral vectors corresponding to D.

Remark A-4. If X is a non hyper-elliptic Riemann surface of genus 3, we have d(D) = 0 or 1 for every D of Σ .

Theorem A-5. Let f be a meromorphic function on X, and let

$$\sum_{i=1}^m a_i - \sum_{i=1}^m b_i$$

be the divisor defined by f. Let us take paths from P_0 to a_i and b_i so that we have

$$\sum_{i=1}^{m} \int_{P_0}^{a_i} \omega = \sum_{i=1}^{m} \int_{P_0}^{b_i} \omega$$

For an effective divisor $P_1 + \cdots + P_g$ we have

(A-4)
$$f(P_1)\cdots f(P_g) = \frac{1}{E} \prod_{k=1}^{I} \left\{ \frac{\theta\left(\sum_i \int_{P_0}^{P_i} \omega - \int_{P_0}^{a_k} \omega - \mathcal{A}, \mathcal{Q}\right)}{\theta\left(\sum_i \int_{P_0}^{P_i} \omega - \int_{P_0}^{b_k} \omega - \mathcal{A}, \mathcal{Q}\right)} \right\}$$

where the equality indicates as meromorphic functions on the g times symmetric product of X, E is a constant independent of P_1, \ldots, P_g and the integrals from P_0 to P_i take the same paths in the numerator and the denominator.

An effective divisor D of degree g-1 on X is said to be general

if we have dim $H^0(X, \mathcal{O}([K-D])) = 1$. For a general divisor D of degree g-1 let ω be an Abelian differential of first kind such that $(\omega) - D$ is effective. In this case $D' = (\omega) - D$ is said to be *the complement* of D.

Remark A-5. In the situation of Theorem A-5 let us suppose the following conditions:

(i) $D=P_2+\cdots+P_g$ is general and let $Q_2+\cdots+Q_g$ be its complement,

(ii) P_1, \ldots, P_g are different from a_k, b_k $(1 \leq k \leq m)$,

(iii) P_1 is different from Q_2, \ldots, Q_g .

Then both of the numerator and the denominator in (A-4) are different from zero.

Suppose a basis $\{A'_i, B'_i\}$ of $H_1(X, \mathbb{Z})$ obtained by a symplectic transformation $M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$ from the basis $\{A_i, B_i\}$;

$${}^{t}(B'_{1},\ldots,B'_{g},A'_{1},\ldots,A'_{g}) = \begin{bmatrix} A & B \\ C & D \end{bmatrix} {}^{t}(B_{1},\ldots,B_{g},A_{1},\ldots,A_{g}),$$

where we have ${}^{t}AC = {}^{t}CA$, ${}^{t}BD = {}^{t}DB$ and ${}^{t}DA - {}^{t}BC = E_{g}$ from the symplectic condition. Let $\omega' = {}^{t}(\omega'_{1}, \ldots, \omega'_{g})$ be a basis of Abelian differentials of first kind with the property

$$\int_{A_j'}\omega_i'=\delta_{ij}\,,$$

and put

$$\mathcal{Q}' = (\mathcal{Q}'_{ij}) = \int_{B'_j} \omega'_i \,.$$

Then we have

(A-5)
$$\Omega' = (A\Omega + B) (C\Omega + D)^{-1}.$$

And also we have

(A-6)
$$z' = {}^{t}(C\Omega + D)^{-1}z$$

for $z = \int_{P_0}^{P} \omega$ and $z' = \int_{P_0}^{P} \omega'$.

For a divisor D of degree zero let us put

$$\int_D \omega = \mathcal{Q}\zeta_1 + \zeta_2 \text{ and } \int_D \omega' = \mathcal{Q}'\zeta_1' + \zeta_2',$$

then we have

(A-7)
$$\begin{cases} \zeta_1' = D\zeta_1 - C\zeta_2 \\ \zeta_2' = -B\zeta_1 + A\zeta_2 \end{cases}$$

References

- [A] Alezais, R., Sur une classe de fonctions hyperfuchsiennes et sur certaines substitutions linéaires qui s'y repportent, Ann. Sci. E. N. S., 3 setrie Tom 19 (1902), 261-323.
- [D-M] Deligne, P.-G. D. Mostow, Monodromy of hypergeometric functions and non-lattice integral monodromy, *preprint*.
- [F] Feustel, J. M., Ringe automorpher Formen auf der komplexen Einheitskugel und ihre Erzeugung durch Theta-Konstanten, Akademie der Wiss. DDR, Berlin, 1986.
- [H] Holzapfel, R. P., Geometry and Arithmetic around Euler partial differential equations. Reidel, Dordrecht/Boston/Lancaster, 1986.
- [I] Igusa, J., Theta functions, Springer, Heidelberg, New-York, 1972.
- [M] Mumford, D., Tata lectures on theta I, Birkhäuser, Boston-Basel-Stuttgart, 1983.
- [N] Namba, M., Equivalence problem and automorphic groups of certain compact Riemann surfaces, *Tsukuba J. Math.*, 5 (1981), 319-338.
- [P] Picard, E., Sur les fonctions de deux variables indépendentes analogues aux fonctions modulaires, Acta Math., 2 (1883), 114-135.
- [P-S] Pjateckii-Sapiro, I. I., Geometry of classical domains and automorphic functions, Fizmatgiz, Moscow, 1961.
- [R-F] Rauch, H. E. and Farkas, H. M., Theta functions with applications to Riemann surfaces, Williams and Wilkins, Baltimore, 1974.
- [Sh] Shiga, H., One attempt to the K3 modular function I-II, Ann. Scuola Norm. Pisa, Ser. IV-Vol. VI (1979), 609-635, Ser. IV-Vol. VIII (1981), 157-182.
- [Si] Siegel, C. L., Topics in complex function theory II, Wiley, New York (1971).
- [T] Terada, T., Fonctions hypergèométriques F_1 et fonctions automorphes I-II, J. Math. Soc. Japan, **35** (1983), 451-475, **37** (1985), 173-185.
- [W] Wakabayashi, I., Note on Picard's modular function of two variables, Private note.