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§ 0. Introduction

In this paper the author shows the representation of the Picard
modular function by 0 constants, and characterizes this function as
modular forms on the domain

D= {(M, z;) eC2: 2Re v + \u 2<0} =

relative to a certain arithmetic discontinuous group,

" 0 1 0

where H= 1 0 0

. 0 0 1

We divide the paper in two parts. In Part I we discuss the former
subject and in Part II we study the latter.

This modular function was constructed originally by [P], and was
investigated by several mathematicians recently [D-M], [F], [H],
[Sh] and [T]. This modular function is defined as the inverse
mapping of the period mapping 0 for the family of the complex
algebraic curves in (z,w) -space

where £ = [£0, fl5 £2] is a parameter on the domain

ofF2(C). As easily shown C(f) can be regarded as a compact
Riemann surface of genus 3. Then <P is a multivalued analytic
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mapping from A to the Siegel upper half space S3 of degree 3. The
image of 0 is contained as an open dense subset in a nonsingular
subvariety, which is biholomorphically equivalent to the domain D,
of @3. The inverse mapping of 0 is given as a single valued

holomorphic mapping [f0? ?i, £3] ~ [/oj/ij/il defined on D. The
period mapping 0 induces a biholomorphic correspondence between

the f-space P2 and the compactification D/Fl of D/F^ where /\ is
an arithmetic group defined afterwards. Hence fk/fo (u, v) (&=!, 2)
are meromorphic automorphic functions relative to P1 and they are

the generators of the function field on D/Flf As the conclusion of

Part I we show the representation fk = <Pk(u9
 y) by ff constants of the

Riemann theta function on @3 (Proposition 1-3). And this represen-
tation enables us to get an explicit Fourier expansion of the Picard
modular function (Proposition 1-4). As already shown in [Sh] the
Picard modular function is a typical K3 modular function. So we
wish to investigate it as a model case of the theory of the K3 modular
functions. Hence we tried to obtain such a expansion of this modular
function. In 1902 Alezais [A] has studied this representation but it
contains essential faults, centrally our investigation is direct and
complete. Our result can be considered as an extension of the
classical Jacobi's representation ^ = #2/^3 (#;(£, r) indicates Jacobi's
theta function and 6{ is the convention for #,•((), r)) for the elliptic
modular function /i(r) to the special case of genus 3 (for the genus
2 case there is Rosenhein's representation, for the hyperelliptic case
there is Thomae's representation).

We use several results of the theory of Riemann 0 function. They
are summed up as the Appendix at the end of this paper.

Next we give the summing up of Part II.
Putting F(C) = [g<=:PGL(3, C): tgHg=H] we consider the following

transformation groups acting on D :

rl={g^r(C)nPGL(3,Ziw-])i g=i (mod. (V
where o> = exp( — 2m'/3).

Where PGL(3, *) (PSL(3, *)) indicates the group of projective trans-
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formations induced from Gi(3, *) CSX(3, *)), respectively, and g=I

(mod. (V —3)) means that g represents the identity in PGL(3, Z\_a)~]/

0/^3)).

In Part II we characterize the theta constants <pk(u, v) (k = Q, 1, 2)

as modular forms on D relative to Ff (II-§3 Proposition II-3). And

we determine the structure and the generator system of A(*) in terms

of ^(M,z0 9 where A(*) indicates the graded ring of modular forms

on D with respect to * = r7 and F (II-§4 Proposition II-4 and II-5).

There we use the transformation formula of theta functions as the

main tool.

The results in Part II are also obtained by Holzapfel and Feustel

[F], [H] independently in a different way.

Table of contents

I. Representation by 0 constants.

§1. The Picard's modular function and his theta representation

§2. Observation of the variables in the theta representation

§3. Determination of A and the conclusion

II. 6 constants <pk(u, v) as modular forms

§1. The Picard modular group

§2. Modular forms of weight 1

§3. The possibility of common zeros of theta constants

§4. Characterization of ^(w, v) as modular forms

§5. The generator system of the graded ring of modular forms

A0 Appendix.

I. Representation by 0 Constants

§ 1. Picard's Modular Function and His 0 Representation

We consider an algebraic curve C(c) in (z, w) -space C2 defined

by

(1-1) C(f) :w3=z(z-t0) (*-?!) Cc-£2),

where the parameter f = [fo> £1» f2] IS supposed to lie in the domain
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of the complex projective space P2(C). Then we know that

can be considered as a compact Riemann surface of genus 3. Let us
call C(f) a Picard curvea And let us denote the totality of Picard

curves by F0

Picard [P] constructed the period mapping for F and he showed

that the inverse mapping defines a single valued automorphic function

on a domain D which is biholomorphically equivalent to a complex

2 dimensional hyperball. Moreover he gave a representation of these

functions by the Riemann 6 function. Our aim is to get a representa-

tion by 0 constant through a precise observation of Picard's result.

For this purpose we give a concrete description of the Picard's

work in this section (the main part is owing to the private note of

Wakabayashi [W]).

Let us fix the parameter 3= [£0, £19 £2] with 0<Co<ft<?2 a^d
let us denote the corresponding Picard curve by C0. In the sequel
we construct a homology basis [Ai9 Bt] ( i=l ,2 33) of C0. We

regard CQ as a three sheeted covering surface over the ^-sphere, and

let ic be the projection mapping from C0 to the ^-sphere. Then we

get Oi =(*,«>) = (0,0), 02 =(*,«>) = (ft, 0), Os= (*,«>) = (ft, 0), 0* =
U, H>) = (ft, 0), Qs= (z9 w) = (oo, oo) as ramifying points. Put Qsi =

^(Oi) 0' = l j - ' - j 5), and let £0 be a fixed point on the £-plane with
Im ^o<0. Let f{ be a line segment connecting t0 and 0» on tne ^-plane.

Then we have three connected components al9 a2 and <73 of
5

7T-1 (^-sphere — y ft),1=1
and they are simply connected.

Let /) be the automorphism of C0 denned by p(z, w) = (z, aw),

where o> indicates exp (2m/3). And the indices of a are supposed to

satisfy p(oi)=tr2, p(ff2~)=a3. Let a ( k ) (i,j) be the oriented arc from

Q,,- to Qj on <TJ. Using above notations we define 1-cycles Ait Bf on
C0 as follows:

, = aw (2, 3) +«C3) (3, 4) +«a) (4, 2),

d-2) 3 = «(3) (2, 4) + aw (4, 3) + a(1) (3, 2),

! = a(1) (1, 3) +a(3) (3, 2) +a<2) (2, 1),

2 = a<3)(2, 3)+a (a(3,2),
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They satisfy the relations A{ • A] = Bi • Bj = Q and At • Bj = d{j (1 ^i,

j^3), so {^4f, J5,,} is a basis of Hl(CQ,Z). Let us consider a path

5 on A from 5 to a variable point ?. Because F is a locally trivial

topological fibre space over A, we can define a homology basis

t4i(£), £;(£)} of #i(C(£), ^) by the continuation of Uf.,fi,.} along j.

Let {<H,-} ig.-sa be a basis of Abelian differentials of first kind on C(£)

so that we have

\ (Oi=Su.
jAj

Then we get a multivalued analytic mapping from A to the Siegel
upper half space @3 by the correspondence

Remark 1-1. We get a basis of Abelian differentials of first kind

<p1 = dz/w, <p2
 = dz/(w2), (£3 = zdz/ (w2) , but they do not coincide with {o){} .

According to Picard the period matrix $(?) has a concrete
description as follows:

-a))"

(1-3)

where we use the notations

= \ Pu )7i=-ft>2\ ^i, 5^2= \ ^, v =
JA1 JBl JA2

So we can regard the correspondence 0: f i—> (w, z;) as the period

mapping for the family F.

We have the following properties about $ (cf. [P], [T],

[D-M], [H], [Sh]).

(1) The image of $ is open-dense in the domain

D= {(M, zO eC2:2 Re v+ \u |2<0} =

where // indicates the matrix

0 1 0

1 0 0

0 0 1

(2) Let Fl be the monodromy group in Aut D, the group of
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biholomorphic transformations of D, induced from ^(/f, *)° Then
we have

ri={gePGL(5,Z[<a]):t
gHg=H,g=id (mod. (V^

where g acts on P2 from left and = means that g represents the

identity in PGL(3?Z[H/(vf:=:3)).
(3) 0 induces an injective mapping from A to D/Flm

(4) If we take an affine coordinate # = ?i/?0j y — ?2/?o9 then the
system Oft (#,.?)} (?— 0,1,2) gives a fundamental solution of the
AppelPs hypergeometric differential equation ^(1/3, 1/3, 1/3, l',x,y).

(5) 0 extends to a biholomorphic correspondence between f-space
P2 and the Satake-Baily-Borel compactification of D/F1 (it is obtained
by attatching 4 points corresponding to

P0= [1,0,0], P!= [0,1,0], Pa= [0,0,1], P8= [1,1,1]

on the ?-space.)
Now let us relate the 0 representation of Picard0 For this purpose

we apply Theorem A-5, A indicates the Appendix, for the Picard
curve X' w3 = z(z— I) (£ — x) (z — y}. Let us take a meromorphic
function f=Z on X. It is a function of order 3 and we have
(/) — 3Q,i — 3Q^5((*) indicates the divisor defined by *). Let us
consider the divisor 2Q,2 + Q,3 on X, then Q,2 + Q,3 is a general divisor
(see Appendix) . In fact we have (dz/w^^Q^ + Q^-^Q^ + Q^. If we
take Q^s as the initial point of the Abelian integral, we have

Owing to Remark A-5 the denominator and the numerator are
different from zeroa If we take the divisor Q2-r-2Qj instead of 1
we have

Ex2=fl

By the similar argument we get
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4 a>-\ a.-J,
Q5 jaU )(5.1)

By elliminating E from the above equalities we obtain

3xn

3

k = l

xn
k=i

This is the 0 representation of Picard.

§ 2. Observation of the Variables in the 0 Representation

Now our aim is to express the parameters x and y in (1-4) as

explicit functions of (z/, v). The right hand sides are determined by

the moduli variable £(?), the Riemann constant J and the Abelian

integrals along certain arcs. The matrix Q($) in (1-4) is determined

by the point (u, v) on D, in fact (1-3) gives the embedding of D in

@3. Hence it is determined by the periods on C(f) . The Riemann

constant A (cf. (A-3)) is determined by the homology basis of C(f)

and the initial point P0 of the Abelian integral as noted in Remark
A-2. By Corollary to Theorem A-3, A is a half period if there

exists an Abelian differential w of first kind with (o>) — 4P0. We

already set P0
 = Q,5 °n C(f). On the other hand if we consider

y^dz/w2) we have (<p2)= 4(£5. By Corollary 2 to Theorem A-3, the

Riemann constant A in (1-4) is a half period on Jac C(£). Namely

we have A = Q (£) rii +n2 for certain vectors wl9 ^2 of (Z/2)3/^3- Here
we note that wx and w2 are independent of the parameter ?, because
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A is a continuous function of f (see (A-3)). We shall investigate
precisely in the next section.

So we determine the Abelian integrals of the form

\ »J «<*>«.»

in (1-4). At first we have the following:

Lemma 1. \ <i)=\:\ a)-
Ja(l'(iJ) 6 JC-C'

Where we set C-a(1)(i5j) -«(2)(i,j) and Ct = a^(iJ)-a^(iJ)9 they are
l-cycles on C(f)« Hence the left hand side of the above equality is one
thirds of a certain period.

Proof, It is sufficient to show the equality for (pi ( i=l,2, 3). We
have

\ «1=C A_C _
JC ' J a

( 1 ) « . ; > W J a ("<, • . , •><»

Hence we obtain

l-«»

The argument is almost same as for <p2 and ^3. q. e. d.

By the above consideration the 0 variables in (1-4) can be
represented by one sixths of the periods. In the sequel we find the
exact values of them.

As for the cycles of type C we have:

Lemma 2,

a(1) (5, 2) -a(2) (5, 2) =Bl

a(1) (5, 3) -a(2) (5, 3) =Bl

The automorphism p (in §1) of C(£) acts on H^C^.Z). We
denote this automorphism by the same notation. Then we have:
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Lemma 3.

•A,'

A*

A3
B,

B2
.B3.

=

0 0 - 1 0 0 0 -
0 0 0 0 - 1 0

1 0 - 1 0 0 0

0 0 0-1 0-1

0 1 0 0 - 1 0

.0 0 0 1 0 0.

'A,'

A2
A*

B!

B2

.B3

By the above three Lemmas, we can describe the integral of the
form

U."
in (1-4) by the periods on C(f). Namely we have:

Next let us observe the Riemann constant A. The corresponding
half integral vectors HI and n2 do not depend on the parameter f.
So we consider the fixed Picard curve

It is a three sheeted covering over the ^-sphere. And we regard five
ramifying points Q,i= U, w) = (1, 0), Q2= (z, w) = (i, 0), &= (z, w)
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= (-1,0), &= (*,">) = (-*',0), ds ̂ fe^)^00, °°) are deformed
from Qi on C03 respectively. And we suppose the deformed arc from
line segment ft does not intersect the open unit disc fc: U|<C1}.

If we regard X1 as a four sheeted covering over the ^-sphere,
we obtain 4 ramifying points RI= (z,w) = (<x>9 oo) =Qj9 R2=(^w) =
(0, -o>2), R3= (*, w) = (0, -1), R<= fe zi;) - (0, -01).

Here let us consider a deformation of Riemann surfaces:

(2-1)

where £ varies on the interval [0,1]. Then we obtain X(l}=Xl

and Ar(0)-'=Jf0- As for the Fermat curve XQ:^ = wu-~ 1 we have 4
ramifying points

R(= (*, zi;) = (0, 1), #2= fe w) = (0, i), ^3= fe zi;) = (0, -1),
/ZI=(^zc;) = (0, -f)

corresponding to R^, R2, R^, R^ respectively. In the next section we
determine the Riemann constant J for XQ, and we get the one for Xl

by the deformation of Riemann surfaces (2-1).

§ 3a Determination of J and the Conclusion

For the simplicity we denote R'i by R{ in the sequel. Let n be
the projection (^, w)*-*w and set ^• = 7r(/2 I)0 Let ft be the line segment
connecting J?, and oo on the if-sphere. We denote the connected

4

component of K ~ l ( P — \ J j j ) by It (i is an element of Z/4Z). Here
^=1

we suppose that it holds T^. = Jf+1 relative to the automorphism

Let a(W(i,j) be the oriented arc on ^ from /?f to ,ff,e Using this
notation we define the following 1 -cycles on XQ:

(3-1) , 3) +af3)(2, 3) +a(2)(3, 2) +a«>(3, 2),
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Then we have A\ • A'—B'i • B'j = Q and A\ • fiy = 3lV. Hence they con-

stitute a basis of H1(XQ^Z). If we set

we obtain

and

i -I -1

-1 i -1

-1 -1 i.

for a certain diagonal matrix D. And put

Q,i= (Z9 w) = (1, 0), 0,2 = ($, z0) = (i, 0),

&= (*, zi;) - (-1, 0), 0,4 = (*, zi;) = (-i, 0).

These are the deformations of Q,i, Q,2, Q,3, 0,4 on Xl relative to (2-1)
respectively.

And we may assume Q,* is situated on Sk. By

r*<
} 9,
JG.

we indicates the integral of (p} along the arc from Qk to R{ on Skm

And put

*i

By considering the automorphisms

i:':i' i:'::
of Jf0 we obtain the following table of
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6)
i

j= 2

.3
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Table 1

/IN (2\ /3\ /4N /IN (2\ /3N /4N /IN /2N /3N /4\ /IN /2N /3N /4N
(i) \i) (i) (i) \2j \2j (2) \2j (3) w ^ Vsy W \4J w U;
1 i -1 -i i

1 t -1 -i -1

1-1 1-1 i

-1 -i 1-1

-i 1 i 1

-i i -i-l

-i 1 i -i 1 i-l

i -1 -i -1 -i 1 i

1 -1 1 -i i -i i

According to Table 1 we obtain the following:

Lemma 4.

where we set <p = t(<pi,<p2,93) and=indicates the equivalence modulo periods.

Proof. Set

r-iC2

using (3-1) we have

Q4

where we set y = '(^i, ^2J ^3)- ^Y Table 1, we obtain:

the right hand side
"1

1
1

•4 +

0

. 0

+

4i"

1

— i

i

.

+

I

i

-I

+

^
_ ]

i

_,
-1

i

i

-f

-1

-1

1

+

— i

I

i

+

— i

— i

-1

On the other hand we have
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2c'C<°sclC+C+C+C>=
0

L 0

Hence we have the first equality. By the similar computation we get
the rests. q. e. d.

On the Picard curve X1 we have the homology basis [Ai9 Bt]
which is obtained by the continuation of (1-2). We can define the
continuation of this basis relative to the deformation (2-1). Let us
denote this shifted basis on X0 by [A{, B{] also. So we have two
basis systems of Hl(X0, Z). They are changed each other by the
following symplectic transformation:

Lemma 5.

B2

B3 =

1-1 1 0 0 1 '

0 0 - 1 - 1 0 0

-1 0 -1 0 0 -1

0 0 1 1 - 1 0

0 1 -1 0 0 -1

. -1 0 0 0 -1 -1 ,

B's

Proof. It is sufficient to know the intersection multiplicities be-
tween these two systems. In fact we obtain the description:

Al = aw(2, 3)+a(3>(3, 4)+a(4 '(4, 2),
A2 = aw(2, 4)+a<3)(4, 2),
^3 = a< 2 )(2,4)+«< 4 )(4, 3)+a(3)(3,2),
B^a^CS, 2) +a<3)(2, 4) +«(2)(4, 3),
52 = a<2>(3,4)+« (3 )(4, 3),
53 = «a)(4, 3) +a(3)(3, 2) +a(2)(2, 4).

So the above numbers are easily obtained by the geometric configura-
tion, q. e. d.

Let E0, El}..., £63 be the totality of the linear equivalence classes
of the divisor E on X0 with 2E=0. Put
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where [ ] indicates the corresponding line bundle. By Remark A-4,
we have d{ = Q or 1. Set

£0=
where (o = t(col9a)29ct)3) is a basis of Abelian differentials of first kind
with

The Riemann constant A on X0 relative to the homology basis
[Ai9Bi] and the initial point Rl is also a half period, because we
have (0>i) = (£~3rfz0) =4/2i. So A is represented by the form ^0^1 + ̂ 2
with certain elements ^ and 372 of (Z/2)3/Z*. Set

the notation is defined in Appendix, with vectors y^ and ^l) of
(Z/2)3/Z*. By the corollary to Theorem A-3, (5?l5 %) is characterized
by the condition:

(3-2) 4< (7i + 7i(0) (fc + fll0) =<• (mod. 2)

for arbitrary index i.

Set E0 = 0, £1 = 204-20,!, £2 = 0,1 + 0,3-^1-^3, E3 = 2R,~2R^ E4-
03 + /23-Oa--ffi. Then we have 2EZ = 0 (i = 0, . . . , 4) because of
Lemma 4. Let us examine the condition (3-2) for these divisors.

Lemma 6. We have d0 = d3=l and d1 = d2 = d4 = 0,

Proof. By the definition of dt we obtain the required equalities.
q. e. d.

Using Lemma 4 we have the following representation relative to
the homology basis {^4-, £•} :

C'( p = 0, C'\ <p = \ 0, C\ <p = \-
J En J E-, f-l A I s/ En ~

- -2

0
1

-0.
0
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Using the transformation formula (A-7) we obtain:

Lemma 7.
i r o o 11 i r o i o i

Y)^=J_l I * fY><2> y,<2)^=J_|

o oj'

;:i
The condition (3-2) for E0,...,E4 induces only two possibilities:

A-t - 1 [° l °1 _i - I f 1 1 1 ]
i- (7i,%)-y[0 l QJ, 2 - ' 0 7 i , % ) — 2 L J Q Q J-

Next we examine the condition for the divisor E$ with

0f 1
\ <P =
J* 2

1 0
T 1

Put fi?5 = dim//°(Zo, 0 ([^5 + 2/Zi])), then we have A = Al provided
rf5=l. At first we determine £"5 and next we calculate <f5. By the
definition of B'3 and Table 1 we have

-2-2Hr rr 2 r i r 2 r in —^ — z>i 'c'\ ,p=c/ L+\ -\ -\ k= "2
J5' LJQ2 JQ3 JQ3 JQ2 J 2—2z

On the other hand we have

./?o

-21!, C'l\ +\ |p= |2 | .

Now we choose a point R{=(a,b) on Jf0 so that it holds

r*'i i rRi
\ ^2=-nr\ ^2,JQI 2 JQI

and put R^=( — a, —6) . Then it holds

rr*i r*3n
C'|\ +\ \v=

LJQl JQ 3 J
!1-0 1

Hence we have

\ 9=
>B'



326 HIRONORI SHIGA

for E5 = ̂  + ̂  + ̂ i + £2- (0,1 + 0,2 + 20,3).
Using the symplectic transformation in Lemma 5 we get the equality

(*)•
To obtain d$=l it is enough we construct a meromorphic function

/(5=0) with (f)^-(E5 + 2R1)e

Let Ll9 L2 and L3 be linear forms as the following:

( i ) R[ and R'3 belong to Z*i = 0,

(i i) L2 = 0 is tangent to XQ at J?l3

(iii) L3 = w.

Then we have

where R'2=(ia, fi), jR4=(-z"0, — ii),

Put D = jR2 + ^4 + 2/?i + 0,i + Q,2 + 2Q,3 + ^3 + ^4. If we find a cubic form
F with

(**) (F)IXQ^D

then /= F/ (L^L2L^ is a required function
Let us regard 10 parameters of F as unknowns, then (**) induces

10 linear equations about these unknowns. We can calculate the

determinant of the matrix of their coefficients and we see it vanishes.

Hence we can find a solution F of (**). It shows rf5=l.
Hence 4 is the Riemann constant on XQ relative to the homology

basis [A^ Bf} and the initial point /?x= (£, w) — (1, 0). By the shifting

of AI along the deformation (2-1) we get the following.

Proposition 1-2. The Riemann constant A on the Picard curve Xl

relative to the homology basis [A^ 5J and the initial point Q$ = Ri =

(z, w) = (oo, oo ) of the Abelian integral is given by

+4-L o j

By substituting the results Proposition 1-1 and 1-2 in the 0

representation (1-4) we obtain the 0 constant representation of the
protective parameter £,-:
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Proposition 1-3.

-

03

_

0 -i- °O

1

.® ~6 .

03
9 "

•o - o"
"

1 1 1

L 3 6 3-

#3
?

"0 — 0
6

2 1 2
L S 6 3 J -

where we use the conventional notation 0\ for 0\ (0, Q).

Remark 3-1. The above 0 constants are holomorphic on the whole
domain Z), because they are holomorphic on @3. And we show that
the theta constants in the right hand side have no common zero in
Proposition 2 of II §3.

Henceforth we use the notation

JO 1/6 01

L/i/«3 */o K/oj

k = 0,1,2. If we write down <pk(u,v) explicitly using (1-3), we
obtain the following Fourier expansion.

Proposition 1-4.

<pk(u, y ) = Z { E (//i* )+(M)+//? )~ (M))}?P,

w;A^r^

f 2!/M, — o>) • exp | ±-Tj-TriA; ^(/^)
V «J

flwrf N((jt)=pfi,

Remark 3-2. The coefficient /£(M) =//?)± • exp(±-|-7ri* ^r(^)[ is
\ >3

a ^ function of 1 variable satisfying the periodic property:

(3-2)
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II. 6 Constants </>k (u, v) as Modular Forms

§ 1. The Picard Modular Group

Let us begin with the situation of Part I §1. We considered a
reference Picard curve C0 corresponding to a fixed point 3 on A. If
we take an element d of ^(^,2), it is induced an automorphism 5*
of //i (C0, Z) by the deformation of C0 along d. Let N(d) be a matrix
of 5* relative to the basis {Bi9Ai} given by (1—2) in Part I. The
transformation N(d) preserves the intersection matrix of the system
[ B i 9 A i } 9 so it belongs to Sp(3, Z). Namely N(5) is a modular
transformation of @3. Here let us recall the definitions of qs (/'= 1, 2, 3),
<f>i and {Bi9Ai} (see I§1), so we obtain the relation;

(1-D

Therefore AT (5) induces an element g(d) of PGL(33 Z\a)\), it acts on
the domain

Z) = {? CEP2 : 7l

Set

Let us write down the generator systems of GI and Flm Let
(*oj J^o) = (fi/foj ?2/fo) be the inhomogeneous coordinate of 3, then we
have lO0<jo- And set

We define the following closed arcs d{ (i = l , . . . , 5 ) of ^(/i, 5

5X; the loop goes around x = l in the positive sense on Lx,
d2\ the loop goes around y = Q in the positive sense on Ly,
^3; the loop goes around x=y0 in the positive sense on Lx,
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(54; the loop goes around y = oo in the positive sense on Ly,

d5
m, the loop goes around x = 0 in the positive sense on Lx.

To make clear the way of construction we assume every d{ is situated

in the upper half plane of Lx (Ly respectively) except the lacet near

the turning point. When we deform C0 along <5 t, the branch locus

£j 0 — 0 , 1 , 2 ) varies as Figure 1 on the £-plane.

z-space

Figure 1

Then d{ induces a monodromy transformation g(<5t) as follows;

g(dj=\ co-l 1 1-co2

co-l co* 0 |,

these matrices are supposed to act to the system f(7?1? ^2, ^3) from left.

We can examine the above transformation observing the deformation

of C0 along d{. The method is described also in the original paper

of Picard (Reference [2] of Part I). So we omit the detail of an

argument. And we choose the following generator system [d{, ..., d$}

of TTj(A, 3) ; d[ = dl9 S2=(d1d4d2)'\ d^d^d^ d'4 = d^ drifts, where the

composition is supposed to perform from left to right. Then we

obtain the corresponding transformations gi=g(S/i) as follows;
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d-2)

And we obtain the corresponding symplectic transformation
as follows;

1 0 0 0 0 0\

0 - 1 0 0 1 0

0 0 1 0 0 0

0 0 0 1 0 0

0 - 1 0 0 0 0

0 0 0 0 0 1

1 - 2 0 1 1-2

0 1 0 1 0 1

0 1 1 1 1 1n *\ > " » . x , , * „ 0 0 1 0 0 0(1-3) <

1 0 0 2 0 - 1

0 1 0 0 0 0

0 0 1 - 1 0 2

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 I /

1 0 0 0 0 0

0 1 0 0 0 0

- 2 0 - 1 1 0 0

0 0 0 0 1 0

-1 0 - 2 0 0 1

0 0 0 1 0 0

0 0 0 2 1 - 1

0 0 0 0 0 1

1 0 0 0 0 0

1 1 - 1 0 0 0

0 0 1 0 0 0

-1-1 1 1-1 0

- 1 0 - 2 0 1 0

- 2 - 2 - 1 0 1 1

where NI is supposed to act to the system t(Bl, B2, B3, AI, A2, A3~) from
left. Naturally the systems (1-2) and (1-3) give generator systems
of Fl and Gl respectively. The characterization of the group Pl is
obtained by several mathematicians independently. The result is
already related in Part I §1 (2).
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Now we set

(1-3)

' r'={g^SL(3,Zla>-]):<gHgH, g=E (mod.

where the notation g=E (mod. v3i) means that every entry of cg-E

belongs to the principal ideal (V3i) of Z[w] for a certain complex
number c. If we recall the relation (1-1), we obtain that F and F'
induce subgroups of Sp(3, Z). Let us denote them G and G'
respectively.

Remark 1-1. (1) The following fact is already known; we have
F/F^Si (the symmetric group) and the isomorphism
is given by

0

(1-4)

(2) Clearly we have {.F1;F'~\=3 and gl represents the generator of
rjr.

(3) r'/F0 is isomorphic to 54.
Perhaps it is better to explain the above fact (1) by a geometric

meaning. Let us consider the parameter space A/S± = T instead of A,
where o of 54 acts on A as the projective linear transformation L(a)
which induces the permutation of

{P0, Plt P2, P3]

by a, where we use the notation
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P0 = [1,0,0], A = [0,1,0], P, = [0,0,1], P3 = [1,1,1].

In fact (1-4) gives the L(tf) for a generator system of 54. If we

consider the monodromy transformation group induced from ^(T*, *),

it coincides with F. We denote an element g of F by

(1-5) g=\ p2(g) q2(g) r2(g) I

and we denote an element N of Sp(3, Z) by four (3, 3) blocks;

\A(N) B(N)1
(1-6) N=\ .} IC(N) D(N)\

Suppose a discontinuous group H acting on D. If a holomorphic

or meromorphic function f(u9 v) on D satisfies

d-7) f(g(u, v)) (detg) = {A(£) +ql(g)v + rl(g)uYkf(u, v)

for any point (M, y) of D and for any element g of //, we call

/(H, v) is a modular form or meromorphic modular form of weight

k relative to H respectively. Here we note that it holds

- d(M>')_ _ detg _

where ( u ' , v f ) indicates g(u9 v).

Let us denote the C-vector space of holomorphic modular forms

of weight k relative to H by A(H)k and the graded ring © A(H)k

by A(H).

§ 2. Modular Forms of Weight 1

In this section we show the following:

Proposition II- 1. (1) dime 04(7^)0 =0, dimc(A(ri)2) =1 and

(2) dimcU(r /)i)=3.

Let us introduce an affine coordinate of the f -space by x = ?i/£0 5

j; = f2/fo- According to the fact related in I§1 (5) we may regard
them as meromorphic modular functions on D relative to /V At

first we note the following.
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Lemma 2-1. (1) The field of rational functions on the %-space P2

and the field of meromorphic modular functions on D relative to F1 are

isomorphic.

(2) We identify the above two fields and denote it by K0. Then the

KQ vector space Km of meromorphic modular forms of weight m on D relative

to Fl is isomorphic to KQ. And the isomorphism rm from KQ to Km is

given by

(2-1) r.(/) =/(*(„, »), J>(u, ,)

Proof. (1) is obvious. (2) follows from an easy observation.

q. e. d.

P2 — A is constituted of 6 lines. So we denote them as follows:

Here we obtain the following criterion for a meromorphic modular
form rw(/) to be holomorphic.

Lemma 2-2. rm(/) i^ a holomorphic modular form if and only if we
have

(2-2) (f)>?*H0-^-'ZH{6 6 i=i

where (/) indicates the divisor on the %-space defined by f.

[ d(x v}~]m

•; >JJ =A(u,v). The map-

ping (x,y) = (x(u, y), y(u, v)) is locally biholomorphic except the inverse

image of //i? and there it has a ramifying locus of order 3. Hence

A(u,v} has zeros of order 2 along the inverse image of H{ (i^O).

Let a= (M, y) be a point on the inverse image of //0, and set an affine

coordinate (xl9 y^) = (l/x, y/x) which is valid on HQ. On the other

hand let (^ , vj be a local coordinate at a so that we have

Xi = UiXunit function, yi = v1X unit function.

Then we have
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_ d(x9 y) d(xl9yj d ( u l 9 PI)
3(tt, p) 3(xl9y1) 3 (MI, PI) d(u9 v)

= (ulY (xi) ~3 X unit factor,,

Therefore A(u9 v) has a pole of order 7m along 1^ = 0. From the
above observation we induce the required condition. q0 e. d.

Proof of Proposition 1(1), It is a direct consequence of Lemma
2-2. q. e. d.

Next let us consider the modular forms relative to F'. According
to Remark 1-1(2) the quatient space D/F' is a 3 sheeted ramified
covering over D/Flm So it defines a 3 sheeted ramified covering V
of the f-space P2 as its compactification. The monodromy transfor-
mation gi shows that V has a ramifying locus along H2 of degree 3.
The situation is the same for every //,-. As easily shown V has 7
singular points over the points Pi (i = 0, 1, 2, 3) and ^?0=[0, 1, 1],
#i = [l, 0? 1], /Z2=[l, 1,0]. We denote those singular points by the
same notation as their projections (Figure 2).

Figure 2

V has an affine representation

(2-3) V:w* = xy(x-\}(y-l)(x-y},

so let V be the inverse image of A relative to the covering mapping
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Lemma 2-3. (1) The field of meromorphic functions on V and the

field of meromorphic modular functions on D relative to Ff are isomorphic.

(2) We identify the above two fields and denote it by K'Q. Then the

K'0-vector space K'm of meromorphic modular forms of weight m on D relative

to P' is isomorphic to K'Q. And the isomorphism r'm'.Kr^-^Km is given by

(2-4) r; (/ ) =f(P (u, v) )

where P(u, v) indicates the point on V corresponding to (u, v} of D.

Proof. (1) is obvious. So we show (2). Let /be a meromorphic

function on V. Then ? ' m ( f ) determines a meromorphic function on

[ d (u y) ~]m

n , / ;. for every point
d(u , v ) J 7 r

(M, 0) of D corresponding to a point of V and for every transforma-

tion g(u, v) = (M', v') of Ff. So it determines an element of K'm. As

easily shown it is an injective isomorphism. Next let us take an

element 0(w, v) of K'm, then

defines a meromorphic function on V because (x, y} is a local coordi-

nate on V. And it defines an algebraic function on the f-space P2,

so it is single valued meromorphic on V. Therefore r'm maps (*) to

^(M, 0), namely r^ is surjective. q. e. d.

Lemma 2-4. Let f be a meromorphic function on V^ then r ' m ( f } is a

holomorphic modular form if and only if we have

(2-5) (/) ^7mH0-2m E H{,
i = l

Proof. We can show the above condition by the same way as the

proof of Lemma 2-2. q, e. d.

Next let us investigate the minimal nonsingular model V of V.

The singular point of V over J?; (i = 0, 1,2) is a rational double

singularity A2. So we obtain two rational curves &{l and 6i2 as the

exceptional divisor of its resolution, where we suppose <9a intersects

the proper image Hi of //,- and 0l2 intersects Hi+3 (that of Hi+3).
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The singular point Pk (* = 0, 1, 2, 3) of V is a simple elliptic singularity
E6. So we obtain an elliptic curve Ek as the exceptional divisor of
its resolution. The resolution of the singularity A2 and £6 is wellknown,

so we omitted the detailed discussion.
Let V be the surface obtained after the performance of these

resolutions. Then #,- (O^s'^5) is an exceptional curve of first kind.
So let us blow down #4+3, »« and 041 (A = 09 1,2) in this order (note
that 9ki is a -2 curve). Let us denote the consequent surface by V.
Let us consider a complex line It=l(ti912) = {feP2: ^1 + ^2 + ^2 =
(tl + t2)So] on the ?-space, so we get an elliptic curve ic~l(lt) for
general value t. And moreover its invariant is always equal to 0,
because ic'l(lt) is a 3 sheeted covering over F1 with three ramifying
points of degree 3. Here we note that ^(M intersects EQ except
the case /,=#3, #4 and fi,. It is easy to show that every proper
image of Tr1^) on V is an elliptic curve of the invariant 0. So we
obtain a trivial fibration of elliptic curves on F9 therefore we know

the following.

Lemma 2-5. The minimal nonsingular model ¥ of V is isomorphic to
PxE, where E is an elliptic curve of the invariant 0.

Let us denote the image of E{ in V by E{ and that of fi{ by fi{.

Remark 2-1. The elliptic curve E3 is a three sheeted section of
this fibration. The fibre E, (i = 0, 1,2) has one double contact with E3

at R.^E.^Hi. On the other hand #,- (i = 0, 1,2) is an one sheeted

section in V (Figure 3).

A9

Hc

EQ

Figure 3
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Lemma 2-6. Suppose a meromorphic function f on V with

where A is an effective divisor with its support situated outside of H{.
And let f be the corresponding function on V. Then it holds

( f ) = m0HQ 4- mlHl + m2H2 + ^y (mi + w2 + m3) 4- d0jE

( (OTO + wii + m5) 4- d

/or certain nonnegative integers <50, . . . , <53.

Proof. If we follow the resolution process at PI5 the assertion is
induced directly. q. e. d.

Lemma 2-7. Suppose a meromorphic function F on V with

(F)=i:miHi + '£nJEj + D
1=0 .7=0

where D is an effective divisor. Let F be the corresponding function on V.
Then we have

(F)=IlmiHi + ̂ (3(n3 + nl)+mi+ei)Hl+a + D
1=0 1=0

for certain nonnegative integers et- and the divisor D is effective and its
support is situated outside of H{ (0^z^5).

Lemma 2-8. Let /£ be the intersection multiplicity between D and EI
at Riim Then we have Si = li.

Proofs of Lemma 2-7 and Lemma 2-8. By the fact related in Remark
2-1 we know that Hi+3 is obtained after 3 times of blow up processes
at Ri{ (by the first and the second processes we get ®a and 0i2

respectively). The assertion follows from the observation of this

process. q. e. d.

Proof of Proposition 1(2). Let A be the vector space of meromor-
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phic functions on V satisfying the condition (2-5) for m = l. Then
it is sufficient to know dimc^l. Let / be an element of A and let /
be the meromorphic function on V which corresponds to f. By
Lemma 2-6 we have

(2-6)

Here we note the following linear equivalence relations for divisors
on ?:

(i) £,=£=£, (ii) Zfi,=m,=m2, (iii) £=£ + 3#,(0£i,./£2),
(iv) ZHi^Hj + Ht ( {i, j, k} = {0, 1, 2} ). Hence (2-6) reduces to

(2-7) (G)£-3#fl-2£,

for a certain meromorphic function G on V. Using the Riemann-Roch
theorem and the Serre duality theorem we get

(2-8) dim H° (V, & (3#0 + 2 £) ) = 9.

So we consider the linear systems

L= \3H0+2E0 1 - {d^Q \d=3H,+2E0} (i = 0, 1, 2).

From (2-8) we have dimL = 8. Let g be a meromorphic function
with (g) =d— (3H0 + 2E0). Then g is a linear combination of

where £ is an affine coordinate of P and $ is the Weierstrass $
function on the elliptic curve E.

So the contact condition d • E{-\ R.. ^ 3 for d of L imposes two

linearly independent restrictions for each i. Hence we have

dim L' = dimA — I =2.

q. e. d.

§ 3. The Possibility of Common Zeros of Tfaeta Constants

Henceforth we use the following notations:

r i
a*= A 1 A

. 3 6 3
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Ok(u, zO=*|>*](0, Q(u, »))
<pk(u, v} = {6k(u, v}}\

And let us denote the inverse of the period mapping 0 by

£=[£o(M,zO, £i(«, z;), f2("5»)] = [^o(M, »), PI(M,Z;) , ?>2 ("»»)]•

We discuss about the property of O k ( u , v } in § 3 and §4. For

this purpose we cite the following transformation formula of theta

constants (see [R-F] and [I]).

Theorem 3-1. Let M=\ be an element of Sp(g,Z) and
L G D J

suppose a characteristic e — it of Qg X Qg. Set

y

where dv(*) indicates the diagonal vector of *. Then we have

] (0, Mofl) =JST(M, £)Vdet(C£ + Z))0|>] (0, fl),

, e) z'j a certain complex number with modulus 1 depending on

M and e.

Remark 3-1. We shall relate the definition of the factor K and the

branch of Vdet(Cfi + £>) aftar wards (see (4-5) and (4-6)).

Remark 3-2. We note here the following relation also:

for w', yz" of ^g, where <( ,> indicates the Euclidean inner product.

Now let us investigate the possibility of common zeros of ^(M, v).

Suppose the parameter <? is situated on 7/5— {P2,P3}5 then the Picard

curve degenerates to the curve

And 1 -cycles A2 and B2 vanish on C", moreover the system
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Bi,B3] becomes a canonical basis (see Part I (1-2)). In this case
we have

so it holds u = r]z/'/]l = Q. Set a complex line L= {(H,
Then we have

5- {P2, P3}) = /Vorbit of L,
namely

Let us observe the behavior of 0k on L. According to Part I
Proposition 3 it holds

*i(0,zO=C302(0,zO

on L9 where C3 is a cubic root of 1 (we can show directly the equality
^i(0, v)=62(09 v) also). And we have the following decomposition of
theta constants:

Lemma 3-1.

°A AJ I
e 0

Proof. The left hand term equals to

CL*!

vl V1
s^ L * '

Two parentheses are equal to the first and the second factors in the
right hand term respectively. q. e. d.

If we recall the matrix Q(u, v) in I (1-3), we have

[II ° °1
(3-1) 0[>*](0,0(0, 0 ) )=0 , (0, -a)2}0 L L (0, Q'(v}

by Lemma 3-1, where

1
6
1

. 6 .

(0, --o?)0
0

k
.T

0 "

k
3 .
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2M ^
"Vsu Vs^

4=0 -?lz)

Let F and G* be the first and the second factors in the right hand
term of (3-1). It holds

. — ey2), —twMXunit .

On the other hand d(z, r) has only one zero represented by (l-fr)/2
on the Jacobi variety C/Z-\-Zr. Thus we have jp^O.

Moreover we have:

Lemma 3-2. 00 (",») has no zero on L.

Proof. If we assume #o(0? v)=§ for a certain value y, then it
induces G0 = ^(0,137(y)) =0. According to Theorem A-2 there is a
point P on C' with

where P0 is a certain fixed point and J is the Riemann constant
determined by the homology basis {Al, A3, 5l5 53} and P0 (see (A-3)).
Here we note the condition (*) is independent of P0 and the choice
of a homology basis. According to Theorem A-3 we have DQ = P, and
D0 corresponds to (^', if) — (0, 0). Now let us recall Theorem A-4,
obviously we have

d(D0)=dimH°(C', 0(A)) = 1

on the other hand we must have

rfCD0)=4W = 0 (mod. 2).

This is a contradiction. q. e. d.

Proposition II-2. There is no common zero of 0k(u,v) (k = Q, 1,2)
on D.

Proof. When E(u,v) belongs to A the assertion is already obtained
by [5]. We can get his result by applying Remark A-5 for the



342 HIRONORI SHIGA

representation I (1-4), because this representation (Xj>) coincides with

So we suppose B(u,v) belongs to H{ (O^iSsS). The case i = 5 is already
shown in Lemma 3-2. For general z set 5(u,v) =[aQ,al9 02], Then

we can find a parameter 6 = [60j ^i? ̂ 2] on ^s so that we have C(d) =
C(6), where = indicates the biholomorphic equivalence relation.

Let a be the isomorphism from C(d) to C(b)a And let {jj and
{ft} (l^i^6) be the homology basis on C(fl) and C(6) corresponding
to the point (M, z>) and a point (w', O on L respectively. So we can
find an element M of Sp(3,Z) with (*fi)=M(r!)- Then it holds

»[«*] (0, ̂ (^5 »)) =«[a4] (0, Moi3(w'5 O).

On the other hand we have

0[at] (0, MoQ(u\ v'}}=unitKd\_ak~\ (0, Q(u'9v'))

for a point (M', z>') of L from Theorem 3-1. Hence the problem is
reduced to Lemma 3-2. q. e. d.

Remark 3-3. Using the above result we can easily show that 0j(u, v)
and 6k(u,v} has no common zero on D for any pair (j\ k) with j^k.

§4. Characterization of <pk(u,v) as Modular Forms

Now let us observe the automorphic factor of #*(M, v) relative to
the transformation gl5 . . . , ^5o We have:

Lemma 4-1. 0[aA] (0, Nj°Q) =pJ0\_NJ°ak] (0, ^-ofl)
(1^/^5,A = 0, 1.2),

where pi = exp(—m and p2 = ^ = ^4 = p5 = I .

Proof. By an elementary calculation we have Nj^ak = ak
jrnjk as

follows :

-o o 01 ro o 01 r o o 01_r° ° °i _r° ° °i _r ° ° °i
""-[o -i 0} " 2 4~Li o 1} H 3 k = [ - i o ij'

r*-l 0 k-li ro k k-
ntk~\ \, nsk=\L o o o J Lo o o
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Considering Remark 3-2 we have the assertion. q. e. d.

Combining Lemma 4-1 and Theorem 3-1 we deduce that

(4-1) 0OJ(0, NjoQ) = PjK(Nj, ak)1det(C(Nj)a + D(Nj)}e[ak](Q9 Q).

Namely it indicates the required automorphic factor. According to
[R-F] we have the method to determine it.

We choose a generator system of Sp(g,Z) as the following:

where Eitj indicates the matrix (mki)

[1 (i, ./) = (*, 0
with mkl= .

10 otherwise

We denote this system by S, and the element M of S will be called
of type B, type C, type J or type D neglecting the signature and
the subscript.

For an element M of S we define the following:

1 for M of type A, B and C.
(4-2) r(Af)'= \ — i for M of type Z),

1 for M of type A and B
i for M of type D

the branch in the right half plane
le £>0} for M of type C

(4-3)

Remark 4-1. For the type C case the determination of (4-3) is
given more precisely: namely it belongs to the upper half plane for
+C type, and it belongs to the lower half plane for ~C type.

For an element Af=Ln, ^ of Sp(g,Z) and a characteristic s=r /,

we set

V (M, e) == - l£nDB£' + 2i£"fC5s/ - WCAf + ' (ZV - GO dv

And for elements M1? M2 of S/> (g, Z) we set
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When M' and M" belong to S we define

r(M' AT) = [AT, M"'\r(M')r(M")expl(m<p M', M"

For a general element M of Sp(g,Z) let

(4-4) M = Mr'"Ml

be a decomposition by the elements of 5. Then we can define

X exp m(p Mr, A/,_i • • • Af ! °

by the induction relative to r. If we set St = Mt' • -Mj (50=/), we have

So we define

(4-5) V<fef{C(Af)0 + /)(M)] = n ildet{C(Mk) (S^oQ) +D(Mk)}

4-2. The values of r(M) and ldet{C(M)Q + D(M)} are
dependent of the decomposition (4-4).

According to [R-F] the unit factor in Theorem 3-1 is given by

(4-6) K(M, e) -r(^)exp [my>(M, e)} .

Remark 4-3. If every Mfe is of type ^4 or of type B for the de-

composition (4-4), we have K(M,e)=l and Vdet{C(M)£ + D(M)} =1.

To determine K ( N J 9 a k ) and Vdct{C(^y)fl + Z)(^)} we use the
following decomposition :

(4-7)

\T--A ~A ~C + A ~C (+r\2+A ~A ~CVg— "13 -^23 ^2 -**-2l ^l\ ^2) ^-*-13 -^-23 ^2 •
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Then we have:

Lemma 4-2. *(#„«») = -!, K(Ns,at)=K(Na,at)=l,

a , ) = e x p 2 a n d K(NS, a k ) = e x p -

Proof. Following the definition of f(Af) we obtain

= r(*C2D2-B2} = e x p — -

Next we consider r(AO) 0' = 2, 3, 4, 5). Suppose both Ml and M2 of
system S are of type A or of type £. Then it holds C(Af2Af1)=0.

It induces 2(M2Mi) o ft = * for certain s". Hence it follows [M2, MJ

= 1. And if we suppose both Ml and M2 are of type A or of type
C. Then we have B(Ml)=B(M2)=B(M2Ml)=0. So it induces

for some e'. Hence it follows [^2,^] = ! also. And for the former

case we have

because it holds C(Af2)=0. By a similar argument we obtain

for the latter case also.

Recalling the decomposition (4-7) we have f(NJ') = 1 (j = 2, 3, 4, 5).
By the definition of <p(M, e) we can calculate </>(Nj, ak), namely we
have:

,

, «4)=0,

Now the assertion is clear, because we have (4-6). q. e. d.
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Now we obtain:

Lemma 4-3.

for any element M of G'.

Proof. It is sufficient to prove the equality for the generator
system {A^AyVf1, N2,...,N5] of G'. Recalling (4-1), Lemma 4-1
and Lemma 4-2 we get the required equality. q. e. d.

Remark 4-4. We can check easily the following:

(1) det[C(N1)0(u9 v)+D(N^} =co2 and

(2) det{C(#,)fi(M, v)

Moreover we can determine the square root of
det(C(Nj)Q(u,v)+D(Nj)}:

Lemma 4-4. Set Tj = ^ldQt{C(Nj)Q(u, v ) + D ( N j ) } then we have

' a) for j=l,

T.= T forj = 2,3,
l + (o> — a)2)v fo r j = 4,

l + (a)-l)v+(w-l)u for 7 = 5.

Especially it holds

TJ3= fa(g^

And also it holds

Proof. For the case j = 1 we have

, v)+D(-Bt)]=l,

Vdet (C(D2) (~B

Vdet{C(+C2) ((D,-Bt)°Q(Q, »)) +jD(+C2)}"=exp(-i-ai).
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Then by the definition (4-5) we have Tl=o).
For the case j = 2, 3 the assertion is obvious. The arguments are

same for both cases j = 4 and j = 5, so we discuss only the latter. Let
us denote the decomposition of N$ in (4-7) by N$ = M1Q. . . Ml9 and set

Lk = Vdet { (C (Sk) Q + D (Sk) ) (C (S>-J Q + D (Sk^ ) -1}

The ambiguity of Tj comes only from the signature of the square
root.

Therefore it is sufficient to show the equality for -0(0, v) (v is a real
negative variable). From Remark 4-3 we get Lw = L9 = L7 = L3 = L2=l.
If we set

Ok= \imArgLk,
y-*— oo

we obtain

01= — -g-TT, 04 = — K, 05 = 0, 06= — — 7T, ^8 = 0.

On the other hand if we set

j8(n, v) =pi(gs) +qi(g<>)v + r1(g5)u,

we can check directly

lim Arg j8(0, zO = --]U.
I,-»-oo O

Thus we get the assertion for the case 7 = 5. q. e. d.

Now we can state

Proposition II-3. (1) The system fc>*(u, 0)} (A = 0, 1, 2) gives a basis
of

(2) We have 6k (& (u, v) ) = Ok (n, z>) (A = 0, 1, 2), especially it holds

Proof. (1) Combining Lemma 4-3 and Lemma 4-4 we get

(*) <Pk(g(u, y)) — (pi(g) + ql (g) v 4- ri (g) u] 3<pk (w, y)

for g=gj 0' = 2, 3, 4, 5). Because [gig2gi\ & , - • - , ^5} is a generator
system of F'9 the equality (*) holds for any g of F'. Recalling the
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relation (1-8) and the fact det(g)=l for any g of F' it is clear that
<pk(u,v} belongs to A(F')lm According to I Proposition 3 the system
{ft 5 ft, ft} is linearly independent, Combining this fact with Propo-
sition II- 1 we get the assertion.

(2) Recalling (4-1) we know that it is sufficient to determine
ft, K(Nl9 ak) and J detC (NJ Q + D (NJ . Lemma 4-1, Lemma 4-2 and
Lemma 4-4 give these values. q. e. d.

Remark 4-5. (1) We can deduce the fact that <pk(gi(u^ z>)) = <pk(u,v)
from the fact that gl=id and that the automorphic factor (4-1) of
0[ak] for NI is a complex number of modulus 1. (2) We note that

(4-8) <pt(gl(u, ^

for £ = 0, 1, 2, because we have

from Lemma 4-4 and (l-8)a

§ 5, The Generator System of the Graded Ring of Modular Forms

If we set x = -^, .? = -, w = -jr m tne affine representation (2-3)
so f o ?o

of D/F', we get a project! ve representation

(5- 1 ) Fx : f If § - fA (f o - f i) (f i ~ f 2) (f 2 - £ o) .

We may regard w as a meromorphic function on D/F'. Therefore
it may be considered as a meromorphic modular function on D
relative to F'm Combining (5-1) and I Proposition 3 we obtain

And set

(5-2) C

then we have C, = w<f>o. Hence C is a single valued meromorphic
modular form of weight 2 relative to F'. On the other hand it is
clear that C has no pole on D because of its definition. Therefore C
belongs to A(F')2.
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Lemma 5-1. A(F') is generated by (p0, <ply y>2, C.

Proof. Let a be an element of A(r')m, and suppose that (pi is not
a factor of a. Then a<pim can be regarded as a meromorphic
function on V\. Hence we can describe it as

Pi, 92? Q?i, ?2, cr
where P and Q, are polynomials of <p0, </>i, <p2 and C without common
factor. At first we suppose that the divisor (a) and m(<pi) on V

have no common component. Then we have m(^0 ^ (Q,(po5 Pi> P2> £))•
According to Remark 3-3 it holds (^) =//i, and ^ is irreducible.
Therefore we must have m (^) = (QX^o, Pi, p2, O)- Namely we have

(<0 = (P(p0, 9i? ft, O).

It implicates that <r belongs to C[^0, <pl9 </>2, C]. For general element
a we can choose a certain linear form / of ^05 9i and ^2 so that (ff)
and (/) has no common component. Then we can proceed the
argument by the same way as the above. q. e. d.

Remark 5-1. From (4-8) we may suppose that

C(&(M, zO) =H>(ft(M, zO)^o2(£i(w, z;)) =

Proposition II-4.

Proof. It is sufficient only to discuss that A(P') is not a proper
quatient ring of the right hand term (saying /?). But it is clear
because R is the graded ring of homogeneous polynomials on V\.

q. e. d.

Here we note that two Picard curves C(?) and C(f') are biholo-
morphically equivalent if and only if f and <?' belongs to a same
orbit of the action p(S4) of (1-4) (see [N]). Hence if we consider

x"-.

Tr=jP/jo(6>
4), it is the parameter space which determines the biholomor-

phic equivalence class of (C(f)}. From Remark 1-1 we have
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hence it holds

(5-3) f^(£>/F).
XV

(D/F) has 4 boundary points which correspond to P{ (i = Q, 1, 2? 3).
And these 4 points belong to a same orbit of the action p(S^), Hence

^\

(D/F) has only one boundary point.

Here we use the following notations:

A*=&- {(ft, ft, ft) eC*:ftftft n (ft -ft) =0}
{</

Ff: the group of affine transformations on the vector space

induced from the element of 7^(4 *)( = 7r1(^la, *)). For an element /
of 7Ti(^9 *) we denote g(0 the element of F" above mentioned. And
we say g ( l ) an affine monodromy induced from /. Here we note
we already have

(5-4) n = <£lt - . . , & > •

F": the group of affine monodromies induced from the element of
n1(A

a/S4, *), where we define the action of St on A" as follows :

(5-5)

Ak(Fi): the vector space of holomorphic automorphic forms of weight
k of Neben type. Namely a holomorphic function f(v, u) on D

/^
belongs to ^(F?) when it holds

/(«(*, «0)

for every element g = l a2 b2 c2 of Fj.

/** °° s*.

And we set -4(F?) =®Ak(Fl'). By the similar way we define

Let us fix a point f = f(?o5 ft, ft) of ^tfl with 0<ft<ft<ft. And
let Z(12), /(13) and /(14) be the loops on ^fl/S4 defined by the arcs
on Aa start from <? and go to <j(12)f , cr(13)f and <r(14)f , respectively.
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We may suppose / (12), / (13) and I (14) induce the permutations of

{0, £0, fi, £2, °°1 as Figure 4.

deformation by / (12)

deformation by I (13)

(5-6)

By considering

00

fo f, ^2

^V^^l

deformation by / (14)
Figure 4

We have

Fact 1.

' 1 0 01

0 1 0

, 0 0 -w2 )

1 0 0 - '- ^

O) I 1

(o2 0 — o)2 /

i -a) i
0 1 0

0 —ft)2 — a? ,
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for every element r of 54, where (u', vf) =g(l (r)) (M, 0), we obtain a
representation /o:n— K4(r) of 54 on f -space C3.

Fa££ 2. The representation ^ is given by (1-4).

Fact 3. The affine monodromy group Fa is generated by the

system {ft, . . . , & » £12 » fta» ftJ- And T0 is generated by the system

fe&ft"1, & , - • - , &, -£12, -£13 , -£14} -

4. We have C[f0, ft, ft]'44' =C[G2, G3, G4].

o/ ^A^ Facts,
We obtain the first part of Fact 3 from (5-4) and Fact 1. And

the second part is induced from ro/r' = S4.
So let us examine Fact 2. By the representation theory there are

only two different representations, up to conjugate representations, of
54 to GL(3, C) (cf. Serre's book). So we have only two possibilities
for jO, namely one is p of (1-4) and another (saying /o') is given by
sgn(r)^o(r) for T of 54. If we set r=(12) then it is easy to check

0 1 0

1 0 0

0 0 1 .

Next let us consider Fact 4. If we set

(5-7)

.C,.

1 -1 -1
-1 1 -1
-1 -1 1

fo

fl

we get an equivalent representation pt:

ft((12)) =

' 0 1 0 -

1 0 0

, 0 0 1 ,

ft((12)(34)) =

, ft(123)) =

' -1 0 0 '

0-1 0

0 0 -1 ,

'0 0 1 •

1 0 0

0 1 0 ,

, ft((1234)) =

»

' -1 0 0*

0 0-1

0 1 0 .

The representation p4 induces the permutation group of 4 points
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A= [1,1,1], A=[i,-i ,- i] , A=[-i , i , -i], £3=[-i,-i,i].
By the classical invariant theory the invariant subring of
under the action p4 is given as :

where

4= «3-C!) (Cf-Cf) «3-G).

And if we consider the representation p\ the transformation (5-7)
induces

Ps (O = (sgn r) ^4 (r) for

By the same argument we have

So we can conclude p is given by (1-4).
Finally let us consider Fact 1. We investigate the case r=(12).

Set £' = '(&, ft, f j )=^( (12))e = ' ( f1 , f0 , ft). And we identify

and

C(f ') : w^^'U'-fi) U'-fl) U'-fJ)

by ^ /=^; and w' = w. Next we deform C(f) to C(f7) along the arc
Z (12) from f to f '. By this procedure the branch points {f0, fl5 f2}
moves like Figure 5.

cut line for C(£)

^-plane

Figure 5

As a consequence we get C(f) like Figure 6
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ft

^'-plane

Figure 6

Let us draw the homology basis [A{, Bt} on Figure 5 and deform
them to Figure 6. And change the cut line with the original one on

Then we can check Ai9 A3, Bl and B3 are invariant under this
deformation. And A2 is deformed to A'2 of Figure 7 (the encircled
number means the branch).

ft

-s'-plane

Figure 7

Hence we have

S r
<p — — o ) \ *P=~ — ^ f J 2 '/ j

As for r=(13) and (14) we can proceed the similar trick, q. e. d.

Using the above facts we obtain the characterization of monodromy
invariant subrings:

Proposition II-5. (1) A(Fl) =CI>0, ^13 ̂ 2]5

(2) l(r<) =C[G2, G35 G4],
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Proof. (1) Already we know <pf belongs to A(F') (i = 0, 1,2), so
it is sufficient to examine <pi(gi(u, a)) =<pi(u, v). But it is obtained

s\

in Remark 4-8. Conversely let <p be an element of A(F'), especially
it belongs to A(F'). Using Proposition 4 we can write in the form

But we have £ (gl (M, y) ) = wC, (u, y) by Remark 5-1. Therefore Px and
P2 must be 0.

(2) it is the direct consequence of Fact 2, Fact 3 and Fact 4.
Combining the definition (5-3) of T and the above argument we

obtain that 'f is a twisted projective space given by

f=ProjC[G2,G3,G4].

Hence we have

Proposition II-6. The field of modular functions on D relative to F
is given by C(G4/G|, G3

2/G2
3).

Appendix

Here we cite up the theorems concerning the 0 functions which
we used in the preceeding sections, for precise arguments see [M],

[R-F].
The 0 function is denned by

for a 0 variable z of Cg and a moduli variable Q of the Siegel upper
half space @g. It is holomorphic on CgX@g and satisfies the periodic

relation

(A 1)

where we use the notations



356 HIRONORI SHIGA

For rational g vectors a, b of Qg the 6 function with a characteristic

L is defined by

(A-2)

Remark A-l. For half integral vectors 57', 27" of (272) g the function

0 \y,, (£, fi) of £ is even (odd) if Vy'if is even (odd), respectively.

Next let us consider a compact Riemann surface X of genus g.
Let {^4l9 ... , Ag, Bl, . . . , 5g} be a basis of Hl(X, Z) and let o>l5 . . . , cog

be a basis of Abelian differentials of first kind with the properties;

A, •Aj = Bi -By = 0,

And set

For arbitrary points P and Q^ of Jf we denote the column vector of
Abelian integrals

by

fQ
\ 0>.
JP

And for a divisor D = ̂ lPi — ̂ t Q{ of degree 0 we use the notation
m Cpi f
E\ o> = \ * or /CD).
1=1 JQ(. JD

The Jacobi variety C*/(QZ*+Za) of Z shall be denoted by Jac X.
The point P0 i§ supposed to be fixed as the common terminal of At

and Bt on X.
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Theorem A-l. We suppose z is a fixed point on Jac X. The multivalued
function

0(Z + (P w, Q)
Jpo

of P on X has g zeros Q,i> • • • > CU provided not to be constantly zero.
g

And we have the Jacobi inverse relation between z and the divisor ]T Q^ '

where A is a constant defined by

(A-3) *=

Let us call A the Riemann constant.

\QJ

Remark A-2. The Riemann constant A is determined by the
homology basis [Aiy Bi} and the terminal point P0.

Theorem A-2. We have @(z, £?) =0 if and only if there is an effective
divisor PI~\ \~Pg-i with the property

g-lCPi
z=d— XI \ a>.i=ijpQ

Here we use the notation

S={a divisor D on X:2D = K},

where = indicates the linear equivalence and K is a canonical divisor.

Remark A-3. If we fix an element Dl of £, then we have 1 =
[Dt + E: 2E = Q}. Moreover we know that S has 228 elements because
of Abel's theorem.

Theorem A-3. We have J — I ( D Q — (g— 1)P0) for a certain divisor

A of 2.

For a divisor D of -T let us consider a pair of half integral vectors
(37', 17*) with the property
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It defines a bijective correspondence between I and (Z/T)2B/Z2g.

Corollary 1. We have ^(Qy' + y", £) =Q for a pair of half integral
vectors (rj\ rf) if and only if the corresponding divisor D of I is effective,

Corollary 2e The Riemann constant A is a half period on Jac X if
and only if we have (2g—2)PQ = K.

Theorem A-4. Set d(Z))=dim H°(X, 0 ([D])). Then the divisor
Z)0 is characterized as an element of 2 with the condition

d(D0 + £)=4W (mod. 2)

for every D = D0 + E of £, where (rj\ rf) is a pair of half integral vectors
corresponding to D.

Remark A-4. If X is a non hyper-elliptic Riemann surface of
genus 3, we have d(Z))=0 or 1 for every D of 21.

Theorem A-58 Let f be a meromorphic function on X, and let

m m

be the divisor defined by f. Let us take paths from PQ to a{ and b{ so
that we have

st"1 <«=i:r' a»
for aw effective divisor Pl-\ \-Pg we have

(A-4) /(A) "-/(P.) =4-]

where the equality indicates as meromorphic functions on the g times
symmetric product of X, E is a constant independent of Pl5 ..., Pg and

the integrals from PQ to PI take the same paths in the numerator and the
denominator,

An effective divisor D of degree g—l on X is said to be general
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if we have dimH"(X, 6 ([£-/)])) =1. For a general divisor D of

degree g— 1 let w be an Abelian differential of first kind such that
(co) — D is effective. In this case D'=((*))—D is said to be the com-

plement of D.

Remark A-5. In the situation of Theorem A-5 let us suppose the
following conditions:

(i) D = P2-\ ----- \-Ps is general and let Q2-\ ----- hQ,g be its comple-
ment,

(ii) Pl5 . . . , Pg are different from ak, bk (1 rg/t^m),

(iii) PI is different from Q , 2 j - - ' j Q , * «
Then both of the numerator and the denominator in (A-4) are
different from zero.

Suppose a basis [A'i, B[] of Hi(X, Z) obtained by a symplectic

transformation M=\^ ^ from the basis {Aiy B,} ',

' (-Bi, . . . , Bg, AI, ... , Ag) — \ , -i (Bly . . . , Bg, AI, . . . , Ag),

where we have tAC = tCA, 1BD = 1DB and 'DA-^C^Eg from the

symplectic condition. Let co' = * (w{, . . . , w'g) be a basis of Abelian

differentials of first kind with the property

\ «;=««,J<
and put

Then we have

(A-5) Q'=(AQ + B) (CO + D) -1.

And also we have

(A-6) ^
CP CP

for £ = \ a) and ^/::=\ o>'.
JPO JPO

For a divisor D of degree zero let us put

a> = QC1+£2 and
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then we have

(A-7)
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