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On Factor Decomposition of
an Ergodic Groupoid

By

Shigeru YAMAGAMI*

Factor decomposition of cocycle regular representations of ergodic groupoids whose
stabilizer groups are uniformly abelian is studied.

Introduction

Given a measure groupoid F and a torus-valued 2-cocycle £, a
Hilbert algebra Stc is defined in a definite way and the associated
representation of Slc on the L2-completion of 2lc is called c-regular
representation of F. In the study of 2lc, one of the basic problems
is the factor decomposition of SIC. Let us have a try at it in terms
of decomposition of F. Since the ergodic decomposition of F induces
a central decomposition of 8lc, the problem is reduced to the case
when F is ergodic. If, furthermore, F is supposed to be a principal
one, every c-regular representation of F is known to generate a factor
([5]) and there remains no problem. In this paper, we deal with
groupoids whose stabilizer groups are uniformly chosen (see the
beginning of §1 for the precise meaning) and investigate the above
mentioned problem.

Organization is as follows: §1 gathers facts needed in later sections.
In § 2, we construct a measure space S* with an equivalence relation,
from the information of (F9 c), and show that ergodic decomposition
of S* is equivalent to the factor decomposition of SIC in § 3. In § 4,
we select a subgroup 2! of the stabilizer of F and ergodic quotient

XX

of S* is identified with a certain J-principal homogeneous space.
§ 5 is only a matter of formulation and gives a factor decomposition
of ( F , c ) , i.e., factor component of SIC is realized as a cocycle regular
representation of the quotient groupoid F/S. In § 6, an example is
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discussed.
1 am grateful to Professor Araki for valuable comments and to

S. Kawakami for helpful discussion (in particular, arguments in the
proof of Lemma 2.3 is owing to his suggestion).

§ 1. Preliminaries

Let F be an analytic groupoid (= Borel groupoid with its Borel
structure analytic) and G be a locally compact second countable
abelian group. We assume the uniformity of stabilizer groups of F
in the following sense: For each x^F(0\ an isomorphism cx of G onto
F*( = { f ^ F ; r(p) =s(tf =#}) is assigned and satisfies

1° for reF and £EEG, *r(7)(g)r = r*l(r>(g)

2 GxF^(g,r)t-+erw(g)r is a Borel maP-
For notational simplicity, we write er(r)(S^T (resp. ?7s(r) (g)) as gy

(resp. fg). We assume that F has a faithful ^-finite transverse function
{y*} r«» and a transverse measure is specified by a pair (^/, y) where

/j. is a ^-finite measure in jT(0). Then m(^) = \/ /(rfy)W(flfyO *s a a~

finite measure in F and quasi-invariant under inversion p->^~1,
The measure groupoid (F, m) is called ergodic if for each saturated
Borel set B of either p(B)=Q or {jt(F(0)\B) =0 holds. In the following,
(F, m) is supposed to be ergodic. For a normalized T-valued Borel
2-cocycle c of F, let §IC be the set of functions f on F satisfying
(1) for each 7<Er(0), £|r, and f* |r, belong to L2(Fy,vy)

(2) f and f belong to L2(F,m)

(3) sup (i^(rfr) If (r) i<+°° and sup \^(rfr) |f*M K+00

where f*(7*) =| (r-1)^(r 1?r)- We can define in 2lc a multiplication
and an inner product as follows.

(4) (£A) (r) =

(5) (?! I f 2)

Then, together with the above ^-operation, 8lc becomes a right Hilbert
algebra ([3], [5]). For ^e2I0 we denote the right multiplication of
<p by R(<p}. Through the natural decomposition

'/*«»
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re
R(<p) is decomposed as \ fjt(dx)Rx(<p). Here Rx(<p) is the right

multiplication by <p in L2(FX, y*). For later use, we give a characteriza-
tion of the von Neumann algebra 2£ ( = von Neumann algebra generated
by R(<p), ^^2IC). Let ?^F and define a unitary map f/c(r) of
L2(F^\ v*W) onto L2(rr(r\ i/(r>) by

(6) (t
r©

Lemma 1.1 ([5] TVz. 4. 1). Let T=\ p(dy)Ty be a decomposable
re

operator in \ fji(dy)L2(ry,vy). Then T belongs to 2£ if and only if there

exists a suitable choice of measurable field of operators {Ty} (0) such that

= T^Uc(r) for all

For g&G and y^F(® unitary operator Uy
c(g) is defined to be

We have

(7) Uy(gl)U
y(g2)=cy(gl,g2)U

y(glg2), for

where £, is a 2-cocycle of G given by Cy(gl,gz)=c(ey(gl)9

Lemma 1.2 ([3] Prop. 15). We can choose a sequence [Sn}n^i in

(O [R(£n)}n>i generates K,
(ii) for each y^r®\ {Ry($n)}n>1 generates Uy

c(G)'.

Now we describe a factor decomposition of Uy
e. The following

is implicitly contained in [2], [7]. Let S(y) be a closed subgroup
of G defined by

(8) S (7) = [g^ G ; c, (ft *') - £r, (g', ̂ ) for all *' e G}?

and set

(9) S*(y) = {b\b is a T-valued Borel function on S (y) satisfying

* (ft) Kft^teifc)"1 = *,(&,&) for ft ,&^ 5(^)1.

Then 5* (y) ^ 0 (symmetric cocycle is trivial) and, by point-wise
multiplication, 5(j)A ( = dual groups of S(y)) acts on S*(y) freely
and transitively, so S*(y) inherits a standard Borel structure and an
S(y) A-invariant measure db from <S l(jy)A. For bELS*(y), consider a
Borel function ? on F^ such that

(10)
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Then |f (r) I2 defines a Borel function on S(y)\F>. Given a Haar

measure ds of £(,?), we can define a measure (p vy(df) in S(y)\Fy

J sw\ry

by the relation

( i i ) »y (</r)/(r) = F (rfr) * /to)
Jr* J sooxr* Jsoo

where / is a positive Borel function on Fy. We impose on ? the
following condition

(12)

If $6 is the set of all such fV, it is a Hilbert space by the following
inner product.

(13) (f1|f,)

Let £eL2(r', yy) ni^^, ̂ ), then

(14) f i ( r )=? * *W ^Ur)"1 fto)

defines an element in $6. Taking various feL2n^1, {? &}
determines a measurable field structure for {$&} &es*oo. The corre-

f®
spondence ft->\ db ̂  gives rise to a unitary map from L2(Fy,vy) to

Js*oo

S®
rf6 §i? and under this isomorphism Uy

c(g) (geG) is decomposed
S»(y)

f®
as \ db Ul(g). Here Ub

e(g) is a unitary operator in ^ and defined
JS»(y)

by

(is)

Lemma 1.3 ([2], [7]).
( i ) For SeES^OO, J7J(G)* w a semifinite factor.

f®
(ii) C/J(^)=\ ^ Ubc(g), ^^G, i^ a factor decomposition of Uy ;

Js*w
[/?(G) / /nC/?(G) / w identified with L°°(

§2. Borel Structure of S*

Let S*= Jl 5*(^) (disjoint union) and p : 5*->r(0) be the canonical
^er«»

projection. In this section, we equip 5* with a suitable Borel structure.



FACTOR DECOMPOSITION OF ERGODIC GROUPOID 383

Lemma 2. 1. Let Y be a Polish space and X be an analytic Borel
space. We assume that there are a Borel equivalence relation R and an
R-ergodic measure [i in X. Suppose that for each x^X, a closed subset
F(x) of Y is assigned and satisfies

( i ) F={O,j;) ;x<=X, y<=F(x}} is a Borel subset of XxY.

(ii) //*£*'(*,*'£*), F(*)=F(x').

Then there exists a ^-negligible saturated set N<^X such that F(x) =F(x')
for all x,x'<E.X\N.

Proof. Let {t/J ̂  be a countable open base for Y. Let A{ be
the image of Fi~Fr\(XxUi) under the projection XxY-*X9 which
is a saturated set by (ii). Since A{ is an analytic set as the image
of analytic set and every analytic set is absolutely measurable, the
ergodicity implies that either fjL(A^ =Q or fjt(X\Ai) =Q. Now let

( A, if ^U,.)=0,jy _ J * r-v »/ >
1 I *V4t. if ji(*Vi,.)=0,

and set N=\J Nim By the construction, if x,x'&X\N,
i^l

(17) {j;ey;(^j;)eF,}^0^{jey;(^ /,j;)eF t.}^0.

Since F(x) is closed, this implies that F(x)=F(x'),

Lemma 2.2.
( i ) ^= {(^,,g)er(0)xG;^e5W} is a Borel set of r(0).
(ii) S(s(T»=S(r(r)) for

Proof, (i): Take a countable dense subset {gj^i of G. Since

G X G 3 (g, ̂ ) »cx (g, g') /cx (g', g)

is continuous ([6] Propa 1.5), S=r\[(x, g) ; cx(g,gi) =cx(gi,g)} is a
i>l

Borel set.
(ii): This follows from

which is an easy consequence of cocycle relation.

Due to above two lemmas, S(x) is equal to a closed subgroup of
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G, say S, for ^-a.e. *eF(0). So, for the purpose of factor decom-

position, we may suppose that S(x)=S for all x^F(® (inessential
reduction) .

To define a Borel structure in 6**, we need a special class of sections
of 5*->r(0). Let L-(S, T) be a subset of L°°(S), consisting of T-valued
measurable function on S and we give it weak* topology induced from
L°°(S). Then L°°(S, T) is a Polish group by pointwise multiplication.
Similarly L°° (S X 5, T) is a Polish group. Define a continuous homo-

morphism «; L~ (5, T) -*L~ (5 X 5, T) by (») (&s') ̂ (^W)^')-1.
Then 5"1(1)= the inverse image of d at unit of L°°(SxS,T) is a
closed subgroup of L°° (5, T) and naturally identified with the dual
group of S. Set

(19) C= [[c]GL-(SxS, T) \c is a symmetric Borel 2-cocycle of S] .

Since symmetric cocycle is trivial and the image of d is always
symmetric, we have C = d(L°°(S,T)). So d induces a continuous
isomorphism d* of L°°(S9T)/d~l(l) onto C, from which one sees that
C is a Borel subset of L°° (S X 5, T) and d* is a Borel isomorphism
(note that L°°(S, T^/d'1^) is a Polish group). Since the natural
projection L~(S,T)-*L-(S9T)/3-1(l) has a Borel section ([1] Th.
3.4.1), d also has a Borel section on CL Due to the definition of S,
cx (g, g') is a symmetric Borel cocycle on 5, and we have a Borel
map jT(0)3^i->[^]eC. As a conclusion, we can find a Borel map
£: r^Bjh-^eL-GS1, T) such that 3(&)=|>J. Since in the class &
there is one and only one Borel function bx on S satisfying

bx(g)bx(g')bx(ggTl = cx(g,g'} (cf [2] p. 308), we have proved the follow-
ing :

Lemma 2.3. We can find a function F(0) xS^ (x, g)*->bx(g) eT such
that

(i) for each x^F(0\ S^g*-*bx(g) is a Borel function on S and satisfies

*, (£) W) *. Off')"1 = ',(&«'), ft g'^S.
(it) r(0)3xf-»[6Je£~(6; T) is a Borel map.

Now we define a Borel structure in 61*, Take a function bx(g)

satisfying conditions in Lemma 2.3. We have a bijection F(0)x53

(x9%)*-*(x9bxx)GS*9 which transfers the Borel structure of r(0) xS
into 5*.
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Lemma 2. 4. The above mentioned Borel structure of S* is independent
of the choice of b.

Proof. Let b'x(g) be another such function. By condition (i) in
XX

Lemma 2.3, we can find a function r(Q}^x*-*%x^S such that bx(g) =

Ix(g)bx(g) and by (ii) in Lemma 2.3, r(0) 3 *.-»[£] ed^Cl) =S is a
Borel map. So F(0) x6*3 (#, £)•-»&(£) is a Borel function and this
implies that two Borel structures coincide.

§ 3, Factor Decomposition of §le

Take and fix a Haar measure ds in 6* and a Haar measure rf^

in £ which are dually related, i.e., (ds(d%f (%)%(*) =/(!) for /<E Cc (S) .

rfj determines a Hilbert space $b for each ^eS* (see near (12)) and
XX

rfx is transformed to an 5-invariant measure A* of S*(x) for each x^F(0\

Then {^} (0) forms a Borel field of measures and \ u(dx}l?(db)
XE=1 \ r-i (0)

defines a measure /2 in 61*, Since fi?5 and c?x are dually related,
f®

fi— >\ /jt(db)£i, gives rise to a unitary map
js*

(20)
Js*

Let re^nC. Then, due to Lemma 1. 2 and Th. II. 3. 1 in [4], we
can find a measurable family of operators [Ty]

such that

(21) T=fi(dy}Ty and
re

By Lemma 1.3, above isomorphism (20) transforms \ fJ.(dy} Ty into

f®a diagonalizable operator in \ /i(rf6) $6. Thus Sl^HSlc is identified

with a closed subalgebra of L°°(S*,(i). Conversely, let Fe L°° (5*, /2) .
r®

If we regard F as \ ^(rfy) Fy with F'&UKGY (\Uy
e(G)', then Fy

commutes with Ry(Sn) (n>l) and therefore F commutes with 2£.

Thus FtEK.
Let us seek the condition when F belongs to §£- We begin with

the construction of an action of F on 5*. Let f^P and
and define i^e 5*^(7-)) by
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(22) (br) (g) =b(g)c(r,g)/c(g, r),
Then

(23)
f={(A f jOeS*xr;6eS*(rOO)} is a Borel set of FxS1*, and fa

(6, ^)h->6^e5* is a Borel map on this set. So we can make F into

a groupoid: The unit space of F is S* and for (6, f)^F, r(6, 7*) =6,

s ( b , f ) = b f . (i, 70 and (b'9f')&F are composable if and only if
j(6, 70 = r(b', f) and the composition (&,f) (6', 7*') is given by '(6, 77').

Since F6 is identified with jf^, y^(ft) determines a measure y* in 71*

and {y6} J65- forms a transverse function for 7\ The pair (/J, 5) gives
XN

a transverse measure of /\ We define a unitary map £7* (7*) from ^6

onto ^6rl by

(24)
Now the following lemma is immediate.

Lemma 3. 1. According to decompositions

f®w decomposed to \ Ax(db)Ub
cM.

JS'U)

Lemma 3.2. L^ L°-(5*/r) = {F<EL~C$*, /I) ;F(i) =F(*r) /or m-

a.e.(b,f)G=:r, where m = fi°v is a a- finite measure in F. Then
( i ) L°°(S*/F) is a weakly closed *-subalgebra of L°°(S*, ft).
(«) For ^cA class F in Z°°(6'*//1), zf^ can find a Borel function/

/\
on iS1* ^w^A that f is a representative of F andf(b) =f(bf) for all (4,

Proof, (i) is immediate, (ii) follows from the proof of [3] Prop.
II. 8.

Combining these lemmas with Lemma 1.1, we obtain

Corollary 3, 3. FeEZ,~(S*5 ft) belongs to Vcf\K if and only if F(b) =

F(br) for m-a.e. (A,
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Let us introduce an equivalence relation ~~ in 5* by b^b'e>b' =b?

for some

Corollary 3. 4. Ergodic decomposition of (£*, ft, ~) gives a factor
decomposition of S£.

§4. Ergodic Decomposition of S*

In this section we assume that S is a discrete subgroup of G.
In that case, we can go further into the ergodic decomposition of
S1*. We begin with the selection of certain subgroup of S. For g&G,
Cg is, by definition, the set of all Borel functions /on r(0) such that

(25) f(r(r»=f(s(r»c(g,r)/c(r,g) for all rer.
We identify two /*-a. e. equal functions in Cg .

Lemma 4.1. For /eC,, |/(x) I w constant for fjt-a.e. #er(0) 0rcrf
Jz0o functions in Cg is proportional (up to fi-negligible set} .

Proof. An immediate consequence of the ergodicity of p.

Lemma 4.2. Set S= {g&G;Cg*{0}}. Then
( i ) £/zer£ exists a p-negligible saturated Borel set N such that

idS(x) for *er(o)vv.
( ii ) 2 is a subgroup of G.

Proof, (i) Take a countable dense set {&} l2:1 of J£ and let /£ be
a non-trivial function in Cg. (i>l). Then the saturated Borel set

N= [x&r(® ;fi(x) =0 for some i>l] is /^-negligible, and we have
{gi}i>i^S(x) for x(=F(®\N. Since 5"(*) is closed, this proves (i).
(ii) Let gl9 g2<=S and take non-trivial /t^Q. (t = l ,2) . Set /(^) =

f i ( x ) f 2 ( x ' ) ~ 1 c x ( g l , g 2 l ) ~ 1 c x ( g 2 , g 2 1 ) ( f 2 ( x ) - 1 is defined to be zero if /,(*)
= 0). Due to the cocycle relation, one sees that /eC _t , which

8\S2
implies gig^1^^. Thus I7 is a subgroup of G.
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Definition 4. 3.
Q={a);o) is a function from I into L°°(T(0)

? T) such that

and ^1W^2W=^(ft,&)^2W for fjt-a.e. *eF(0) (cobound-

ary condition)}.

Let us check that Q is not void. Due to Lemma 4. 1, we can
find a function on IxF(0\ (g9 x}^-*fg(x) with the property, fg^Cg

and |/, 00 1=1 for ji-a.e. *eFfo>. For^^el1,

x*-*fgl 00/,2 (x)fglg2 00 ~lcx (ft , &) -1

is a ^-measurable function and by (18) it is constant on canonical
equivalence class. So by the ergodicity of ft, there is a unique fl(ft,£2)

such that

(26) /£l (*)/,, 00 =/,A 00 *, (ft , &) a (ft , ft) for /i-a. e.

and from this relation 0(ft,&) is a symmetric cocycle on X So we
can find a function b : Z-+T such that a(g^ g2) =b(glg2)b(g1')-

1b(g2)~\

Replacing fg with b(g)fg9 we may assume that 0(ft,&) = l. In other
words, ^H->[/JeL°°(r(0)

sT) is in fl.
Let ft>3 a)' €^Qa By equivariance condition, there is a uniquely defined

T-valued function % on S satisfying <*>'e = %(g)Q>g, g^%» Then, by
coboundary condition, % is a character on S. Conversely for each

/^ XX

%^2 and each w^Q, g^X^&g defines an element %a) in Q. IxQ

3 (%, O>)H- ̂ yw^Q is an action of -? on fi, and with respect to which,

Q is a I'-principal homogeneous space. Since I7 is a compact abelian
xs

group, & has a unique J-invariant probability measure do)0 In the
rest of this section, we show that L°° (51*//1) is isomorphic to L°° (Q, da)) .

Let ^ be the set of measurable functions <p on F™ X 2 such that

(27) v(r(r)9g)=v(
for eJ and

(28) [g^2 ; x*-*9(x9g) is not trivial in L00(F(0\ ft)} is finite,

and give it *-algebra structure by

(29) (9\9z) (x9 g) = 2 9i (x> g') 92(x> g'~lg)c* (g\ /~ lg)

Further, inner product in ^ is introduced as
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(31) (
ffei1

Here we must comment on the meaning of the right hand side. Since

xt-*^ (#, g) <p2 (x, g) is constant on canonical equivalence class, it is

constant, say ae, for /*-a. e. x^F(0\ The summation in (31) is, then,

defined to be 2 ag. With all these structures, ^ becomes a corn-
er

mutative Hilbert algebra. A representation 0 of ^ on L2 (-T(0),//) ®
/2(S) is defined by

(32)

Lemma 4.4. 0 is extended continuously to an isomorphism of ¥>" onto

Proof. See the argument before Theorem 1 in [9],

To relate <P(#)* with L°°(S*/r), we use a partial Fourier trans-

form. Let f be a support-finite function on S and y^F®\ Set

(33) £(*)= E £(£)*(£) for 6eS*(j;).
fi'eS

Then | is in L2(S*(y),y) and fi->| is extended to a unitary map

of /2(S) to L2(5*(j;), #), which is also denoted by A (this is essentially

Fourier transform of 5). Now let {fj^^o) De a family of vectors

in /2(5). Then it can be easily checked that {£*} xer(a> is ^-measurable

if only if (l*}.eer(o) is /^-measurable. Then a unitary map F of

L2(r(»\[jL)®/2(S) to L2(5*,/J)=J%(rf*)L8(5*(*),^) is defined by

(34) v$ = (dx^x if £ = Vrf*)£ with f,

Lemma 4. 5.

Proof. Let p^tf . A direct computation shows that F0(£>)F* is a

multiplication operator by

(35) 0(A) = Z y>(p(b),g)b(g)9

and ^ is constant on equivalence class of ^ (due to (27)). Thus
Conversely let F^L°°(S*/r). According to
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Lemma 3. 2, we may assume that F is represented by a /e-measurable
function / on S* satisfying

(36) /(ir)=/(*) for all (b,r)^f,

Let ?eZ,2(r(0), /*)(x)/2(S) be ^-support finite; there is a finite set F

of S such that if g&F, £(x,g)=Q for fi-a.e. x<^T(Q\ By a direct
computation, we have

(37) (V*FV& (x,g) = E 9(x, sOfC*,/-1^ (/,£'-'£),
g's=S

(X g) e /^ X S, where a measurable function (p on jT(0) X 5 is defined by

(38) y>(x, g)

Due to (35), p satisfies

(39) v(T(r),
and then, by the definition of J£, #? vanishes outside of S. Since such
a function is approximated by elements in ^ (cf. arguments in the
proof of [9] Theorem 1), we deduce that

Now we relate <$" with L°°(Q). This is also achieved by Fourier
transform. Let tp^^ and define a function W<p on Q by

(40)

where <p(x,g)a)g(x) is constant for p-a.e.x and the summation is
taken over these constants. Since (p has an S-finite support, the sum-
mation in (40) is finite and W<p is in L°° (Q) C L2 (£?) . pi->Wfy is
extended to a unitary map from L2(&) to L2(Q), which is also
denoted by W.

Lemma 4. 6.

W*L00(Q}W=(£".

Proof. By a direct computation we have

(41) (W(<plV^ (01) - (Wfy) (oi) (JTft) (o>),

9 an(^ we can apply Stone- Weierstrass theorem to obtain
the assertion.

Definition 4, 7, Set D= [W<p ; ̂ e ^}0 Z) is a dense *-subalgebra
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of L~(Q). We define a linear map r of D into L°°(S*, ft) by

(42) r(0) (A) =

Here we give comments on the integration in (41). Take any

and a representative of w° by a function a>g(x). Then \ cfo0 (w)a)Q
g(x)~l

/• Jo
is defined to be \^dx^(xa)^X(8)'~lQ)gM~1' Another choice of c*)° and

JS

<t)g(x) gives the same integration for p-a. e. x. Thus as an element

of L°°(r(0\ fjt)9 #H- A dw</>((o)a)g(x) is well-defined. Furthermore if we
JQ r _

express^ as W(p (y^tf), then <p(x9g)=\ d<tHp(<a)<og(x) for g^2 and
JQ

for ft-a.e.x^r(Q\ So the summation in (41) is essentially finite and
the right hand side of (42) gives a well-defined element in L°°(S*).

Theorem 4.8. r is extended to a normal ^-isomorphism of L°°(Q)
into L°°(S*) and r(L°°(Q)) =L°°(S*/r).

Proof. A computation shows that

r(Wv)=V0(<p)V*9 for <p(EV.

Now the assertion follows from Lemma 4. 5^4. 7.

Corollary 4.9. Wc is a factor if and only if 1= [e] .

§5. Factor Decomposition of (F,c)

In this section S is continued to be assumed discrete, and we work
out a factor decomposition of SIC in groupoid level, using the results
of §4. To simplify the construction, we adopt another point of view
for the description of cocycle regular representation.

Definition 5.1. Let F be a Borel groupoid and let B = {Br} rer be
a Borel field of 1-dimentional Hilbert spaces over F and suppose
that

(i) multiplication B7i®Br2^B7i72 ((n, r2) ̂ ^(2)) is given. It is

associative and Borel in the following sense: Let Ci, f2j ? be a Borel

section of B, then (ft, ^"-KfiCrO^Cft) If (nft)) is Borel,
(ii) anti-unitary involution *: Br—^Br_l is given. It transforms

Borel sections to Borel sections and satisfies
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(Hi) (fAI f) - (fa |er«,

(iv) if fe5x (*er(0)) and f2-f^0, then
We call such B a groupoid ring.

Take QJ=%^BX (*£EF(0)). Since BX®BX=BX, £*=*£ with
Replacing f by ^-1f, we may assume that f2 = fe Then by (iv),
(£|£) = 1. Let ?e£r with j(r)=*. By Br®Bx = Br, we can find 9'eJ3r

such that 37 = i/? and then 17? = y'£2 = y'$ — <?, i. ^., f is a right unit
for 5r. Furthermore, as y*y&Bx and Oy*^!?) = 0?|^£
conclude that 5y*^= r(^ |^)f . As a corollary of this fact,
= 1} is closed under multiplication. Above arguments also show that
there is a Borel section a : F-»B such that

(43) (a(-f) \ a ( - f ) } = \ for

(44) a ( x ) 2 = o(x) if x^F®\

Associated with <y, we define a T-valued Borel 2-cocycle c of F by

Due to (44), c is normalized, i.e., c(f, s(f)) = c(r(f}^ p) =1 for f&F.
If we change a (under the condition that it satisfies (43) and (44)),
c is changed to a cohomologous one. In this way, groupoid ring
B determines an element in the Borel 2-cohomology group H2(F,T).
Conversely, for any normalized Borel cocycle c9 a groupoid ring
structure is defined in the trivial bundle B = FxC by

(46) (7% £) (/, £') = (77', zz'c(f, ?''))

(47) (r, *)

(48) «r,*
If we change t by a coboundary, the groupoid ring obtained in this
way is changed to an isomorphic one8 So we have proved

Proposition 5.2. There is a 1-1 correspondence between isomorphism
class of groupoid ring over F and T-valued cohomology class of F.

Now we can rewrite various objects related with a cocycle c, in
terms of the corresponding groupoid ring B. For example Sle is
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realized as a set 31 of Borel sections of B. Its Hilbert algebra struc-
ture is described as

(49) (fif a)(r)=5^ ( 7 )Wr /)fi(r /)f2(r /-1r), fc
(50) f*(r)
(51) ( f i l f 2

(see §4) is also described by making use of B.
Let B5 be a Borel line bundle over r(0) denned by B5= W B, (ff).

*

Each f^r gives rise to a linear map of 5f(7) into 5f(7), 5f(r)3^H->^=
<?35>f*e,Bf(r), where £ 6=^ is a unit vector, and £ff becomes a /^-bundle.
Now Cg is identified with the set of Borel section c of Bs such that

(52) f (r(r))=tf(*(r)) , rer,
and then -G consists of sequences {ft>ff}ger (-£= {g^G ; Cff=£0} ) such that

(53) a»FeCf, IK(*)|| = 1,

and

(54) ^1W^2W=«'V2W for //-a.e. ^er(0>.

Consider the quotient space F/S. It has a structure of analytic
Borel groupoid induced from F. Let w^Q and define an action of
S on B by

(55) ££=av(r(r))£efi,r, fe5 r.

Taking quotient, we have a groupoid ring 5* over F/S (cf. comments
in Definition 4. 7). Let §1^ be the Hilbert algebra associated with B\
Note that each section of B" is identified with a J-equivariant section
of B. Now we specify the Borel field structure for the collection of
Hilbert algebras [^ ^Q. Let £ be a section in 21 and suppose that
{geJ; there exists f^T such that £(p):£0 and f(^)^Q} is finite.

Then we can form a family of vectors {fjae^e {§Ua,e£ by

(56) ^(r) - S
Such families for various <f, give a Borel field structure and, from the
results in § 4, we obtain

Theorem 5.3.
(i) For £0£/z (o^Q, §C w a factor.
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Se
doM'^ is a central factor decomposition of §f (21" 021'

Q
corresponds to L°°(Q, dot))).

§ 6. Example

Let h (t = l, 2) be a real number satisfying 1° Ai&Qn and 2° there
are integers ml5 m2, w such that ^1w1 + ^2w2 = 27rm with (w l 5 w 2 ,m) = l
(relatively prime) , and define an action (p of Zz on T by

(57) ^V^)^"1"1 ,̂ *er.

We construct a groupoid F=Z2xT by semi -direct product using #?,
which is ergodic if we give a Haar measure to T. Note that

and

(«!, n2? z) (n'l9 n'29 z') = (nx + wi, ^2 + ^2, ̂ ').

The stabilizer of F at ^ is {(m^, m2w, ^) eF ; n^Z] and we can define

isomorphism ez:Z-^rz by cz(ri) = (min,m2n,z). {^*}*er satisfies the
conditions 1°, 2° in §1. For a&R, let £ be a cocycle of F given by

/ cn \ / / / f\ i a/2(n-,n^-n}n?')(58) c(nl,n2,z;n1,n2,z')=e 12 12.

Let us find out Sm For weZ ( = G), the condition (25) is expressed
in this example as

(59) y - ( c ' i " i ) = c - ' « " i - « - » i

for nl^n2^Z and for <2. ^. £ e 71. Using Fourier expansion/^) =
%

we have /^O if and only if the condition

(*) 3keZ such that k^ - am2n e 27rZ,

is satisfied.

There is no w^Z satisfying (*), i.e., ^ = 0, and c-regular repre-
sentation generates a factor.

Case

We can choose integers a, b, c such that aa = Xlb
Jr<2xc with (a, b,c)=l.
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Then some computations show that n^Z satisfies (*) if and only if
it is an integer multiple of a/(m2, bmjrcml^ fl), i.e., 2 = a/(m2,bm
-^-cm^ a)Z. In this case, c -regular representation has a factor decom-

position parametrized by I=T.
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