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Abstract

For a bounded ^-unitary, the existence of a Tomita's triangular matrix representation is
equivalent to the existence of an invariant maximal nonnegative subspace due to Pontrjagin,
Krein et al. In other words, if a bounded #-unitary u has such an invariant subspace, its
spectral analysis can be reduced to the following three cases: (i) u is ^-spectral; (ii) u is
quasi-$-spectral; and (iii) u is represented in the form of a Tomita's triangular matrix.

Introduction

To solve the continuity problem on weights on an operator
algebra, Tomita [15] introduced a new type of an involutive Banach
algebra, called an observable algebra, as a representation of a full
left Hilbert algebra, and showed that the continuity is equivalent to
the semi-simplicity of the algebra. As the representation is of the
form of an upper triangular 3x3 matrix, it can be interpreted as a
representation on a Pontrjagin space of index 1. Taking this oppor-
tunity, he extended the representation to all bounded selfadjoint
operators on a general Pontrjagin space so as to hold that the (1, 1)
and (3, 3) elements act on neutral subspaces and the (2,2) element
is identified with a selfadjoint operator on a Hilbert space. We will
call such a representation a Tomita's triangular matrix. Recently, this
result is generalized to a Krein space in [9, 12]. The main purpose
of this paper is to show that this is a generalization of a so-called
Pontrjagin's fundamental theorem [14]: each selfadjoint operator with
respect to the indefinite inner product of a Pontrjagin space has an
invariant maximal #-nonnegative subspace. Accordingly, the both
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study due to Tomita and Pontrjagin turns out to be the same,, and the

4x4 matrix representation due to Langer [6] is also interpreted as a
Tomita's triangular matrix. This fact allows us to find out a new

treatment of operators in a Krein space.

Throughout this paper an indefinite inner product space is restrict-

ed to a Krein space. The adjoint operation: x-^>x* with respect to

the indefinite inner product is called a #-adjoint. The correspond-

ing unitary, selfadjoint or projection operator is called #-unitary,

#-selfadjoint or ^-projection, respectivelya A ^-unitary operator and

a #- projection operator are automatically bounded in a Pontrjagin

space, but they are not the case in a Krein space.

In this paper we will restrict our consideration mainly to a

# -unitary operator, because many of the results concerning #-selfad-

joint operators can be reduced to those for #-unitaries by means of

Cayley transformations. It is easy to see that the spectrum of a #-uni-

tary is symmetric (in the sense that ^«-»I~1) with respect to the unit

circle, and may happen to be the whole complex plane. However

the spectral analysis of operators has not been established yet Before

explaining our treatment of operators in a Krein space, we will

introduce some terminologies used for a Krein space.

A subspace is called ^-positive (resp. neutral, #-negative) if the

values <f, q > of the indefinite inner product are positive (resp. zero,

negative) for all nonzero vectors ? in the subspace. The #-nonnega-

tivity or #-nonpositivity is defined similarly for a subspace. The

same words are used for the corresponding projections and #-projec-

tions. A #-nonnegative subspace is called uniformly ^-positive if

for all vectors £ in the subspace. The uniform ^-negativity is also

defined similarly. By virtue of Zorn's lemma the set of #-nonnegative

subspaces ordered by set inclusion has a maximal element called a

maximal §-nonnegative subspace. Of course it is closed.

Let x be a bounded ^-unitary or #-selfadjoint operator. If it leaves

a maximal #-nonnegative subspace 3K invariant, then the subspace

3K is classified into one of the following three cases :

(i) 3K is uniformly ^-positive : In this case, x is called ^-spectral

and turns out to be a unitary or a selfadjoint operator on a Hilbert
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space by choosing a selfdual Hilbertian inner product of the Krein

space suitably. Therefore, the spectral analysis is reduced to the case

for a Hilbert space.

(ii) 3K is #-positive but not uniformly ^-positive: In this case

x is called quasi-#-spectral and is regarded as a unitary or a

selfadjoint operator in a Hilbert space for some selfdual pre-Hilbertian

inner product in a Krein space. The two structures of Krein spaces

obtained by the completion are not connected continuously and hence

the spectral structures are not preserved.

(iii) 3K is not ^-positive: The operator x is represented in the

form of a Tomita's triangular matrix. In this case the (2, 2) element

is #-spectral or quasi-#-spectral; our discussion is reduced to either

the case (i) or (ii).

While the Pontrjagin's fundamental theorem assures the existence

of such an invariant subspace in a Pontrjagin space, the same

assertion in a Krein space is not yet proved in general and is known

to be the Phillips' problem, [13]. A sufficient condition that the off

diagonal components x—jxj is compact was obtained by lohvidov,

Krein and others, [4,5]. In the following, this result will be refered

as the Krein-Pontrjagin theorem.

In §1 we will recall the definition of a Krein space and the

relationship between maximal #-nonnegative subspaces and angular

operators. Using this correspondence, we will show that the set of

^-positive maximal #-nonnegative subspaces corresponds bijectively to

the set of positive selfadjoint #-unitaries. In §2 some conditions for

a bounded #-unitary to be ^-spectral will be given in order to

compare with the corresponding more general results obtained in §3.

The strong stability introduced will be needed in §5 as a sufficient

condition for an operator algebra on a Krein space to be represented

in the form of a Tomita's triangular matrix. In §3 some equivalent

conditions for a bounded ^-unitary to be quasi-#-spectral will be

discussed with the aid of the preceding results. In §4 it will be

shown that the problem of a Tomita's triangular matrix representation

and the existence of an invariant maximal #-nonnegative subspace are

equivalent. This assertion has two applications: One is a short proof

to our previous theorems in [9, 12] by using the Krein-Pontrjagin

theorem. The other is a new treatment for the operators explained
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in the above. This second view is more significant. Finally, in §5,
by using an important result due to Helton [3], we will show that
a unital commutative involutive Banach algebra on a Krein space,,
containing a bounded #-unitary with a compact difference from a
strongly stable ^-unitary, has a Tomita's triangular matrix represen-
tation.

The contents of this paper are mostly contained in the lectures
in [10, 11].

§ 1. Krein Subspace, Maximal #-Nonnegative Subspace
and Angular Operator

A complex vector space ® endowed with a (non degenerate)
indefinite inner product <( , )> is called an indefinite inner product
space. When a selfdual

Hilbertian (resp. pre-Hilbertian) inner product ( | ) is given on the
indefinite inner product space, the space {$, < , >} is called a Krein
(resp. pre-Krein) space, where [|f||= (? |f)1/2. By a Hilbertian (resp.
pre-Hilbertian) inner product we mean an inner product with respect
to which the space $ is a Hilbert (resp. pre-Hilbert) space. The
choice of such a selfdual Hilbertian inner product is uniquely
determined up to bounded #-unitaries. That is, if v is a bounded
^-unitary, then the inner product ( | )„ defined by

(£!?).= (»£N), £,*eft

is also a selfdual Hilbertian inner product, and each selfdual Hilbertian
inner product is related to each other by such a relation. Therefore
a selfdual Hilbertian inner product ( | ) will be fixed as far as we
do not specify it. The relation between the indefinite inner product
and the selfdual Hilbertian inner product is given by a metric
operator /:

<&?>=(/£ 1 7), £,?eft.

We sometimes denote the Krein space by {®, /}. The metric operator
J is decomposed into the difference J+ — /" of two projections, whose
ranges are denoted by ^±=J±^.

In a Krein space there exists an adjoint operation: x-*x* with
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respect to the Hilbertian inner product in addition to the #-adjoint:

#->#*. To distinguish these two adjoint operations we will use the

following terminologies in addition to the traditional ones for a

Hilbert space:

#-unitary <-» £)(#) and R(x) are dense in ® and x* = x~1

#-selfadjoint <-* D(x) is dense in ® and x*=x

#-projection <-> D(x) is dense in ® and x* = x = x2

where R(x) and D(x) denote the range and the domain of x,

respectively. The relation between x* and x* is given by

x*=Jx*J9 />(**) =y/>(**).

If SK is a closed subspace, then the following three conditions are

equivalent :

(i) there exists a bounded ^-projection to SK;

(ii) {3K,< , ym} is a Krein space, where < , >TO is the restriction

of < , > to SK; and
(iii) m + m±=^ where m±= {f e^: <f,^>-0, ^e9K}.

In particular, for a ^-positive closed subspace to have a bounded

#-projection it is necessary and sufficient that it is uniformly #-positive.

The following generalization is more or less known:

Theorem 1.1 ([5, 10]). Let 2K be a closed subspace of a Krein space

t®X > )}• The following three conditions are equivalent:

(i) there exists a ^-projection to SK;

(ii) {9K, ( , >K} u a pre-Krein space ; fl^rf

(iii) aBn2R-L={0}.

/w particular, for a %-nonnegative closed subspace to have a ^-projection if

and only if it is ^-positive.

Here we notice that the correspondence between a closed subspace

SK with 9K n 3K-1- = {0} and a ^-projection e is given by the property

that D(e)=m + m-L and e: m + m±-+m.

Now, we recall the correspondence between maximal #-nonnegative

subspaces and angular operators. Every element in the unit ball

is called an angular operator. There exists a bijection from the set
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of all maximal #-nonnegative subspaces SK to the set of all angular
operators k such that 3K = G(A;), where G(k) is the graph (£ + £?:
<?eft+} of k. Under this correspondence, 3K is ^-positive (resp0

uniformly #-positive) if and only if &*£<! (resp. ||/t||<l)a Here
A>0 means that h>Q and h£ = Q implies g = Q. A linear transformation
which maps ft+ to a uniformly #-positive maximal #-nonnegative
subspace Wl = G(k) is given by a bounded #-unitary Sk = hlti2

l, where

A*\ / (l-k*k)l/2 0A*\ /
and h2=(

I I \
(1.1)

k I I \ 0

Since ||£||<1, .S^Oo A polar decomposition of a bounded ^-unitary
which transforms ft+ to 3Jl = G(k) is expressed in the form

,u+ 0 X

U «-;•
where z^11" are unitaries on ^±

0

Next, we will establish a correspondence from angular operators
k with k*k<l to positive selfadjoint #-unitaries. It is known that
there exists a bijection from the set of angular operators k with ||£||<C1
to the set of positive selfadjoint bounded #-unitaries u such that u = Sk.
To extend this statement to more general angular operators k with

!, we will introduce the following concept for #-unitaries:

Definition 1.2 ([10]). A #-unitary u is called J-regular if

(i) JD(zi) n®+ + D(w) fl®~ is a core for u, and
(ii) 3W± = w{D(M) n^} are closed subspaces with Cm+)± = m-.

Here we notice that if we denote by p± the projections onto SDZ^
then the condition (3K+)J- = 9K~ is equivalent to (p+}*~rp~ = 1, although
SK+ + SK~ may not coincides with ft.

The following theorem was initially obtained in [10] under the
assumption that ft is separable.

Theorem 1.3 ([10]) „ There exists a bijection from the set of angular
operators k with k*k<l to the set of J-regular, positive selfadjoint
%-unitaries u such that u is the closure of Sk. In this case, D(u)

) and u{D(u) flft+} =
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Proof, First we will show that if k is an angular operator with

&*&<!, then the closure of Sk is a /-regular, positive selfadjoint

ft-unitary. Let h^ and h2 be the operators defined by (1.1). It is

easy to see that /*!>(), h2>0, h1h2 = h2hly h\ = h2 and h\hl = hl.

We begin by showing that Sk is positive and essentially selfadjoint.

Since D(Sk)=R(h2), each f and rj in D(Sk) are of the forms f = A2f

and r] = h27]f for some f, 37 'eS. Hence

(S*f I?) = tfi?' I Art') = (W lAtf ' ) ^ (f 15*7)

and so S* is symmetric. In case of 1 = 37,

hence Sk is positive.

To see the essential selfadjointness, we will use the Nelson's

theorem by showing that any analytic vector for h2
l is also an

analytic vector for Sk. Notice that

d.2) sse=wf
for any analytic vector ? for h2

l. Indeed, this is verified by

mathematical induction. The case n = l is clear. Suppose (1.2) holds

for n—L Since

we find that

Si+1£ = S4M
lA~a+1)£

Thus (1.2) holds. Therefore \m\\ = \\h"lh^\\<\\h1\\''\\h^\\, and so

n=0 72! n=0 Wl

Since f is analytic for /z^T1, there exists a positive £>0 for which the

right hand side converges. Hence f is analytic for Sk, too. Since

D(Sk)
 =D(h2

l) contains a total set of analytic vectors for h2
l, Sk is

essentially selfadjoint.

Next, we will show that the closure S of Sk is #-unitary. It is

clear that JSkJ is essentially selfadjoint and its closure coincides with

JSJ. Let ^D(JSJ) and ^eD(^). Since h\ = h2 and h\ = h\h^ we

have

(i. 3)
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If f eD(/S/) and 37 e DOS), then there exist two sequences {cn}r=i^
D(JSJ) and foJ^cDGW such that £„-»£, JSjen-*JSJ£; and
?«-»?, ^m-^S^. Hence, by (1.3), we have

lim
n,

From this we find that the mapping: S^D(JSJ)-*(JSJ£\Sy) is
continuous. Since JSJ is closed, it follows that Sy^D(JSJ) and
JSJS?] = r] for all y<=D(S). Thus S^cJSJ. The selfadjointness of
5 and /S/ implies S~l=JSJ. Therefore S is #-unitary.

It remains to show that S is /-regular and that D(S)nSt+ =
R((l-k*k)l/2) and D(S) n»" =/Z(( l -kk*)1/2). Since the domain of
5, is £((1-£*£)1/2) +/Z((1 -M*)1/2), we see that J?((l -k*k)l/2} c
Z)(J)n»+ and ^((l-M^^cD^n^-. Here we define 9W± by
setting m±=S{D(S)(l®±}. Then

Since 3K+ is a #-positive subspace and G(k) is a maximal #-non-
negative subspace, we see that -3IJl+ = G(k) by maximality. Hence the
above inclusion becomes the equality. Using the invertibility of S9

we find that Z)(5) n»+ = /?((!-***) w).
The similar discussion is applicable to SK". Hence we have Wl~ =

G(k*) and D(S) n«~ = /Z(( l -AA*)1/a). Since (9K+)-^-G(A)-L = G(A:*)
= SK", it follows that 5 is /-regular.

Finally, we will show the converse, namely, if u is a /-regular
positive selfadjoint #-unitary, then there exists an angular operator k
with k*k<\ such that u is the closure of Sk.

Since u is /-regular, 20^ = u{D (u) n^±} satisfy (9K+)-L = SK-.
Clearly SK+ is ^-positive and SK~ is #-negative. Since (SK+)- = 2)fi",
%Jl+ is a maximal #-nonnegative subspace. Therefore there exists an
angular operator k with £*£<! such that M+ = G(k). Let 5 denote
the closure of 5Jfe = A1Aj1. Since

M {/)(«) nft*} =SK±-6'{/)(5) nft*},

there exist unitaries u* on ^ which transform D(w) n®± to D(S)
bijectively such that
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(1.4)

on [D(u)n ®+] + {D (a) n ft'}. Since {/> (a) n $+} + {D (a) D ft-} is
a core for M and

w+ 0 \

o IT J
is a core for S, the above (1.4) holds on D(u). The uniqueness of
the polar decomposition yields u = S. QjED.

§2. ^-Spectral Operator

A bounded #-unitary or a bounded #-selfadjoint operator x is
said to be #-spectral if there exists a bounded #-unitary v such that
vxv* is unitary or selfadjoint, respectively, [9, 16]. In this case the
operator x is unitary or selfadjoint with respect to the Hilbertian inner
product ( | )„. Thus the spectral analysis of x is reduced to the
analysis on a Hilbert space {®, ( | )y}. For a bounded #-unitary u
the following four conditions are known to be equivalent [1,5,10]:

(i) u is #-spectral;
(ii) (Power bounded) sup {||MB|| in^Z] <oo ;
(iii) there exists a (uniformly) #-positive maximal #-nonnegative

bounded #-projection commuting with u\ and
(iv) there exists an operator TeJ^(ffi) such that

a) 0<T<l,JTJ=l-T, SpOOn {0,1}=^
b) Tu*(l-T) = (\-T)u*T.

A bounded #-unitary satisfying the above conditions is also said to
be stable. A stable bounded ^-unitary u is said to be strongly stable
if each bounded #-unitary in some norm neighbourhood of u is
stable. For a bounded #-unitary u, it is strongly stable if and only if
there exists a (uniformly) #-positive maximal #-nonnegative bounded
^-projection e such that Sp(u \e&) HSp(w | (1 -*)S) =& [5].

§ 3. Quasi-#- spectral Operator

In this § we will generalize a result in §2. On a Pontrjagin space,
#-unitary and a #- projection are bounded and the #-positivity
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leads the uniform #-positivity. Hence the results in this § are proper
to a Krein space and do not occur in a Pontrjagin space,,

A bounded #-unitary (resp. bounded #-selfadjoint operator) x is
said to be quasi-#-spectral if there exists a #-unitary v such that
xD(v*v) =D(v*v) (resp. xD (v*v) C D (v*v)), vxv*\D0 is closable and the
closure is unitary (resp. selfadjoint), where DQ = vD(v*u). In this case,
the pre-Hilbertian inner product ( | )„ defined by (£\*])0=(vt;\vi))
for £, rj^D(v*v) is selfdual, and the operator x is unitary (resp0

selfadjoint) in the Hilbert space $tf, the completion of ® with respect
to ( | )„. As the restriction of the indefinite inner product to D(v*v)

is continuous in norm ||f||p= (£ |£)i/2
5 it is naturally extended to ®v

and makes $y a Krein space. In this case, both ® and !&v contain
D(v*v) simultaneously as a dense subspace, and the identity mapping
on D(v*v) is considered to be the mapping from a dense subspace
of $ to $„. However this mapping is not continuous and hence the
spectral structure of x in $ does not necessarily preserved in $va

Now we are ready to relate the study of Tomita with that of

Pontrjagin, Krein, Langer et al. The meaning of the following
theorem will become clear if we compare it with the results stated
in §2. Theorem 1.3 will be utilized in the following proof.

Theorem 3.1 ([11]). Let u be 0 bounded %-unitary. The following
five conditions are equivalent:

(i) u is quasi-%-spectral;
(ii) there exists a %-unitary v such that uD (v*v) = D (0*0) and

sup [\\{u\D(v*v}}n\\v'.n^Z}<™;

(lii) there exists a ^-positive maximal %-nonnegative ^-projection e
commuting with u in the sense that ueu* = e;

(iv) there exists an operator T'eJ^CS) such that
a) 0<T<l,JTJ=l-T,
b) Tu*(l~T) = (\-T}u*T\ and

(v) there exists a %-unitary v such that uD(v)=D(v), vuv* is closable
and the closure is unitary.

From condition (v) it is immediate that JD(v}=R(v*} and
M*R(0*) =/2(z;*). Some examples of such quasi-#-spectral operators
have been given in [9, 12].
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Proof. The equivalence between (i) and (iv) is proved in [9].
The equivalence of (i) and (ii) is immediate from §2.

(i)— > (v ) : Suppose that u is quasi-#-spectral. Then there exists
a #-unitary v such that uD (v*v) = D (y*y) , vuv*\D0 is closable and the
closure w is unitary, where DQ = vD(v*v}. Considering the polar
decomposition, we may assume that v is positive selfadjoint. Since
D(v2) is a core for #, for any feZ)(y) there exists a sequence
{?n}r=iCl>02) such that

?„ - »? and v$n - >v$.

Since u and w are bounded, we have

uSn -
 >wf and vu$n = wvgn - *wvg.

Since v is closed and M<?neD(z;), it follows that u£^D(v) and ywf =
rfwf. Therefore uD(v)dD(v). Similarly, the boundedness of u* and
w* implies

w*fn - >u*£ and vu*sn = w*v£n - »wA>f.

Hence u*q^D(v) and Z;M*£ = w*vg . Thus M*D (z;) C fl (y) . Consequently,
uD(v)~D(v). Moreover, since vuv*\DQ£lvuv*C-W, we see that z;z/y* is
closable and the closure is w, which is unitary. Thus (v) is proved.

(v)— >( i i i ) : We may assume that v is positive selfadjoint as in
the above proof. We begin by showing that the sum 3K+ + SK~ of
the closures 3Jl± of v*{R(v} fW} is dense in $.

Let pn be the spectral projection of v corresponding to the interval
[w"1, n\ for each nE^N. It is easy to see that the union Dl of all
pn® is a core for y1 (=v~l) as well as v. Indeed, if ^eZ)(z;*), then

pjj^i). Since ||̂ ||2 = ||^Mir+ I^1-/O?|!2, {||^Mll}r=i is a bounded
increasing sequence and hence a Cauchy sequence. Since \\v*pnf] —

v*pmy\\2 = \\v*pny\\2-\\v*pmr}\\2 for n>m, it follows that fr'/wlT-i is a
Cauchy sequence. Thus the closedness of v* implies that v*pnr]— >y*^.

Since JvJ = v~l, pn is a ^-projection commuting with /. Hence J

maps A onto itself. Therefore A is of the form An^+ + AH^".
If feD(y), then r] = v^^D(v*). The above discussion tells us that

M - >37 and itpjj - >f.

Since /^ <E A H $* and A H «± C R (v) fi S% we see that v*pny^

u*{R(v)n®+} +it{R(v)n®-}, namely, v*pny^m+ + SK". Since /)(») is
dense in ®, so is a
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Since v is #-unitary, y* [R (y) n ®+} is ^-positive and v* [R (v) fl ®~} is

#-negative. Moreover tf[R(v) fl®+} C {z^{fl(zO nfl'lp. Thus SK+ and
9K~ are #-nonnegative and #-nonpositive closed subspaces satisfying
SW±C(3K:F)-L. Furthermore SK+ is ^-positive and SK~ is #-negative,
for SD^n (SW±)-L= {0} follows from the density of m+ + m~. Next, we
will show that %Jl+= (SK")-1-. Since 2K+ is ^-positive and closed, /+3K+

is also closed. The maximal #-nonnegativity of SK+ is equivalent to
J+*2ffl+=!$+. Let /?„ be the above spectral projection of v corresponding

to the interval [w"1, w]. Since pn commutes with v and /, {pn$,Jn}
is a Krein space and the restriction of v to pn!$ is a bounded ^-unitary
whose spectrum contained in [w"1, w], where /„ is the restriction of
J to />n®. Hence v*pj®+ is uniformly #-positive in [pn!$, /„}, and so
J+v*pn®

+=J+pn®
+=pn®

+. Since the union of /?n®
+ is contained in /+SK+

and dense in ®+, it follows that J+m+=®+. Thus SK+-(aK-)x.
Furthermore, it is w-invariant* Really, the boundedness of u implies

um+ c [uv* {R (v) n IT} } - = fr* (wo1) {/? (») n ®+} } -

Thus the #-projection e: f e3K+ + aK~->f+eaK+ commutes with M,
where f = f+ + f- with ^eSK*.

(iii)->(i) : Let e be an invariant maximal #-nonnegative #-projec-
tion. Since the uniform #-positivity is equivalent to the #-spectrality,
we may assume that e is a ^-positive #-projection that is not uniformly
^-positive. Let k be the angular operator with G(k)=e®. Since e is
^-positive, k satisfies k*k<l. By virtue of Theorem 1.3 the closure
v of Sk is a /-regular positive selfadjoint #-unitary. The /-regularity
of v yields that D(v) H®+ + D(v) n^~ is a core for v, that m±=v{D(v)

ftSt*} are closed subspaces with m~=((3Jl+)± and that Wl+=G(k).
Since ueu* = e, v*uv transforms D(v) fl®* onto itself bijectively. Denote

by w2 the restriction of v*uv to D2, where D2 — D(v) n^+ + D(v) n^~.

Since, for ?*£/)(») HW*,

I K (f + + f -) 1 12 = <zi;2f
 +, zirf +> - <^f~? zi;2f ->

=<e+,O-<r,r>=ne++rii2,
it follows that ie>2 is bounded,, Since Z)2 is a core for y, it is dense
in ® and hence the closure w of w2 is a unitary.

Next we will show that wD(v)=D(v) and wR(v}=R(v}. If fe
D(y), then there exists a sequence {fJ^i^A such that £„->? and
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The boundedness of w and u implies

and hence wyfeDO*) and wg = v*uvg. Hence wg^.R(v*) =D(v), in
other words, wD(v)dD(v). Similarly, the boundedness of w*=w*
and MS implies

and hence w~lD(v} c £)(&), for it^ieT1. Thus wD(v)=D(v), which is
equivalent to wR(v}=R(v). Really /£) (0) = # (o) and w~1 = w*=jwj
imply wR(v)=R(v).

Furthermore, we will show that uR (v2) = R (v2) . If j?ej?(z;2), then
f]=v2% for some feZ)(y2). Since uv2£=vwv£^vR(v), it follows that
uR(v2}dR(v2}. Since u*v*£ = vw*v£^vR(v) as well, it follows that
u*R(v2)dR(v2). Thus uR(v2)=R(v2}.

Finally, we set A = »*£ ( (z>*) 2) =o"1/2(»2). Since R(v2)C.R(v), we
have DQClv~lR(v) =D(v). Since w=vluv on /)(&) as shown in the
above and D0 is dense in ®, the closure of y%y|D0 coincides with zt>.
Hence it is unitary. QED.

Problem 3. 2. Improve condition (ii) so as to be described by
the words in $ without using ®v. For example, can we weaken the
inequality into the following form: for any ?, y^D(v)

sup (K«"£l?)|:*eZ}<oo ?

§4. Tomita's Triangular Matrix

Let x be a bounded #-unitary or #-selfadjoint operator which
has an invariant maximal #-nonnegative subspace. If x is neither
#-spectral nor quasi-#-spectral, it will be represented in the form of
a Tomita's triangular matrix.

If a neutral projection p with pp* = Q is invariant under x and its
tt-adjoint x* (xp=pxp and x*p=px*p), then x and the metric operator
/ are represented in the forms

/*n *u *is\ 70 0 /
(4.1) *= 0 ^22 x23 J= 0 /22 0

\0 0 ^3 / \/31 0 0
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where p,=p9 p2 = l-p-p*9 p*=p\ xiJ=pix\pJR and Ju=pJ\PM. The
former triangular matrix is called a Tomita's triangular matrix for x
if the (2, 2) component x22 is quasi-#-spectral in a Krein space
{^2^5/22}- If x is #-unitary or #-selfadjoint, then so is x22*

The following theorem is an immediate consequence from Theorem
3. 1.

Theorem 4.1 ([11]). Let u be a bounded %-unitary. The following
two conditions are equivalent :

(i) u has an invariant maximal §-nonnegative subs pace ; and
(ii) u has a Tomittfs triangular matrix representation.

Proof, (i)->(ii): Let p be an invariant maximal #-nonnegative
projection (pu = up by maximality). Then 1 — />* is an invariant
maximal #-nonpositive projection. Put pi=p/\(l—p*), p2=^~Pi~P\
and p3=p*. Since p commutes with u, pffi is invariant under u and M*.
Since pl is neutral,, u is represented in the form (4. 1). Put p+=p—pi
and p~ = l—p*—pi. Then p+ is #-positive9 p~ is #-negative and they
satisfy (/?+)*+/T — p2* Since pl=p2<> we see that p±<p2 and p+ is
maximal #-nonnegative on {^2^3/22}- Since

=p2u(p-pi) =p2(pup-plup1)
=p2(pup) (p-pj =p2pu(p-p1)

if we set U22=p2u\p2®, then u22 is a bounded #-unitary on
which satisfies u22p

+ =p+u22p
+

a Therefore a maximal #-nonnegative
projection p+ is ^-positive and invariant under u22. Hence9 u22 is
quasi-#-spectral by Theorem 3. 1. Thus the above matrix is a Tomita's
triangular matrix.

(ii)-»(i) : Let pi9 p2 and p3 be projections used in the construction
of a Tomita's triangular matrix. Since the bounded #-unitary u22 is
quasi-#-spectral, there exists a maximal #-nonnegative projection p+

invariant under u22. It is easy to see that p\+p+ is an invariant
maximal #-nonnegative projection. QED.

In the above proof, if we define qJ9 ; = 1 , 2 3 3 3 4 and u{j by setting
qi=p+, q2=pi, q3=p3, q*=P~ and uij = qiu\qj®, then u is represented in
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the form of 4x4 matrix (wu). This is nothing but a generalization

of Langer's matrix [6] to a Krein space.

A sufficient condition for (i) in Theorem 4. 1 to hold is known

as the Krein-Pontrjagin theorem [4, 14]: If u is a bounded ^-unitary

with u-juj compact, then u has an invariant maximal #-nonnegative

subspace. Combining this with Theorem 4. 1, we have a new proof

for the following theorem.

Theorem 4.2 ([10, 12]). If x is a bounded %-unitary (or a bounded

$- self adjoint operator) with x—jxj compact, then x has a Tomittfs

triangular matrix representation.

This was proved in [10, 12] independently of the Krein-Pontrjagin
theorem. Conversely the last theorem is deduced from Theorem 4. 2.
It is desirable to extend Theorem 4. 2 to an unbounded #-selfadjoint
operator. But we have not yet succeeded. For a Pontrjagin space
we know the following:

Theorem 4.3 ([12]). If h is a %-self adjoint operator in a Pontrjagin

space, then there exists a self dual Hilbertian inner product for which h is

represented by a Tomita's triangular matrix such that D(h} =p1

If we use the similar assertion for #-selfadjoint operator as Theorem
4. 1, then this theorem is a restatement of a Pontrjagin's fundamental
theorem [14],

Problem 4. 4. Is a bounded #-unitary (or #-selfadjoint) operator
x is quasi-#-spectral if x has no nonzero invariant neutral subspaces?

If this is true then the Phillips' problem is affirmative via Theorem
4. 1.

§ 5. Tomita's Triangular Representaion of
Commutative Lorentz Algebras

Let J^(S) be the set of all bounded operators on a Krein space
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{®> < 9 )} • It is a Banach algebra with respect to the operator
norm induced from a selfdual Hilbertian inner product. A Banach
subalgebra of J^(^) closed under the involution: #->#* is called a
Lorentz algebra. It should be noted that the definition does not depend
on the choice of a selfdual Hilbertian inner product.

As easily seen from the discussion in §§1~4, if the Lorentz algebra
j/ leaves a uniformly #-positive maximal #-nonnegative subspace
invariant, then «*/ turns out to be a C*-algebra commuting with a
metric operator with respect to some selfdual Hilbertian inner product.
If J/ leaves a #-positive (but not uniformly #-positive) maximal
#-nonnegative subspace invariant, then, by choosing a selfdual pre-
Hilbertian inner product on a dense subspace of ®, j/ is represented
by a dense *-subalgebra of a C*-algebra commuting with a metric
operator in the Hilbert space constructed by the completion. However,
this representation is not continuous. If jaf leaves a (not ^-positive)
maximal #-nonnegative subspace invariant, stf is represented in the
form of a Tomita's triangular matrix.

Therefore there gives rise to an interesting problem: When has
a Lorentz algebra an invariant maximal #-nonnegative subspace? For
instance, JS?(®) does not have any such invariant subspaces. From
the preceding discussion, the Lorentz algebra which we can treat
seems to be limited to subalgebras of

(5. 1) JS?(®+)©^(®-) + &V (fl),

although the latter does not have any invariant maximal #-nonnegative
subspace. In the following we will give some examples of Lorentz
algebras which have an invariant maximal #-nonnegative subspace.

The following theorem is a generalization of the Phillips-Naimark-
Langer's theorem [13,8,7] on a Pontrjagin space to that on a Krein
space. The proof will be omitted, for it is an immediate consequence
of a Helton's theorem [3].

Theorem 5.1 ([11])* Let ^ be a unital commutative Lorentz subal-
gebra of J^(^+)©J^(^-) +J^ ($)„ If ^ has a ^-unitary u with

then jtf has an invariant maximal $-nonnegative subspace.
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This theorem is restated as follows:

Theorem 5.2 ([11]). The Lorentz algebra stf in Theorem 5. 1 is of

the form

where

is a non real character (//,•(#*)=£ ̂ (*));

Aj is a real character (Aj (x*) = Xj (x) ) ; and

)5 Q* are compact.

Applying this theorem to a single operator, we have immediately
the following:

Corollary 5.3. If $4 is a Lorentz algebra in Theorem 5.1, then
the (2, 2) element of a Tomita's triangular matrix for a %-unitary or a
%-self adjoint operator in £/ is %-spectral.

Since the Helton's theorem treated a non commutative set of
operators, we can prove the similar assertions for slightly more
general non commutative Lorentz algebras. For example,

Theorem 5. 4. Let u and v be strongly continuous one parameter
bounded %-unitary groups which satisfy the commutation relation'.

u(s}v(t)=eistv(t)u(s} s
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If u(s) and »(0 belong to JS?(®+)©J&?(®-) +&<£ (ft) /or a// j am* f,
<2/2<f zjf £/z£ Lorentz algebra J/ generated by them contains a %-unitary w
with

w —

then J/ has an invariant maximal %-nonnegative subspace.

Remark. We can obtain examples of Lorentz algebras whose off
diagonal components are not necessarily compact by using the above
Helton's theorem as well as crossed product.
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