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Gevrey Well-Posedness of an Abstract Cauchy
Problem of Weakly Hyperbolic Type

By

Piero D'ANCONA*

Abstract

We consider here a general second order Cauchy problem of hyperbolic type, with
coefficients Holder continuous in the time variable and of Gevrey class in the space
variables, in the abstract setting of Hilbert spaces. Some global and local existence results
are proved to hold.

Introduction

Let (//, | • |) be a Hilbert space, 3$ = (Bl9 ..., Bn) an n-tuple of
closed commuting operators on //, with common domain F dense in
/f; F with the norm \\v\\v= \v \ +£7=i \Bp \ is a Banach space. The
triplet (F, //, F') forms then a Hilbert triplet, the duality between
F, V being the extension of the scalar product of H.

We will consider here the abstract Gauchy problem in H

u + (-4(0 + Af(0)M=/(0> *^[0, T] (1)

(A represents a second-order operator, M a first-order one) where

', OO<2 (3)

(4)

(5)

(6)

(We recall that CK denotes the Holder continuous functions of exponent

K if 0<><1, and the C1 functions whose first derivative is Holder

continuous of exponent K— 1 if l<C/c<C2).

Problem (1,2) is said to be weakly hyperbolic if
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(7)

and strictly hyperbolic if, for some

<A(t)v,v>>s\\v\\*v. (8)
Our aim is to extend to this abstract setting some well-known

results about global and local solvability of hyperbolic second order
equations in Gevrey classes (in particular, the results in Jannelli [7]
and Nishitani [10]; but see also [3], [4], [11]). In one respect, this
work can be considered as a generalization of the results obtained in
[1] (see also [13]) for an analogous problem in the class of analytic
functions.

The abstract Gevrey spaces of order s>l9 generated by ^, are defined
as

:|M|P..<°°h r>0

where, employing the notations

I = ( V1 I da«7i 1 2^ 1/2
\ \ ^j \^9 U I ) 5

\a\=j

the norms || • ||ri, are defined by

Obviously X'(^) is a Banach space, and [X}(&)}r>0 for fixed s is a
Banach scale. The space of Gevrey vectors of order s will be

endowed with the (locally convex) inductive limit topology. For
more details about Banach and Gevrey scales, see [2] (where, however,
the norms defining the Gevrey spaces are slightly different from the
ones introduced here) and [5],

Remark 1. To fix the ideas, think of the following Q-periodic
realization: let Q be a bounded open non-void parallelepiped in Rn;
set

H = [Q —periodic functions v9 v\Q£iL2 (Q) } , with L2 (Q) norm
V '= [Q '— periodic functions v, v\Q^Hl(Q)}^ with Hl(Q) norm
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^sFEEC^,. . . ,^) .

It is then easy to check that

X'Q+(a) = {y<E7-(s):y is Q- periodic],

where f(s) are the usual Gevrey classes, defined by

= CK, A = AK such that

(see for details [2], in particular Proposition 6).

Remark 2. Let /: [0, T]-*D(@°°} =r\aD(@a} be a function such
that &af is (strongly) //-measurable for all a, and for a suitable
c(t) G=Ll(Q,T) independent of a the following inequality holds

with fixed s, r. Then / is X*r,(<%) -measurable for every r'<jr. This
property, which can be proved in the same way as Lemma A. 1 of
[1], allows us to assume merely the //-measurability in the following.

Definition. An operator P is said to have order m in the Banach
scale {-y;(#)}r>o with constants (C, A) if P maps D(&°°) into itself,
and for every v^Xs

0+(&), j>0

m + m " ' 1 - ( 9 )rh=o hi

As in [2] it can be shown that an operator of order m maps
continuously X'r(&) into Jf ;_«(*), for 0<3<r<l/4 We state now
the assumptions connecting the Gevrey scale [Xs

r(&)}r>Q with the
coefficients A,M,f:

Assumption 1. The functions #M(-)z>, 3§aM(-)v, @af are H-
measurable for any v^Xs

Q+(^); moreover, there exist two constants
C, A and two functions fj.,%^Ll(Q,T) such that

i) ^4(0 has order 2 with constants (C,A);
ii) M(t) has order 1 with constants

Hi)



|a|=j

J" I fflh7) I Aj+2~h
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Assumption 29 For every £, A(t} quasi-commutes with «^, that is
to say

c

where

Some remarks about these assumptions. As it will be proved in
Section 3, in the concrete case in which & =P, any differential
operator of order m with coefficients of Gevrey class in the space
variables, uniformly in time, satisfies the above Definition of operator
of order m in the scale. On the other hand, Assumption 2 is satisfied
by selfadjoint second order operators such as

h.k K

In the case J>1, as no local existence result is available for Problem
(1,2), we will use the following additional assumption:

Assumption 3. There exists a countable basis of H made of
common eigenvectors for the operators Bl9..., Bn.

We point out that this is indeed the case in the -G-periodic
realization defined in Remark 1. We can now state our results (but
see also Remark 1.2):

Theorem 1. i) (Weak hyperbolicity) If (3), (4), (5), (6), (7) and
Assumptions 1, 2, 3 are fulfilled, then Problem (1,2) is globally solvable
in XQ+(&} for \<s<^l+£/2, in the sense that for every u0, UiEiXs

rQ(&)

with r0<Cl/^, there exists an unique solution u belonging to Cl(\_ti,T]\
X~(&)) for some r = r(T) ^]0, r0]. Moreover, if s=l+tc/2, then Problem
(1,2) is locally solvable in an analogous sense,

ii) (Strict hyperbolicity) Suppose that K<^\. If the same assumptions
as in case i) hold but with (7) replaced by (8), then Problem (1,2) is
globally solvable in Xs

Q+(&) for 1 <-$•<!/(/c—1), and locally solvable for

s = l / ( K - 1). /„ particular, if A e Lip ([0, T]; J2> ( F, V)) then Problem

(1,2) is globally solvable in X5
Q+(&) for every s>l.



GEVREY WELL-POSEDNESS 437

In the final section, Theorem 1 is applied to the study of the
Cauchy problem

, 0 «* + </(*, OM+/(*I 0

(*,OeR«x[0,T] (C)

under the following assumptions

1

If one assumes some suitable boundary conditions, namely periodicity
in the ^-variable, the preceding problem becomes an immediate
consequence of Theorem 1. But it is also possible to re-obtain a
theorem already proved by Jannelli [7] and Nishitani [10]:

Theorem 2. i) (Weak hyperbolicity) Problem (C) is globally solvable
in f(s) if l<Xl+£/2, in the sense that there exists an unique solution

in W^Cfl), r];r(s)); it is locally solvable for s=l+K/2.
ii) (Strict hyperbolicity) Suppose that f>0 and «:<!. Then Problem

(C) is globally solvable in f(s) if 1<O<1/(1— K) and locally solvable if
S=\/(\—K). Moreover, if the coefficients of the second order term are
Lipschitz continuous in the time variable, then Problem (C) is globally
solvable in T*(S) for every

Remark 3. As it was proved in [4], Theorem 2 and, a fortiori,
Theorem 1, are optimal in the following sense: fixed K and j> 1+^/2,
there exist a nonnegative function a (t) e CK ( [0, 7"] ) , and a pair of
initial data <f>9<f>&fs) such that for the Cauchy problem

utt = a(t)uxx on Rx[0, T\

even the local existence fails to hold; analogous counterexamples were
found for the strictly hyperbolic case.
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§ 1. Sketch of the Proof of Theorem 1

We prove here some a-priori estimates of the "infinite order
energy" of the solution (see [3], [1]). We will perform the proof
only in the case « = 1, namely, 38=B (one single generating operator),
adding a final remark for the general case. Note that, thanks to the
substitution

and to the homogeneity of all the equations, we can suppose that
A=l.

§ 1. 1 (Weak hyperbolicity). Suppose the assumptions of Theo-
rem l.i are fulfilled; moreover, assume tc<l (the case 1<£<2 is
considered successively). Let 0eCjT(R), 0<0<1, 0(0 = 1 for \t\<
1/2, and 0 = 0 for |J |>1. Let [dj] be a decreasing sequence of
positive numbers (to be chosen), and pose

Now if we extend A(t) to all of R as

A(T) for t>T
4(0) for *<0

we can define the convolutions (performed in the //-norm)

From the /r-Holder continuity of A it follows that, for some constant
t] depending on 0, A

where the norms are in L°°(0, T; & (V, V')) (and the prime denotes
a time derivative). Choosing $j=j~l we obtain
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Suppose now u is a solution of (1). We define the j-th order energy
Ej of u as

\Bj-lu \2+j-K \Bju |24- \Bj~lu' |2.

Immediate consequences of the definition of Ej are

j , \B<u'\<EJ+1

while from Assumption 1 it follows that

jT t - <^- < Ji (Oj!V"* S -

Now, derivating E"2, applying the above inequalities and equation
(1), and dividing by 2EJ9 we obtain

^- + x (0 ( j ~ 1 ) !s

where d = 2^4-l. Applying now the commutator estimate of Assum-
ption 2 and the inequalities Bhu \ < (h + l)~lEh9 jK/2<j+l = ( j+l)V
(j+l)° we obtain

where ft(0=^(0 + l and C2 = max{C, 2(C + d + CVcT)}. We define
now the Gevrey type infinite order energy of u as

where ^e^4C([0, T]) is a real function between 0 and 1 (to be
chosen). Derivating $ and using the above estimate we obtain

' (j+ir

where we have applied a Fubini-like argument to derive the equality

j + i - Eh - P - p' ^

We proceed now to the choice of p. For C>0 small enough, the
ordinary Cauchy problem
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O- + ̂ O, *6E[0, 71

r0s 0<r0<l

has a positive decreasing solution on [0, T]. In the case s is strictly

less than 1 4- £/2, for j^>j€ we have

C/-0"2

and hence, by the above choice of p, the terms of the series are

negative for j>j'6, so that

In the case s=l + K/2, on the other hand, we choose an €^>(j+l)K/2/

( j — l ) K / 2 for all j; the resulting p will be a positive decreasing function
on [0,7*] for some 7*(ft,r0)>0. The terms of the series will be

all less or equal to 0 on that interval, so that

*'(0<Z(0 on [0,7*].

In both cases, an application of GromwalPs Lemma yields the following

fundamental a-priori estimate:

valid on [0, T\ if s< l+K/2, and on [0,7*] with T* depending on

ftr0 if s=l+K/2.

To deal with the case 1<><2, a different method is needed. We

use the following lemma of real analysis (a proof can be found in

[7]):

Let 0(0 ^C/c([0, 7*]) be a non-negative function, l</c<2. Then

Defining now the j-th order energy Ej of u as

we proceed exactly as in the above proof, the only difference being

that, when estimating £",', the term (A'Bj~lu^ Bj~luy is estimated by

c(K)jEj, by applying the Lemma to 0(0 =(A(t)v9vy, v a fixed element
of V.
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§1.2 (Strict hyperbolicity). Suppose the assumptions of Theorem

l.ii are satisfied. The proof is similar to the weakly hyperbolic case,

only the following modifications are needed:

a) dj is chosen as jl/(K~» (v2/(W)1/K;
b) the j-th order energy is defined as

The a-priori estimates obtained are the same as in the first part of

the proof, exception made for the fact that the limit value for s is

now

Remark 1.1. To reproduce the proof in the general case in which

38 is composed of n operators Bl9 . . . ,£n , a number of minor modifi-

cations is needed. The j-th order energy must be defined as (in the

weakly hyperbolic case)

and an analogous substitution is to be made in the strictly hyperbolic
case. The computations are an almost word-by-word repetition of the
above proof (replace everywhere B3 by &J\ with the meaning defined
in the Introduction).

§ 1. 3 (Conclusion of the proof). Using the a-priori estimates,
it is not difficult to complete the proof of Theorem 1 by a standard
Faedo-Galerkin argument. Assumption 3 ensures the existence of an
increasing sequence of projections PN in //, strongly converging to
the identity map, commuting with B^ j= 1, . . . , n, and with finite
dimensional image VN. Since for every v in VN

IN|r.s=SUpJ4^r'< Msup( s H£»zV-£-<°°,
j>0 Jl j>0 h = l,n

 N Jl

we have VN^Xs
r(&) for every s and r. Define now

It is easy to see that AN, MN, fN verify Assumptions 1,2 with the
same constants as A, M, f. The Gauchy problem

u'N+(AN(t}+MN(t)}u=fN(t), *e[0,r| (10)

(11)
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is globally solvable, since VN is a finite-dimensional space; moreover,
fixed the initial data

iio^e*^) r0e]0,l[

the a-priori estimates of the preceding sections furnish a uniform

bound for the energies SN of the solution UN of Problem (10,11)

(note that, if v is in VN, then \ @av \ = 0(clal)). Naturally, the bound

holds on [0, T"] or on [0, T*] according to which case is under

consideration. By a compactness argument, the result follows.

Remark 1. 2. We point out that, with minor modifications in the

proof, the same result can be proved for an equation of the type

where Q,(0 is an operator of order 0 in the scale, with constants

) and

§2. Estimates of Partial Differential Operators

We show in this section that concrete partial differential operators

satisfy Assumptions 1,2. To this end, we need the following Lemma,

which is an easy consequence of Lemma A. 3 of [1]:

Lemma 2. 1. Let K^>1, and {x^} a sequence of non-negative real numbers,

indicized by /3GiNn. Then, for every integer j,

[ Z ( Z *,)2]1/2<C(«, K) Z K>-'( Z
r = Q \/3\=

We begin by proving Assumption 2 for a self-adjoint second
order operator.

Lemma 2.2. Let Q be an open non-void subset of Rn, and ahh, /z, k =

l,...,n continuous functions on [0,7"] with values in f(s\ such that

ii) Z^f^>0, feR- (12)
iii) \daakk(X,t)\<MAl«> (\a\\y on flx[0,T]

(where, as usual, da = dx
l . . , dx

n) for some M, AQ independent of a. Denote
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by A (0 the operator

Then, fixed an arbitrary A>A^ there exists a constant C = C(n, M, y!0, A)

such that for every v€EH°°(Q)

, 3">||2)"2<CC/+2)( Z (A(t)d«v, 3«»))w
\a\=j

j Aj+2-h
1

where ff = s—i, and || • ||, ( , ) denote the norm and the scalar product in

Proof. Fixed a, and denoting by ely . . . , en the canonical base of
Rn, it is readily seen that

where

//a=Z Z
h.k /8<a

ft.fe
\0\ = \a\-l

and we will estimate the three terms separately. Using (12. iii) and

the fact that \a + ck-p \ =j+l - |/3 1, ̂  )<(^ j " j), we have in a few

passages

(S H/a|l
2)1/2<M[ Z (Z

loi=./ lo|=; A. fe ̂

Now apply Lemma 2.1 with /= /—! , K=A/A^>\ and

to obtain

( z H/a
I a | = j

The terms II a yield an analogous inequality, with ( ^9 J instead of
/ 7 \ . \v — £J
( —])' Sum up, observing that
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and that

J+l\, - J + l (J + 2)!S const. (j + 2)!*--
when y<j.

Finally, to estimate the terms ///a? apply the following Lemma

due to O. Oleinik (see [12], Lemma 4; see also [6]):

Let (fihkW) be a hermitian non-negative matrix of functions in W2'°°(Q).

Then for every nXn symmetric matrix (?**), for j= 1, . . . , n

(E 3X .flM(jc)fM)8^C1(n)Ca(flM) E flwOO&AT
h,k J h,k,q

where C2 is the W2-00 norm of the ahk.

With this Lemma in mind, it is not difficult to see that (taking

%hk = dru with r = a-^-«*-«»)

(A(t)d*u,

Lemma 28 3e With the same notations of Lemma 2. 2, let

P= Zar(x,t)dr
\T\£m

be a partial differential operator on Q, with measurable coefficients, infinitely

differ entiable in the x-variable^ and such that, for a /jt&Ll(Q,T) and a

4>o

Then, for any A^>AQ, there exists a constant C = C(n,A,A§) such that for

any v in H°°(Q)

j+m Aj+m—h

( Z 113^112)172

\P\=h

Proof. It is obviously sufficient to prove the Lemma in the case

P is composed of one single term of degree m. The proof is similar

to the estimates of terms Ia and IIa in the preceding Lemma; after

having applied (13), just observe that

- vW J1 y>- \u~m
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§ 3. Applications

We will apply in this section the abstract theory developed so far
to the study of the Cauchy problem

M«=i:X(*, Vux +£bj(X, Vu +c(X, t)ut+d(x9 o «+/(*> o
i.j l } j=i J

(*,OG=R«x[0,r] (14)

under the following assumptions

(15)

The following result is proved:

Theorem 3.1. (Jannelli [7], Nishitani [10]) i) (Weak hyperbolicity)
Problem (14) is globally solvable in f(s) if l<Xl+/c/2, in the sense that
there exists an unique solution in W1>2([0, 71]; p(s)); it is locally solvable
for s=l+K/2.

ii) (Strict hyperbolicity} Suppose that i/>0 and £<1. Then Problem
(14) is globally solvable in fs} if 1O<1/(1 — K) and locally solvable if
S=\/(\—K). Moreover, if the coefficients of the second order term are
Lipschitz continuous in the time variable, then Problem (14) is globally
solvable in p(a) for every s^>\.

Proof. As the proofs of the various cases are analogous, we will

limit ourself to the weakly hyperbolic case, s<^l+ic/2. Define in a

natural way A (0 as in Lemma 2. 2, and

k.j

With these definitions, Problem (14) looks formally like the problem
considered in Remark 1.2. We will solve it by reduction of an
analogous ^-periodic problem. First of all, suppose we are in the
following situation: let Q be a bounded open non-void parallelepiped
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in Rn, and suppose that

& & #»•/» */> CJ ^/ are -G-periodic in the space variables;

then global existence and uniqueness are an immediate consequence

of Theorem 1. In fact, choose F, H and 38 as in the -G-periodic

realization of Remark 1; assumptions (3) -(7) follow from (15), while

Assumptions 1,2 are the abstract counterpart of Lemmas 2.3, 2.2.

Suppose now

/and the initial data vanish for \x — x0\^>r

(no assumption of periodicity about the coefficients). Owing to the

finite speed of propagation (see the Appendix), which incidentally

guarantees the uniqueness for Problem (14) under no restrictive

assumptions, we can reduce this case to the periodic one in the fol-

lowing way: choose a #(#) in 7*^ with compact support such that %=1

on \x — XQ\ <r + yiT, and multiply all the coefficients of Problem (14)

by X' Then fix an open bounded parallelepiped Q containing supp

%9 and extend data and coefficients to the outside of Q by -G-periodicity.

The problem thus obtained admits a solution w, with the property

that u \0(x, t) = 0 if xM =£1. If now we define a function u as equal

to u for x^Q and 0 outside, we obtain a solution of the original

problem.

To conclude the proof, it is sufficient to choose a locally finite

partition of unity {#a} in f(s\ solve the "localized" problems obtained

by multiplying/ and the data by each #a, and finally sum up the

solutions thus obtained.

Remark 3e 1, For a different proof of the same result, see [10]

(where Problem (14) was for the first time considered in its full

generality, with an additional assumption of continuity with respect

to time of the lower order terms).

As a last application, we will consider the following Cauchy

problem of super-kowalewskian type:

mij(t)ux.x=f(x, 0 (x, 0 eR'X [0, T]
(16)
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The assumptions will be the following: let Q be an open bounded
non-void parallelepiped in Rn, and denote with 7^ the class of
^-periodic Gevrey functions of index J>0; then

^ ;

Theorems. 2. i) (Weak hyperbolicity} Under assumptions (17),
Problem (16) is globally solvable in 7^ for 1 <2s<^l -f/c/2, and locally
solvable if 2s=l+K/2.

ii) (Strict hyperbolicity) Assume y^>0, /c<Cl. TTzera Problem (16)
assumptions (17) u globally solvable in 7^ /or 1 <25-<l/(l — /c),

locally solvable if 2s=l/(l — /c).

Proof. In the notations of Theorem 1, choose &=d (one single
operator), // and F as in the ^-periodic realization of Remark 1.
A simple application of the Theorem on elliptic iterates (see [9],
vol. Ill, chapter 8, Theorem 1.2) shows that Xs

Q+(&) =r$?. The
operator A ( t } = c ( t ) A 2 is evidently of second order in the scale, while
M(t)=^mijdx.dx is of first order (use Fourier series development).

A simple application of Theorem 1 allows us to conclude the proof.

Appendix

By sake of completeness, we furnish here a proof of the "finite
speed of propagation" property, for a weakly hyperbolic equation of
type (14).

Lemma. Let Br be an open ball in Rn with center XQ and radius r,

Suppose a i J 9 b j , c , d are functions satisfying (15) on £rx[0, 7"], T>0,
and let u^C1^ T]; C2(5r)) be a solution of

utt — 2] atjux ux + 2 bjUx . + cut + du
ij * J J }

on 5rx[0, T]. //

«(*, Q)=u,(x, 0)=0 on Br
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then

u = 0 on r(u!,flr)={(*,0: *e[0,T], |*-*0|<r-^}

(the cone with base Br and slope l/^i)*

Proof, Let r' be an arbitrary element of ]0, r[ and denote by o)
the open ball with center XQ and radius r'. We will prove that w = 0
on r (vl9 cw)9 whence the result will follow. Let Q be a bounded open

parallelepiped in R* containing 5r. Let # be a Gevrey function with
support in 5r and equal to 1 in co. Denote by a tilde multiplication
by % and extension by £?-periodicity. Then we will have

UH- (Z *,.,*„.+ !; bjux. + cut + du) =g(x, 0
(A 1)

fi(*, 0) = ff,(x, 0)=0

for some function g vanishing on <yx[0, 7"]. We now approximate
this ^-periodic problem with a sequence of strictly hyperbolic ones,
satisfying assumptions (15) (with constants converging to the constants
appearing in (15)) and coefficients Lipschitz continuous in time (the
second order terms) or continuous (the lower order terms): this is
easily achieved by convolving with a sequence of Friedrichs modifiers,
then adding e2<50 to the second order term. In particular, we have

As initial data we choose the null ones. From the first part of
Theorem 3. 1 it follows that these approximating periodic problems
are uniquely solvable, and their solutions u€ satisfy an uniform estimate

in CHEOj 71; r(s))- WG can thus suppose that they converge uniformly
to a function, which is, of course, a solution of (A. 1); hence they
converge uniformly to u. But now observe that

u6=Q on r fa + e, o>)

as the finite speed of propagation holds for strictly hyperbolic equations,
so that

u = Q on F(yb<*>).

To conclude, observe that on CD X [0, T]
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