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Involutive System of Effectively Hyperbolic
Operators

By

Tatsuo NISHITANI*

§ 1. Introduction

It is well known that for strictly hyperbolic operators one has
energy estimate which is stable under a perturbation of lower order
terms. Then it is clear that for a system of strictly hyperbolic ope-
rators the Cauchy problem is solved in C°° for any lower order
terms. It is also known that the Cauchy problem for effectively
hyperbolic operators is solved in C°° regardless of any lower order
terms although energy estimate of those operators (measured in the
usual Sobolev norms) essentially depends on lower order terms (see

[4], [6], [8], [9]). Therefore in this paper we are interested in
the same problem for a system of effectively hyperbolic operators.
We shall show that involutive system of effectively hyperbolic
operators (the sense will be clarified in the following) has the
same property.

Let U be an open set in Rd with coordinates x'= (xl9 • • -, xd).
Denote by (#', £ ') = (xl9 • • -, xd9 ?b • • -, ? 4) standard coordinates in
the cotangent bundle T*U. Let / be an open interval containing
the origin and put O = IxU. We denote by (*, £) = (*0, *', £0, £')
standard coordinates in T*Q and

, ./ = 0,1, . - - , £ / , D=(D09D')9 D'=(Dl9--;Dj.

Let

(1. 1) />•'(*, D) = -D*Q + 2A'(x, D')D0-B'(x, /)'), • = 1, 2, • • -, /

be differential operators in D0 of order 2 with coefficients A{(x9D'),
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B*(x9D') which are classical pseudodifferential operators of order
1, 2 respectively defined in a conic neighborhood of (x9 £') = (05 £', £')
e/X (!T*C/\0). We are concerned with the following microlocal
Cauchy problem

,
(1.2)

/'• = 0 in

where Cijk(x,D') are classical pseudodifferential operators of order
£ defined near (#, I')- Sometimes we write (1 02) in a more con-
cise form ;

(1.2)' P(x,D)u=f, f=0 in *0<0

with P(x,D)=diag(pl(x9 £>), . .-, pl(x,D»+BQ(x, Z)')A> + £i(*, />'),
M= (w1, • • -, M' )J /— C/1? ' ' %/0- Here />''(#, f) denotes the principal
symbol of P<(x,D) ;

/>'(*, « - -fS + 2fl'-(*, f )fo-*''(*, f 0 = ~ (fo- «''(*, ?0)2 + ̂ U £')

where g*'U, ?)=«'" U, fO2 — A1' (^, f). We assume that p l ( x , * ) arc
hyperbolic with respect to dx0 near (#, |x) that is

(1.3) a1' (*,£') are real and ?f'(^, f O ^ O near U,|7).

Let p = (x, I) = (;c, |0? f 0 be a double characteristic for all

/>''(*,£) (l^t^O. Set j&(x, O=n^'(Ar, f) and introduce the locali-
i = l

zation pp(x,$), p],(x, $) of /»(*, £) and /»'(*,?) at /o;

It is known that />,(*,?) and pp(x9£) are hyperbolic polynomials
in TP(T*Q) with respect to HXQ<=TP(T*Q) where //,o is the Hamilton

field of *0, defined by <dxQ9T> = a(Y9 HXJ for any Y^TP(T^Q) (see

[3], [5]). Hence we can define the hyperbolic cone F(pp,Hx^) of

pp as the component of HXQ in (X&TP(T*Q) ;PP(X) ^0} and the

propagation cone C(pp,HXQ) as

a(jr, y) ̂ o for any

Here cr is a natural 2 form on jT*£ given in any standard coor-
dinates (x, £ ) by
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y=o

It is clear that F (pp, HXQ) = n F (fa H XQ) . For X^TP(T*Q) we set

<Z> = span(^) and for a subspace VdTp(T*Q}, Va denotes the a
orthogonal space of V.

Now we assume that

there are / hyper planes HjdTp(T*Q) which intersect
(1.4) involutively, that is, a(Ha

i9H
aj)=Q for any z, j, such

that for j=l9 • • •, /
C(pp, HXQ)HHj = {0}, //,0 KerHess pj(p)

where KerHess p* (p) is the Kernel of the Hessian of pj (x, c) at p.
Clearly (1.4) is invariant under a change of homogeneous symplectic
coordinates preserving x0 = const. To see our hypothesis more intuit-
ively we observe that

Lemma 1.1. Let r(x,$) be one of p l ( x , % } . Then the following
Jive conditions are equivalent.
a) r(x, f) is effectively hyperbolic at p

b) C(r,, //,o) n KerHess r(p) = {0}

c) there is a hyper plane H<^.TP(T*Q} such that

//nC(r,,//,fl) = {0}, HZ) KerHess r(p)+<HXQ>

d) />„ //^ n (KerHess r(^))^n<//,0>^ 0

e) r(r,, //, ) H (KerHess r(p)Y* 0

We shall prove this lemma in §2. From this lemma it is clear
that each pl(x^) is effectively hyperbolic at p if (1.4) are veri-
fied, for C(pi

p9HXQ)(^C(pp,HXQ) and if 1 = 1 (1.4) is equivalent to that

jfr1 (#,<?) is effectively hyperbolic at p.

By Ck(I,Hp) we denote the set of all A; times continuously diffe-
rentiable functions from / to the usual Sobolev space Hp = Hp(Rd)
an dset H°°=riHs. Main results in this paper were anounced in

Theorem 1.1. Suppose (1.3) and (1.4). Then there is a para-
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metrix at (0, x ', £') of the Cauchy problem (1. 1) with finite propagation
speed of wave front sets. In particular there are a small interval I
containing the origin and a positive constant {$ such that ;

for any /<E ( (C° (/, Hp) ) l vanishing in *0<0 with WF(f(t, • )) con-
tained in a sufficiently small conic neighborhood Fl of (x\ |') (t^I) there

is a u^(Cl(I^Hp~l~^)y vanishing in *0<0 and satisfying

/>M-/e(C° (/,#-))', WF(D'u(t, -)

with d = d(Fly r2)^>Q /or any conic neighborhood F2 of (x\ |') with

For the definition and properties of parametrices with finite pro-
pagation speed of wave front sets, we refer to [12]. Next we study
The propagation of wave front sets. Assume a variant of (1.4)0

There are / hyperplanes HjdTp(T*Q) intersecting in-
(1.4)' volutively such that for j=l9 • • • , /

C(pp,HXQ)nHj={0}, HjH KerHess^(p).

Theorem 1.2. Suppose (1.3) and (1.4)7. Let <p(x, f) be real,
homogeneous of degree 0 in £, C°° i?2 a conic neighborhood of p such that

and let co be a sufficiently small conic neighborhood of p. Then it follows

from

that

for any distribution we (S '(£?))'.

Of course if we drop the transversality condition;

there are / hyperplanes HjC:Tp(T*O) such that

Hj D KerHess tf (p) , C (pp, HXQ) H H, = {0} ,

the situation becomes complicated. We give an example.

Example 1.1. Let p= (0, 05 • - . , 1) eT*JZd+1\0 and />''(*,£) be
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f) = - (fo- (1 -r)^0f-)2+ (*o-r-^i)2f5,

Set p(x,€)=pl(x,$)p2(x,£) and denote by I1 (/>*') the doubly charac-

teristic set of £*'(*,£)• Then noting 0<r<l there are hyperplanes

//, such that

In particular /?' (#, 0 are effectively hyperbolic at p. But for any

choice of such Hl we see that C(/>2, //, ) n//i^={0} hence

It is easy to see that (taking #0 as a parameter)

*i = r*o, *rf= -2-1(l -rWo, £Q= (1 -r)1/2*0, fx= - (1 -r)1/2*0, £,= 1

(*2, ' ' -, xd-J = const., (f2, • • -, Ed-i) = const.

is a bicharacteristic of /?2(X f). We denote it by 7i = 7'(x0). Note

that

Since ^c {(A;, f) ;^2(x, f) =0} we conclude that

rc {(*, f) ;/>(x, f)

In §2, we shall give a proof of Lemma 1. 1 which gives a geo-

metric characterization of effective hyperbolicity (cf. [10]). From

this we show the existence of / hypersurfaces which play an important

role when deriving energy estimate. In § 3 we localize principal

symbol pi (x, f ) along / hypersurfaces and introduce a partition of

unity associated with these surfaces. In § 4, we derive energy

estimate for the terms which are squares of first order operators, and

in §5, for the other term in an expression of /?'(#, <?) along the lines

in [9] and [10]. In § 6 we shall estimate commutators which come

from partition of unity. § 7 is devoted to give energy estimate for

P(x, D) blown up of P(x,D), collecting estimates in §§4, 5 and 6.

This shows the existence of parametrix in Theorem 1.1. Finally

in § 8 we estimate wave front sets applying energy estimate in § 7.

This will be used to prove Theorem 1.2 and also to show finiteness

of propagation speed of wave front sets for a parametrix in Theorem

1. 1.
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§ 2. Preliminaries

At first we prove Lemma 1. 1 in a slightly more general form.
For X<= T* (T*Q) we denote by Hx the Hamilton vector of X, defined
by <X,Y> = a(Y,Hx) for any Y^TP(T*Q). Let r(X) be a hyper-
bolic polynomial in TP(T*Q) with respect to He&Tp(T*Q), 0<E
Tt(T*Q). Denote by I the linearity space of r\

2={XtETp(T*Q) -9r(tX+Y)=r(Y) for any t and Y]

(see [1], [2]). Then we have

Lemm 2. 1. Notations as above. Then the following four conditions
are equivalent.

a) C(r,J/.)n-T={0}

b) there is a hyper plane HdTp(T*8) such that

Proof. At first we show a)<^>d). Assume F (r, He) r\ 2° = 0 then
by the Hahn-Banach theorem there is Q^Y^TP(T*O) such that a(Y,
Z)^0 for any X^F(r,He) and a(Y,X)^Q for any X^I°. These
imply that YeC(r, //$) and Ye 2*. This would give a contradiction
to a) hence we have a)=>d). Suppose Q=£YeF(r9 He) ftS*. Then
it is clear that <Y>°D2', <Y>' HC(r, H9) = {0} because F(r,H9) is
open. This implies obviously C (r, //fl) n -^ = {0} . Hence we have
proved d)=>a).

Since c)=>d) is obvious it suffices to show that

Proof of a)i>b). When H9GS + S* we write He = X1 + X2 with X1

and X2<=Za. Since F(r, He) H-^cTCr, H6) and F(r, H9) HS= 0 ,
it follows that Q^X2^F(r, HQ). It is clear that a(X29He)=0 and
hence He^<X2y. Noting that Z2eJff, Z2er(r, //5) we get <
and <Z2>ffnC(r,//0) = {0}, for F(r9H9) is open. Then <Z2/ is
desired hyperplane. Consider the case He&S-{-Z0 and hence

={0}. As proved above, a) implies that F(r, He) H
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0, and then we can take O^Z<EF(r, He) fl 2°. Note that

(2. i) <zy^>z, <z/nc(r, HQ} = {0}.
Set T=<Zyn(Z + Sff) hence

(2.2) riDj, rnc(r,//9)-{o}.
We examine that dimT=dim(!r + !'a) - 1. Indeed from F(r, Hg)+S
cF(r, //a) it follows that

(2.3) C(r,H,)c^.

By (2. 1) and (2.3) it follows that <Z>* 2> -? + 11" and this shows the
desired assertion.

Take a subspace FcT,(T*fi) so that TP(T*O) = (S + S°)+V
(direct sum) and write He = Y1 + Y2, Y^S + S0, Q=tY2^V. Again
we take a subspace WdTp(T*Q) so that

V=(Y2y + W (direct sum).

Then the hyperplane H = TJr(HQy~\-W is the desired one. In fact
we have HnC(r, //*) = {0} by (2.2) and (2.3). On the other hand
it is obvious that

Proof of *)!><;). Take 0=£ YeE7;(:r*fi) so that <Y> = Hff. Then it
is clear that <y>cJ<7n<//fl>

CT. We show that Y or —Y belongs to
r(r,He). If not we would have <Y>fl T(r, //5) = 0 . Then by the
Hahn-Banach theorem there is Q^Z&TP(T*Q) such that cj(Z, Z)
^0 for any X^r(r,He), 0(Z,X)^Q for any X^<Yy. This shows
that ZeC (r,//*) and X&(Yy = H then we would have a contra-
diction to b). Thus we have proved

Proof of Lemma 1.1. Noting that KerHess r(jo) is the linearity
space of rp, in view of Lemma 2. 1, the statements b), c), d) and
e) in the lemma are equivalent. On the other hand from Corollary
1.4.7 in Hormander [3], it follows that a) and e) are equivalent.

Now we observe the hypothesis (1.4). It is clear from the proof
of Lemma 2. 1 that (1.4) implies that

(2. 4) Xj or -Xj^T(pp, HXJ n (KerHess ^(p))' n<//,0>'

where <*,/ = //,.
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Lemma 2.2. Suppose (1.4). Then there are I real functions
<?')> homogeneous of degree 0 in £', C°° in a conic neighborhood of p'
(*, I') satisfying

^,O^ /,-(*, O2I?T near f'

ff,,GO e/Xj,, H.J, [fi9 /,} GO = 0 for any i, j

££;z£/z positive constant c{ where {•, «} ij £/ie Poisson bracket.

Proof. Write r (#, f ) instead of p* (x, ?) for arbitrarily fixed i.

Recall that r(x, f) has the form

Since ^(A:, f) is non negative near p' the Morse lemma shows that
there are functions £/(#, ?') ( l^j^y), homogeneous of degree 1 in
f, C°° in a conic neighborhood of p' such that

(2. 5) ?(*, f') ^E bj(x, ?02 near /, q,(x, f ') = 2 *,(*, ̂ )2.

Hence we have

(KerHess r^^^spanC//^^), H,.(pf) ; 1 ̂ j^y).

Take O^J^e (KerHess r(p)Y^T(pp, HXQ) n<//,o>a then we have with

real constants at- that

Since Jferp{x0 = 0} =<H,0>
a it follows that a0 = Q. Set

/(*,£')= 2 "A (*,£') I fT1
/ = !

then it is clear that Hf(p') =X^F(pp, HXQ). It is also clear from

(2.5) that

near ^

with a positive constant £. It remains to show that the last state-
ment. We return to the original notation. Since we have chosen

/,(*,?') so that Hfi(p')=X^H°h follows that [fi9fj}(p') =

a(Hf.(p
r},Hf.(p'))=a(Xi,Xj)=Q. This proves the lemma.

Remark 2.1. In Lemma 2.2, we can replace /,-(#, ?7) by £,-(#,?')
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/*(*,£') with ei(p')=£Q, homogeneous of degree 0 in £'.

Lemma 2.3. Assume (1.4). Then we can choose a homogeneous

symplectic coordinates (x, f) near p preserving x0 = const., and a number-
ing of the indices i such that p = ( Q , e p ) and fi(x, £') in Lemma 2.2
may take the following form

d<f>i(p") = linear combination of dx}- (l^j^/?), (p^i^l)

where p = dim span (</**</& GO ; l^j^l) and p"=(0,e'p)GT*U\Q.

Proof. Note that we may assume that p=(Q,ed). By a change
of homogeneous symplectic coordinates near (#, f) preserving XQ =
const., we may assume that al(x, f 0 — 0 and hence

>i(*,e) = -po+?1(*,r).
It is clear that F(p1

p, HX(>) C {f0<0} and then the hypothesis

//,.(/Oer(/>,,//^)cr(#,//,o)
implies that (dfi/dxo) (p')>Q. Thus we can write

with ^.-(/o'J^O. Taking Remark 2. 1 into account we may suppose
that

We proceed to the next step. Note that {/*,//} GO = l&> *M GO
= 0 for any i,j. Renumbering fi9 if necessary, we may assume that

, d<f>i(p") ; 1 ̂ i^p~ 1).

Set £•(*', f')=^-(*', r)-(3^-(^)/3^)^ and note that {<&,., ^} =
{^^y}(^)=0. Put

with x=(^, •• - ,^_ 1 ) , |=(6i, • • • , f d _ 1 ) . It is clear that {^Jfl} form
a partial homogeneous symplectic coordinates and dX{ (l^i^p— 1),
rf^d are linearly independent at p". Then we can extend {-YJfl} to
a full homogeneous symplectic coordinates {-ST,- , ^J f=i so that p" =
(0, ^i). We write (*', £') instead of (X',3') and hence we have
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Since d^^p") (p^i^l) are linear combinations of dx{ (1 ̂ i ^p— 1)
and dxd, interchanging the coordinates xp and xd we get this lemma.

Proposition 2. 1. Assume (1.4). Then we have

?••(*, e/)=g/rt(*,n
2+ft(*,n

where /,•*(#,?')» &(#»?') are homogeneous of degree 1, 2 respectively 9 C°°

in a conic neighborhood of pf satisfying

=0,

wi<A f i ( x , £ ' ) = x < > — $i(x,£') such that d<j>f(p') are linear combinations
of dx; (l^t^) and Hf.(p')er(pp,H:to).

Proof. We fix i and in what follows the index i will be omitted
from notation. To simplify notation further we set 5 f-(r)=0 if (92r/
gf f ) ( j 0 / ) = o and 3,-(r)=l otherwise for r = r(*,O. We denote by
Ak(f)£' the set of coordinates ?t- with l^i^^: satisfying 5 f - ( r )=l and
by Jj(r)r the complement of 4Wf, that is, Jj(r)f '= {ft, • •-, fj \
(J f e(r)fO. We shall prove by induction on & (k^p— 1) that we can
express q as

?(*,e') = sw
(2. 6) 4

 J'=1

+ r*(*,

where t j ( x 9 £ ' ) , r k ( x , $ ' ) are homogeneous of degree 0 in ?' with
*yOO>0, r*(/o7)>0 and £(x,A{((j)£') is homogeneous of degree 2 in

/3 non negative near ^o' such that

(2.7),

When k = l and ^(g)^! Malgrange's preparation theorem gives that

It is clear that (d2gl(x, ^(?)f7)/3f!) (^) -0. If A = l and *1(j)=0,
noting that J f ( g ) f / = f / , it suffices to put /(^, 4j (?)£') =?(^, c'),
r i ( A : j f

/ )= l . Now assume that (2.6)4-! and (2. 7)^ (k- 1 ^-2)
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are valid. If dk(q)=l Malgrange's preparation theorem again shows
that

With ek(x9 f')=r*(*, e /)=r*-1(^f /)^,4-i(?)f /) we have (2.6),.
We examine (2. 7)4 . It is obvious that (32gV3ff) (/o') =0. For 1 ^j
^SA — 1 we have with some real constants as that

The inductive hypothesis gives that (52£*~V3cD GO =0, l^j^A-1,

whereas from non negativity of g* one has (32g*/3?5) G°')^0 and

hence (32g*/3fJ) GO =0 for j = l, ..., £-1.

We turn to the case 54(gr) =0. In this case we put rk = rk~\ gk =

gk-\ Noting that 4U(?)£' = 4K?)e', ?(*,£') takes the form (2.6),.
It is also clear that (32g*~Y9£*) (/o') =0 since

Thus we have proved that (2.6), and (2.7), hold.

Next we solve

(2.8) «,-(?) (f ,-*,-(

Put {•;a<(?) = l,l^i^-l} = {i1<i,<- ••<».} and f(1)= (f^

£,-). Denote by f(2) the complement of f(1) so that £'=

From (2. 8) we have

Inductively we have £ik = Kik(x,£w) and hence

(2.9) £CD =#(*,£(»).

Thus (2.6)^ and (2.9) give that

(2. 10) q(x, H(x, f (2)), fa )) =r'-1U, H(x, f (2)), f^)^1^ f®).

In view of Lemma 2.3 there is /(#, f) =#o~~0 (*'>?') such tnat

Hf(p')er(pp,Hto) and

(2. 11) ?0c, f „,, fM) ^c/(*, fa,, f (2))
2 1 (f a), fa,) I2 near pf

with a positive constant c. Set

(2. 12) /(*, f) =/(*, H(x, fa,), fa,) =*0-^(*', //(*, fa,), f »).
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Since rp~1(p/)>09 H(p')=Q and 2 |£ ( 2 ) |^ |£ ' | in a small conic neigh-
borhood of p' it follows from (2. 10) and (2. 11) that

rp~l(x, f')/-1^, f(2)) ^c /(*, r)2 If I2 near p'

with a positive constant £. Finally we put

Noting that dty^p") are linear combinations of rf#t (l^i^s/0 and

rf&GO=<f<W), &(*,£')=&(*, #(*, fa), £<2)), these /,., & / are
desired ones.

We rewrite the conditions Hf,(p')^r(pp,HXQ). This implies that

H/.(p')^r(pj
p,Hx) for any j. Note that

ti(*> £) = -««*(*, ?)2+ zj^c^eo'+^c^n
with /w(^f)=fo-^(*,€ /) . It is clear that ///.(/) e/1^, //^ is

equivalent to

<//„ (//A. (^0 ) <0? rf/,0 (//,. (^0 ) 2> g rf/y* W. (^ ) ) 2 +&p/ (/// . (/) ) •

Remarking that (32&/3f J) (/o7) =0 for j = 1, • • -9 /? and df{(p') are linear
combinations of rf^(0^i^/?), it follows that gjpf(Hf.(p')} =0. Thus

we have

Lemma 2.4. Let /;(#,£') be as in Proposition 2. 18

§ 3. Localization

In this section, unless otherwise specified, we use the notation in
[12], In particular we use pseudodifferential calculus in § 4 in [12],
Recall

?'(*, O =S /»(*, f ')2+ftU, f 0, /yoU, f 0 =fo-«y(*f f 0.*=i
Following §3 in [12] we introduce yj=yj(x, p), ^ = 7 y ( f » A £ ) ;
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<o (i ^j^p)
where 0</^^1 and d0- is Kronecker's delta. Here jfoCO is in
C°°(/2), equal to s on |j |^l, !;&>(*) | =2 on |j|^2 and O^'CO^l
everywhere and & (j) e C7 CR) is equal to 1 on |j|^l and has sup-
port in |j |^2 and O ^ f t C O f g l everywhere. Let /, g, f be one of

-l)9 gh fj(l^j^l) respectively. Set

s=0

and define L(x,%,[j) by

(3.1) £(*,£,AO=2?J ( i )

where L(x, ?', [JL) =l(y, p)') =fd(y, 37'). By the definition we have

^ ( s )(/0')=0 for 5 = 0, * 9 8 , / >

and then it follows that (see the arguments preceding to Lemma
3.1 in [12])

(3.2)

Put

Noting that (32g/3ff) (p') =0, s = Q, • • • , / > , the same argument to show

(3. 2) gives that

(3. 3) G^S(/jP<$'>2, dti + G'J +SX^3<O2, dxft + Gj.

Next we define F(x9 ?', (i) by

It is easy to see that

(3 4") F(x £' u) =xn-\*Jt ~J -* \^f S j /-6y -^0

with

n ^") Fr^ !?' u)\<J• *J) •*• V^y ^ f r"/

We observe that when |#,-1 ̂ //1/2, |fy |f I"1 — 5^| ^/^ we have
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L(x, S, (1} =f*l(Mff(X, ?)), G(x, £', fi) =

with M^x^)^(^9px'^xtt9,irl^irl^9ir^r) where *=(*0,*",
#"') = (#oi*ii *",**, **+i> "%*<*) a^d (£0> ?", ?'") is a corresponding
partition of the coordinates £.

As in [12] we usually work with S(m, G^/S^00 instead of S(m,
Cft). According to this remark "modulo S~°°" will not be indicated
in inequalities and equalities in the sequel.

From Proposition 2. 1 we have

(3. 6) C(x, r, /i) ̂ cF(X, e', ^)2<^'>2

with a positive constant £ independent of [i. Now we observe the
Poisson bracket [L, F] . It is easy to see that

[L, F} = {/, /} (p) + S (^ Us)

To handle the second term on the right-hand side it is convenient
to modify F, G slightly. Set

K*^)=*Z^l-;&a)OO)
s=l

with a positive parameter ^. Note that b(x',Z)^:Q. Define (p(x, f7, //)
by

It follows from (3.4) and (3.5) that

(3.7) fig 6,S«O-|al, <**! + £,) for

Setting

£»(L, p) - (1 +6)~1( {L, F} + {L, Xo}b-r),

R(L, & =

we have

(3.8) (L9

Here we remark that (x0 is regarded as a parameter) {L, 6} #0 is in
S(x09Gfl) and hence we may assume that

(3.9) {L,b}xQeS(tt*9glt) when

Put
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G(x, £', (i) =G(x, £', A

then it is clear from (3. 6) that

(3. 10) G(x, f, /i) ^p(

with a positive constant c independent of fi and ^. It is obvious
that

(3. 11) G(x, £', /i) e5(/^<r>2, </*?+£;) +S(t/<e'?, dxl+Gj.

Again we note that when \x}\^(^n, |?,- |f I"1 — dip\ ^/JL we have

PC*, f, /i) =ft-
if(Mfl(X, eo), G(X, r, AO =A^(M,(X, o).

Let Lrt(*, f, //), Gy(*, f, ,«) be denned by preceding formula with

/«, &• Set

Pj(x, D, [i} = -LUx, D, (i) +g LJ4(x, /)', /i) +Qj(x, D', fi),

P(x, D, ft) =diag(P1(x, D,fi),-; P,(x, D, ft))

where

(3. 12) Qj(x, D', /i) = (Gj(x, D', fi) +Gf (x, D', j«))/2.

It is easy to see that

P(x,D,fi)^f(x,D,fi)+S0(x,D',fi)D0 + S1(x,D',fi)=P"(x,D) near p'

with 50(x,/)',/*)e5(/i,dxJ+(?A)fJS1(*,-D',A<)e5«Aie'>fdxS+(?A1) where
P" (*, f ) = [jfP (y, T]) . Since P" (*,£)= ̂ 2P ( Af A (*, f ) ) when \x,\-£ (t12,
\£j\£'\-l-djt\-^n, by Proposition A. 3 in [12], to prove Theorem 1. 1
it suffices to show that there is a parametrix with finite propagation
speed of wave front sets of P (with some fixed positive fi) at p' =
(0,0,4)- Therefore in the following sections we shall study P(x,

D , f i ) and P(x,D,ft).
Next following § 5 in [12] we introduce

', /.(r, ^) =

where ee{— 1, 1}, e* = max(— e, 0), re/J, n<=R+ and
C°°(^J) are the same ones in [12]. Note that

(3. 13) c,
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with positive constants c{ independent of [i and

(3.14) Z«e(^)=l,«E(^)("))e5(<f />- |a |m(^)- |a+/S1,^) for any a, ft.
E

Remark that

dje (^0 /d%k= Kek WO d<f>/dxk,(3. 15) _
djt (^)/^fjfe = K£ (^) 9^/dfft + 6'(<(f '^>~ \ft£ ^ * &p)

where KBk(</>), ^g(^)e5(l5 ^), Kek(</>) =Kl(</>) = £ on supp «E(^)
when n^!6 and for |a + / J |^ l

(3. 16) 7.(r, 0)&)

We define v>j(x,t;'9 p) ( l^i^S/) according to the preceding formula

from /,(*,£')• Let S=(j(l) , • • - , * ( / ) ) € = {-1, I}1, and /? = (rlf - • -, r,)
' we put

= Opas(1) (^)

Note that m(y>s)GJt for 9,- verifies (3.7) (see § 4 in [12]). From
(3. 16) it follows that

/sC/Z.yOSHZCa,,,
(3 17) J=1

- -

for |or + j8|^l where ^ is the unit vector in Rl with j-th compo-
/

nent equal to 1 and S* = '£s(j)*.
j=i

Denote by {n, m\ the set of integers {«, n + 1, • ••, m} and let
K= [ii, • • • , i j t } be a subset of [!,/]=/ with ii<j2<

m • • <Jk • Then we
shall write

as>jr(9>) =Opaf(l-i) (^£i) •

By |JST| we denote the number of elements of K. Let KdLdl. We
set ej(K,L)=l ifj*EL\K and e y ( J f f L ) = 0 if j&L\K and set

If L = I we write e(JST) instead of e(K, /). For Q,= (?i, • • • , ? / ) e/Z' we
put

, L) o^= (£l (jf f L) ?1 , • • • , fi| (JC, L) ?J
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In what follows we shall write /sCR), /^OOj as, ««o-) instead of
Is(R,<p), J5(j)(r,(/>j), as(y>)9 agU}(V>j) if there will be no confusion.

Lemma 3.1. Let Se{— 1, 1}', Lc.1 and i&L. Then we have

K

where the sum is taken over all KdL with \K\^\L\ — l and

TKGS(<?y«Ll-*K»<tfy*Ll-*^^
for any QjE^R1 with L = L\J{i}.

Lemma 3.2. Let Se { — 1,1}' and Kc.LdI. Assume that

(resp.

Then for any St= {-1, 1}' with S = S on KU (7\L) ^

J'^^//, / j£'\*+nS*+n5*+]E(JiC iL)'>C7!/2m/^\-nS-n5-JR+E(A:,L)=C7 - \

(resp. e5(<//r>fe+n5*+|E(^L)^i/2m(9)-n5"-^+E(^L)o£7,&))

/or any U=(ul9 - • - , M,) G/J1 satisfying Uj = n ( s ( j ) -s (j))
j^L\K. In particular if the hypothesis is verified for any Q^R1 then
the assertion holds for any

Proof. Note that

With this choice of u,- (j&L\K) it follows that

Z uj=-2n Z (*0')*

Recalling that e,(K,L)=\ if jeL\K and ey(Jf ,L)=0 if j&L\K, these
imply that

(resp. n

-2nS-R+e(K,L)°Q=-nS-nS-R+s(K,L)°U
(resp. -fi5-/Z+s(Jff,L)oQ r=-n1Sf-/Z+8(^,l,)ot/)

Clearly this proves the lemma.

Corollary 3. 1. Assume the same hypothesis as in Lemma 3. 2. Then
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for any £<E{-191}' with S=S on K\J(I\L),Jor any V^R1 satisfying
the same condition as that for U in Lemma 3.2 and for any R^R1

with R1 + R2 = R-e(K, L)°V (resp. R with R=R-e(K, L)°F) we have

T= IS (R,) (B5 + Cs) I5 (/2a) (resp. T= (Bs + C5) Is (R) )

where a(Bs} ^(/sC/OrX/K/Wr^CT) ^S «^'>fe+l6(^L)°FI/2, &)
k+^K'L^,g) (resp.

Lemma 3. 3. Assume that T satisfies the same hypothesis as in Lemma

3.2 for any Qe/Z'. Then for any Ri9 V<=Rl with Rl + R2 =
R-s(K,L)oV (resp. R with R = R-e(K, L)°V) we have

TaSoK= Z IS (R,)

(resp.

where the sum is taken over all S with S=S on K\J (I\L) and

(R2))-
(resp.

Remark 3. 1. It is clear from the proof that we can write

TAas.K= Z IS (fli) (Bs + CtilsdljAas.!.

for any operator A.

Remark 3. 2. In Lemma 3. 3 and Corollary 3. 1 if T verifies the
same condition with the metric g then the same conclusion holds

with 55e5«//ry+|E(/f-L)°FI/2
? g) and C5~ = 08

We denote by ||-|| L2 norm in L2(Rd). Let j8, f be operators from
H~°°=\JHS to H~°° then we put

. ,
h

where the sum is taken over h= (hly • «e, A/) e (2"W)' with

A 1 H - - - « + A / = ^ . Also we set

In these notations we drop ft (resp0 p) when ft (respa ^) is the
identity and drop both £ and p if j8 = ^=i
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§ 4. Energy Estimate for A2 and L\

Let /054 be one of /,0, /,-* (l^k^p— 1) respectively. L0(*j £ 5 ̂ ) and
1^ (#,£',/£) will be defined by (3.1)^ As mentioned in Introduction
we proceed along the lines in [9] and [10] but we must be careful
with negative terms in energy estimate which will be of the form
[u]s-e-vi where e = 2~1e, ev = 2~lev, e= (1, 1, • • -, 1) ̂ Rl and there we

can take any v^I. We put

A(x, £, /i) =Lo(*f f0-W, f, /i) =fo-W-fl(*, f', AI)

with a large positive parameter 0. We start with

( ' }

To simplify notation we write z#5 instead of asw unless otherwise
indicated. From (3.1) and (3.2) it follows that a*-ae5(l,^) and
hence the third term in the right-hand side of (4. 1) is estimated
by

in view of Lemma 4.6 in [12]. We observe [/s((2,), A'}. Since AM

e^KO-1,^), ^fa)e5«O,&) for |« |=2 it follows from (3.17)
that

Taking (3. 15) into account one has

with r,e5«€'>-1<^'>1>s*-wfn(?»)"S"0">, &). Recalling that

on suppaso) when «^16 we get

= i Z (« + ?/j ( j) ) /s (Q, + «,) fe», ,

+ Z (« J 0') + ?>) ̂  (Q, + «>) ̂ y + R
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where 5,- e,S (!,£„), Bj = 0 on suppas0) when n^!6 and R is in
^mfy)-"*-*, &). Note that R(A, ^)eES(//"2, gfl) + S(m(<pj),

and substitute (3. 8) into above expression to get

( ) + Z (ns (j) + qj) Is (Q. + ej) B

with
Let us consider /| (QJ [/5 (Q,) 3 ^4]«sa By Corollary 30 1 we have

and hence (RjWS^ Is(Q)ws), (Rws, /s(Q,)^s) are estimated by

£(M)^1/2|w|!iQ+(1/2)>0? c(n,Z) |M|!.Q.O

respectively. Observe /! (Q,)Op(/5(Q, + ̂ )^)a58 Put Af=[l , j - l] ,
L = [j+l, /] then

^S = [«SOM? «•(/)] as.L+<*.<y>as./ with J = M(JL,

Applying Lemmas 3. 1 and 3. 3 one obtains

where 5 = 5 on L, Bs^S(fjt,g) and M=MU {j}. Note that the right-
hand side multiplied by aSoL to the right can be written as

We turn to /|(Q,)Op(/s(Q, + ̂ )5y)aso)aSo/. Since jBy = 0 on suppas0)

when n^!6 it follows from Lemma 40 8 in [12] that
)a,(/) belongs to

Then by Lemmas 3e 1 and 3. 3 again we obtain

/Ma)Op(/s(a+*,)fi,)alW = Z/S(^^

The above argument shows that | (Op(/5(Q, + ̂ )^)^s? /s(Q,)^s) I is
estimated by

Now we handle the term Op(Is(Qf + e j ) D ( A J ( p j ^ . Recall that

,p,) = [lQ9fj]
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Let \lP(p)flw(p")\£e (O^t^-1) then one has

Then taking fed we have D(A, pi) ^[109 fj] (p)>0 in view of
Lemma 2.4. Set j8=j8(4, py) =Z)1/2C4,^) eS?.0 then it follows that

with reS(//,g). This shows that

( ' )

Summing up we get an estimate of — 2Im([/s(Q,), A~\ws, Is(Q)ws)
from below by

Lemma 4. 1.

)^zi;Sf/s((i)zi;s)
j)?,)^

We shall estimate (5) |"lr ,5,Q+*y io from above and below by i^lr .s .Q.o.

Noting that *(J) ^/)U, ^) ^ (1 +^)-1{4,/} (^ ^ (1 +X)-lc with a posi-
tive constant c when ^£ and

^
it follows from the sharp Carding inequality that

(4. 4)
W) l

with positive constants c{(X)m

Corollary 4.1. Let \qj\^B with a fixed B. Then we have

with a positive constant c(X) for (I6^)h^=n, Q<ifJt^fi(n, X) , 6(n, /£, X) g

Uol^j"1/2 and for any u<=C°°(I, H°°).
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Taking Qf = S+Si + gk in Corollary 4.1 and noting

it follows that

Summing up over i, Ae/ we get

*iWMl*+a/».o^HdoM!+ro^

for w^w, 0</^/Kflf^)5 6(n,n,X)^0 with positive constants £,-(^). If
we take Q, = £ + £,• and sum over ie/ we shall obtain a similar
estimate. We summarize ;

where j = 0, 1. Next we observe

( ' '

As shown above the third term in the right-hand side of (4. 6) is
estimated by

We turn to the last term in the right-hand side. Recall (4. 2) with
Q = e. It is clear that (RjAws,Is(e)Aws), (RAws,Is(e)ws) are esti-
mated by

c(n)fjtl/2[_u]2
Atg+(l/2)f0, c(n) |w|ls,^,o

respectively. We shall estimate Is(8)Op(Is(8+ej)Bj)AaSm Using the
same notation as in the proof of Lemma 4. 1 we have

Is (e)Op(Is(e + ej)Bj) (A[aSoM, <xt

From Lemma 3. 1 we have

It is clear that Ij (e)Op(Is(e + ej)Bj)TNA(xSaN can be written as

, B5t=S(t*,g)

where S = S on L. Since

[A, TN~] GSWtfyMhw+^MMto-Q.gj, M=MU [j]
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for any Q,<EJS<, Lemma 3.3 shows that 7| (2)Op(/5(e + */)5,) \_A, TN]
as*N can be written as

where S = S on L. As for /| (e) Op (/$(£ + £/)£,•) Aas(j}aSoJ writing
AasU}aSQj = asU} AaSoJ+\_A,as(j)~]aSoJ and noting that

Ufa.cy,]e5«Aif />w+^ni(py)%&) for any r&R

we shall obtain similar expressions. Combining above expressions
we get

For later use we state our arguments as a lemma.

Lemma 4.2. For any i, k (Ofgi, A^Z) we have

s=-i^
j

5ys/s (if + *
S. >

with BiS<=S(nl/2,g) where ft, ^e5?.fl, * (PA* fa) =*> &,,&).

Remark 4. 1. Clearly the same argument shows that

s, y

with Bj§^S({jil/2,g) where ^ and ft are as in Lemma 4.2.

We return to estimate the last term in the right-hand side of

(4.6). Since IiniS («+*(./) /2) (Op (7S (*+*,) D(A, <pj
is bounded from below by (see (4.3))

we obtain the following estimate

-2Im(/s(^)^2^s, IsAws) ^90\u IU,.o + 2«(l -c(n, X)0'^ \u \2
A,s.g,Q

(4.7) +(l-c(n,VtfX&n+s(j))™\u\i.s.f+t^

for any u<=C°°(I, 7/°°), |^0|^^1/2. We insert the estimate (4. 5), O' = 0, 1)
into a part of the above estimate ;
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(4.8)

In view of (4.4) this is estimated from below by dnc(ty [tt]A,*+a/2).o
+ 08[u]2A.i.o when 0^6(n,Z). Substituting the estimates (4.5),
(j = 0, 1) into this, (4.8) is estimated from below by

(4. 9)

Inserting this into (4.7) it follows that for any sufficiently small
we have

-2Im£
(4. 10) s

+ (l-c(n^)fji-d)

for any h^n, 0<fi^ft(n9i9d)9 6(n,A,d, p) ^0, \XQ\ ^f
where Ci(d,X) are positive constants and j3 = Dl/2(A,(

We turn to estimate Lf. We begin with

+ 2Im(Is(e) [A,

(4. 11) +7lm(Is(g)AwS9 (L!-Lk)Is(g)Lkws)

+ 2Im(Is(e)Aws, [L,,/S(^

The third term in the right-hand side of (4. 11) is denoted by (/).
Then it is clear that

From (3.1) it is clear that [>l,Lifc]e,Sl(<AO»&). In view of Corol-
lary 3. 1 we have

with 5s^S(l,gJ, rs&S(/jt,g) for any y^7. Then the fourth term
in the right-hand side of (4.11), denoted by (//), has an estimate

Noting that if— L4e5(l,^) the fifth term, denoted by (///), is
estimated as follows



EFFECTIVELY HYPERBOLIC OPERATORS 475

Denote by (77), (F), (VI) the sixth, seventh and the last term of
(4.11) respectively. Applying Lemma 4.2 it follows that

(IV) ^

-c(n,-?)A<1/2[YH+(3/2>.o with ri = Dl/2(A,<pj).

Again by Lemma 4. 2 we have

(V), (V

(4. 12) -c(fi,

with &„ , r« e5!.0 , ff (&») ff (r«) = ^» (A, y>j) . We take Tn = 7)1/2 (4, ^) and
jln = D(Lk,<pi')D~l/2(A,(pj'). Here we note that

k i

for any 0<ff<l. Summing up we obtain

2Im(Is(e)Llws,

x |«|

(4.13) _( l -

-C(H,

for any y<E7. Note that from (4.4) a^ (2n+s(j))tT"f \u |L.s.l+f,0 is
j k J

estimated from below by

(4. 14) ^(

Let us consider

where p = Dl/2(A,</>j). It turns out to consider

(1 -
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Lemma 4. 3. For sufficiently small d, a>0 and for sufficiently large
we have

with a positive constant c.

P-I
Proof. To simplify notation we put m(x')=^ (I— #o1}OO) in this

s=l

proof. Then we have

\D(Lk,n) I ̂  (1 +brl( I I/*, fj] OO I +an (*')),

Hence it follows that

with some «>0 by Lemma 2. 4. On the other hand it is clear that

for any £>0, Then taking £>0 sufficiently small and ^ sufficiently
large it follows that

,, ̂ -) ̂  (1 -*c/2)D2(A, Vi).

This proves the lemma.

In what follows we fix ^ <5, cr so that Lemma 4. 3 holds. Then
the sharp Carding inequality gives that

(1 -*) w \u lls.^,o- (1 -^) -lSWy4) l« l
(4.15)

with a positive constant c. Now (4.10), (4.13), (4.14) and (4.15)
give

Proposition 4.1. For any ye/ we have

2Im£ (/s(*)(-^2+EL?)^s,/s^
S k k k
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for
constants c{, c independent of n, ft and 6.

§5. Energy Estimate for Q,

As noted in § 4 we proceed along the lines in [9] and [10], Let
Q be one of Qj (see (3. 12)) then by (3. 11) we have

(5.1) cr(ft)=a(G)+5 I«AiO,&), G = G,.

In what follows we use the following notation ;

where ReR', /z£(2~W)' and the sum is taken over k=(klt •••,kl)
6E(2-W)' with |*|=f. We put

s s

I IPQ. «l I2=z {I KD^-'dcfl"! I 2 +1 ia°''«l I2) •j=l

To simplify notation we set

Wf j") l« ll,

Also we write ye instead of ^(1/2) unless otherwise indicated.
Noting that Q,*=Q, we start with the following identity

(5.2) -\u
-2Im(QIs(e)ws,aIs

We shall estimate first the third term in the right-hand side of
(5.2) denoted by (/). Note that for re5«//fx>,^) we have
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(5.3) \u;T\s.t+<fj>

for any v^I. In fact Corollary 3.1 shows that
is written as

ev) for any

where BsELS(l,gJ, Cs^Sfag) and Bs.
This proves (5. 3) and in particular

(5. 4)

Lemma 5. 1.

for any

Proof. Noting (5.1), (5.3) and (5.4) it suffices to show the
lemma with Q.=G. By (3.11) it is clear that

Hence we have £5) </>'>-'&« = £w W'^w +
OpKO-'acfll' + ri with riGSdttf'y.gJ. Similarly we get Q,»*Q,«
= Op|Q.U)|2+'p2 with r2e5(ju<^O»&). Melin's inequality gives that
(since Z { IQxXO-1 12+ Id" I2)

(5. 5) c^Re((io,»)

for any v>0B Taking v = // and v=Js(j}Is(e}ws^ (5.3), (5.4) and
(5. 5) prove this lemma.

Remark 5. 1. The same argument shows that

for any

We slightly sharpen Lemma 5. 1.

Lemma 5. 20 For any O^j^p and i, v^I we have

-Hlc/J.<,^

Proof. As noted in the proof of Lemma 5. 1 we may assume
that Q, = G. (3.11) means that for O^j
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and hence Q,*) — Q(j^S «^O»&J. This shows that

Since K^O^do-) I2 ̂ 0,5 using Melin's inequality the rest of the proof
goes along the same lines as that in Lemma 5. 1.

We turn to estimate of (/). Writing

/s(^)=/s%)(

we are led to consider

In view of (3.11) and (3.16) it follows that [/s(y), 30£T] is in

W2 OOm(^)-3/2,£,) and hence /! (*-O (1 4- r*) [/s(y), 30ft]/s(*)
is written

This expression gives an estimate of ([/s(y), 90QJ ̂ s (^) ̂ s, (1+r)
Xls(e — ea)ws) by c(n) fjtl/2El;(v) for any ve7. Applying Lemma 5.2
we get

(5.6)

for any
We next estimate the fourth term in the right-hand side of (5. 1)

denoted by (//). We write

In view of (3.11), (3.17) and (5.1) we see that

r = E ry, fye^CX^f7)^^^) """""%&)

hence reS(X/*OnS*+1™(?0 ~"s"%^). Corollary 3.1 shows that

/! Wr= E/l V+eJBsdjLD'yisV-gJ, Bs^S(^g)

for any ye/. This gives an estimate of (rwS9Is(^Aws) by

Again by Corollary 3.1 and (3.17) we have an expression of 7J (e)

Is(e)U) as
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with Bus=Bljs + CUs where B\JSGS(l,gJ, CuaeS(fi,g). Here we
note that [/S(«/s(e), Q,W)] is written as

Hence /!(£)/.? (2) <,-)Q,0) can be expressed

Z /I (* + *») Bu^J^Ia (If) + Z /!
k

with BikGS([£9g). For /£(£)/$(£) (y)(£(>), one has a similar expression.
Now we have an estimate of (//) by

for any ve/. Applying Lemma 5. 1 we have

Es(j. v) + |M
J.S

for any ye/B

We turn to the fourth term in the right-hand side of (5.2),
denoted by (///) . We start with the following lemma ;

Lemma 5.3. Let /2e5(l fg). Then we have

^|2 + ||<^»=i
a positive constant c independent of p.

Proof. Set

with a large positive constant ^. Note that we can take ^ so that
(X£)* = X£, X¥eS(l,g). The same argument as in § 5 in [9]
shows that

(5. 7) 2^Re (Qu, «) ^ | (/?£«, «) | - | ([Q,, K\u, a) I

-z* 1 1 ([£, ^i/2]«. ̂ i/2«) i + 1 (CO., n/2]

Since Q,<B)e5(^,^), Q,te,e5 (//<?'>*.&) for |a|=2 we have

[/Z, Q.] = ~»

with rjS.S'C^f'),^). Then one obtains that



EFFECTIVELY HYPERBOLIC OPERATORS 481

I-^
Applying this inequality to ul±u2, Ui±iu2 we get the lemma.

Remark 5.2. When R^S(fjf,g) we obtain

CGtt,,!*,.)

^
because {Ts

Corollary 5.1. Let R(=S({jf,g). Then we have

for any

Consider the fifth term, denoted by (///), which is equal to

Im ( (ad - da) Is (*) ws, Is (?) ws) 4- Im ( (a* - a) QIS (g) ws, Is (g) ws)

Taking the fact a* — a^S(l,g) into account and applying Corollary
5.1 with u replaced by Is(e)ws, \u ; i(a* — d)Q\s,s is estimated by

(5.8) (* + *00/0«sO>)

for any y^7. To estimate \u ; i[a, Q,] \s.e we observe i[a,Q^\\

Similar argument as to prove (5.3) gives an estimate of \u;r\s,g
by

for any we/. Writing I$(i)KIs(e) =/S («-«,) (1 +r) JtWKIs(g) we
shall show that the right-hand side of the above is written

u} BISIS

(5. 9) +/s*

for any ye/ where Bls^S((i,g), 5,-se5(l,,g1^), CiSGS(fi,g). Since
arguments for flW)Q,(j) is just parallel to that for flw>Q.y> it will
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suffice to show (5. 9) with K replaced by fl(y)Q,(J> Write

/.ao^ftw) = [/.«, fl('}]Qx/> +*(y)[/.ao, 0,0)3 + «(')Q,c/>.A(i».

Since L/.^a«)]e5«Aif />wiWw,&) and [/s(y), fl<"] = (53+ C3)

<D/y~1Js(v} with ft e,S (»!(?>„) -*,&,), C3e5(//m(^)-1,^) then one has

with B1^S(fm(ptf)'
s/2

9g). Setting ft =0(y) [/,(„), Q,(/)] which is in
SX</O^(^)~3/2,&) one can write JtWaU)dU} as

(5. 10) ft + ft+CCft + CsX^X' + ̂ Xlw./.w.

Here note that 52 is independent of ft. In view of Corollary 3. 1

(5.9) follows from (5.10). Hence \u\K\s,s is estimated by

|(</uZ>'>-Hl+rW.cp>/s(*^^

Since flW)e5(A«w<O,&) d^J^d), ^e^C^ft) (^ + 1 gj) it is
easy to see that with T=a^Q^ (l^j^d) or r=00)Q,(y) (#+l

+O^/^/s^)^, <f*D'>Is(e-eJws)\ is estimated by
y,y) from Lemma 5. 1. In the case T=au>QU} (l^j^p) we

apply Lemma 5.2 to conclude that this is bounded by (c -h c (n) /^l/2)
x£"5(y, y) also. Combining these estimates we see that \u;K\Sig is
estimated by (c + c(w)/*1/2) [Es(v, v) +^s(^)} . Hence we have

We turn to the last term in the right-hand side of (5.2),
denoted by (IV). Remark 4. 1 gives that

with Bj-s^S^g). Here we take j-y = l and hence ^l =
Hence (IV) turns to

(5.12) Re 2 (2n + 5 (j

+ Z (B;sJ.u>Q.Is (8) ws,j. S

We want to commute y,O) through Q. First we observe that

(5. 13) [/,(,„ ft] = -iZ {^I<^'>-1Q.(»/,0) -M»Q.«7.0)} +r

with Af, MkGS(m(p,rl,g), r^S(^\^'ym(^rl/2,g). Indeed we
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can write J^ = MkJs(j}, Js(m» = MkJs(j) with
then (5.13) follows from the fact [Q,(w, M*],
^to)"1^). In view of (5.13) the first term in

(5. 12), up to a constant factor, is equal to a sum of

(5. 14) \u ; hT&™ \s,g+<g>, \u ;

where T^S(m(9j)-\g), T^S(^^>m(Vi)-^9g). Writing

Is (e)j:u^rls(e) = IS (S-evKpD'>BsIs(e+ev + 2ej)

with Bs^S(pl/2,g) the last term in (5. 14) is estimated by

Noting that (^T)^Js^Is(e)=BsIs(e + Zej) with Bs^S(l,g) it is clear
that the first two terms in (5. 14) multiplied by c(n) are both esti-
mated by /r1/2||FQ/s(y)/s(e)^ hence by
c(n) pl/2Es(jj y). Since the same argument can be applicable to estimate
(BjsUsui, QJIs(e)ws, JSU)Is(e)w§) because

T*BjSJSU}Is (e) =

with Bs<=S(fj?/2,g), Bs<^S(/jt,g) then we have an estimate of (IV) from
below by

(5.15) Z(2n+*0'))l«;/3Xi !*,+<,,>

>Is («) ws, y,0)/s (e) i»s) | - c (n)
j. S

Here we estimate \u ; A-Q, Is. *+<*•> from below. Recall that ^ =

<PJ) ^c with a positive constant £ (note that we have fixed X in b (#', ^)).
Then Melin's inequality gives that (cf. (5.1))

Re(fta^zO+||</£0'^

Taking v = Js(j}Is(e)ws and noting (5.1) and (5.4) it follows that

\u ; Q, |s. ,+<,.>

for any u e /. Applying Remark 5.2 with ul = Js(j)Is(e)wSy u2 =

Js<fils(8)u>s to (5. 15) it follows that for any

for 0</^/K?0. Collecting the estimates of (/), (//), (///) and
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(/F) and summing up over S, we have

Proposition 5. 1. For any ve/ we have

s(e}Aws)^d&u ; QJ

+ Mf-<ry,l+ Mf+(3/2).0+

for h^n, 0</jt^/jt(n), ff(n,/ji)^0, \XQ\ ^/z1/2
5 u<=C°°(I, H°°) where c, are

positive constants independent of n, (i and 6.

§6. Estimate of Commutators

Let L, A, Q, be as in §§ 4 and 5. We start with

Lemma 6.1. Let Se{-l, I}1 and Me/. Assume that r(a)<E
J and T(a^S(m^'y,gJ for |a| = l.

[r, «S=M] = S TMKaSoK
K

where the sum is taken over KdM with \K\^\M\—\ and

T

for any fte/Z1. Here when \K\=\M\-19 K=M\{i] we have

TKM=±[T, a, (,-)].

Proof. Taking into account (3. 14) the lemma will be proved by
induction on \M\.

Corollary 6. 1. Let SEE {-1, I}1. Then

[L, as]L= £ TKLaSoK+ ^ TKaSoK
\K\gl-l

where

^^

for any Q<=Rl Further

TK=±tL,as(i)-j if \K\=l-l,K=I\{j}9
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^=±[L,«.«,][i,a.u,] if \K\=l-2,K=I\[i,j}.

Corollary 6.2. Let S<={-1, 1}'. Then

T# satisfies the same properties as in Corollary 6. 1.

Now we observe [L2, as] =2[L, as] L + [L, [L, as]]. Applying

Corollaries 6. 1 and 6. 2 one obtains

[L2,«s]= £ rjcLaM
|Jf|^/-l

Noting that I%(e)Is(e)TK is in

S(U(1~1~]K^(U^ '\2nS+[E(^)=Q|/2+l/2?7z/^\-2nS-2e-+E(/C)=Q \

Corollary 3. 1 gives that

(6. 1) IH^Is(e)TK = I$(Ri)BKSIs(R2), BK§^S(fjt(l-l-^\g)

where R1 + R2 = e-e(K)oU, \e(K)°U\ = -l. In particular when |jf|
= /— 1, hence TK=±[L, as(l)] with some i, one has

5^5 - B1
KS + C«, ^is e 5 ( 1 , &) , C^s- e 5 (ft g)

where |<7(^5is) I ̂ £^1/z with a positive constant independent of n, JJL
when w ^ l 6 which follows from the proof of Proposition 6.1 in
[9]. As for /|(e)/s(e)!fx the same argument shows that

(6. 2) Ps(e}Is(e)rtK = n(Ri}BKSI~s(R2}, BK5^S(fjf'l'^9g)

where Rl + R2=e-^(K}^U, \e(K)°U\ = -2. When | jST|=/- l one has

(6. 3) ^5 = ̂ 5 + ̂ 5, Bi5e5(l,&), CK5eS(t*,g)

and k(Bis) | ̂ cw. Repeating similar arguments we can write

(6. 4) IS (e)Is(e)TK=I*s (R1)BK§Is(R2^ BK5^S(^-2'^9g)

with R1 + R2^e-e(K)oU, \e(K)<>U\ = -2. If \K\=l-2, BKS verifies
(6.3). Since \K\^l — \ and hence e(X) ̂ 0 we can choose U so that
R1=e + eh R2=e+ej in (6.1) and R1=8 + gJ9 R2=e + 3Cj in (6.2) and
(6. 4) with some j which depends of course on K. Hence

2, «s] turns out to the sum
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j.S j.S

From above discussions it follows that

Lemma 6.2.

\L\ as-]u,

for 0<C/*^/Kw) where c is a positive constant independent of n, //, 0,

Corollary 6.3.

\(Is(e}\_A2, as]u, Is(e)Aasu) \^

for

Lemma 6.3. Let S<= {-1, I}1 and Mai. Then

[Q,, *SOM] = HTj
MK<D^-la(j)aSoK + ILTjMK^aSoK

where the sum is taken over KdM with \K\<\M\ — \ and

^

for any Q^R1. Further

TMK=±ia^$'\ TjMK=±iasW(j, if \K\= \M\-l, K =

Proof. Noting (3.11), (3.14) and (5.1) the lemma will be prov-
ed by induction on \M\.

We shall estimate /£ (e)Is(e) [Q^9 as]. By Lemma 6.3 we have

id as] - "LT'K<DTI<LU>*S.K + s^a(y)«M +
Corollary 3. 1 gives an expression of /* (e}Is(e}TJ

K as

with Rl + R2 = e— e(K)°U, \s(K)°U\ — —l. Repeating similar argument
for /* (e) Is (e~) TK we conclude that /* (e~) Is (e) [Q,, «s] is expressed as

Z 7|
J.k.S J.k.S

Xls(e+ ik) Q
(i>as + Z /I (^ + ek) BkSIs

Here we note that iTl/2\\Is(e + ek}Tasu\\2 where 7*= <£)/>-1Q,(/) or
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T=QU} are estimated by c(n)^l/2^ ES(J, v) for any v<=L In fact
j.s

writing Is(e+ek)T=(\+r)JSw(\/2)Is(e)T with r<=S(n,g) it suffices
to estimate Q/S(*)( 1/2 )/$(£), T\. This is estimated by c(n)fi\u H.^+o/^.o-
Then applying Lemma 5. 1 we get the desired estimate. Now we have

Lemma 6.4. For any v^I we have

\u l

Recall that Py= -LJ0+ i /£ + (£,.. Set

4 = 1

P,0 (*, /), /£) - Py (X, A - ^, /)', ^) -

Combining Lemmas 6. 2, 6. 4 and Corollary 6. 3 one obtains

Proposition 6. 1. For any v^I we have

Noting that S(l f g) C^C^f')1*1^^)*, ^) for any /Ze (R+)1, Lemmas
6. 1 and Lemma 3. 3 prove the following lemma.

Lemma 6.5. Let T™eS(M,gJ, r(a)e£(m<r>, &) /or |a |=l .
Then we have

Is (/?) asr= 77S (A) «s + S Saw)1™ l/2-*/s (/? + e, - /Z (j)
7,5

/or <z?y; R(j)E^(R+)1, k<=Rl where BjS

§7. Energy Estimate for -

In this section we derive energy estimate which absorbs [ii]*-g ,1

combining estimates in §§ 4 and 5. Let A, Lk, Q be as in §§ 4 and
5. Put

Since T? - T J ^ S ( f i l / 2
f g f t ) by (3.4) one has
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As in § 5 we write JB instead of /e(l/2). Using Melin's inequality
the same argument as in the proof of Lemma 5. 1 shows that

(7.D lirjs(y)/s(*)as^

for any v<=I. We shall estimate (E) =\\TjJs(j)Is(e}asu\\2 +
from below. From Corollary 3. 1 one can write

Noticing that the left-hand side belongs to S«t*g'y2+2nS*Xm(<p)-2nS+eJ-e
9

gj we see that JB^eS (!,&«), CJs^S(fJt,g). We observe a(BJS). In
view of Corollary 3. 1 it follows that

jJM (2)

The last inequality follows from (3. 13). Using this inequality, Lemma
4.6 in [12] gives that

(7. 2) Re (5*0, ») ̂  (*-*(£*) /OIMI'.

Taking v = Js(j}Is(g}asu in (7.2) we get an estimate of (/?) from
below by

Combining this estimate with (6. 1) (v=j) we obtain

Lemma 7. 1.

/or 0<^fjt^fl(n) where Q is defined with

Similar arguments give that

Lemma 7.2,

/or 0<^fJL^ft(n) where Q is defined with GJ9



EFFECTIVELY HYPERBOLIC OPERATORS 489

In Propositions 4. 1 and 5. 1 taking v=j and adding these we

obtain an estimate of 2lrn^(Is(e) Pjgasu, Is(e)asu) from below. To
s

simplify notation we set

^

£Kl/2).. +

E? (u ; j) - M

Note that for a fixed y, 0<C^<1 we have

* W «/^'>*" ; j) ̂  W (« ; j)
C/- J) r {^£S» «/JiD'yku ; j) + «£«> «//D/>fe

W ; j)} ^nE™ (u ; j)

for 0<//^/5(w), 0 (n, fa k} i^O . In view of Lemmas 5.1, 6.1 and 6.5
E™(u\j) is estimated by constant times of e ( u \ j ) for 0<jK^/l(n),
0 ( n , f j i ) ^ 6 . £$2)(M;j) is estimated similarly. Then taking Proposition
6. 1 into account we get

Proposition 7. 1.
2ImZ (Is(e)asPjeu, Is(e)Aasu) ^ 30^ (« ; j)

s

/or (16^)B^«, 0<fi£fl(n), 6(n, p) £9, \x

Next we estimate lower order terms. It will suffice to handle

(7S (e} ttsBitf, Is (8) Ajotsu^ , (Is (*) asAiU\ Is (8) A^)

where Ak = LM (x, D0 - iff, D', ft) , ^eS'C^f), dxl + Gj. In view of
Lemma 6. 1 the second term is estimated by

c(n)

when 0<C/^^/2(w). Again by Lemma 6. 1 the first term is estimated
by

. . .
(7. 4)

+ C(n, [JL) E IV ]?+(!), 0

when
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Now we rewrite our inequality thus obtained in terms of matrix

representation. Set

Since (7.4) implies that (Is(e)as(P6— Pe)u, Is(e) LQeasu) is estimated

by cE(Q\u) -\-c(n, {JL)E(Q} (u) we have from Proposition 7.1 that

Theorem 7, 1.

2ImZ (Is (*) «sA«, /s W 4^s") ^ ^ (M) + c*0E?> (11)s

/or
i^ a positive constant independent of n, fa 0.

We shall examine that Theorem 7. 1 holds with E(
k° (u) for any

after obvious modification. In virtue of Lemmas 6. 1 and 6. 5

it is easy to see that (/5(£)«s [</*£' >\ L2]u, Is(8)Aas^fjLD'yku) and
'yku) are estimated by

for 0<^^/2(w). Fix v, 0<y<l then taking (7.3) into account it

follows that

(Is (*) <xs<fDyPeu, Is (g) LQQa

for n^ra, 0</i^/l(w), 0(n,[i,k)^0, k^R. Applying Lemmas 6. 1 and
6. 5 the left-hand side of the above is estimated by

2ImX«i*D'yhIsW«5Peu9 </i/X>*/s(*) Loeasu)
s

+ c(n, fa K) [A«]J-a/».*-i/2 + ̂ ?)(«) +^(^5 A k)EP(u).

We summarize with notation (M, y) (4) = (^jj.D'yku^ <//Z)7>*z;) ;

Proposition 7.2. Fi# 0<y<l.

(1/2)^_1/2 + 2ImE (Is(e)asPeu, Is(e} Loeasu) (s
) +c,rai» (a) +c3/z£P (B)

/or n£n,
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§ 8. Estimate of Wave Front Sets

In this section we shall give an estimate of wave front sets.

Since argument in this section is parallel to scalar operators we only

skech the argument. Recall

fa= -AXx, D, ft) + S LJ.(x, D', ft)

Denote by 4 j ( x , £ ' , f t ) the principal symbol of Qj(x,D',fi). Since

Qi(x,D',^-qj(x,D',fji)GS(^'y, dx2
0 + <5^ we canr eplace & by q,

in the estimate of Proposition 7. 1. Then in the following we assume

that <3,-(*, D', /*) = <?/O, D', //) without loss of generality. Fix j and

we write P, A, $ instead of Pie, AJt Qj.

. We set following [7]

Define Vw(x,e',ft) by

r»(*. r, A*) =/~v, r, /«) M,/}-ifl(*.
Our basic hypothese on /(#, f x, jw) is ; there is a positive constant d

such that (see [7])

(8.1) 4(1-<5)Q{4/}2^{Q,/}2.

Let /(*,£', /O satisfy (8.1). Then we shall estimate £f(Fw;j)

by [?TPH]f-(i/2).t and E f l i / ^ ( u \ j } applying Proposition 7.1. We use

the notation ~~ and < to indicate equality and inequality which hold

modulo a term that is estimated by

By repeated use of Lemmas 6. 1 and 6. 5 we shall first obtain

the following estimate

(8. 2) 2Im(/s(<r)as[Q, ¥}u, Is(e)AasWu} (fe)-

Similar arguments give that
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(8. 3) -2Im(Is(g)aa[A, ¥]Au, Is(g)Aas¥u)m -- 2 \¥°>u \2
A.s.e.t.

Next again using Lemmas 6. 1 and 6. 5 we obtain

- 2Im(Is («) asA [A, ¥]u, Is (g) Aas¥u) m

-2Im(Is(e)as[A, ¥]

Since A2 = Q — P, replacing A2 by $ — P it turns out to

(8. 4) -2Im(Is(g)asA[A, W]u,Is(e)Aas¥u)w

-2lm(Is(f)as{_A, ¥-\u, Is(g)as¥Pu)M

\u, Is («) as¥Au) ,«

We estimate the second term in the right-hand side of (8.4).

Lemma 8. 1. For any £>0 we have

s
^ -2(1 -s)

modulo c (n, (i, k, s) ̂ 2J1/4 (« ; j) .

In view of Lemma 8. 1 it follows from (8. 2) - (8. 4) that

2ImE (Is(*)as\P, ¥]u, Is(e}Aas¥u) U)

- 2ImZ: (/s (*) aislA, ¥]u, Is (*) «sr Ai) «,
S

where wSk = (fJiD'ykIs(e)as¥
a)u. We consider the last two terms in the

right-hand side of the above. Since

I ^(2)« lfe./].s.,..~Re (Op ( (A, /}-*{$,/} 2) wsk, wsk)

the sum of the last two terms is equal to

modulo c (w, j«5 A, e) £"1-1/4 (M ; j) . Hence taking s so that e<5 (d is the
constant in (8. 1)) this is non positive in view of (8. 1) modulo

c (n, ft, k) £^1/4 (u ; j) . We summarize ;
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Lemma 8. 2.

u, Is(f)asVAu)m

Now from Lemma 8. 2 and Proposition 7. 2 it follows that

Proposition 8.1. Assume (8.1) and fix OO<1. Then

c(n, (t, k) [rftiOJ-o/B.t + cdi, /i,

for h

Propositions 7. 2 and 8. 1 prove that there is a parametrix of P
at ^ = (0, 0, e'd) with finite propagation speed of wave front sets.

Proof of Theorem 1.2. Let (H9(p)Y = Hl. We may assume that

P= (0,^). Since H9(p) belongs to r(pl
p,HXQ) for every i and hence

(8.5) fi(H,(p»*0.

In particular H9(p) and the radial vector field at ^ are linearly
independent. Put Jf0 = £?(#, f) and extend it to a full homogeneous
symplectic coordinates { ,̂5} such that Jf (^) =0, 5(p)=ed. We
write (A:, f) instead of (X,B). From (8.5) we have Hljt(p)*b

and Malgrange's preparation theorem gives that

p'(x, t)=ei(x, f) {f J-2tf (*, fOfo + ̂ C*, Ol =^'U, «/'(*, f)

with e{(p)^Q. Clearly the condition (1.4) 'is symplectically invariant
and then {j5l(^, f)} satisfy (1.4). A pseudodifferential operator ana-
logue of Malgrange's division theorem shows that

where El (x, D) is non characteristic at p and p{ (x, f ) is the prin-
cipal symbol of Pl(x,D). Then we can apply Proposition 8.1 to
[P*(x9D)} and we conclude Theorem 1.2.
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