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Involutive System of Effectively Hyperbolic
Operators

By

Tatsuo NISHITANI*

§ 1. Introduction

It is well known that for strictly hyperbolic operators one has
energy estimate which is stable under a perturbation of lower order
terms. Then it is clear that for a system of strictly hyperbolic ope-
rators the Cauchy problem is solved in C= for any lower order
terms. It is also known that the Cauchy problem for effectively
hyperbolic operators is solved in C= regardless of any lower order
terms although energy estimate of those operators (measured in the
usual Sobolev norms) essentially depends on lower order terms (see
[4]1, [6]1, [8], [9]). Therefore in this paper we are interested in
the same problem for a system of effectively hyperbolic operators.
We shall show that involutive system of effectively hyperbolic
operators (the sense will be clarified in the following) has the
same property.

Let U be an open set in R? with coordinates x'= (x}, *++, x,).
Denote by (x, §')=(x), =+, x4, &, =+, &) standard coordinates in
the cotangent bundle 7*U. Let I be an open interval containing
the origin and put 2=IXU. We denote by (x,&)= (xo,x',&,&")
standard coordinates in 7*Q and

Di=_ia/ax1" J=05 1,“'5‘13 D:(DO’D’)a D’_—'(DI,"';DJ)-
Let
(I.1) Pi(x, D) =—D2+2A'(x, D")Dy—B(x, D"), i=1,2, +++, |

be differential operators in D, of order 2 with coefficients 4‘(x,D’),
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Bi(x, D) which are classical pseudodifferential operators of order
1, 2 respectively defined in a conic neighborhood of (%, ") = (0, #/, &)
eIX (T*U\0). We are concerned with the following microlocal
Cauchy problem

1 1

Pi(x, D)u=3 3 Cia(x, DYDY+,
i=1k=0

Sfi=0 in %<0, 1 =i

(1.2)

where C;;(x, D’) are classical pseudodifferential operators of order
k defined near (X, €Y. Sometimes we write (1.2) in a more con-
cise form;

(1.2)" P(x,D)u=f, f=0 in x,<<0

with P(x, D) =diag (p'(x, D), +++, p'(x, D)) +By(x, D’)Dy+ B, (x, D’),
u= (@, «+o,u"), f=(fY -, f). Here p'(x, §) denotes the principal
symbol of Pi(x, D) ;

pi(x, 8) = —&+2a'(x, €N —b' (x, §") =— (§—a' (x,§"))°+¢' (%, &)
where ¢'(x, §) =a'(x, §")2—b'(x,£"). We assume that p'(x, ) are
hyperbolic with respect to dx, near (£, £) that is
(1.3) ai(x, &') are real and ¢'(x, £’) =0 near (%,’).

Let o= (% &) = (%, & €) be a double characteristic for all
px, 8 (I1=isl). Set p(x, E)=IiIlp"(x, &) and introduce the locali-
zation p,(x, §), pi(x, &) of p(x, 5), and pi(x, &) at p;

bo(x, &) =lim s (o+s(x, 8)), pilx, &) =lim 57" (o+s(x, §).

It is known that p,(x,§) and p(x,&) are hyperbolic polynomials
in T,(T*2) with respect to H,,OET,,(T*.Q)where H,ﬂ is the Hamilton
field of x, defined by {dx, Y>=0(Y, H,) for any YET,(T*2) (see
[3]1, [5]). Hence we can define the hyperbolic cone I'(p,, H,) of
b, as the component of H, in (XeT,(T*2) ; p,(X) #0} and the
propagation cone C(p,, H,o) as

C(pps H,o) ={XeT,(T*2) ;0(X,Y)=0 for any YEI'(p, H,O)} .

Here ¢ is a natural 2 form on 7T*{2 given in any standard coor-
dinates (x, §) by
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o= Zd: d§;\dx;.
i=0

It is clear that I'(p,, H"o): rH['(p;’,, H,o). For Xe&T,(T*2) we set
i=1
{X>=span(X) and for a subspace VCT,(T*2), V° denotes the o

orthogonal space of V.
Now we assume that

there are [ hyperplanes H,CT,(T*2) which intersect
(1.4) involutively, that is, ¢(H?, H9) =0 for any i, j, such
that for j=1, ¢,
C(pp H:) NH;={0}, H;D KerHess p’(p) +<H.)»

where KerHess p'(p) is the Kernel of the Hessian of p'(x, §) at p.
Clearly (1.4) is invariant under a change of homogeneous symplectic
coordinates preserving x,=const. To see our hypothesis more intuit-
ively we observe that

Lemma 1.1. Let r(x,&) be one of p'(x,&). Then the following
Sfive conditions are equivalent.

a) r(x, &) is effectively hyperbolic at p

b) C(r, H,,O) N KerHess r(p) = {0}

c) there is a hyperplane HCT,(T*Q2) such that
HNC(r,, H,) ={0}, HD KerHess r(p) +<H,O>

d) r(r, H,) N (KerHess 7(0))°N <H,,0>"¢ [}

e) I'(r, on) N (KerHess 7(p))°# 0

We shall prove this lemma in §2. From this lemma it is clear
that each pi(x,§) is effectively hyperbolic at p if (1.4) are veri-
fied, for C(pi, on) cC(p,, H,O) and if /=1 (1.4) is equivalent to that
p'(x, &) is effectively hyperbolic at p.

By C*(I, H?) we denote the set of all £ times continuously diffe-
rentiable functions from / to the usual Sobolev space H?=H?(R?)
an dset H"=NH*. Main results in this paper were anounced in

[11].

Theorem 1.1. Suppose (1.3) and (1.4). Then there is a para-
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metrix at (0, %, &) of the Cauchy problem (1.1) with finite propagation
speed of wave front sets. In particular there are a small interval I
containing the origin and a positive constant B such that ;

Sfor any fE((C°(f, H?))! vanishing in x,<0 with WF(f(t, +)) con-
tained in a sufficiently small conic neighborhood I'y of (&, € el there
is a ue (C*I, H*™'"*))! vanishing in x,<0 and satisfying

Pu—fe (C°(I,H"))!, WF(Du@, -))cl, 0=;<1,t<

with 6=y, I';))>0 for any conic neighborhood I, of (%', &) with I',
erl,

For the definition and properties of parametrices with finite pro-
pagation speed of wave front sets, we refer to [12]. Next we study
The propagation of wave front sets. Assume a variant of (l.4).

There are [ hyperplanes H,CT,(T*%) intersecting in-
(1.4)" volutively such that for j=1, <+, [
C(pn H.) NH,;={0}, H,D KerHess p’(p).

Theorem 1.2. Suppose (1.3) and (1.4)’. Let ¢(x, &) be real,
homogeneous of degree 0 in & C= in a conic neighborhood of p such that

e(p) =0, Hy(p)El'(p,, Hy)

and let @ be a sufficiently small conic neighborhood of p. Then it follows
Srom

0N {p<0} NWFw) =0, pEWF(Pu)
that
oEWF (u)
Sor any distribution us (2'(2))%

Of course if we drop the transversality condition;
there are / hyperplanes H,CT,(T*2) such that
H,;DKerHess p'(p), C(p,, H,) NH;={0},

the situation becomes complicated. We give an example.

Example 1.1. Let p=(0,0, -+, 1) eT*R*'\0 and p‘(x, §) be
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P(x, &) = — (§o— (1 —1)2xeE3) 2+ (x—17'%,) %5,
PP(x, ) = — 624 (xo—x)265+1EL,  0<r<l.

Set p(x, &) =p'(x, ) p*(x, &) and denote by 3 (p’) the doubly charac-
teristic set of pi(x,£&). Then noting 0<r<{l there are hyperplanes
H; such that

HiDTp(Z(p‘)), C(ﬂ;» Hzo)nHiz{O}-

In particular p'(x, &) are effectively hyperbolic at p. But for any
choice of such H, we see that C(p%, H,) N H,# {0} hence

C(ppa on) r]Iil.i {0}'
It is easy to see that (taking x, as a parameter)

xi=ray xy= =27 (1 =) %, = (1 =) xy, &= — (1 —1)2x,, §,=1

(xZa % xd—-l) =const,, (EZa AR Sti—l) =const.

is a bicharacteristic of p?(x,&). We denote it by yr=r(x,). Note
that

rc (.
Since yC {(x, &) ; p?(x, §) =0} we conclude that
7C {(x, 8) 5 p(x, &) =dp (x, &) =d’p (x, §) =0}.

In §2, we shall give a proof of Lemma 1.1 which gives a geo-
metric characterization of effective hyperbolicity (cf.[10]). From
this we show the existence of / hypersurfaces which play an important
role when deriving energy estimate. In §3 we localize principal
symbol p'(x, ) along [ hypersurfaces and introduce a partition of
unity associated with these surfaces. In §4, we derive energy
estimate for the terms which are squares of first order operators, and
in §5, for the other term in an expression of p'(x, §) along the lines
in [9] and [10]. In §6 we shall estimate commutators which come
from partition of unity. §7 is devoted to give energy estimate for
P(x, D) blown up of P(x,D), collecting estimates in §§4, 5 and 6.
This shows the existence of parametrix in Theorem 1.1. Finally
in §8 we estimate wave front sets applying energy estimate in §7.
This will be used to prove Theorem 1.2 and also to show finiteness

of propagation speed of wave front sets for a parametrix in Theorem
1.1,
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§ 2. Preliminaries

At first we prove Lemma 1.1 in a slightly more general form.
For XeT, (T*2) we denote by Hy the Hamilton vector of X, defined
by <X,Y)=0(Y, Hx) for any YET,(T*2). Let r(X) be a hyper-
bolic polynomial in T,(T*2) with respect to H,eT,(T*Q2), 0 €
T:(T*2). Denote by 2 the linearity space of r;

S=(XeT,(T*2) ;r(tX+Y)=r(Y) for any ¢ and Y}

(see [1], [2]). Then we have

Lemm 2.1. Notations as above. Then the following four conditions
are equivalent,

a) C(r, Hy) N 2= {0}

b) there is a hyperplane HCT,(T*RQ) such that
HNC(r,Hy) = {0}, HOX+<{Hy)

c) LC(r,H)NZ'N<HY + 0

d) I'ryH)) N2+~ @

Proof. At first we show a)©d). Assume I'(r, H) N2°=@ then
by the Hahn-Banach theorem there is 0# Y& T,(T*R2) such that (Y,
X) =0 for any X&€I'(r, Hy) and ¢(Y, X) =20 for any X€23°. These
imply that YEC(r, Hy) and Y€ 2. This would give a contradiction
to a) hence we have a)=>d). Suppose 0#YEI'(r, H)) N 2°. Then
it is clear that <Y)'D2, <Y>’'NC(r, Hy) = {0} because I'(r, Hy) is
open. This implies obviously C(r, H;) N2={0}. Hence we have
proved d)=>a).

Since c¢)=>d) is obvious it suffices to show that a)=>b)=c).

Proof of a)=>b). When H,e X+ 23" we write Hy=X,+ X, with X
€2 and X,e2°. Since I'(r, H)) +3CI'(r,H,;) and I'(r, H)NZ=49,
it follows that 0#X,el'(r, H;). It is clear that ¢(X,, H;) =0 and
hence Hy,e<X,). Noting that X,€2° X,&I (r, Hy) we get <X,)’DYX
and <X,)’NC(r, Hy) = {0}, for I'(r, Hs) is open. Then <X,)° is a
desired hyperplane. Consider the case Hy;&2+23° and hence (2+
2°)N<Hz»={0}. As proved above, a) implies that I'(r, Hs) N 3"+
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@, and then we can take 0#Z& [ (r, H;) N 2°. Note that

2.1 ZY'2 2, <ZX’NC(r, Hy) = {0}.
Set T=<Z>N (F+2") hence
2.2) ToZX, TNC(r, Hy) = {0}.

We examine that dim7=dim(2+23°) —1. Indeed from I'(r, Hy) +2
' (r, H) it follows that

2.3) C(r, Hy) C 2.

By (2.1) and (2.3) it follows that {(Z)*»2+ 2" and this shows the
desired assertion.

Take a subspace VCT,(T*2) so that T, (T*Q2)=(2+23°) +V
(direct sum) and write Hy=Y,+Y, Y,€3+2° 0£Y,€V. Again
we take a subspace WCT,(T*2) so that

V=<Y,p+W (direct sum).

Then the hyperplane H=T+<H;>+ W is the desired one. In fact
we have HNC(r, Hy) = {0} by (2.2) and (2.3). On the other hand
it is obvious that HDOXY+<{Hp).

Proof of b)=c). Take 0+YeT,(T*2) so that <Y>=H". Then it
is clear that <Y>C3°N<{H,)°. We show that Y or —Y belongs to
I'(r, Hy). If not we would have <Y>NI'(r, H)=@. Then by the
Hahn-Banach theorem there is 0#Z€7T,(T*2) such that ¢(Z, X)
=0 for any X&I'(r, H;), 0(Z, X)=0 for any X&<Y). This shows
that ZeC(r, H;) and X&<Y)=H then we would have a contra-
diction to b). Thus we have proved b)=c).

Proof of Lemma 1.1. Noting that KerHess r(0) is the linearity
space of 7, in view of Lemma 2.1, the statements b), c¢), d) and
e) in the lemma are equivalent. On the other hand from Corollary
1.4.7 in Hoérmander [3], it follows that a) and e) are equivalent.

Now we observe the hypothesis (1.4). It is clear from the proof
of Lemma 2.1 that (l.4) implies that

2.4 X, or —X;E€I'(p,, H, )N (KerHess p’ (p))”ﬂ(H,0>”
where <{X;>=H,.
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Lemma 2.2. Suppose (1.4). Then there are | real functions f;(x,
"), homogeneous of degree 0 in &', C~ in a conic neighborhood of p’=
(%, &) satisfying

g (x, &) =c; fi(x,EN2IE"|?  near o’
Hy () ET (pp H)s (fo ) (0) =0 for any iy

with positive constant ¢; where {+, -} is the Poisson bracket.

Proof. Write r(x, &) instead of p'(x, &) for arbitrarily fixed i.
Recall that r(x, §) has the form

r(x, &) =—(&—a(x, §))2+q(x, §).

Since ¢(x, £’) is non negative near p’ the Morse lemma shows that
there are functions b;(x,§") (1=j=v), homogeneous of degree l in
§’, €~ in a conic neighborhood of p’ such that

(2.5) q(x, E’);_Z.;bf(x, §')? near o', ¢, (x, &)= é‘]‘ldbf(x, &)
Hence we have
(KerHess 7(p))’=span(H, _.(p), Hs, (") s 1=5=v).
Take 0#Xe& (KerHess 7(0))°N I (p,, H,o) N <H,0>" then we have with
real constants «; that
X= 3 a;Hy, () +aH,-0 (0).
Since XET,{x,=0} =<H. )’ it follows that a;=0. Set
F &) =5 aby(x ) 1817

then it is clear that H (o) =X (p,, H,c). It is also clear from
(2.5) that

q(x, &) =cf(x, §)?|€|* near o
with a positive constant ¢. It remains to show that the last state-
ment. We return to the original notation. Since we have chosen
Sfi(x, &) so that H; (") =X,€H] it follows that {f;, fi} (p")=
o(Hys (0"), Hy (0')) =0 (X;, X;) =0. This proves the lemma.

Remark 2.1. In Lemma 2.2, we can replace f;(x, &) by e¢;(x,§")
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fi(x, &) with ¢;(p") #0, homogeneous of degree 0 in &’.

Lemma 2.3. Assume (1.4). Then we can choose a homogeneous
symplectic coordinates (x,&) near p preserving x,=const., and a number-
ing of the indices i such that p=(0,¢y) and f;(x,§) in Lemma 2.2
may take the following form

Ji(x, &) =x—¢; (', &) (1=i=]), dg;(0") =dx; (1=isp—1)
dg; (") =linear combination of dx; (1=j=<p), (p=i=<l)
where p=dim span (dx,, df;(0") ; 1=j=1) and p"=(0,¢;) ET*U\O.

Proof. Note that we may assume that p=(0,¢;). By a change
of homogeneous symplectic coordinates near (x,&) preserving x,=
const.,, we may assume that a'(x, §") =0 and hence

p(x, 6) =—E&+q"(x, &).
It is clear that I'(p;, H,) C {§,<<0} and then the hypothesis
H; (o) €l (p,, H,) T (p5, Hy)
implies that (8f;/0x,) (0')>0. Thus we can write
Ji(x, §) =e;(x, &) (xo— i (x', €))

with ¢;(0")>0. Taking Remark 2.1 into account we may suppose
that

fi(x, &) =Xo—¢; (x,, §").

We proceed to the next step. Note that {f;, fi} (o) = {¢:, ¢} (o)
=0 for any i, j. Renumbering f;, if necessary, we may assume that

span (dx,, dg; (") ;1 Si=1) =span (dx,, do, (o) ;1 Si<p—1).

Set &, (x’, &) =dg;(x’, &) — (8¢;(p") /0x4)xs and note that {J;, &} =
{¢:,¢:} (o) =0. Put
X. (%, &) =¢.(% E)

with #= (xy, =+, x4_1), E=(&, **+, &21). It is clear that {X,}?Z! form
a partial homogeneous symplectic coordinates and dX; (1=i=p—1),
dx,; are linearly independent at p’. Then we can extend {X}{Z] to
a full homogeneous symplectic coordinates {X;,Z;}%.; so that p'=
(0,e). We write (x’,&’) instead of (X’,Z’) and hence we have
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dg;(0") =dx;,, 1=i<p—1.

Since d¢;(0") (p<i=l) are linear combinations of dx; (1Zi<p—1)
and dxs interchanging the coordinates x, and x; we get this lemma,

Proposition 2.1. Assume (1.4). Then we have
{ p_l 4 ’
g (x,§) =’§11;k(x, §)?+g(x, &)

where 1, (x, &), g;(x, &) are homogeneous of degree 1, 2 respectively, G~
in a conic neighborhood of ' satisfying

(@) =0, g&()=0, (Fg/3)(0)=0, 1=s=p,
g(x, 8 =c, fi(x, 80212 near p’
with f;(x, &") =x,—@; (x, &) such that dd.(p") are linear combinations
of dx; (1=i=p) and H; (o) €I (p,, Ho).

Proof. We fix i and in what follows the index ¢ will be omitted
from notation. To simplify notation further we set 6,(r) =0 if (o%/
06%) (") =0 and 0;(r) =1 otherwise for r=r(x,§’). We denote by
4,(r)&" the set of coordinates §; with 1=<i=<k satisfying J;(r) =1 and
by 4;(r)é’ the complement of 4,(r)é’, that is, 4i(r)& ={&,, -, &)\
(4,(r)é"). We shall prove by induction on £ (A=p—1) that we can
express ¢ as

k
9Cx, €)= 2 3,@)es(x, € (6= hy (3, £ (@€
+r*(x, £) 8" (x, 4i(9) §")
where ¢;(x,&’), r*(x,&’) are homogeneous of degree 0 in &’ with
e;(p") >0, r*(p")>0 and g*(x, 4i(¢)€’) is homogeneous of degree 2 in
4:(¢)&’, non negative near p’ such that
(2.7) (°%g*/963) (0') =0, s=1, -,k
When £=1 and 6,(¢g) =1 Malgrange’s preparation theorem gives that
q(x, &) =e;(x, &) {(E1—h(x, £(9)€))°+ 8" (x, £(9)§")}
=0 (Qer(x, &) (E1—h(x, () €)) e (x, §) g (x, 4 () €").

It is clear that (0%'(x,4i(¢)€")/0&) (0')=0. If k=1 and d,(¢) =0,
noting that 4{(¢)§’=¢’, it suffices to put g'(x,4{(¢)&") =q(x, &),
r'(x,&)=1. Now assume that (2.6),., and (2.7),_, (k—1=p—2)

(2.6),
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are valid. If 9,(¢) =1 Malgrange’s preparation theorem again shows
that

g7 (x, di (&) =& (x, 41 (@) €") {(Ex—hu(x, 45 (9)€"))?
+g* (x, i (9§}
With ¢, (x, ") =rt(x, &) =r*"'(x, §)e&(x, 4;_1(¢)&’) we have (2.6),.
We examine (2.7),. It is obvious that (d%*/d&%) (p’) =0. For 1=s
=<k—1 we have with some real constants a, that
(%g*/982) (o) =di+e(p’) (0°g"/0E%) (o).
The inductive hypothesis gives that (d%g*1/98%) (p') =0, 1=s=<k—1,
whereas from non negativity of g* one has (%g*/3€%) (0’)=0 and
hence (0%g*/9%) (o) =0 for s=1, ««+, k—1.
We turn to the case d,(¢) =0. In this case we put r*=r*"1 gt=

g"'. Noting that 4;_,(9)§'=4;(9)€’, q¢(x, &) takes the form (2.6),.
It is also clear that (d%*~1/96%) (o) =0 since

(%q/983) (p’) =ai+r*"1 (o) (%¢*71/98%) (0').
Thus we have proved that (2.6), and (2.7), hold.
Next we solve

2.8) 0,(q) (§i—hi(x, £(9)§)) =0, i=1,+--,p—1.

Put {i;0:()=1,1=i=p—1} = {i,<]6,<-+-<i} and §q=(§5 &), oo,
€;). Denote by &, the complement of & so that &= (§u,§w).

From (2.8) we have
&, =hi, (x, 45, (D E) =hy (%, &,y =+, &, £
Inductively we have Eik:/i,.k(x, £%) and hence
2.9) En=H(x, &qy).
Thus (2.6),, and (2.9) give that
(2.10)  q(x, H(x,8w), £o) ="' (x, H(x, §0), £@) 87" (%, §a).

In view of Lemma 2.3 there is f(x, &) =x,—¢(x’,&’) such that
H,(p')el"(p,,,H,o) and

2.11) q(x, Eayy E@) Zef (%, €y €)% s E) |2 near p’

with a positive constant ¢. Set

(2.12) f(.xs §)=f(x, H(x,£2),Ea) =x—¢ (', H(x,§2),§w).
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Since r71(p") >0, H(p’) =0 and 2|&y |=[€’| in a small conic neigh-
borhood of p’ it follows from (2.10) and (2.11) that

71 (x, §) g (x, Ep) =¢ f(x,£)?|&' |2 near p’
with a positive constant ¢, Finally we put
Li(x, &) =0d,(q) (e; (x, §"))2(§:—hi(x, 4:(@) "))
g(x, &) =r""1(x, )8 (%, §).
Noting that d¢;(0") are linear combinations of dx; (1=i<p) and

dg;(0') =dg: (0"), ¢i(x, &) =¢:(x, H(x, §3), ), these [, g, f are
desired ones,

We rewrite the conditions Hj (o') €I'(p,, H,). This implies that
H; (o) EI'(p;, H,) for any j. Note that
. b1
po(x, &) =—dly(x, £)*+ ,E‘; dly (%, )2+ 8o (%, §)
with l;(x, §) =§—a’(x, §'). It is clear that H; (o) €I (p;, H,) is
equivalent to
=1
diso(H;,(07)) <0, dlio(Hy, (0))*> 2 dli(Hy, (0"))*+ 8500 (Hy,(0))

Remarking that (d%;/0¢2) (p’) =0 for s=1, «++, p and df;(o’) are linear
combinations of dx;(0=i=p), it follows that g,-p,(H,i(p')) =0. Thus

we have

Lemma 2.4. Let f,(x,&) be as in Proposition 2.1. Then
~ - b-1 ~
{lJ'O: .ft} (P) >O, {liOs ﬁ}z(p)> kgl {liks fi}z((o’)

for any i, j.

§ 3. Localization

In this section, unless otherwise specified, we use the notation in
[12]. In particular we use pseudodifferential calculus in §4 in [12].
Recall

j P_l ’ ’ =4 j ’
qj (x; El) =Iz-z-=lljk(x’ E )2+gj(xy E )7 liO(xy S ) :EO_aJ(x’ E )-
Following §3 in [12] we introduce y;=y;(x, 1), 7,=79,(, 1) ;
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yo=pxo, yi=px(x) (ISj=p),  yi=pn(px)x; (p+1=5=d)

no=p"60, 9, =p i (W ELEDTE (IS =)

=p 0 (e (EXE DT —0,)) (§,—0,,KED) +p710,KE"> (1Zj=p)
where 0<¢=<1 and d;; is Kronecker’s delta. Here yx,(s) is in
C~(R), equal to s on [s|=<1, [%(s)|=2 on [s]|=2 and 0=y (s) <1
everywhere and y,(s) €Cy(R) is equal to 1 on |[s|=<1 and has sup-

port in |s|=<2 and 0=y (s) =<1 everywhere. Let [, g, f be one of
Ly 0<k=p-1), g, f; {<j=<I) respectively. Set

I3, €) =15, ) — £ 1 (0)&,, 19 (@) = (31/08) (9)
and define L(x, & p1) by
3.1 LG & =5 106+ L(x, €, )
where L(x, &, 1) =10, pp’) =¢l(»,7"). By the definition we have

[9@)=0 for s=0,«++,p

and then it follows that (see the arguments preceding to Lemma
3.1 in [12])

(3.2) LeS (g, dd+G) +S(1XE", dxi+G,).
Put
Gx, &, =120, 1) =80, p1").

Noting that (0%g/062) (p') =0, s=0, «++, p, the same argument to show
(3.2) gives that
(3.3) CES(UKEN?, did+G,) +S (pKEN?, dxi+G,).
Next we define F(x, &', 1) by

F(x, &, ) =p7fO, ) =170, 7).

It is easy to see that

G F&Em=mtEfo@)nG +Fe ¢, w,
Fw o) = (@f/3x) (o)

with

(3.5) F(x, ¢, peSy, di+G,).

We observe that when |x;|<p"% |§;|6"|7'—0d;,,|<p we have
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L(x, & p)=p(M,(x,8)), G, &, w=pg(M,(x,8&)),
F(x, &, p)=pf(M,(x,&))
,’2 7

with M, (x, &) = (pxo, px”, 22", p='60, p7'€", p7V7€"") where x= (x,, 1",

172

%) = (%o, X1, ***y Xp, Xps1, **, Xa) and (&, §,§") is a corresponding
partition of the coordinates &.

As in [12] we usually work with S(m,G,)/S;~ instead of S(m,
G,). According to this remark “modulo §;=” will not be indicated
in inequalities and equalities in the sequel.

From Proposition 2.1 we have

(3.6) G(x, &, p) 2cF(x, &, )X pe'>?

with a positive constant ¢ independent of g, Now we observe the
Poisson bracket {L, F}. It is easy to see that

(L FY =0, /} (0) +'Z U () — DI (0) o (0) +1, 1 €S (4%, a8 +G,).

To handle the second term on the right-hand side it is convenient
to modify F, G slightly. Set

b, D=2E (1= ()
with a positive parameter 2. Note that b(x’,2) =0. Define ¢(x, &', )
by
@(x, &, 1) = (14+b) T (F+x4b).

It follows from (3.4) and (3.5) that
3.7) PHESKENT, dxt+G,)  for |a+B|<1.
Setting

D(L, ) =(14+b)'({L, F} + {L, xo}b—1),

R(L, ) =1+b)1({L, b} xo+ {b, LY p+7)
we have
3.8 {L,¢} =D(L, p) +R(L, ¢).

Here we remark that (x, is regarded as a parameter) {L,b}x, is in
S(xo,é,,) and hence we may assume that

(3.9 {L,b}x,€85(p? g,) when [x| =p

Put
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Gx, &, 1) =G (x, &, p) +02(x", D<peyxt
then it is clear from (3.6) that
(3.10) G(x, &, 1) Zep(x, &, )2 us">?

with a positive constant ¢ independent of x and A It is obvious
that

(3.11)  G(x, &, p) ES(UKEN?, dxd+G,) +S(KEY, dx2+G)).
Again we note that when |x;|<p% |§;16"|7'—0d;,|<p we have
o, &, W =pf (M, (x,8)), G(x,&, 1) =pPg(M,(x,&")).

Let Ly (x, & ), Gi(x, & p) be defined by preceding formula with
Lix, &. Set

~ -1
Pj(xs D, #) = _L?O(xa D’ ‘U) +1§1L’2k(x’ D,) /J) +Q,J'(x7 D’a #),

P(x,D, p) =diag (P (x, D, p), -, P,(x, D, p))
where
(3.12) Q;(x, D', 1) = (G;(x, D', p) +GJ (x, D", 1)) /2.
It is easy to see that
P(x, D, ) = P(x, D, ) +By(x, D', ) Dy+ B, (x, D', pr) =P*(x, D) near o’

with By(x, D', 1) €S(, dx2+G,), By (x, D', 1) €S(p€’>, dx2+G,) where
Pt(x, &) =p2P(y,m). Since P*(x, &) =2P(M,(x,&)) when |x;| <y,
|€;1€6" |71 —0;5| =, by Proposition A.3 in [12], to prove Theorem 1.1
it suffices to show that there is a parametrix with finite propagation
speed of wave front sets of P (with some fixed positive g) at p’'=
(0,0,¢;). Therefore in the following sections we shall study P(x,

D, p) and P(x, D, p).
Next following § 5 in [12] we introduce
a:(P) (x, &', 1) =xa(enp (x, &', 1) ">
Je (@) (x, &, ) = {22, (ep{pé"DV%) — 1} o+ pg" > 712
Je(r, &) =Je ()7, Le(r, §) =pp&" D™ Je (ne+r, )
m (@) (x, &, p) = {¢*(x, &', ) +<pé" >}

where e€ {—1, 1}, ¢*=max(—¢, 0), reR, neR* and 1(s), x()E
C~(R) are the same ones in [12]. Note that

(8.13) am(P) < J: (@) Scm ()
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with positive constants ¢; independent of g and

B.14) Za(g) =1, a(p)BESKE>m(p)~'**", g,) for any a,b.

Remark that

a.]s (¢)/axk=Ksk (¢) a¢/axk’

0] (¢) /08, =KE () 0/ 08, + S (K& > uE>72, g,)

where K. (¢), KPS, g), Ku(p) =Ki(p)=¢ on supp a.(¢)
when =16 and for |a+8|<Z1

(3.16) I(r, ) B €S (KED1Kpg Y™ m (¢) 7 1a*8 g,).

We define ¢;(x, &, ) (1=<i<l) according to the preceding formula
from f;(x,&’). Let S=(s(1), +++,sD)E{—1,1}}, and R=(ry, *++, 7))
eR' we put

(8.15)

1
IS(R3 50) =}£[_1 13(1') (TJ') 501) (x’ 5’, f“)a aS(SD) =Opas(1) (901) e 'Opas(l) (901)

m(p) = (m(p), <=+, m(p)).

Note that m(p;) €4 for ¢; verifies (3.7) (see §4 in [12]). From
(3.16) it follows that

]
IS (R, 90) gg)) = ,-Z=:1 Caﬂia
Capi ES(LE 11 pE > m (p) » &)

for |a+8|=<1 where ¢; is the unit vector in R' with j-th compo-

3.17)

-nS—R—|a+Ble;

!
nent equal to 1 and §*=3 s(j)*.
i=1
Denote by [n,m] the set of integers {n,n+1,--,m} and let
K= {il, "',ik} bc a Subset Of [l,l] =I With i1<i2<"'<ik. Then we
shall write
as.x (@) =Opas(i1) (Soil) . ‘Opam'k) (Soik)-
By |K| we denote the number of elements of K. Let KCLcl. We
set ¢;(K, L) =1 if jeL\K and ¢,;(K, L) =0 if j&L\K and set
e(K,L)=(5(K, L), +--,&(K, L)).
If L=1 we write e(K) instead of ¢(K,I). For Q =(qy,-*+,q,) ER' we
put

E(Ks L) OQ,= (61 (K’ L)qu ey, el (Ky L)ql)
le(K, L)oQ | =&, (K, LYg,+ -+ +&(K, L)q,
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In what follows we shall write Is(R), J.; (), as, ay; instead of
Is(R, ¢), Ji (1, 0;), as(p), a; (p;) if there will be no confusion.

Lemma 3.1. Let S€{—1,1}}, LCI and i&L. Then we have

(@@, @s.]= ; Txas.x

where the sum is taken over all KCL with |K|<|L|—1 and
TKES(<{:'>—(!L=—IKI)<‘UE/>(ILI—IKI)+IE(K.f)=QI/2m (Sp)s(K.’i)»o’ 2.
Sor any QER" with L=Lu {i}.

Lemma 3.2, Let S€{—1,1}' and KCLCI. Assume that
TES(<#$/>k+ZnS*+Is(K.L)le/Zm (90) —2nS-R+F-(K.L)“Q, g/‘)
(res[). ES((#E’)H"S'HE(K'L)°Q|/2m (w) —nS—R+E(K.L)°Q, gﬂ)_
Then for any Se{—1,1}" with S=S on KU (I\L) we have
TES(<ﬂ$I>k+nS‘+nS'+IE(K.L)uUl/zm (¢) —nS—nS —R+e(K.L)=U’ g#)
(resp. ES(<#EI>k+n§‘+|E(K,L)HUI/Zm(SD) —n§—R+E(K,L)=U’ g,,))

Sor any U=, -+, w) ER' satisfying u;=n(s(j)—5()) +q; when
JEL\K. In particular if the hypothesis is verified for any Q ER' then
the assertion holds for any UER'

Proof. Note that
s(N =5 =—26M*=5(H™.
With this choice of u; (j&L\K) it follows that
L =" 3 ((DF-5(H+ 2 0

jeL\K
Recalling that ¢;(K, L) =1 if j€ L\K and ¢;(K, L) =0 if j&L\K, these
imply that
2nS* + |e(K, L) oQ | /2=nS8*+nS* + |e(K, L) U |/2
(resp. nS*+ |e(K, L)oQ |/2=nS*+ |e(K, L)oU|/2)
—2nS—R+e(K, L)oQ=—nS—nS—R+¢(K, L) U
(resp. —nS—R+e(K, L)oQ =—nS—R+e(K, L)oU)

Clearly this proves the lemma.

Corollary 3.1. Assume the same hypothesis as in Lemma 3.2. Then
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for any S {—1,1}! with S=§ on KU (I\L), for any VER' satisfying

the same condition as that for U in Lemma 3.2 and for any R,ER'

with Ri+R,=R—e(K, L)oV (resp. R with R=R—e(K, L)oV) we have
T=1I}(R) (Bs+Cs)Is(R;)  (resp. T= (Bs+Cs)Is(R))

where 0 (Bs) =0 (Is(R))'o (Is(Ry)) o (T) €8 ({ué Y= H-DV12 ) and

CsES (uCpe Y+ ®DYI2 oy (resp. o (Bs) =o (Is(R)) o (T)).

Lemma 3.3. Assume that T satisfies the same hypothesis as in Lemma
3.2 for any QER'. Then for any R;, VER' with R+ R,=
R—c(K, LYoV (resp. R with R=R—e(K,L)oV) we have
Tas.x= Zg: I3 (R)) (Bs+Cs) Is(Rp)as..

(resp. Tas.x=2, (Bs+Cs)Is(R)as.1)

where the sum is taken over all S§ with S=S§ on KU (I\L) and
0(Bs) =0 (Is(R)) o (Is(Ry)) 7'o (T) €S DM EDVI2 gy, CsES(p
XpE Y DVIR ) (resp. 9 (Bs) =0 (Is(R)) o (T)).

Remark 3.1, It is clear from the proof that we can write

TAas.x= Z§: I (R,) (Bs+Cs)I5(Ry) Aas.,,

for any operator A4.

Remark 3.2, In Lemma 3.3 and Corollary 3.1 if T verifies the
same condition with the metric g then the same conclusion holds
with BsES({p/YHe®DVI2 o) and Cs=0.

We denote by ||+|| L2 norm in L?(R?). Let B, y be operators from
H™"=\UH’ to H™" then we put

D |ul? s rm=|lr{peD >"Is(R) Basul[?
D uld s remm= ;(7) |35, Rehm
where the sum is taken over A= (A, +--, b)) E(2IN)' with |h|=
b4 <o +h=t. Also we set
(T)[u];ze.R.mz §<r> lu |;29.S.R.m; (7)[u],29.1e+(r),m= ZSI(T) [ 13,574 t).m-

In these notations we drop B (resp. 7) when B (resp. 7) is the
identity and drop both 8 and 7 if f=y=identity.
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§4. Energy Estimate for 4% and L

Let Iy, I, be one of l;, l; (1<k=<p—1) respectively. L,(x, &, ¢) and
Ly(x,¢’, p) will be defined by (3.1), As mentioned in Introduction
we proceed along the lines in [9] and [10] but we must be careful
with negative terms in energy estimate which will be of the form
[u].-.,, where &=27, &,=27%,, e=(1,1,-++,1) ER’ and there we
can take any vel. We put

A(x, & p) =Lo(x, §—10, &', p) =& —if—a(x, &', p)

with a large positive parameter §. We start with

—2Im(I5(Q) dasu, Is(Q,)“su) =0y |ul%00+26 |u I??.o,o
+2Im(als(Q)asu, Is(Q) asu) _ZIm([Is(Q,), Alasu, Is(Q)asu).

To simplify notation we write ws instead of asu unless otherwise
indicated. From (3.1) and (3.2) it follows that a*-a=S(l,g,) and
hence the third term in the right-hand side of (4.1) is estimated
by

4.1)

(c+c(a)p) lulfq.0
in view of Lemma 4.6 in [12]. We observe [/s(Q), A]. Since 4©@

eSEN 8), AnESKED, g,) for |a|=2 it follows from (3.17)
that

o([Is(Q), A]) = —i{ls(Q), A} +r, reS(uius > m(p) ™ g).
Taking (3.15) into account one has

s(Q) /o5y =— % (15() +4) I+ Keaou (9 31/ 332

015(0)/38=— 3, (15(/) +4) s(Q.+¢) Ko (9) 3,/ 361+ £, 'r,~

—nS—Q—e;

with 7,&8 (6> pé > 2m ()
K, (9)) =K (¢) =s5(J)

on suppa,; when n=16 we get

, &). Recalling that

o (Us(Q), A1) =i% (1445 (N I5Q+e) oy, 4)

+X () +a) 5@ +e) B+ R
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where B;&S8(l,g,), B;,=0 on suppa,; when n=16 and R is in
SCpEDm(p) ™, g). Note that R(4, ¢) €S g)+Sm(p),
g.) and substitute (3.8) into above expression to get

o ([s(Q), A1) = —iX (1 +45(D) IsQ+¢) D(4, )
+ 2 (ns(j) +¢,)Is(Q +e) B;+>XR;,+R
with R,ES (% pe">'m (9) ™ 77, g,), RES ({uE">™'m (9) ™9, g,).
Let us consider /%(Q)[/s(Q), A]as. By Corollary 3.1 we have
I3 Q)R;=15(Q+¢;)BsIs(Q +¢&,), Bs€S (4%, ),
I3 (Q)R=1:(Q)BsIs(Q), Bs€S(1, 9)
and hence (Rws, Is(Q)ws), (Rws, Is(Q)ws) are estimated by

(4.2)

c(n, 2) 1% |u|% 02,00 € (1, 2) |ulk0.0

respectively. Observe I5(Q)Op(Us(Q +¢;)Bj)as. Put M=[1, j—1],
L=[j+1, [] then

as=[as.y, asplas.. +asas.; with J=MUL.
Applying Lemmas 3.1 and 3.3 one obtains
I3 (Q)Op (IS(Q,+ei) B;) [aS=M’ as(i)] = Zg I (Q-!-Q) Bsls (Q,+éj)a§=ﬁ

where $=S on L, Bs€S(#, &) and M=MU {j}. Note that the right-
hand side multiplied by as.; to the right can be written as

Zg: I3 (Q+¢&;) Bsls(Q +¢))as.
We turn to I£(Q)OpUs(Q +e;) B))a,yas.;. Since B;=0 on suppa,,
when n=16 it follows from Lemma 4.8 in [12] that
Op (Is(Q +e¢,) Bj) ay;, belongs to

S(<E/>—1<ﬂs/>ns*+1+|s<u1>oV|/2m(go)—ns—é—e,-ﬂ((il)w’gﬂ).

Then by Lemmas 3.1 and 3.3 again we obtain
I5(Q)OpUs(Q +e) B a,;, =215 (Q +€;) Bsls(Q +&;) a5y, BsES (1, 2).

The above argument shows that |(Op(s(Q +¢,;)B,)ws, Is(Q)ws) | is
estimated by

c(n, ) [u]?z+(1/2).o-

Now we handle the term Op(Is(Q +¢,)D(4,¢;)). Recall that

D(4,0) = {lo, £} (0) +b (', 2) +’z G (1) — DI (0) Fieo ().
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Let [I®(p) fiw (") |<é (0<i<p—1) then one has
D(4,¢) = {l. f}} (o) + (l—f)zs: (1—x" (x)).
Then taking 2=¢ we have D4, ¢,) ={l, fi} (¢)>0 in view of
Lemma 2.4. Set f=p8(4, ¢;) =DV%(4, p;) €S}, then it follows that
I3(Q)0pUs(Q +e)D(4,9)) =15(Q +&;) B* (1 +1) pIs(Q +¢))
with r&8(y, g). This shows that

Imi3 (n+s5(j)gq;) Op(Us(Q +¢;)D(4, ¢;))ws, Is(Q) ws)
2 —c(n, )W) X (n+5()g)® |uléors,0.

Summing up we get an estimate of —2Im([/s(Q), 4A]ws, Is(Q)ws)
from below by

(4.3)

2(1=c(n, )W) Z(n+5() ) ® [uldore,0

—c(n, 4) ﬂl/z[u]§2+(1/2).o—"c(n1 2) |ul%.0.0.

Lemma 4.1,
—2Im (I5(Q) Aws, Is(Q) ws) Z 0y |u|%.0,0+20(1 —c(n, 2)07") |u |30,
+2(1—c(n, ) X (n+s5())q;) ® |y |-29.Q+aj.0"‘c(", 2)#1.'2[u]3+(l/2).0
where B=B(A,¢;) for any usC=(I,H") and |x,| < p"2

We shall estimate ® |u|% 5,0+s,0 from above and below by ||} s,,0.

Noting that ¢() =D (4, ¢;) = (1 +2) 7 {l,, f,} () 2 (1 +2)"'c with a posi-
tive constant ¢ when A=¢ and
B*8=0pD (4, ¢,) +8i3, KD D25 (Q +&;) Tws|| <c (n) 2 |u | 1.5.0.0
it follows from the sharp Garding inequality that
4.4 @ ulf.s.qre 0z (A) [ulds.qre0—c(n, 2) ptlulf 50,05
@ ulfs.ore,0=02 Q) [uls.que,0te(m, D) plulfisao
with positive constants ¢;(4).

Corollary 4.1, Let |q;|<B with a fixed B. Then we have
—ZIm%—', Us(Q) Aws, Is(Q)ws) = 0o[uld o+ 0[uld o+ nc(2) (1% a/2.0

with a positive constant ¢ (2) for (16=)n=<n, 0<p=<p(n,2), 9(71,/1, 1) <0,
|x0| < % and for any usC>(I, H").
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Taking Q =é&+é;+¢, in Corollary 4.1 and noting
I3Q)IsQ) =13 (e+e+e) (1+n)Is(€+&), 7S (1, 8
it follows that
612) T34, 02 0B[]8+ On [T o+ s (D) [T
Summing up over i, AEI we get

(D) [ulh. sram.oZn0o[ulds 0,0+ n0[ulls ay.0+ 122 (2) [uli+ @20

for A<n, 0<pu<f(n,2), §(n, p,2) <0 with positive constants ¢;(2). If
we take Q =é€+4¢&; and sum over i€/ we shall obtain a similar
estimate, We summarize ;
1 () [l e+ Grm.02=n0[u)3 4 (v /2.0

+n0[ulis om0t () [uliarim.o
where j=0, 1. Next we observe
—2Im (I5(&) A%ws, Is(&) Aws) = 0y |u1%,5,6,0+20 |u 45,00

+21m (als(é) Aws, Is(é)Aws) —2Im([ls(é), A]Aws, Is (é) Aws).

(4. 5);

(4.6)

As shown above the third term in the right-hand side of (4.6) is
estimated by
(c+e(a)p) lulks.eo-
We turn to the last term in the right-hand side. Recall (4.2) with
Q=eé. It is clear that (R;Aws, Is(€)Aws), (RAws, Is(€)ws) are esti-
mated by
c(n) M [ul% cram.or €(n) (U450

respectively. We shall estimate I§(8)Op (/s(é+e;) B;) Aas. Using the
same notation as in the proof of Lemma 4.1 we have

1§ (&)Op (Is(é+e;) B)) (Alas.u, asgy)as.. +Aagyas.y).
From Lemma 3.1 we have
Alesa, a1 =X Tydas.y+ 3[4, Tylas.y.
It is clear that I3 (&)Op(Us(é+e;)B;)TyAas.y can be written as
Zgl I§(é+é;)Bsls(é+é)Aas.fr, BseS(u,g9)

where $=S$ on L. Since

[4, Tx] ES(#<#51>15(N.i4)=o'/2+1/2m (sD)E(N.ﬁl)uQ, 2, M=M U {j}
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for any Q €R’, Lemma 3.3 shows that I¥(&)Op(Is(é+e¢;)B,)[4, Tw]
as.y can be written as

%I I3 (é+é;)Bsls(é+¢é;+e))as.y, BsES(y o
where §=§ on L. As for I}(¢)Op (Is(é+e;)B;) da,,as.; writing
Aa,jas =ay Aas.;+[4, a,;]as.; and noting that
[4, ay;] ES(<#5'>V2+'/27’1 (0)7) &) for any r R

we shall obtain similar expressions. Combining above expressions
we get

I (&) Op([s(é-i-e,-)B,-)AasE Z_: 1§ (é+é;)Bsls(é+¢;)Aas
§
+Z I;(é'+éj)B§I§(é+3éj)a§, BgES(#,g).
§

For later use we state our arguments as a lemma,

Lemma 4.2. For any i, k (0=i, k<I) we have
I3 (&) [Is(8), LlLwas=—i3 (n+s(j)/2)13(+&)B}rls(E+¢;) Lyas

with BisES(1”,g) where B;, 1;€8%0, 0(B)a (1)) =D(Li, ¢)).

Remark 4.1, Clearly the same argument shows that
[Is(é),L,]asE—lZ (n+S(])/2)ﬂ,*7‘,15(§+é',)as+szzB,g[g(é'-l-é,)ag

with B;;E8(¢%, g) where B; and 7; are as in Lemma 4.2,

We return to estimate the last term in the right-hand side of
(4.6). Since Imi3 (n+s(j)/2) (OpUs(€+&) D(4, ¢;)) Aws, Is(¢+€))
Aws) is bounded from below by (see (4.3))

(=, D S +5sG) /D) us.ere, 0
we obtain the following estimate
—2Im (I5(8) A*ws, IsAws) =05 |u 1% 5,60 +20 (1 —c(n, ) 07") |ul% 5,40
@7 +A=c, W ECn+s()) P lulbserao—cr, D) 2 [ulh v arm.o
—c(n, 4) ,Ul'/z [u]§+(3/z>.o

for any uC~(I, H*), |x,| <p"%. We insert the estimate (4.5); (j=0,1)
into a part of the above estimate ;
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(4.8) on® [uls, s am.0+200[al4,s.0.

In view of (4.4) this is estimated from below by dnc () [#]4 .+ a/m.0
+66[u)4.o when 6=46(n, 2). Substituting the estimates (4.95);
(j=0,1) into this, (4.8) is estimated from below by

0, {"1 9,4 "z[u]§+(1).o+52 (9, 4) ”0[“]§+(1/2).o}
+c3(n, 2) {n0°[u)isqm.0+n*0[ulis .0 +"3[u]§+(a/z).o} .

Inserting this into (4.7) it follows that for any sufficiently small
>0 we have

—2Im3 (Is(&) A'ws, Is(&) Aws) Z 0o[ul.00+ O[ul%.z.0
+A—c(n, Hp—0)3 (2n +5(D) P lulbs.ere ot (4.9)

4.9

(4.10)

fOI‘ any ﬁénr 0<#§ﬂ(nr 2’ 5) ’ é(n! 21 51 [1) éov Ixo l éﬂlll’ uecw (Il H”)
where ¢;(3,2) are positive constants and B=DY*(4,¢;).
We turn to estimate L. We begin with

21m (I5(8) Liws, Is (&) Aws) =0y |u|%,.5.5.0+20 |1 |3, 5,00
+Im((a—a*)I5(8) Laws, Is(&) Laws)
+2Im (Is(&) [4, Ly]ws, I5(8) Lyws)

4.11) +2Im (Is(&) Aws, (L¥ —L,) Is(€) Lyws)
+2Im([4, Is(&) ] Lws, I5s(€) Laws)
+2Im([/s(é), L] Aws, Is(&) Lyws)
+2Im (I5(8) Aws, [Ly, Is(2) 1 Lyws)

The third term in the right-hand side of (4.11) is denoted by (I).
Then it is clear that

[(D 1 =e(n) luli,se0-

From (3.1) it is clear that [4, L]1ESKué'>,g,). In view of Corol-
lary 3.1 we have

13 (@) 1s() [4, L=15(e—&){pD"> (Bs+rs)Is(+¢&,)

with BseS(,g,), rs€S(y,g) for any vel. Then the fourth term
in the right-hand side of (4.11), denoted by (II), has an estimate

|UD) | S e ) [ulh, s.aveyot (0@ ) 4 lhomsi.

Noting that Ly —L,e5(l,g,) the fifth term, denoted by (III), is
estimated as follows
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| | = (c+e(m) ) {lulbsaot (4], 500}

Denote by (IV), (V), (VI) the sixth, seventh and the last term of
(4.11) respectively. Applying Lemma 4.2 it follows that

UVYZS @n+5()) % 1y ene,0—0 (1 D 7Tl evarme
~c(n, ) 1 [ul? @m0 with 7;=DY2(4, ;).
Again by Lemma 4.2 we have
7, VD) 2—;(2114-5(])) | (Bils(€+&;) Aws, 11uls(€+€;) Lyws) |
(4.12)  —c(n, ) L [ull.erarmio—c (n, 2) £ [uld, evasmoo

—c(n, A) #1/2[u]§+(3/2).o

with B, 74 €810, 0 (Bi) o (1) =D (4, ¢;). We take r;=D"?(4,¢;) and
Bir=D(Ly,9;)D7"?(4,¢,). Here we note that

25 % 20+5() | (Buls(€+8) dws, rals(e+8) Lyws) |

SA=0)7E @utsD X lulhsiers,o

+(1=0) T @t s()) T luldsise,0
for any 0<{e<{l. Summing up we obtain
2Im (Is (&) Liws, Is(&) Aws) 28, |u |}, 5.5.0+20 (1 —c (n)67)

X |ults00t0 X @uts(D) T ull, sev0
413 — (=07 @uts(D T u)hsv0

— e, ) 2 {[ud}, erarm.ot (1% rr am.oF (124 om0}

—6(n) |u55.00— (@ +6() ) (|13, sramaot |uldoms, 1}
for any vel. Note that from (4.4) o3 (2n+5()) ™ |uld, 50,0 is
estimated from below by j
(4.14) (@, Dnluly, srapo—c(@,4,n) [l s .

Let us consider
=0 [uhsrrrso— 1=0) T 1l 5000
where f=DY?(4,¢;). It turns out to consider

(1=0)p*6— (1=0) 'S Bfifa
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=0p((1-0)D(4,¢,) = (1=0) "2 D(Ly, ¢)*D (4, ¢) ™) +51s.

Lemma 4.3. For sufficiently small 6, 6>>0 and for sufficiently large
A>0 we have

(1-6)D(4,¢;) —(1 —U)'lkZ D (Li, 9)*D (4, ¢,) ' Z¢D (4, ¢;)

with a positive constant c.

p-1
Proof. To simplify notation we put m(x") =3 (1—x"(x,)) in this
s=1
proof. Then we have

|D(Ly, ) | < A+5) 7 (1 {l £} (0) [ +ém(x)),
D(4,¢) 2 (1+5)7 ({by fi} (0) + A=) m(x).

Hence it follows that
(1+6)"D (4, 0)*Z {h, fi}*(0) + A=)'m ()2 A=) 5 (b, S} (o)
+ A—8*m(x")?
with some £>0 by Lemma 2.4, On the other hand it is clear that

(1+6)% DLy, o) < A +B) X {h, S0 +e(®)ym(x')?

for any ¥>0. Then taking >0 sufficiently small and 2 sufficiently
large it follows that

2 DL ¢) = (1= 6/2) D*(4, ¢5).

This proves the lemma.

In what follows we fix 2, 4, ¢ so that Lemma 4.3 holds. Then
the sharp Garding inequality gives that

@B,

(1-08)®|u ’31.8.!+zj.0— (1—a) "§

1/2

lu ,i.s.é+§j,0
(4.15)

=clu 1124.5.§+Jj,0—5(n)# |u Ii.s.z.o

with a positive constant ¢, Now (4.10), (4.13), (4.14) and ¢4.15)

give

Proposition 4.1. For any vEI we have
QImg (Is(&) (— 4%+ Zk L) ws, I5(8) Aws) 2 0o {[ul%..0+ ; [uli, 0
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+enf[ulli a0+ [ulieq.of +6s0 {{ulk .0+ ; [u] ik.s.o}
+ean {[ulb.eram.ot Z:. [u]zL,,.:Hl/Z).o} + 3 (n0?[uli+as.0
+n20[ul? o0+ [ulii a0} — (c+c(n) [11/2) [u]g—ep,l

for i<n, 0<pu<pn), 6(n, 1) <0, |x,| <p2, ueC=(I, H*) with positive
constants ¢;, ¢ independent of n, p and 0.

§5. Energy Estimate for Q

As noted in §4 we proceed along the lines in [9] and [10]. Let
Q be one of Q; (see (3.12)) then by (3.11) we have

3. 1) a(Q)=0(G) +SKut, 8, G=G,.

In what follows we use the following notation ;

lus QlS.R+<h>=Rer: QJso» (h) Is(R)ws, Jsi (hy) Is(R)ws)
lus Q,ls,ma) =2 lu; Q,IS.R+(I¢)

k

where RER!, he (27'N)! and the sum is taken over k=(k,, ++-, k)
€ (27'NV)! with |k|=¢ We put

[u; Q,]R+(h>=§ lu:Q |s recwys [ 5 Qlreap =SZ lu; Q ls.z+w
d »
17 Q ul l2=jZ=.'1 {IIKD">7'Q yul B+ 11Q,Pul 3} .
To simplify notation we set

Es(,v) =lu;Q ls.evcept [ulda-snt ulbsamote(n, o) [uldiram.o
E5(v) = lu 13.s-2,1+ lu & erazote(n, m) luldiram.o
es(W) =lu;Qlset luldoce it (w8 armote(n @) [uldiramo
ek (v) = lu |§.e-ev.1+ [ul§erw.oter, ) luldararm.o-

Also we write J, instead of J.(1/2) unless otherwise indicated.
Noting that Q*=Q we start with the following identity

2Im (Is (&) Qus, Is (&) Aws) =0, |lu; Q |s,..+260u; Q |4,
(5.2) — lu;0,Q |s..+2Im([Is(&), Q Jws, Is(&) Aws)
—2Im (QIs(&) ws, als (&) ws) +2Im (Q Is (&) ws, [1s(&), A]ws).

We shall estimate first the third term in the right-hand side of
(5.2) denoted by (I). Note that for TeS(ué’), g,) we have
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(5.3) 3 T ls.00cp = (c+c(n) p) E§(v)
for any vel. In fact Corollary 3.1 shows that I¥(€)/Ji)T J.»Is(€)
is written as

It (&+e;+8) (Bs+Cs){uD">Is(é—¢&,) for any vel

where BseS§(1,g,), Cs€S5(¢,g) and Bs.
This proves (5.3) and in particular

5.4 1<uD" D2 ]y Is (@) wslP < (c+¢(n) p) E&(v).

Lemma 5. 1.

WQJsnls(@ wslP< (e +c¢(n) o) Es(G, v)
Sor any vel,

Proof. Noting (5.1), (5.3) and (5.4) it suffices to show the
lemma with Q =G. By (3.11) it is clear that

QH—0nES(WHut,8.),0"*—-0eS (1, g,).
Hence we have Q%5<D">720Q;=0u<D">2Q ¢+ S (ulué’, g,) =
Op IKED'Q ) 12+r with reS(upé’>, g,). Similarly we get Q¥*QY
=0p|QY |24+r, with r,eS(upé’>, g,). Melin’s inequality gives that
(since Z{1Qn<EDTIP+1QP 1%} =epQ)
(5.5) cpRe(Qv,v) +u|[KpD Y|P +¢ (v, w) IPZIIP QoI — 2| (riz, ) |
for any v>0. Taking v=p and ov=J,;,[s(&)ws, (5.3), (5.4) and
(5.5) prove this lemma,

Remark 5.1. The same argument shows that
WQIs (@) ws|P< pe(c 4 (r) ) es (v)
for any vel.

We slightly sharpen Lemma 5. 1.

Lemma 5.2, For any 0<j<p and i, vl we have
IKeD">7Q i JswIs @) ws|P< (e +¢ (n) #%) Es (i, v).

Proof. As noted in the proof of Lemma 5.1 we may assume
that Q =G. (3.11) means that for 0<j;=<p
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Qi ES(UKEN, dd+G',) +8 (1€, dx2+G,)
and hence Qf —0,ES(KuED, g,). This shows that

Q6D >7%Q 4, =0p [KpE >7Q iy 1241, reSKupé, 8.

Since [{#é">7'Q ;) 12<cQ, using Melin’s inequality the rest of the proof
goes along the same lines as that in Lemma 5. 1.

We turn to estimate of (/). Writing
Is@=Ji(0+nlE—-8&), reSpg)
we are led to consider
Js00Q1s (@) =[Jsw» 96Q 115(8) +96Q Js s (&).

In view of (3.11) and (3.16) it follows that [/, 9Q] is in
S {p&'>m (¢,) %%, g,) and hence I§(€—eé,) (14+7*)[Jiw, 0Q1Is(é)

is written
I; (é—éu) <#DI>BSIS (E+3éu) ’ BSES(#I/Z’ g)-

This expression gives an estimate of ([ Jiw, 0,Q]1/s(@ws, (1+7)
XIs(é—é,)ws) by c(n)p?E¢(v) for any vel. Applying Lemma 5.2
we get

(5.6) (D) | = (e+e(n) ) Es (v, »)
for any vel,

We next estimate the fourth term in the right-hand side of (5.1)
denoted by (II). We write

[£5(®),0]=—i2([s(8) PQi —Is (&) Q) +r.
In view of (3.11), (3.17) Jand (5.1) we see that
r=Xr1, 1,ESEpE Y m(p) T 8)
hence rES(p(pE’;"S"“m(ga) ~n5=¢,g,). Corollary 3.1 shows that
I3 @)r=21I5(e+eé,)BuD"YIs(e—¢,), BseS(y )
for any vel., This gives an estimate of (rws, Is(€) Aws) by
cm)plluld e+ lulbseram.ol-

Again by Corollary 3.1 and (3.17) we have an expression of I%(é)
Is(8) ) as

Zk: I§ (é+&,) Byjs]swmls(€)
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with B,;s=B};s+C,;s where B} seS8(1,g), CiiseES( 8. Here we
note that [[J,nIs(€), Q] is written as

2 Ruils(E+é,+e), RuES(9).
Hence If(e)Is(€);,QY can be expressed
I3 (E+8) BusQ? Juwls(@) + X I3 (6 +&) Bals(e+é+e)

with B,eS(y, g). For I§(&)Is(€)?Q ), one has a similar expression,
Now we have an estimate of (II) by

c(n) {#1/21 u |?4.s.z+(1/2>.0+#—1'lzzk:”VQ,js(k)Is(é') asullz+#Es” m}

for any vel. Applying Lemma 5.1 we have
| (D) | < p%c (n) {;Zs Es(j,v) + lulbs.erasm.o
for any vel,

We turn to the fourth term in the right-hand side of (5.2),
denoted by (/II). We start with the following lemma ;

Lemma 5.3. Let ReS(l,g). Then we have
2
| (RQuy, uy) |§.EZ..1 {Re (Qui, u;) + 717 Quil P+ 1< e D" > 2u, P ¢ (o) ||| 2}

with a positive constant ¢ independent of p.

Proof. Set
X, =X,(R,D) =2+ (R+R*)/2, Y.,=iX,(—iR,2)

with a large positive constant 4. Note that we can take 2 so that
(X?H*=XY? X{?=S(1,g). The same argument as in §5 in [9]
shows that
(5.7)  22Re(Qu,u) = | (RQu,w) | — | ([Q, R]u, u) |

== {1([Q, X¥u, X'u) | + [ ([Q, Y ]u, YY) |}

—c| KD >V 2u) P —¢ (4, ) ||ull%
Since Q@ €Sy, g.), QwES(E )% g,) for |a|=2 we have

(X Q)= —iZ (X)) 9Q y — (XYB) QD) +1y,

[R,Q]=—iZ{RYQ 4, —R»QV} +1,

with r,eS((pé">,g). Then one obtains that
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22Re (Qu, u) = | (QRu, u) | — 7|7 Qul*—c ) |[KeD Y 2ul P —¢ 2, ) ul 2.
Applying this inequality to u,+u, u,+iu, we get the lemma,

Remark 5.2. When ReS(¢’, g) we obtain

2
| (RQuyy ) | =c 3 {’Re (Qu;, u;)
+ 7P Quil P+ 21K eD > 2u,| 4 ¢ () ||us] 2}
because 4 ’RES(1,g9).

Corollary 5.1. Let ReS(¢4,8). Then we have
lu; RQ |s.ercey= 4 (e +c(n) 1) Es(j, v),
lus RQ |s.e <4t (c+¢(n) p)es(v)
for any veEI,

Consider the fifth term, denoted by (/II), which is equal to
Im((aQ —Qa)Is(&) ws, Is (&) ws) +1Im((a* —a) Qls (&) ws, Is(&) ws)
=lu:ila, Qs+ |lu;i(a*—a)Q |s..

Taking the fact a*—a&S8(l,g) into account and applying Corollary
5.1 with u replaced by Is(@)ws, |u;i(a*—a)Q s, is estimated by

(5.8) (c+c(n) wes(v)
for any vel. To estimate |u;i[a,Q]ls, we observe i[a,Q];

i[a,Q] =§ {890 5, —ay QY +r=K+r, reSKuEH, g.).
Similar argument as to prove (5.3) gives an estimate of |u;r]s,
by

(c+c(n) p)et(v)

for any vel. Writing I§(€)KIs(e) =15 —e,) (1+7) JoKIs(€) we
shall show that the right-hand side of the above is written
I3 (e+e,) Bisls(é+2¢,) + 15 (€+38,) (Bys+Cys) Is(6—¢))
(5.9 +1I3 (€+8&,) {(Bss+Cs)<D'>7'Q ¢+ (Bis+Cis) QY oI5 (€)
+I1§@E—e) (1+r)K].wls(@)

for any vel where BiseS(y, 9, BseSU,g,), CsES(¢,2). Since
arguments for ;0% is just parallel to that for a”’Q it will
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suffice to show (5.9) with K replaced by a”’Q. Write

J:wa" Qi =[Jsrs 0”100+ [ oo Qinl +a”QinJ e
Since [Jiw» Q] €S KpEHm (9,)) 2, g,) and [Jiw, a1 = (By+Cy)
{D"> ], with BseS(m(p,)™ g,), CeS(um(p,)™, g) then one has

[Jiw»a?1Q»=Bi+ (Bs +C)<D">7'QnJ

with B, eS(um(p,) %% g). Setting B,=a"’[Jw, Q] which is in
S(ps">m(p.,) > g,) one can write Ji»a”Qq, as
(5.10) B+ By+ ((B3+Cy)<D" > +a) Q5 Jsw-
Here note that B, is independent of g In view of Corollary 3.1
(5.9) follows from (5.10). Hence |u; K|s, is estimated by
| (KuD" > (N +1) K J ooy Is (@) ws, {pD'DIs(€—8&,) ws) | + (c+¢(n) 1) Es (v, v).

Since a;, €S (&Y, g,) (1<j=d), aPeS (¢ g) (p+1<)) it is
easy to see that with T=4,0% (I1<j=d) or T=a"Q (p+1=j)
| gD > A +1) T J wls@ ws, {gD'>Is(€—&,)ws) | is estimated by (c+
¢ (n) g?) Es(v,v) from Lemma 5. 1. In the case T=a"Q, (1<j<p) we
apply Lemma 5.2 to conclude that this is bounded by (c+c¢(n)#"?)
X Es(v,v) also. Combining these estimates we see that |u; K|s, is
estimated by (c+c(n)y"®) {Es(v,v) +es(v)}. Hence we have

|(LID) | £ (c+c(n) B2 {Es(v,v) +es(v)}.
We turn to the last term in the right-hand side of (5.2),
denoted by (IV). Remark 4.1 gives that
[Is(e), Alas= _i; (n+s(J)/2) JiBF 1iJsinls (@) as
+jZS:,J:‘<i>Bi§Js<f>I§(é) as

with B;; eS(y,g). Here we take ;=1 and hence B;=D(4,9¢;).
Hence (IV) turns to

(56.12) Re; @2n+s5(7)) (BiJ:»Qls (@) ws, Jiinls (&) ws)
+J_% (BfsJ:»nQIs(@ ws, Jsinls(@ ws).

We want to commute J,; through Q. First we observe that

(5.13) [ Jiin Ql=—iZ {MKD">'Q wJsiy —M:Q® Ji} +r
with M*, M,eS0m(p) ™, g), rES(WXus'>m(p;) % ¢). Indeed we
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can write Jﬁ’f})EMk‘lsm, Js(i)(lz)EMkJs(i) with MkES(<5'>—lm(¢f)_1,g),
M,eS(m(p;)Y,g) then (5.13) follows from the fact [Q g, M*],
[Qw, MIES(pE > 2m(p,)7Y, g). In view of (5.13) the first term in
(5.12), up to a constant factor, is equal to a sum of
5. 14) lu; BTOQPY Is.evcepy  lu; BiT<D">™'Qwy Is.04<a s
(BirIs(@) ws, JonIs(€) ws)
where TES(m(p) ™), rES (W% ue'>m(p,) ™, ¢). Writing
I3 (&) Ji»Birls(&) =15 (é—e,){uD’'>Bsls(é+é,+2¢;)
with Bs&S(¢"% g) the last term in (5.14) is estimated by
¢(n) (f?EE(v).
Noting that (8;T)*J.;,Is(€) =Bsls(é+3¢,) with Bs&S8(l, g) it is clear
that the first two terms in (5.14) multiplied by c¢(n) are both esti-
mated by g3V Q J»ls(€) wslF+c(n) 2 |ul%,+a.0 and hence by
¢(n) #?Es(j,v). Since the same argument can be applicable to estimate
(Bis[Jsins Q1Is(@)ws, JsiIs(@)ws) because
I% (&) J3,BrsrIs (&) =1% (6 +¢&,+2¢,){uD’'YBsIs (¢ —¢,),
T*Bjs Js)15(&) = Bsls (e +3¢;)

with Bse S (¢*2 g), Bs€S(y, g) then we have an estimate of (IV) from
below by

(5.15) ;(27! +s(UD) lus BQ Is.ovep
—JZE | (BYQJsnIs (@) ws, JsinIs (@) ws) | _C(”)#l/zj2§ Es(j,v).

Here we estimate |u;,8les_g+<§j> from below. Recall that 5,=D(4,

©;) =c¢ with a positive constant ¢ (note that we have fixed 42in 6(x’, 2)).
Then Melin’s inequality gives that (cf. (5.1))

Re (8,Qv, v) +|[KpeD ">\ 2 +c () [lo|]P=cRe (G, v).
Taking v=J,;,/s(&)ws and noting (5.1) and (5.4) it follows that
lus 8,0 Is.evcepzclus Q |s.ecep— (c+c(n) ) EE(v)

for any v, Applying Remark 5.2 with u= J,;,[s(@)ws, u,=
Jsinls(@ws to (5.15) it follows that for any vel

UV)y=zenlu;Q ls.evam—c(n) .Ul/zg Et(v)

for 0<<u=<p(n). Collecting the estimates of (I), ([I), (III) and
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(IV) and summing up over §, we have

Proposition 5.1. For any vel we have
2Im§ (Is(@)Quws, Is (&) Aws) 20,[u; Q1 +0u; Q1. +anlu; Qlivam
— e {[ulh s amot [uli-s 1+ [u]d .o+ [uli-., 1)
—c(n, p) ([l q/m.0+ [u13+ 0.0}
for aiZn, 0<puan), 0(n, p) <0, || Sp? usC~ I, H*) where ¢; are

positive constants independent of n, p and 6.

§ 6. Estimate of Commutators

Let L, 4, Q be as in §§4 and 5. We start with

Lemma 6.1. Let Se={—1, 1}} and McCI. Assume that T e
S@m, g,) and T, €SKED, g,) for |a|=1. Then

[T, as.u]= %: Tuxas.x

where the sum is taken over KCM with |K|<|M|—1 and

TMKES(m<$’>—(IM|—l-IKl)<#E’>(IMl—1—1K1)+IS(K,M)°QI/2+1/2
Xm (p)* 29, g,)
for any QER'. Here when |K|=|M|—1, K=M\{i} we have
Txu= [T, a,y,].

Proof. Taking into account (3.14) the lemma will be proved by
induction on |M].

Corollary 6.1. Let S€{—1,1}'. Then
[L,aslL= Y. Txlasx+ ¥ Trasy
1K IKiS1-2

ig1-1
where
T €S (CE/ ™11 1KNC &y U=1= KD+ IEUO-QI2+ 2 () 2000 g )
T €S (&Y= 1-2-1KD( 7 5 a=2-1KD+1EQ1 241y (053 K)+Q. 2)
Sor any Q R Further
Ty==x[L, o] if [K|=I-1, K=I\{i},
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Te=+[L, awllL, ] if |KI=1-2,K=I\{i, j}.

Corollary 6.2. Let S {—1,1}'. Then
[L, [L,as]]1= X TKaS=K+|KZ Tras.x

IKIS1-1 ISi-2
where Tx=+[L, [L, @011 if |KI=1-1,K=I\{i},
TK ES(<5r>—(z—1-|Ki)<#5f><1—1—|Kx)+;s(K>=Q|/z+1m (p)e®Q, g.)

and Ty satisfies the same properties as in Corollary 6. 1.

Now we observe [I?% as] =2[L, as] L+ [L, [L, as]]. Applying
Corollaries 6.1 and 6.2 one obtains

[%as]l= X TKLas=K+] 2. Txasux‘i'lxz Tras.x.

IKI<i-1 K|=1-1 1=1-2

Noting that I§(&)Is(&)Tk is in

S(#(l—l—lKl)<#E’>2n§+IE(K)°QI/2+1/2m (go) —2n3—2§+E(K)°Q’ gp) .
Corollary 3.1 gives that
(6.1) 13(e)Is(@)Tx=1§(R)BksIs(Ry), BgseS(u' 70 o)
where R +R,=e¢—e(K)oU, |e(K)oU|=—1. In particular when |K|
=Il—1, hence Tx=+[L, a,;,] with some i, one has

Bys=Bks+Cxs, BiseS(,g), Cxks€S(y9)
where |o(Bks) | <cn'? with a positive constant independent of n, y
when n=16 which follows from the proof of Proposition 6.1 in
[9]. As for I%(e)Is(é) Tk the same argument shows that
(6.2) I¥(@)Is@) Tx=1I3(R)Bxsls(R;), Bxs€S(y 1'%, g)
where R+ R,=e—e(K)oU, |e(K)oU|=—2. When |K|=[—1 one has
(6.3) Bys=Bis+Cxs, Bks€S5(1, 8,), Cks €S (1, 8)
and |o(Bks) | <cn. Repeating similar arguments we can write
6.4) 1% (&) Is (@) Tx=1I% (R) BxsIs(R,), Bxs€S(y~*'%, g)

with R+ R,=e—e(K)oU, |e(K)oU|=—2. If |K|=1—2, Bgs verifies
(6.3). Since |K|=<Il—1 and hence ¢(K) #0 we can choose U so that
R,=é+e;,, R,=é¢+é; in (6.1) and R,=é+¢&;, R,=é&+3¢; in (6.2) and
(6.4) with some j which depends of course on K. Hence

I$ (@)Is(e)[L? as] turns out to the sum
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§ It (é+é;)B;sls(é+é;) Las+ Zg I¢(é+é;)B;sls(é+3¢))as.

From above discussions it follows that

Lemma 6. 2.

| (Is (@) [L? as]u, Is(&) Aasu) | <cn'%|u % s.ovarm0

+en?[uld s a0+ en¥ [uli a0

or 0<p<Zpi(n) where ¢ is a positive constant independent of n, p, 0.
p<p ¢

Corollary 6. 3.
| (Is(@) [Az, aslu, Is(é)Aasu) | §€7l1/2[u]2,4.e+(1/z).o +€n3'lz[u]§+(3/2).o

Sor 0<u=spa(n).

Lemma 6.3. Let S&€{—1,1}! and MCI. Then
[Q, as.u] = ZTiuxlD'>7Qpsx + LT iuxQ P atsx + ZTMKaS=K
where the sum is taken over KCM with |K|<|M|—1 and

Ti{{(, TJ.MKES(#IM|—'K(-1<#EI>IE(K.M>=Ql/2+1/2m (90) s(K,M)ﬂQ, g,,),
' TMKES(#<ﬂ$/>ls(x.M)=Q|/z+1m (SD)E(K.M)"Q’ gﬂ)

for any Q €R'. Further
Tix= i<, Tiux= Fiawe if |Kl=|M|—1, K=M\{i}.

Proof. Noting (3.11), (3.14) and (5.1) the lemma will be prov-
ed by induction on |M].
We shall estimate I%(€)Is(é)[Q, as]. By Lemma 6.3 we have
[Q, as]=ZTiD">7Q s+ ZTixQ Vs + X Txats.x.
Corollary 3.1 gives an expression of I (¢)Is(é) Tk as
I5 (R) BixsIs(Ry), Bixs€S(l,9)

with R+ R;=¢—e(K)oU, |e(K)oU|=—1. Repeating similar argument
for I*(&)Is(&)Tx we conclude that I (¢)Is(é) [0, as] is expressed as

; nglé* (€+8&) Busls(€+&,)<D">7'Qpas + ;ﬁl}‘ (€+&,) Bis
xIs(é+e,)QVas+ kZ_ I3 (6+é,) Bisls (€ +38,) as.
WS
Here we note that p '?|[5(é+e,) Tasu|? where T=<D>7'Q or
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T=QY are estimated by c¢(n)p"?Y; Es(j,v) for any vel. In fact
.S

writing Is(@+é&)T=(1+r)Jsaw (1/2)Is(€)T with r&S(y, g) it suffices
to estimate [ Jsu (1/2)I5(€), T]. This is estimated by ¢(n) #tlul% .1 c2.0-
Then applying Lemma 5.1 we get the desired estimate. Now we have

Lemma 6.4. For any vel we have
| (Is (@) [Q, aslu, Is(&) Aasu) | §c(n)yl/2 |u ]?4.5.5+(1/2).o+0(n)/41/22 SEs(j, v).

. -1
Recall that P;= —L?o—l-kZ_._'l L%+4+Q;. Set

Py(x,D, p) = P;(x, Dy,—i6, D', pt).

Combining Lemmas 6.2, 6.4 and Corollary 6.3 one obtains

Proposition 6.1. For any vel we have
| (s (@) [Psoy as]u, 15 (@) Aasu) | <en*{|u] 500000
+ % lu |?tk.s.z+<1/21.o‘*‘"[“]gﬂa/z).o} +c(n) ﬂl/z([u]g—ev.l’f' [u ;Q,]é+(éj))
+ec(n, @) [uliiarm.0
Sor 0<pu=j(n).

Noting that S(1, 8) CS(ué&’ > 2m(p)~, g) for any Re (R*)!, Lemmas
6.1 and Lemma 3.3 prove the following lemma.

Lemma 6.5. Let T9eS0m,g,), TweSWm{E), g,) for |a|=1.
Then we have

Is(R)yasT=TI;(R)as+ Zs; B;s{uD’" > P2 s (R+e;— R (j)) as{uD’ H*
for any R(j)=(R*)!, keR' where B;s=S(m,g,).

§ 7. Energy Estimate for —A?+ Y]L2+Q

In this section we derive energy estimate which absorbs [u]g_%,l

combining estimates in §§4 and 5. Let 4, L,, Q be as in §§4 and
5. Put

TJ' ('xy 5” /l) =SDJ' (xy 6’7 #) <,UE’>-
Since T7—-T,=8(¢"% g,) by (3.4) one has
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T?T;=0p(pXKu&>? +r, reSEXuE,g.).

As in §5 we write J instead of /.(1/2). Using Melin’s inequality
the same argument as in the proof of Lemma 5.1 shows that

(7.1 T3 Jsols@ asulP<clu; Qls.erq,+e(n) ?EE ()

for any vel. We shall estimate (E)=||T;J.;Is(&)asu|l*+
[lIs (e +3€;)asu||* from below. From Corollary 3.1 one can write

I3(8) Jin TIT, Jnls (@) +15(e+3€;)I5 (e+3¢;)
=13 (e—e)uD">(B;s+Cis)uD">Is(e—é¢;).

Noticing that the left-hand side belongs to S({ué )2 Xm (p) ~#S*+eie,

g.,) we see that B;eS5(1,g,), CiseS(y, 8. We observe ¢(Bjs). In
view of Corollary 3.1 it follows that

0 (Bjs) ={p& > 2T iy (2) +<{p€">% ],y (4)
=Joon ) {02]20 (@;) +<p" > Zc ] (p) m(9;) =¢>0.

The last inequality follows from (3. 13). Using this inequality, Lemma
4.6 in [12] gives that

(7.2) Re(B;sv, v) = (6—c¢(Bjs) i) (o] [,

Taking v=J,;Is(@)asu in (7.2) we get an estimate of (£) from
below by

(6—c(Bjs) ﬂ) |u [.zs‘.a—aj,l-

Combining this estimate with (6.1) (v=j) we obtain

Lemma 7. 1.

clu; Qo ptc[uliramote(n, ) [ulirasm.o
= (6—c(n) ) [uli-s

Jor 0<u=<p(n) where Q is defined with G,.
Similar arguments give that

Lemma 7.2,
clu; Q]a+5[”]§+(1).o+f(”y D) [ulZ,= (E—C(n)#l/z) [u]zﬂ—ej.l

Sfor 0<u=<pa(n) where Q is defined with G,
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In Propositions 4.1 and 5.1 taking v=j and adding these we
obtain an estimate of 2Im3 (Is(&) Pyasu, Is(&)asu) from below. To
S

simplify notation we set
e(u;j) =[ulbeot 2 [wl%, et [u; Q1 +ainb[uliiam.0
+en?[ulls .0
EP (u; j) =[Auli.+ Z [Lali+ e VQuli + [uli., oni
+nllulisam. s +rlulii.s
E® (u;j) =[A4uliiqm.s+ Zk[Lku]§+(1/2).s+#—1[7Qu]!+(1/2).s
+ [u]zd—ej.s+1 +n0ulis o, +n?[uliiam.s.
Note that for a fixed v, 0<{v<l we have
O ({pD"Hus j) ZO°EL (us j)
ACEP ({pD"D*u; j) +nEP ((uD "M u s j)} ZnEP (u; j)
for 0<<pu=<ga(n), é(n, U4 k)=<6. In view of Lemmas 5.1, 6.1 and 6.5
E{’ (u;j) is estimated by constant times of e(u;j) for 0<pu=<gp(n),
6(n, p) <6. EP (u;j) is estimated similarly. Then taking Proposition
6.1 into account we get

(7.3)

Proposition 7,1,
2ImY (Is(€) as Pisu, Is(8) Aasu)Z o (u;j) +esfEP (u;)) +enEP (u;5)
S

for (16)i<n, 0<p=<pn), O(n, ) <0, |x|<p”, ueC=U, H™).

Next we estimate lower order terms, It will suffice to handle
(Is(@ asBu', Is(e) A;asw’), Us@ asdu’, Is (&) 4;asu’)
where A,= Li(x, Dy—i0, D', 1), B;€S(uE", dxi+G,). In view of
Lemma 6.1 the second term is estimated by
¢(n) k;j {1 4?30+ [w*]2: .0}
when 0<lg=<ji(n). Again by Lemma 6.1 the first term is estimated
by
e U & amsy0+ 1AW Bsramo 0l )i a0

7.4
( ) +c(n, ) k;j[uk]§+(1),o

when 0<lp=<pj(n).
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Now we rewrite our inequality thus obtained in terms of matrix
representation. Set
EPw)y=2EP W ;)), ew=Xe@W ;j), u=@, -, u),
Lyy=diag (Ly(x, Dy—i6, D', pr), + <+, Ly, (x, Dy—i6, D', pz)).

Since (7.4) implies that (Is(@)as(Ps— Py)u, Is(&) Lyasu) is estimated
by ¢E® (u) +c¢(n, p) E® (u) we have from Proposition 7.1 that

Theorem 7, 1.
2Im§ (Is @) asPou, I(&) Lyasu) = (1) +c0EL (u) +cnEP (u)

for (16<)a<n, 0<p<pn), O(n, p) <0, |%|Sp” ue (C~(, HY))'
where ¢y is a positive constant independent of n, u, 0.

We shall examine that Theorem 7.1 holds with E{’ () for any
keR after obvious modification, In virtue of Lemmas 6.1 and 6.5
it is easy to see that ([s(&)as[{uD’')*, L*]u, Is(&) Aas{pD’>*u) and
(Is@) as[{uD">*, Qlu, Is(€)AasuD >*u) are estimated by

¢(n, ) E° (u s 5)

for 0<<pu=<p(n). Fix y, 0<v<{l then taking (7.3) into account it
follows that

21111%: (Is (@) as{uD’>*Pou, Is(&) Eoe“s(/lD'>ku) = 0ge (KD’ >*u)
+ePEP (u) +esnEP (u)

for n<n, 0<u<pn), 6(n, p, k) <0, kER. Applying Lemmas 6.1 and
6.5 the left-hand side of the above is estimated by

20m ¥ ({uD" Y5 @) asPau, {uD' Y15 (@) Lgsut)
+o(ny ty k) [Pl /o hmrp+cEP () +(ny 1, k) ES (u).
We summarize with notation (u, ) = (D" Y, {uD">*) ;

Proposition 7.2. Fix 0<v<{l. Then we have
c(n, pty k) [Poul?_ ) b-1/2+ 20m3. (I5(&) asPou, I5(&) Lyasu) 4
= 0pe (D Ytu) + P EP (u) +canEP (u)
Sfor a<n, 0<pu<pn), 0(n, pu, k) <0, kER, |x,| <2 uc (C~ U, H))".
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§ 8. Estimate of Wave Front Sets

In this section we shall give an estimate of wave front sets.
Since argument in this section is parallel to scalar operators we only
skech the argument. Recall

- »-1
PJ‘6= -—A?(JC, D, /1) +,§1L?k(x3 D/) Au) +Q_i(x’ Dly ,u)
= —A3(x, D, 1) + Q;(x, D', o).
Denote by §;(x, &', #) the principal symbol of Q;(x, D', ). Since
Q;(x, D, ) —4;(x, D, ) €S(p€’>, a’xﬁ-{-G}) we canr eplace Q, by ¢;
in the estimate of Proposition 7.1. Then in the following we assume
that Q;(x, D', ) =4, (x, D', ) without loss of generality. Fix j and
we write P, A, Q instead of P, A, Q,-.
Let f(x, &, ) €S(1,dxi+G,). We set following [7]
, exp(1/f(x, 8, ) if f(x, &, 1)<<0
w(x’e’#)zl p(/f Iz 'f o
l 0 if f(x, &', w) =0.

Define ¥ (x, &', ) by
O & =&, m{4, [} m¥ (&, p
TP, 8, m=f"(x & m{4, f1772x &, m¥ (&, p.
Our basic hypothese on f(x, &, p) is; there is a positive constant &
such that (see [7])
@.1) +1-9Q {4, 12 (Q, /1
Let f(x,&’,p) satisfy (8.1). Then we shall estimate E2 (¥u;j)
by [¥Puli_qm.» and E2,,(u;j) applying Proposition 7.1. We use
the notation ~ and < to indicate equality and inequality which hold
modulo a term that is estimated by
C(Tl, )ur k)Elgle(u;j)-
By repeated use of Lemmas 6.1 and 6.5 we shall first obtain
the following estimate
8.2)  2AmUs@as[Q, ¥y, Is(@) Aas¥u) )~2|¥Vu|f5.0s
+27 T Ut or1.5.0
—2[KuD" s (@) (Aas¥® —274[Q, flas¥ @}l

Similar arguments give that
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(8.3) —2Im(Is(@)as[4, T]Au, Is(&) Aas¥u) ;~—21¥Pu|%s o
Next again using Lemmas 6.1 and 6.5 we obtain

—2Im(Is (&) asA[ A4, ¥]u, I5(&) Aas¥u) 4
~26,Re (Is(&)as[ 4, Ulu, Is(e) as¥ Au) (&)
—2Im(Is(&) as[4, ¥ u, I5(&) as¥ A%u) .

Since A?=Q —P, replacing 42 by Q—P it turns out to

8.4) —2Im (Is(&) asA[4, T]u, I5(&) Aas¥u) 4
—2Im(Is(é) as[ A, ¥u, Is(&) as¥ Pu) 4
~20,Re (I (@) as[A, ¥ u, Is(&) as¥ Au)
—2Im (L5 (@) as[4, ¥u, I(@) as¥ Qu) .

We estimate the second term in the right-hand side of (8.4).

Lemma 8.1. For any €0 we have
—2Im% (s @as[4, ¥1u, 5@ as¥ Qu) w
< —2(1 —e)Re X (Q<uD Y5 @) as¥®u, {pD Y15 (@) as¥ Vu)

modulo ¢(n, p, k, &) E2y,,(u s j).

In view of Lemma 8.1 it follows from (8.2) — (8.4) that
2Imsz (IUs@) as[P, Tlu, Is(e) Aas¥u) 4

——2Im§ Us@)as[A4, Tlu, Is(@) as¥ Pu) 4

SQBoRe:; Us@ as[A4, Tu, Is(€) as¥ Au) 4 +27 [T Pul?s. 11,08

—2(1—#) £ Re(Quws, ws)
where wg,={uD"Y*I;(&)as¥Pu. We consider the last two terms in the
right-hand side of the above. Since

TP [fa.n.5.04~Re(Op ({4, 1 *{Q, f1D) wa, ws)

the sum of the last two terms is equal to

—2Re((Op (1 —¢) Q—47 {4, f} *{Q, £} wssy wss)
modulo ¢(n, g, k,€) E2,,,(u; j). Hence taking e so that e<d (d is the
constant in (8.1)) this is non positive in view of (8.1) modulo
c(n, t, K)E®,,(u; j). We summarize ;
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Lemma 8.2,
2Im§, Us@ as[P, Tu, I;(&) AV asu)
§260Rczs Us@) as[A, Tu, I (@) as¥ Au) g
+ [V Puli_am.a-rnto(n, p B)ER 4 (us ).

Now from Lemma 8.2 and Proposition 7.2 it follows that

Proposition 8.1. Assume (8.1) and fix 0<lv<{l. Then
¢(n, py k) [ngu]g_(l/z)_k +c(n, pty k) EiZ1 4 (u)
=0, {e {uD"Y*¥u) — 2Re§ Us@) as[A4, Uu, Is(&) as¥ Au) 4}
+PEPL (Tu) +cnE2 (Tu)
SJor a<n, 0<p<p(n), 6(n, b, k) <0, kER, |x,| g% us (C~U, H*))'.

Propositions 7.2 and 8.1 prove that there is a parametrix of P
at p’=(0,0,¢;) with finite propagation speed of wave front sets.

Proof of Theorem 1.2, Let <H,(p)>’=H,. We may assume that
e=(0,¢;). Since H,(p) belongs to I'(p}, H.) for every i and hence

8.5) b, (H,(p0)) #0.

In particular H,(p) and the radial vector field at p are linearly
independent. Put X;=¢(x, §) and extend it to a full homogeneous
symplectic coordinates {X, 5} such that X(p) =0, 5(p) =e.. We
write (x, &) instead of (X, &). From (8.5) we have Hfop"(p)rﬁo
and Malgrange’s preparation theorem gives that
pi(x, &) =¢e(x, 8) {£2—2a' (x, &) &+ b (x, §)} =¢' (x, &) (x, &)

with ¢'(p) #0. Clearly the condition (l.4)’ is symplectically invariant
and then {f'(x, &)} satisfy (1.4). A pseudodifferential operator ana-
logue of Malgrange’s division theorem shows that

Pi(x, D) =Ei(x, D) Pi (x, D)

where E‘(x, D) is non characteristic at p and p'(x, &) is the prin-
cipal symbol of Pi(x,D). Then we can apply Proposition 8.1 to
{Pi(x, D)} and we conclude Theorem 1.2,
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