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Fredholm Determinants and the r Function
for the Kadomtsev-Petviashvili Hierarchy

By

Ch. POPPE* and D. H0 SATTINGER**1

Abstract

The "dressing method" of Zakharov and Shabat is applied to the theory of the r function,
vertex operators, and the bilinear identity obtained by Sato and his co-workers. The vertex
operator identity relating the r function to the Baker-Akhiezer function is obtained from
their representations in terms of the Fredholm determinants and minors of the scattering
operator appearing in the GePfand-Levitan-Marchenko equation. The bilinear identity is
extended to wave functions analytic in a left half plane and is proved as a consequence of
the inversion theorem and the convolution theorem for the Laplace transform.
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§ 1. Introduction

One way to characterize the class of "soiiton equations" is through
the existence of a linearizing transformation, i. e. a transformation that
maps the nonlinear soiiton equation into a corresponding linear equa-
tion. Originally, this transformation was accomplished via the properties
of the eigenfunctions ("wave functions") of an auxiliary "isospectral"
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problem : the "inverse scattering transform". Zakharov and Shabat's
"dressing method" [19,23,24] is a reformulation of the inverse
scattering transform that avoids explicit use of the wave functions
and deals instead with their (suitably defined) Fourier transforms.

For example, the Korteweg deVries (KdV) equation

has as isospectral operator the Schrodinger operator L = D2 + u, where
D = d/dx. The operator L is related to the "bare" operator L0 = D2

by the "dressing equations"

where the operators K± are Volterra integral operators :

K+$ 00 = [~K+ (*, *) ̂  COtfe, K.<t> 00 = T K. (*,

The wave functions of L are obtained from those of LQ, namely
01'**, by applying the dressing operators (l+K±). Thus, for example,

+ 00 = ( 1 + JC+) «'** =

satisfies
The dressing method focuses on the kernels K± as the primary

object rather than the wave functions. An easy calculation (see §2)
shows that if K± both dress LQ to L, then the integral operator F
defined by

(1.1) (l+F) = (l+^+)-1(l+^_)

commutes with JL05 i. e solves a linear equation. The linearizing
transformation L-*F will be referred to as the "dressing transforma-
tion." The inverse dressing transformation involves solving (1.1)
for K± given F. It is then easy to recover L from K+ or K. (the
details will be given in §2).

Equation (1.1) is equivalent to the GePfand-Levitan-Marchenko
(GLM) equation of inverse scattering theory. It can be solved by
considering it as a family of Fredholm integral equations of the form

(1.1') FM+K+M+K+MF(X)=Q

where Fw is a "truncation" of F (cf. §3).
The technique of the dressing method was formally extended to
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the Kadomtsev-Petviashvili (KP) equation, for which the appropriate
isospectral operator is a partial differential operator in two variables,
in [23]. In fact, the entire KP hierarchy of commuting flows can
be obtained by dressing the operators 3/dxn — Dn. Specifically, consider
the differential operators d/dxn — Bn obtained via the dressing

Each operator Bn is a differential operator of order n beginning
with Dn. The coefficients of the Bn are assumed to depend on infinitely
many variables xl, x2, . . , though each individual coefficient involves
only a finite number of them. The KP hierarchy is obtained from
the commutation relations

The KP equation itself is obtained from (1.3) for n = 2 and m = 3.
It is

1 ,

where x = ;e1, y=x2, t=x39....

In a completely independent approach, originating in holonomic
quantum field theory, Sato [17], and Date, Jimbo, Kashiwara, and
Miwa [4], developed a formalism for the KP hierarchy which in-
troduced fundamentally new ideas into the subject of integrable systems.

Of the many important results of their theory, we focus on the
following in the present paper.

(i) the "r function": each of the solutions of the KP hierarchy
(i. e. every coefficient of the Bn) can be expressed as some derivative
of the logarithm of a single function, the r function, of all the variables
Xll X2i • • • 3

(ii) the "bilinear identity": a contour integral identity involving
the wave function of the KP hierarchy and its adjoint wave function;
it can be turned into an identity for the r function which gives a
generating function for an infinite hierarchy of bilinear differential
equations, the Hirota equations. This establishes the link with Hirota's
[6] bilinear formalism for soliton equations, since the variable in which
his bilinear differential equations are formulated can be identified
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with the r functiona

(iii) the "vertex operator9': an algebraic operation that allows one

to recover the wave function as a quotient of the r function and

some "translate" of it, thereby bypassing the need of explicitly solving

the GLM equation.
The T function thus, in some sense, carries all the information

about the solution of the hierarchy,,
In this paper we attempt to synthesize the ideas of Zakharov

and Shabat and the "Kyoto school33 In [4] the theory is developed

using the algebra of formal pseudo-differential operators

P(x,D)= S P,(x)D'
J = -CO

as the dressing transformations. These pseudo-differential operators
are naturally interpreted as symbols for the Volterra integral operators
of the dressing method.

We describe in §2 the Zakharov-Shabat dressing method as it
applies to the KP hierarchy and give its connections to the work of
the Kyoto group.

In §3 we prove the important fact (observed briefly in [7]) that
the r function is identical to the Fredholm determinant of the truncated
operator F(je) occuring in the GLM equation (1. 1') using results from
classical Fredholm determinant theory combined with the dressing
method. The Fredholm determinant method has previously been
applied to the KdV equation by Oishi [10], and to the sine-Gordon
and KdV equations by Poppe [12, 13].

In §4 we give a proof of the bilinear identity based on the
Volterra integral operator representation of the dressing transforma-
tions. Instead of using Laurent expansions of the wave functions,
convergent outside some suitably large disk, as in [4], we use the
Laplace inversion theorem and the convolution theorem. This sim-
plifies the proof somewhat and extends the validity of the bilinear
identity to wave functions analytic in some half plane.

In § 5 we obtain the vertex operator relation directly from the
representation of the r function and the wave function in terms of
Fredholm determinants and minors of the GLM equation. The proof
is related to some ideas of Rosales for the KdV equation [15].

Since all the functions in the KP hierarchy are logarithmic deri-
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vatives of r, it must be positive in order for the solutions to be

regular. In § 6 we give sufficient conditions for this positivity, as well

as some counterexamples.

The Fredholm determinant method gives a concrete representation

of the T function for the initial value problem for the KP (I)

hierarchy. It also raises fundamental questions about the extent of

the dressing method in the context of multi-dimensional isospectral

problems. Inverse problems connected with multi-dimensional iso-

spectral operators can lead to 3 problems in which the wave function

w(x, k) may not be analytic anywhere in the complex plane (cf.

[2], [3], [25]). This happens in the case of the KP hierarchy for

real values of the variables x2j. This case has been called "KP II"

by Ablowitz, Bar Yaacov, and Fokas, or the "stable" case by Zakharov

and Shabat. The treatment of the general initial value problem for

this case requires the use of the 3 method. The dressing method, if

it applies at all to this case, will have to be substantially modified.

When the x2j are imaginary (the "KP I", or "unstable," case), the

wave function w is analytic in some half k-plane, and the associated

isospectral problem leads to a non-local Riemann-Hilbert problem

which is equivalent to (1.1'). The solution of the initial value

problem for KP I by the GLM equation has been discussed by

Manakov [8].

The r function for the multi-soliton solutions of KP I can be

analytically continued to real x2j to obtain multi-soliton solutions

for KP II. In general, however, additional constraints must be

placed on the parameters to ensure that the analytic continuation is

real and positive. This is illustrated by some of the examples in

§6.

A theory of the r function from the Riemann-Hilbert point of

view has been developed by Segal and Wilson [18, 22]. In their

approach the r function is obtained as a determinant of a certain

projection operator on a Hilbert space. They consider the Grassma-

nian of closed subspaces W of the Hilbert space H = L2(S
1}, Sl being

the unit circle. H is decomposed into the direct sum of subspaces H±

spanned by [zk] for &>0 and k<^Q respectively. Subspaces W are

considered for which the projection W-*H+ is a Fredholm operator

of index zero. The r function is given in terms of this projection.



510 CH.POPPE AND D. H. SATTINGER

It would be desirable to develop a theory of the r function that
is less dependent on the specific properties of Fredholm determinants,
but rather focuses on more general properties of determinants. For
example, a r function for the rational solutions of the KP equation
can be obtained as a determinant of a finite dimensional matrix
which does not come from the GLM equation. These matters are
presented in a separate paper by Poppe [14].

The authors would like to acknowledge helpful discussions with
Professors M. J. Ablowitz and A. S. Fokas concerning 5 methods, the
theory of the KP II equation, and the relationship of 9 methods to
the GLM approach to inverse scattering.

§ 2. The Dressing Method of Zakharov-Shabat

Date et al [4] used the calculus of pseudo-differential operators
introduced by Gel'fand and Dikii [5], The method of differential
algebra has proved a powerful and elegant tool in the subject of
integrable systems (cf. Wilson, [21], for example). The operator
D = d/dx is formally represented by a symbol 9, and an algebraic
formalism is developed for pseudo-differential operators

However, these formal algebraic manipulations omit some essential
analytical features which are fundamental to the theory. Properly
speaking, the expression P(x, 9) above is the symbol for an integro
differential operator. The operator itself is realized formally from the
transformation pair

P(x, d)u(x) = eisxP(x, s)U(s)ds C7(j) =-- e~isxu(x}dx
J-oo ZTC J-oo

except that P(x9 9) has an essential singularity at the origin. The
Fourier inversion formula may be interpreted by indenting the contour
above or below the origin ; and in that case one obtains upper or
lower Volterra integral operators with P(x, 9) as their symbol. This
amounts to interpreting 9"1 either as

0(*)<fr or as 3- (*) =



THE KADOMTSEV-PETVIASHVILI HIERARCHY 511

In the dressing method this difference is brought to the fore.
In this approach one deals with the Volterra integral operators

themselves instead of their symbols :

K+V(x)=(°°K+(X, y) </>(?•) dy and KJP(x)=\* K.(X,y)W(y)d^.
JX J -oo

Suppose we consider such operators and ask that L(l -\rK±) = (1 -\-K±}D2,

where L is the Schrodinger operator L = D2jru. We say that K± dress
D2 to the operator L. It is an easy exercise to see that the kernels

K± must satisfy the characteristic boundary problem

(2. 1) MOO-2-jUf(x, *)=0

Kxx(x, z) -Ku(x, z) + u(x}K(x, $ = 0.

Furthermore, if K+(x, z) decays as £— >oo, then ¥+= (l+K+)eikx is

well defined for Im k>0, satisfies (L + £2)F+ = 0, and W^eih*asx-+

+ 00. W+ is the wave function for the isospectral operator L ; ¥+—elkx

is the Fourier transform of the dressing kernel K+ with respect to

the second variable.
Given a "bare" differential operator L0 (for example, LQ = d2/dx2)

Zakharov and Shabat ask "Under what conditions is L, defined by

L(l JrK+) — (1 + K+)LQ, a pure differential operator?" In general, L

will consist of a differential part and a Volterra part. They answer
the question in the following way. Suppose we also dress L0 from

— oo3 i.e. we construct L' by L'(l +Jf_) = (1 +./£_) L0 for some lower

Volterra operator K-. Under what conditions do we get the same

operator? To answer this question, Zakharov and Shabat introduce the

integral operator (1+F) given by (1.1) or, equivalently

(1.10 ( l + £ + ) ( l + F ) = l + t f _ .

We shall assume in what follows that (1 +^±)~1 are defined on CS°(/2).

This is indeed the case in numerous important specific examples,

such as the 7V-soliton case. For the JV-soliton case, for example, one
can find an F(x, z) that decays exponentially as £-»oo; and then

one sees that K+(x, z)-*Q exponentially as £-^oo. On the other

hand, K, grows exponentially as £— > — oo (cf. the one-soliton solution

below) ; but if we restrict ourselves to the dense set Cj°(J?), then

(l+K±)~l can be constructed by a Neumann series.
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Theorem 2.1. The dressing of L0 from + 00 and — oo is the same
iff (1+F) commutes with L0.

Proof: If K± both dress LQ to L then we have

L(l +KJ =1(1 +KJ (1 +F) = (1 + K+)LQ(l +F)

on the one hand, and

L(l + #_) = (1 +K^L,= (1 + tf+) (1 +F)L0

on the other. Assuming (1+K+) is invertible, we find that \_LQ^F~\= 00

Conversely, if [L0, F]=0 then

-)""1= U

so that K+ and ^T_ both dress LQ to the same operator.

On a group theoretical level this is a natural result. If we con-
sider all the transformations (1 +X±) as forming a group, then the
result says that two transformations Pl and P2 in this group inter-
twine L0 and L iff P^Pi commutes with L0. The transformations
which commute with LQ form a subgroup (say H(L0)) of the group
of transformations (the isotropy group of L0). So the result says
that all transformations which dress LQ to L lie in the same left
coset of H(L0)m

There is, however, a caveat to this picture which becomes appa-
rent when one begins to apply the method to specific cases in the
KdV or KP equations. Namely, one discovers that there is an asym-
metry between K+ and jfiL, so that 1 4-^+, say, is invertible, while
l+K- is not (See the example below for the one-soliton solution.)

Theorem 2.2, // (l+K-)LQ = L(l +#_) and
then L is a purely differential operator.

Proof', The dressing of LQ by l+K, consists of a differential part
plus a lower Volterra integral operator ; while the dressing of L0

by 1+K+ consists of a differential part plus an upper Volterra in-
tegral operator. The difference of the two dressings thus consists
of a differential part, plus a lower Volterra integral operator plus
an upper Volterra integral operator, and the sum of these three
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operators is zero.

We claim that each component must also be zero. For, let T=

P(x, D) +V+ + V- where P is a differential operator, and V+ and F_

are upper and lower Volterra operators. Applying T to a delta

function with support at the point x = a, we find that

4. (#, a) x<ia

[V-(x9a> x>a

Since T=0, this implies that the kernels V±(x, a) both vanish. It
then follows that the differential part P also vanishes. (Note: Since
F+ is an upper Volterra integral operator, the kernel F+(x,jy)=0
for #>j>;the reverse holds for F_.)

Given the Schrodinger operator L = D2 + u we can construct the
integral operators K± in one of two equivalent ways. If we require
that L(l +Jf±) = (1 +K±)D2 then we get a hyperbolic differential
equation for the kernels K± as in (2. 1). Under certain boundary
conditions at ±00, these have unique solutions. On the other hand,
we could take the wave functions ¥ ( x , k ) of L and try to represent
them as W±= (1 +K±}e±ik\ e±lkx being the wave functions of D2. Thus
the kernels K± are Fourier-Laplace transforms of the wave functions.
The kernel F is then obtained by forming (1 + K+)'1(l -hX_), pro-
vided (1+J^o-)~1 exists. This is a solution of the "forward scattering
problem" in the context of the dressing method.

Now consider the inverse problem. Suppose F is known and we
want to find the potential u. From the first equation in (2. 1) we
see that it suffices to find the Volterra integral operators K± such
that (l+K+)(l+F)=l+K-. Writing this out we obtain

But K+(x,y')=Q if y<^x and K_(x,y)=Q if y^>x ; so this integral

equation reduces to

which is the GePfand-Levitan-Marchenko integral equation of in-

verse scattering theory for the KdV equation. Once K+ is found

we can easily compute K- from the original integral equation by

setting j>O. Once K± are determined we can find the potential u
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from the first equation in (2. 1). This constitutes a solution of the
inverse scattering problem in the context of the dressing method.

For the case of the KdV hierarchy, F(x, z) =F(x+z), i.e. the
kernel is "additive", and the GLM equation, as is well known, is
equivalent to a local Riemann-Hilbert problem. For the KP hierarchy,
this is no longer the case, and the GLM equation is equivalent to
a non-local Riemann-Hilbert problem ([1, 8, 25]).

The KP hierarchy is obtained by dressing the family of multi-
dimensional operators d/dxn — Dn, n=2, 3, . . . . Let K± and Bn be
operators satisfying the dressing equation (1.2) :

(d/dxn-Bn) (1 +K±) = (1 +K±) (3/3*n-D»).

The operators Bn are ntk order differential operators with leading
term Dn. The process of obtaining the differential operators Bn is
an algebraic one (cf. [23] p. 227). The coefficients of the lower
order derivatives are determined by applying the above operator
identities to a function ¥ and integrating all the terms in the inte-
grands by parts. When this is done one ends up with integral terms
(non-local operators) and local operators on Wm The Bn are deter-
mined from the local operations ; while the integral terms give
differential equations for the kernel K. (Here K stands for both
K+ and #_.)

Note that the differential equations and the boundary conditions
on the diagonal xl=^tl are identical for both K+ and K,. This is a
manifestation of the fact that all kernels which satisfy the dressing
relation (1.2) have the same symbol.

We introduce the hierarchy variable x= (xi, x2, . . .). Throughout
this paper we also make the convention that £= (£l5 x2, x3, . . .), jy —
0>i, #2» *3j • • •)> etc. Though this notation is redundant in an expres-
sion like F ( x , z ) or K+(x,z), it will nevertheless prove useful.

The operators B2 and B3, for example, are given by

B2 = D2 + u ( x ) , B3 = D3+ (3/4) (uD + Du)

where

The entire hierarchy of operators Bn could in principle be deter-
mined, though the computations get much more complicated as one
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goes higher.
From these equations for u and w, we see that the coefficients of

the operators B2 and J33 are obtained in terms of the dressing kernel
K(x, z) and its derivatives with respect to Xi and z\ on the diagonal

*i = *i.
For example, the dressing equation for n=2, (with B2 = D2-\-u)

works out to

This equation must hold for all ¥, so we must have

The equations of the KP hierarchy are obtained as the integra-
bility conditions (1.3). These commutation relations follow im-
mediately from the commutativity of the family of "bare" operators
d/dxn — Dn and the dressing relation (1.2). The KP equation itself
arises from (1.3) for n— 2 and m = 3:

.^r - -IT " -
In fact, working out this commutator, we get

= (u- — (u +6uu)-w+w - — u } + (2w - — M\D
\Ut 4 (UXXX UUX) Wy Wxx 4 UxyJ ^Wx 2 UyJ .

Setting both terms equal to zero we get wx = 3/$uy and

I
ut——r (uxxx + 6uux) = wy.A. y

The Kadomtsev-Petviashvili equation follows by differentiating this
equation with respect to x:

3

x ^
= —uyy.

( 1\ut - y (M

The KP equation was derived by this method by Zakharov and
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Shabat. Their procedure may be extended to derive all the equa-
tions in the KP hierarchy by working out the commutators for the
operators Bn ,

The kernels K(x, ̂ ) formally satisfy the infinite set of differential
equations :

3K(x, z) ^BnK(x9 ^ + (_ lYDn K(x^ ^ = Qo

Here Bn acts on K with respect to xl and Dz acts on K with res-
pect to z\.

The KdV hierarchy is obtained as a special case of the KP
hierarchy by dressing the operators

d/dtn-D
n 11 = 1,3,5,... .

The even order operators D2n all dress to pure differential opera-
tors in x1 for the KdV hierarchy, but not in the KP hierarchy, In
particular, (iy + u)(l+K+) = (l + KJD2.

The GLM equation for the KP hierarchy is

(2.3) K+(x9^+F(x9^+K+(x9j)F(^z)djl = 0 if
J*!

Let us assume, for the time being, that the integral operator F
defined by 1 +F= (1 + K+)~l(\+KJ) is well defined on some dense
set of functions. By the argument used in the proof of Theorem
2. 2, we find that Bn is a purely differential operator iff

These co mmutation relations for the integral operator F give partial
differential equations for its kernel F(#, £)» namely:

A special solution of this system of linear equations is given by

(2. 5) F(x, z) =««*•»-«<»•«

where

We shall see below that expression (2, 5) is precisely the form of F
that gives rise to a one-soliton solution of the KP hierarchy. Note
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that F decays exponentially as ^->oo if Re p<Q<iRe q.
The function <?(#,&) plays a prominent role in the treatment by

the "Kyoto school." The preceeding discussion shows how naturally
this function arises in the Zakharov-Shabat picture.

The wave function e*(x'k) satisfies the infinite set of equations

A wave function for the KP hierarchy is given by

w(

This wave function corresponds to the wave function ¥+ for the
KdV equation. It is analytic in Re £<0 provided K+ remains boun-

ded as z\~->0°.
Sato and Date et al obtained the KP hierarchy by dressing the

operators Dn with a pseudo-differential operator P. The differential
operators Bn are obtained as the differential part of the pseudo-diffe-
rential operator Ln, where L = PDP~1, and P is a pseudodifferential
operator. In fact, P is precisely the symbol of either of the
Volterra integral operators (1+X+) or (1+K_). L plays the role of
the isospectral operator in [4,17]; while in [1,2,3,8,23,24,25] the
isospectral operator is the multidimensional operator d/dy — D2 — u.

The elementary solution (2.5) gives the one-solition solution of
the KP hierarchy. In order to obtain more general solutions we
may form a superposition of such fundamental solutions. We may
take

where ft is a measure in C2, the Cartesian product of the complex
plane with itself. For simplicity of notation we shall abbreviate this
double integral as

(2.6) F(x,z) =

where s = ( s l 9 S z ) and dp. (s) = dp Ob s2) is a measure which contains
possible delta function terms. In fact, one could even extend this
representation and allow // to be a distribution containing deriva-
tives of d functions. In particular, (2.6) yields as a special case an
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F which is comprised of sums of discrete terms (the solitons) and

a term corresponding to the "reflection coefficient."
For example, the choice

(2.7) F=Y.a^(x'p^-^'q^
j=i

gives rise to the A^-soliton solution of the KP hierarchy.

The kernels K± for the one-soliton solution of the KP hierarchy
are easily obtained. We take F as given in (2. 5) and obtain K+
by solving the GLM equation. In the present case it is a simple
matter of carrying out an integration. We find

for

where F is as given in (2. 5) and

P-q
We shall see later that d ( x ) is the r function for the one-soliton
solution of the KP hierarchy. Since F decays as xi9 £i->oo, so does
K+ ; but K_ grows exponentially as £].—» — oo.

The wave function w (x9 k} (also called the Baker-Akhiezer function
for the hierarchy), obtained from the relation w=(l+K+)e*(*>k) is
easily computed for the one-soliton solution :

^c*. *)>,.*,

Thus w has a simple pole at k = q in the right half plane. Similarly,
we may construct a second wave function corresponding to ?F_ for
the KdV case:

«>_=(!
^- -I
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In the bilinear identity, to be proved in § 5 we shall need the

adjoint wave function w*(x, k). (Here, as in [4], the asterisk does

not denote the complex conjugate.) This is the wave function for

the adjoint KP hierarchy, which is obtained by dressing the operators

3
dx,

-+(-\YD\

The kernel F* for the adjoint hierarchy must satisfy the commuta-
tion relations

and one finds readily that the elementary solution of this set of
equations is F*(x, z) = F (z, x) =*«<*•*>-«<*.«>. From (1 +£+) (1 +F) =
(1+JSL) we find that (1 +JP_)"1(1 + **) = (l+JSTl)"1. The kernel
corresponding to K- for the adjoint hierarchy is therefore (l+jK'+)~1 ,
and w*, given by

is a wave function for the adjoint hierarchy. (Note that the trans-
pose of an upper Volterra operator is a lower Volterra operator.)

For the one soliton solution the kernel for the integral operator
l is easily found. We solve the resolvent equation (1+G)

+)-1 and then put (1 +£'+)-1=(l +G'). This resolvent equa-
tion is

f*1

K+ (x, *) + G (x, z)+\ K^(x,t}G (t, z) dti = 0,
J*x

The solution

G (x, z) =

is found without difficulty ; and then the adjoint wave function for
the one-soliton solution of the KP hierarchy is

K—p oxi

Thus the adjoint wave function has a pole at k=p while the wave
function w has a pole at k = q.
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§ 3o Fredholm Determinants and Minors

Since we are operating on a semi-infinite interval, we must im-
pose decay conditions of the kernel F so that the trace and Fredholm
determinant of the truncated integral operator Fa are finite. We
impose a condition on the behavior of the kernel F(x, z) as Xi, z\
tend to infinity, (Since we are concerned only with the decay of
F in the variables Xi and z\ we regard the other variables as fixed
here.) For 1/2O<1 we require that

sup IFCM

for all a. Then the truncated integral operator Fa is of trace class
and its Fredholm determinant is well defined. (cf8 [12], Appendix
A) Under these conditions the GLM equation is amenable to a
variant of Fredholm's theory of integral equations. In this section we
summarize the basic facts about Fredholm determinants and minors
which will be needed in the sequel. Two convenient references are
Riesz and Nagy [16], and Smithies [20].

Equation (2. 3) can be interpreted as a kind of resolvent equation
for the kernel K+ given the kernel F on the interval (# l9 oo). There
is a slight anomaly, in that the lower limit of integration, *l5 is one
of the variables ; so that the GLM is not strictly in the form of a
resolvent equation for a Fredholm integral equation. The usual
arguments in Fredholm's theory, however, can be carried through
unaltered,,

The Fredholm determinant for the GLM equation (28 3) on the
interval (#1,00) is

(3.1) z>(*)=S- — \ F»-o n

where

The leading term is simply 1. The variables q,- are hierarchy vari-
ables : y} = (7,-, *2, *3, . . .).

We are going to see presently that D(x) gives the r function for
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the KP hierarchy. £>(#) is the Fredholm determinant of the trun-
cated integral operator

The Fredholm "minor35 for (2.3) over (*l5 oo) is

«=o n!

The kernel K+ in the GLM equation is then

(3.3) *+M= |̂f.

The formula (3. 3) is Cramer s rule for the GLM equation. It can
be checked by direct verification, using exactly the same arguements
as those used in the case of the resolvent equation, that K+ defined
by (3. 1, 3. 2, 3. 3) is a solution of the GLM equation (cf. for example,
[16], p. 174).

Hirota introduced the transformation u = 2 (log T}XX for the KdV
and the KP equations, and showed that r satisfied certain bilinear
differential equations. The transformation is suggested by the multi-
soliton solution of the KdV equation. The multisoliton solution can be
obtained by solving the GLM equation where, for the KdV equation,
F(x,z)=F(x+t) and

The dependence on t and the higher order hierarchy variables x2j+i
is implicit in cn. The GLM equation reduces to an algebraic system,
and it is found that

u(x)=2-log det\\l+A\\

where A is the matrix of coefficients of the algebraic system, (cf. for
example, the account in [9].) In the case of the A^-soliton solution,

the T function is precisely the determinant det | |l+-4||;in the general
case det ||1+-4|| is replaced by the Fredholm determinant (3. 1) ([10],
[13, 14]).

Similarly, in the case of the KP equation, we have :
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Theorem 3.1. Let a solution of the KP hierarchy be generated by
the kernel F(x, £) which satisfies the differential equations (2. 4). Then
the potential u in the isospectral operator d/dy — D2 — u is given by

g />(*)

where D(x) denotes the Fredholm determinant det (l-\-F(x})as given by
the series (3. l)e

This theorem allows us to identify D(x} with the r function.

The fact that F satisfies equations (2. 4) means that the commuta-
tion relations (1.3) for the operators Bn are satisfied. It follows that
their coefficients satisfy the equations of the KP hierarchy ; and, in
particular, u satisfies the KP equation. The other coefficients of the
operators Bn in the hierarchy can be obtained as derivatives of log
D(x) following the same procedure as in [4].

We prove Theorem 3. 1 by showing that

The result then follows from the first equation in (2.2). From (3.3)
it suffices to prove that

We do this by differentiating the series (3. 1) with respect to Xi to
obtain (3.2). In this calculation none of the variables x2, # 3 , . . .
plays a role, so we may ignore the dependence on these variables.
The derivative of the n-fold integral

3 1

is a sum of n terms, one for each of the integrals. These are seen
to be equal by using the fact that the determinants

F[Xl[[9Xn]=tet\\F(xijyj)\\

are unchanged under the transposition of a pair

r*«i , r*/i
U and U
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and by making the appropriate changes of variables of integration
in each of the terms. So we obtain

1 f00 C00^'-^'"'-^"!,/- ,n n /\ • • • } F\ \dy2-
(H-1)/J*1 J*i U,J>2 , . . , jH

We thus obtain the (w — l) s i term in the series (3.2) by differen-
tiating the nth term of the series (3. 1) with respect to xl9 This
proves Theorem 3. 1.

The r function for the JV-soliton solution of the KP hierarchy
is easily obtained by standard methods. Taking F as given in
(2.7), we obtain a system of algebraic equations for the kernel K+

from (2.3). Just as in the case of the KdV equation, the r func-
tion for the TV-soliton solution of the KP hierarchy is given by

rOO=det||3, j fc+ flfe
 g^-V-^-^||

and the TV-soli ton solution of the KP equation is w = 29J(log r).
Some special cases will be discussed in §6. From the relation

u = 232
x(log r), it is clear that zeroes of r lead to singularities, in fact

poles, in u. We give some conditions in §6 which guarantee the
positivity of r.

The concrete representation of the r function by the series (3. 1)
makes it possible to investigate the validity of the formalism in the
case of the general initial value problem for the KP hierarchy, at
least in the case of KP I, where the initial value problem can be
treated by a local Riemann-Hilbert problem. The fact that we are
dealing with an infinite hierarchy means that it is natural to
require r to be C°° in all its variables ; for the coefficients of the
differential operators Bn are obtained as derivatives of all orders of
log r.

The phase function f(#, k} is analytic in all its variables if, for
example, the hierarchy variables satisfy the condition

lim sup|*J1/n = 0.
n->oo

Let us denote the set of such hierarchy variables by H. For example,
H contains the set of all x in which all but a finite number of the
xn vanish. We shall always assume xzH.

If the integration in (2. 6) is taken over a region in which
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Re p ( s ) < —d<Q<d<Re q(s), then F is analytic In x and £, and decays
exponentially to zero as ^!->oo0 Under these conditions it is easily
verified that r Is defined and analytic for all xeHB

As we noted In §1, there are two distinct cases of the KP
hierarchy : KP I In which all *2y+1 are real and all x2j are imaginary ;
and KP II in which all the xs are real The solution of the initial
value problem for KP I can be treated by a nonlocal Riemann-
Hilbert problem (cf. [1], [25]) which is equivalent to the GLM
equation The solution of the Initial value problem for KP I using
the GLM equation has been discussed by Manakov [8], For general
initial values, the kernel F contains a term of the form

\q)dpdq

that Is, where the measure, p In (20 6) has support only on the
imaginary p and q axes. The density / Is the analog of the reflection
coefficient in the KdV equation. For KP I the argument In the
exponential term in this Integral is purely Imaginary, and F Is a
kind of Fourier transform of /(/>, q)B

As long as xeH the usual arguments of Fourier analysis apply
for the KP I case. For example, let S denote the class of functions
f for which

Then it is easily seen that F also belongs to this class as a function
of xi and z\ ; and furthermore that F is differentiable with respect to
all the hierarchy variables as long as

Theorem 3020 Let the density f(p, q) belong to the class S ; then
T is C°°0

Proof. Let al9 a2, . . . F an be column vectors In Cn
? and let A = \\al9 a2, , . .

flj|. Hadamard's inequality states (cf. [16], p. 176), |det A \ <lk|| ||fl2||
• • • I M « I I > where \\aj\\ Is the Euclidean norm of the column vector
fly. An immediate consequence of this inequality Is that if each of the
entries of the matrix ^4 is bounded In absolute value by m, then
||fl,||<«1/2m, and | det A\<mnnn/2

a Now suppose the vectors a/ depend
on a set of variables *0, #19 x2? - 8 . and let
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where a= (a05
 ai? - - •) is a sequence of non-negative integers, with

\a\=aQ + a1 + . . . <^oo. Then Da det ^4 is a sum ofn | a | determinants,
by Leibniz's rule for determinants. Let us assume that \Daa,(x)\<
mj(x} for all \a\<k for some set of functions m/O) on a domain
of the variables x and some fixed integer k. An immediate con-
sequence of Hadamard's inequality is that

(3.4) l/Fdet A\<nlal+n/2m1(x)m2(x)...mn(x) for \a\<k.

Now we apply these considerations to the series (3.1) for the
Fredholm determinant. Since f(p9 q) is rapidly decreasing, F(x9 z) is
in the class S. We consider z\ to be the variable x0. Since F is
in S we have the uniform estimates \DaF(x, z) \ <mq(z) for xeH9

\a\<q, £i>#i. The function mq(z\) is furthermore integrable on the
interval (^,00). By (3.4)

where ijj=(yS9x29 . ..).

When ^ = 0 the series for DaD(x) is obtained by differentiating
under the ra-fold integrals ; it is dominated by the series

n=o n!

where

M (x)=\
Jxi

In particular the series (3. 1) itself is convergent. When the deriva-
tive Da contains differentiations with respect to xi9 the situation is
slightly more complicated; but the convergence proof is essentially
the same. We omit the details.

§ 4, The Bilinear Identity

We begin by stating the bilinear identity for the KP hierarchy
as given in [5, 16], Let us recall (§2) that a wave function w and
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adjoint wave function w* for the KP hierarchy satisfy the equations

where the hierarchies {Bn} and {B*} are obtained by dressing the
operators

-= Dn and — h( —l) n D B w=2, 3,. . .

respectively,,
In what follows we shall assume that w and w* have the repre-

sentations, w=(l+K+)e*(*-k\ and w*= (1 +JP+)-^"€(*-*). For a discus-
sion of the wave functions of the KP equation and their properties,
see [1,8], If w and w* have the representations w= (1 + K+)e*(*'k\
etc. then they are analytic for k in some left half plane, and have
the asymptotic behavior

(4.2) w(x9k)e-*(*-»-l=o(^) as £-»oo in Re k<Q

and similarly for w*. Conversely, any wave function w which is
analytic in Re &<0 and satisfies (4. 2) has the integral representa-
tions above, by the Paley-Wiener theorem.

The bilinear identity is then :

Theorem 4B 1. Let w(x, k) and w*(x, k) be the wave function and
adjoint wave function for the KP and adjoint KP hierarchies, analytic in k
in some left half plane, C°° in the variables x, , and satisfying (4. 2) . Then

\ w(x,k)w*(x',k}dk = ® for all x , x f

JC

where C is a contour that runs parallel to the entire imaginary axis in the
complex plane, and x, x' are the hierarchy variables.

Conversely, let w (x, k) and w* (x, k) be analytic in k on some left
half plane, satisfying the asymptotic conditions (4.2), and infinitely differ-
entiable in each of the variables Xj. Then w and w* are the wave functions
for some KP hierarchy and its adjoint.

The second statement of the theorem means that there exists a
family of differential operators Bn and B* for which the equations
(4. 1) are satisfied. The construction of these operators follows
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readily once the Volterra dressing operators K± are obtained. Given
w and w* satisfying the conditions of the theorem, their represen-
tation in terms of the Volterra integral operators K± follows from
the Paley-Wiener theorem.

This theorem was stated and proved in [4] for the case where
w and w* have convergent Laurent expansions in l/k for sufficiently
large values of k. This holds, in particular, for multi-soliton solutions
of the KP hierarchy. The contour C was taken to be a closed
contour in the complex plane enclosing the singularities of w and
w*.

The bilinear identity is based on the following lemma :

Lemma 46 2. Let P and Q, be respectively upper and lower Volterra
integral operators. Then

x<y
x

0 x>y

where C is a contour that runs parallel to the entire imaginary axis.
In its application to the bilinear identity we take w= (H-P)elu>*}

and w* = (1 H-Q,)*"^1*'. The bilinear identity for w and w* implies
that (1 + P) (1 + Q/) = 1, hence that (1 + ft) = (1 + Jt'+) -1. This relation-
ship allows one to show that w and w* are in fact wave function
and adjoint wave function for the KP and KP* hierarchies. Once
Lemma 4. 2 is established the bilinear identity is proved along the
same lines to be found in [4], pp 59, 60.

In [4] Lemma 4. 2 was stated for pseudo-differential operators P
and Q,, and it was assumed that these operators, applied to e^(x'^
resulted in wave functions convergent in l/k for sufficiently large k.
The proof below extends the validity of Lemma 4. 2 to wave func-
tions analytic in some left half plane. Our proof is based on the
inversion theorem for the Laplace transform, and on the convolution
theorem for the Laplace transform.

Proof of Lemma 4. 2e As far as the proof of the lemma goes, we
need only deal with a single scalar variable, and the higher order
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hierarchy variables play no role. Multiplying out the two factors in
the integrand, we obtain four terms. The first term vanishes,

-
2m

by closing the contour C in the left or right half plane according
as x-y is positive or negative,, The second term is

-o2m jc Jx 2m J c

We may interpret this as a Laplace transform and its inverse (say,
the Laplace transform evaluated at -K). The inversion theorem for
the Laplace transform then gives

for this term. Similarly, the term involving only Q, can be shown
to be Q(y9 #). The final term can be written

By changing variables and using G=Z — X and ff'=j — £', we get

where

H+(x,k)=[~euP(x,x + t)dt and H-(yt k) =
Jo

By the Laplace inversion theorem and the convolution theorem for
the Laplace transform the preceeding integral reduces to

and the lemma is proved.
Hirota (cf8 his review article [6]) introduced the transformation

w = 2(log r)xx and showed that r satisfied a certain bilinear differential
equation. Let / and g be functions of x and t and define

For example, DJ*g=ftg-fgt;D
2J-g=fxxg-2fxgx+fgxxi etc. Then the
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KdV equation can be rewritten in the bilinear form

D,(^-4A)r-r = 0

where u = 2 (log r) xx . Under the same transformation he showed that
the KP equation has the bilinear form

In [4] the bilinear identity leads to a generating function for an
infinite hierarchy of bilinear differential equations for the T function.
That proof requires the relationship of the r function to the wave
function via the vertex operator. We discuss that relationship in the
next section.

§5. The Vertex Operator

In principle, the T function is supposed to carry all the infor-
mation about the solutions of the hierarchy. All the coefficients of
the operators Bn may be obtained as derivatives of the T function
with respect to the hierarchy variables xn. In addition, there is a
simple relationship between the wave function w(x, k) and the T
function. Let the operator G(£) be defined by

G(kjT(x) =T\Xl — , X2 OL2~» *3 o L3 ? • • •) »

then the vertex operator X(k) is given by Jf(£) =£ | (*-fe)G(&) [4].

Theorems. 1. Let F be given by (2.6), where Re p(s)<-d<Q

<^d<^Re q(s') for all s, s' and let ft be such that the Fredholm deter-

minant of Fx is always defined. Then the following relationship holds

between the vertex operator, the wave function w (#, k) and the r function

for Re k<0:

(5.1) X(k)r(x)=w(x9k)T(x)9 Re k<0.

Proof : We present a proof of this result here based directly on

the representation of r as a Fredholm determinant. From (3. 3) and

the representation w= (l4-^T+)^ (a ;>fe) we see that (5.1) can be written

in the form
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(5. 1')

Since x and £ coincide in all the higher order variables, only the
term ek(z~x) occurs in the integrand, and (5. 1') reduces to

(5.2) (G (A) - 1 ) T (*) = D (x,
J*!

We shall derive (5. 2) for a general F given by (2. 6) under the
conditions on p and q in the theorem. From (3. 1) the general term
in the series for r is

-U" • • .\"
W/ Jij Jjcj

where ^y= (j/5 A:2, #3. . .). Applying the vertex operator to this general
term we find that

In fact, the effect of G(A) is to shift the lower limits of integration
in the integral to xl—l/k and from xn to x n — l / ( n k n ) inside the
integrand. The result above is obtained by changing the variable of
integration : y^

Now

»
(5. 3)

= Z (-D'
neSn j

where pj = p(Sj) and ^/ = ̂ (^), and 5n is the permutation group on
{!,... K}. Now

and applying this to (5. 3) we get

= E (-n'
ffe5n j

Integrating with respect to jv ° '.?» and interchanging the order of in-
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tegration, we get

where dn = d[j.(si}. . . dfjt(sn) and dy—dy^. . . dyn. The integrations with
respect to the jv, variables are easily carried out, provided Re pj — qk

<0 for all j and k ; and we obtain

where,

The other term is treated similarly, and the general term of
-l)r(x) is

(5.4) - - -

Turning to the right side of (5.2), we need to calculate the
fold integral

«/

where ^-= (jv/, ̂ 25 #3- • •)• Let us put 370= z= fe, x29 . . .). Substituting
in for F from (2. 6) we get

(5.5) -i-

In this integration, dft = d{t(so). . . dfjt(sn)^ and the /j, integration is an
( w - f l ) fold integral; and dy=dzldyl. ..dyn. The (n + l) fold integra-
tion with respect to the y variables reduces to a product of (n + l)
integrals :
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. • - \~exp {^-f (z, ?,-i<o>)}taif " . • -\~
J*l J*1

ex

Each of these integrations can be carried out, and the result is

{Hexp {*(,, A.) -f (,, ft))

Summing over n in 5n+1 in (5B 5) we get EQEnDn+liQ, where

EQ = exp {f (*, />0) - f (^, jr0) } ,

£B is as given above, and DB+i,0 is the determinant obtained from

Dn+l by replacing p0 by k :

r 1 1 1
0- Jo-A Jo-

1 1 1

I 1 1

By relabelling the variables in the obvious way, we reduce the

identity (5.2) to

(5.6) -L^^EA(4-D^- („•!)

where the variables of integration run over Sia..sn, and JDBil is the

determinant obtained by replacing pi by k in Dn:

1 1 1
ql — k qi—p2 9i—

I I 1

~k q2~p2 92-Pn

I 1 1
qn-k qn-p2 qn-pn J

Now there is a certain asymmetry in the identity (5.6) as it is

stated : namely, pi is missing in DRil. On the other hand En is syn>
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metric in the variables $x . . . sn . If we interchange Si and s}- in the
right hand side of (5.6) then Dn>1 is transformed into DnJ. There-
fore the right side of (50 6) can be written as a sum of n terms,
and (5. 1) reduces to showing

(5.7) AX4-i)=Au+A,,2+-' '+A,n ,
where DnJ is obtained by replacing p, by k in the determinant for

A,.
The determinants Dn and Dn.m can be evaluated by using the

identity (cf. [11], p. 98)

(5.8) D.

for £>„, and a similar expression for Dn>m. Cancelling out common
factors, we find that

Dn j=i qj-k\ pm-k Jj

A-AJ ^" "" '
where

P(k}=U(pj-k) and Q,(k)=fl(qj-i

Thus (5.7) can be written as

4-i=4S-7T

Dividing this equation by 4 we see tnat this follows from the prin-
cipal parts expansion for the meromorphic function A~l(k) =Q (k) /
P(k). This completes the proof of Theorem 5. 1.

An independent proof, which does not make use of the specific
representation of F given by (2.6), will be given in [14],

§ 6. Positivity of the r Function ; Special Solutions

The coefficients of the operators Bn are all obtained as deriva-
tives of log T ; and so, in order for these functions to be real and
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regular, the r function must be real and positive. In this section
we establish the positivity of the r function under certain restrictive
conditions.

Recall (§1) that the unstable case (KP I) corresponds to that where
all the x2j are imaginary,, while KP II corresponds to that where all
the Xj are real. We now prove :

Theorem 6e 1. Let p ( s ) = — q(s)* and let JJL be a real positive measure
in (2 e6)0 Then T is positive for KP I.

Proof \ For an nXn matrix A it is a simple fact that det||l+-4||
is positive if all the eigenvalues ^ of A are real and positive,, This
follows from the fact that

This fact extends to the infinite dimensional case, so that to prove
that T is positive it suffices to prove that FM is positive definite, viz*
that OF*F, F)>0 for any *IB We have

= r n ^-^JxlJxlJC

/*' F* (
*l

i
e l

where

Since <P2W is real f°r KP I, the operator FM is positive definite
under the conditions of the theorem. Q,e E, D0

The multi-soliton solutions to the KP hierarchy are easily con-
structed for KP I without any analytical difficulties, since the T func-
tion is positive in that case (assuming that Re pj<$<^Re ^-)0 One
can then study the analytic continuation of these solutions to KP II.
Since the bilinear equations for the r function are entirely analytic,
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there is no problem as long as r does not vanish. As we shall see,

however, the analytic continuation can introduce zeroes into r, and

therefore poles into the solution. In addition, the analytic continua-

tion to KP II is not necessarily real.

A one soliton solution is obtained from F as given by (2. 5) with
q=—p*o Define

JO
o j even

=/Z(*;J) +»/(*; J)

and

£(*;J)=^Cr!«.

In this notation the r function is (cf. A(x) in §2)

Now 0(x;p) is real for KP I, so r is real and positive. By Theorem
30 1 the one-soliton solution of the KP hierarchy is

og r(x)=2\Re p\2 sech2{$(x ; />) -log 2\Re p\]

For KP II, however, <P(*;J) takes complex values and r has zeroes;
the corresponding solution u is therefore complex and has poles.

A real one-soliton solution to the KP hierarchy for KP II can
be obtained by taking p and q real, with p<^Q<iq and p + q=£Q. In
that case we get

,$<*,.«-!(*.«)

which is real and positive for KP II.
The N-soliton solution of the KP hierarchy is obtained by taking

F as given in (2.7). The Fredholm series (3. 1) terminates after N
terms. We can compute each of them explicitly by the methods of
§5, thus giving the Hirota series for the JV-soliton solution. The nth

term in the series is

*•«=-

where EH and Dn are defined in §5 (cf. (5.4)). For the ./V-soliton

case, the p integrations are simply sums over pi"upN. Hence, letting

P denote a subset of {!,...,#} we get
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r.=-V S E(x'9P)Du(P) = S £(*;P)DB(P)
fl/ v-'jv 1*1-«

where

,o DN —TT /j y,|(*,£,-)—|(*,g,-) onrl 71 f P^—rl<=»+ | | ^ ||• 9 i/ —11 a^e -/ -f anQ un\i ) —u.ei|| u

The second sum above is taken over all subsets P of {!,.„.,#} of
order n0 The determinants DB(P) are easily evaluated by the Polya-
Szego identity0 In the special case where qj=—p* we get

1 n IT?* A i-1 n lA+Al 2_i i i / f r j , i ___

and the Hirota series (cf. [4]) is

rOrt=f -Ly n-^iM. nW Si2"ipTl.w | /fe^| ;<*E

where

Note that En(x;P) and DH(P) are positive for KP I under our
assumption that q—— p* in (206)0 This observation can be extended
to the general case and provides a second proof of Theorem 6. 1.

We noted above that the one-soliton solution for KP II was
complex for complex p and had poles. However, there is a special
"two soliton" solution which is real and regular for KP II. Namely9

consider the soliton constructed by taking ±p and ±p*. The T
function for this configuration is easily calculated and found to be

t,R(x->P)cn* H y ' f ) } f>2R(x'>® (Im /A2
T f y,\ __ | i K *-,Uo J \X, g p) i K \JL III p)

W~ 2 \Re p | *\p\2\Re p\2°

It is easily seen that this function is positive for all x if and only if

ic ., ..,5ic
-Y<arg P<-!T'

In analogy with the sine-Gordon solution9 we may call this solution
a "breather53,, Setting xl=x? x2=y^ x^ = t^ and all the other hierarchy
variables equal to zero we have

R(x;p)=2xRe p + 2t Re p3

J(x i p) =2y Im p2l

hence this solution is periodic in y and decays in xa
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Another interesting configuration has been obtained by taking all

the p 's and q's on the imaginary axis (cf. [25]). Taking P\ — WI and

<?i— 'W2, p2 — — iv2, <?2~ iv2-) we

where

E^x^

for j = l9 2. Setting

500 =
J=0

we have £j(x) =**«+*«, £2(*) = ^w-,-Bu>9 and

In the case of KP II, all the variables are real, and it is easily

verified that T is positive for all real x if

J-+-L<4.
Vl V2

The solution is periodic in the odd variables and decays in the even

variables as they tend to infinity. For KP I, when x2j+L are real and

x2j are imaginary, the r function is periodic in all variables, but

complex0

The GLM equation makes no sense analytically when p and q

are taken to lie on the imaginary axis, since then F does not decay

as £->oo. But one may construct the r function for Re p<^0<^Re q,

and then analytically continue it as p and q move onto the imaginary
axis. The bilinear differential equations satisfied by r, being entirely

algebraic in character, continue to hold as long as r makes sense.

A T function may be constructed, also as a determinant of a

matrix of coefficients, to obtain the rational solutions ; this const-

ruction will be given in [14],
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