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Discrete Cubic ^-Splines*

By

Surendra Singh RANA**

Abstract

In the present paper, we introduce the discrete cubic 3£-splines and study the existence,
uniqueness and convergence properties of such S-splines which interpolate given functional
values at the mesh points. An optimal interpolating discrete cubic S-spline and splines of
special interest have also been discussed.

§ L Introduction

Clenshaw and Negus [2] have introduced cubic ^-splines as
cubic pp (piecewise polynomial) functions of class C1 which satisfy
certain conditions involving second and third derivatives of the
polynomial pieces at the internal mesh points. Cubic 3E-splines in
particular, reduce to the usual cubic splines and present some practical
advantages in comparison with the conventional cubic splines (see

In the present paper, we define the discrete cubic 3£-splines and
study the existence, uniqueness and convergence properties of such
splines which interpolate given functional values at the mesh points.

We write for convenience, /(#,-) =ff for all f, and introduce the
central difference operator Dh (/z>0) defined by

WOO =/(*); WOO = (f(x + h) -/(*-A))/2A and
Dri]fW =Di1}(W«); * = 0, 1, 2.

Further, the jump of the function / at, or across, the point a is
denoted by
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Let a mesh on [a,i] be defined by $:a=*0<*i<. . .<#,,==ft with
xi — xi-i=pi for i = l,2, . . . 3 723 /?=max p{ and />' = min /?,•„ Suppose

t i

that 3£ = <X->?=1 is a given set of real parameters,, For a given A>03

a continuous function $(#, A) such that its restriction s{ on [#f-_i, #*]
is a polynomial of degree 3 or less for i = l 5 2 9 . . . , ?zs defines a
discrete cubic 3£-spline5 if,

(1.1) jumpx.D<h
k]s(x, A) = aA.2jumpx.D™s(x, A), A = 0, 1, 2

where 5A>2 is the usual Kronecker delta0

We shall denote by S)(3, ^P, 3£? A) the class of all discrete cubic
3£-splines over the mesh $P. A discrete cubic 3E-spline s(x,h) which
is b-a periodic9 is said to be a periodic discrete cubic ^-spline. The
class of all such splines is denoted by 5^(3, *P? 3E9 h)0

Considering the interpolatory condition

(1.2) S(xi9h)=fi9 i = 0,!9 . . . , » f

where </£> are given periodic functional values, we propose to study
the following:

Problem A. Given /z>09 for what restrictions on $P and 26 does there

exist a unique spline in 3^(3, $P, 3E, A) satisfying the interpolatory con-
dition (1.2)?

§2e Existence and Uniqueness

It is clear that s(x^h) is piecewise cubic hence in the interval
[#,•_!, #,•], we have

(2. 1) j(*, A) =fl,+Af.(^-*) +ci(xi-xY(x-xi-l) +di(Xi-x) (x-x^Y

where ai9bi9ci9di are appropriate constants,, Now using the inter-
polatory condition (1.2) we have

(2.2) flf=/l; bi=(fi.l-fi)/Pi

Setting mi = mi(h)=D^]s(xi,h) for all i and taking the first difference
of (2. 1) we determine the constants ct and dim Thus, (2. 1) is
rewritten as
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(2.3) pi(

where A is the usual forward difference operator.
We are now set to answer the problem A in the following.

Theorem 1. Suppose that //>/z>0 and 3£ = <af.>y=1 is such that
\oLi\<p' /$ for all i. Then there exists a unique discrete cubic £-spline

s(x,h) in the class 3^(3, ?, 3E, h) satisfying (1.2).

Remark 2. 1. It may be observed that as /z-»0 a discrete cubic
26-spline reduces to a continuous cubic 3£-spline. If a{ ==Q for all i, a
discrete cubic 3£-spline reduces to a discrete cubic spline. If both
the foregoing conditions are assumed simultaneously then a discrete
cubic 3E-spline reduces to a cubic spline.

Proof of Theorem 1. In view of the defining condition (1.1) with
k^=2 for the discrete cubic 3£-spline we have the following system of
equations :

(2.4) riip^+1 + 3pi+lai-h
2Jmi+1 + lri(2p2

+l + 3pi+lai + h2)

+ rl.+1(2#-3A-ai + A2)]ml. + r^^

where ri=pi(p
2
i + 2h2) and F£(A) =M/^+1 + 2a,) + rl.+14/i-i(fr-2aj).

In order to prove Theorem 1? it is sufficient to show that the
system of equations (2.4) for i = l ,2 9 . . . , n has a unique solution.
For this, we shall consider the cases: (i) a t>0 and (ii) a-<0
separately. Assuming (i) we see from the condition p'>h that the
coefficient of mi+l is nonnegative. Further, in view of the condition
a,</?'/35 we observe that the coefficient of m: is also nonnegative
and the absolute value of the coefficient of m^i is

Thus, the excess of the positive value of the coefficient of mt over
the sum of the positive values of the coefficients of m^i and mi+l in
(2.4) is not less than t{(K) =ri(p

2
i+1 + 2h2) +r,-+i/>f which is clearly

positive.
For the other case in which « t<0, we observe that the coefficient

of m,_! is nonnegative for p'>h while the coefficient of m, is non-
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negative for at<p'/3. Further, the absolute value of the coefficient
of mi+i is

Writing tf (h) =rip
2
i+1 + ri+l(p

2
i + 2/z2), we see that the excess of the

positive value of the coefficient of m{ over the sum of the positive
values of the coefficients of mt-_! and mi+l in (2. 4) Is not less than
t* (A) which is clearly positive,, We, thus conclude that the coefficient
matrix of the system of equations (2. 4) Is Invertible. This completes
the proof of Theorem 1.

§3. Discrete Error

For a given A>0, we Introduce the set

91*. = {a +jh : j is an Integer} ,

and define a discrete Interval as follows,

For a function / and two distinct points x^x2 In Its domain, the first
divided difference is defined by

[*!, *2]/= f/Ol) -/(*2)1 / (*!-*?) -

For convenience, we write f[r} for D(
h
r] /, r = l,2, and w(f,p) for the

modulus of continuity of f0 The discrete norm of a function f over
the interval [a, b~]h Is defined by

||/||=max|/00|.
*e[fl,i]A

Without assuming any smoothness condition on the function f,
we shall obtain in this section the bounds for the error function
e(x) = s(x9 h) — f ( x ) over the discrete Interval [a, b~\h where s(x,h)
is the discrete periodic cubic 3£-spline Interpolant of / under the
conditions of Theorem 1.

It may be observed that the system of equations (2. 4) may be
written as

(3.1) A(h)M(h)=3F(h)

where A(h) is the coefficient matrix, M(A) = (m,-(A)) and F(K) denotes
the single column matrix (F£(A))0 In view of the diagonally dominant
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property of A(h), which has already been established in Section 2 of
the paper, it follows that

(3.2) \\A-l(h)\\<t(h)

where t ( h ) = max{«r1(A), t?-l(h)}.
i

(3. 1) may be rewritten as,

(3. 3) A(h} («j») =S(F{(h))-A(h) (/I-11).

In order to estimate the row-max norm of the right hand side matrix
in (3.3), we shall need particular case of the following results due
to Lyche ([5] Corollary 5.2 and [4] Lemma 2.1 (discrete Taylor
formula) respectively) (see also Dikshit and Rana [3]).

Lemma 3. 1. Let aj9 j = l, 2, 3, 4 and i/5 j = !9 2, 3 be given sequences
of nonnegative real numbers such that 2fl> = 2^» Then for a real valued
function f defined on a given [a, j8]A, we have

(3. 4) IS a,f>,0,

where xj09 xn, JOo^i^a, ̂ 3]A /or relevant values of j.

Lemma 3.2. Let f be a function defined over \_a<,fr\hfor some
and a be a given real number 0 Then for any x €E 9$Afl , we have

(3. 5) /(*) =/(

where y^\_a, x — h\h.

Thus, we see that the i — th row of (3.3) may be written as

where

1 = r£+1A
2, a2 = 3ri+1pi(pi-2ai)9 a3 = 3ripi+l(pi

i = r,-^(#,— 3a,.)f 62 = r^2^+1

*10=*i-l "» Arn=X,- _!+/?, ^20==-^i-lj •^21=-'V» =^305 •^31:=^»+lj

^40 = ^+1 — A and Xii = xi+l + h.

Clearly <fl>>J=i and <6>>J=i are sequences of nonnegative real numbers
such that
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piai+ = , say.

In order to highlight the advantages of 3£-splines, we shall now
determine the lower bounds of (/?,-) by choosing a, appropriately.
It is a general observation that error function, for a class of splines,
can be minimized by increasing the number of mesh points or
decreasing the length of each meshes of a given mesh. In fact, the
expression for (/?;) is linear in a, and nonnegative in the range
from —p'/3 to p'/3. Thus, the choice «,-=— /?'/3 minimizes (/?,-)
when pi>pi+i. The other case pi+i>pi is not sufficiently interesting
in which the choice a,-=/>'/3 gives the minimum value of (/2f-).
Further, it may be mentioned here that the expression for (/?,-) will
be independent of a{ for the case of uniform mesh (pi=pi+i for all
i). Thus choosing a, suitably and then applying Lemma 3. 1, we
have

(3.6) \\(eir
i}\\<max(min\Ri\)t(h)w(f(l\2p)

i i

where min \Rt\ = Ti(3p2
i+1 + h2) + ri+l(3p2

{ + h2) + 2p{pi+l p' (p2
i+l-p$a

Now taking the first difference of s(x,k) in Equation (2.3) we
replace m, by e\1} and Di1}5(^, h) by e(1] to get the following,

(3.7) ri(eYl}=^pi(x-xi.l}(Xi-X}lXi.

*«-*))((^

In order to estimate e(1\ we adjust suitably the terms of (3. 7)
and see that

(3.8) //(# / + 2AW»||^(^

by virtue of Lemma 3. 1. Combining (3.6) with (308), we have

(3.9) \\e[l]\\<pK(p,p',h)w(f«\p)

where p' (p'2 + 2h2)K(p9p\ h) =

We have thus proved the following :

Theorem 2. Suppose s(x,h) is the optimal discrete cubic %-spline

interpolant of f in the class S>i(3, *p, £, A) under the assumption a,- =

—p'/3. Then over the discrete interval [a9b~]h9

(3.10) \\e"\\<p*-K(p,p',h)w(f«\p), r=0,l
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where K(p,p',h) is a positive function of p, pf and h.

(3.9) proves Theorem 2 for r = l. Now taking /(#) =e(x), a = xi-l

in Lemma 3.2 we observe that ^-i = 0 and, therefore, (3.10) follows
for r = Q when we appeal to (3.5).

§ 4. Discrete Cubic 3£-SpIines of Special Interest

A discrete cubic 36-spline seems to be interesting from the practical
point of view if it can be easily computed. Discrete cubic 3£-spline
and the usual discrete cubic spline may be computed by solving
a diagonally dominant system of linear equations which generally
require more computational labour and some times diagonally domi-
nant property does not hold. In order to minimise the computational
labour and to avoid the possibility of singular matrix involved in
the system of linear equations, we reduce the three terms recurrence
relation (2. 4) to a two term recurrence relation by choosing suitably
the parameter at. It has been shown by Glenshaw and Negus [2]
that computational simplication may be achieved at the cost of a
small loss in accuracy. Thus, for the choice 3(Xi= (h2— p2

i+l)/pi+l9 we
have the resulting equations :

(4.1) mi = F*(h)-Ai(h)mi-1',i = l,2, . . . , n

where A{(h} = (p{pi+l-h
2)/(p2

i+pipi+1 + hz) and
Fnh}=^+lFi(h)/ri+l(pi^pi+l}(p]+pipi+l + h^, F,(A) and ri+l are

the same as defined in Section 2. A similar two term recurrence
relation can also be obtained for the choice 3at- = (p* — h2) /pit From
the recurrence relation (4. 1) we determine mn in terms of m0. Thus,

(4. 2) mH = F; (A) -An(h}F^(h} +.. .+ (- 1)-M.(A)^,.1(A)...
A2(h)Ff (A) + (- \YAn(h)An^(h}... AiWm*.

Now using the periodicity condition i.e. mn = mQ in (4.2), we get
unique m0 which together with the recurrence relation (4. 1) are
sufficient to determine all {mj uniquely.
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