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Duality for Maximal Op*-Algebras on
Frechet Domains

By

Klaus-Detlef KURSTEN*

Abstract

The completion with respect to the uniform topology of the maximal Op*-algebra
L+(D) on a Frechet domain D is denoted by &. It is isomorphic to the second strong dual of

the complete injective tensor product D'®tD' of the strong duals of D and D, where D is
endowed with the topology generated by the graph norms of operators belonging to L+(D)
and D denotes the complex conjugate space of D. The predual of J§?, i. e., the dual of

D'<§)aD
f is isomorphic to the space ^(D'} D) of nuclear operators mapping D' into D.

These facts, together with the fact that the positive cone of 3? is normal with respect to
the order topology, are applied to the study of bounded, positive, and continuous linear

functionals on 3?, It is also shown that D'®fD
r is a barrelled DF-space, that L+(D) is a

DF-space, and that the subspace «^"cL+(D) of finite rank operators is a bornological DF-
space. There are given several characterizations of the Montel property of the Frechet
domain D- One of them is the reflexivity of «£?.

§ 1. Introduction

The present paper is concerned with the study of the completion
with respect to the uniform topology of the maximal Op*-algebra
L+ (D) on a Frechet domain D, (For precise definitions, see Section
2,) It is a continuation of [13]. There it was shown that this com-
pletion is the space £? (D, Z)"1") of continuous linear operators from
D into the space D+ of continuous anti-linear functionals on D.

It is the aim of the present paper to investigate the following
dualities: The space £? (D, D+) is the second strong dual of its
subspace of completely continuous operators. It is the strong dual
of the space Jf'(D+, D) of nuclear operators from D+ into D.

Some applications concern properties of several locally convex
subspaces of & (D9 D

f ) 9 E e g O J L + ( D ) is a DF-space. Its subspace 2F
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of finite rank operators is even a bornological DF-space.
These results, together with the fact that the positive cone of

«=£?(!), £>^) is normal with respect to the order topology r05 are
applied to the investigation of bounded, positive, and continuous
linear functionals on ^(D9D+) and on L+(D)0

We assume throughout that D is a Frechet domain, i, e., that D
is a Frechet space in the topology defined by the graph norms of
operators belonging to L+(D). By [15], some of the results can be
generalized to more general domains. However, in this more general

situation, the results and the proofs become more complicated.
Therefore they will be published separately.

The pattern of the paper is as follows. In Section 2, we intro-
duce definitions and notations and recall some known or easy
results. In Section 3 and Section 4, we investigate in more detail the
space of completely continuous operators from D into D+ (denoted
by D'sZT) and the space JT(D*9D) of nuclear operators from D+

into Z), respectively. Section 5 deals with the dualities (D'eZ>+)' =
Jf(D+,D} and (Jf(D+, D)Y = &(D9 D+). One of the applications
is the orthogonal decomposition of uniformly continuous linear
functionals on L+ (D) into their ultra weakly continuous and singular
parts (Corollary 5.3). It will also be shown in Section 5 that the
locally convex subspaces L+(D) and 3F of &(D,D+) are DF-spaces
and that Z)'sZ)+ is even a barrelled DF-space. In Section 6, we
prove that the positive cone of J£?(D, D+) is normal with respect to
the order topology r0. Consequently, bounded linear functionals on
<£(D,D+) are linear combinations of positive linear functionals.
Moreover, they admit also an orthogonal decomposition into an
ultraweakly continuous and a singular part. Section 7 contains
some equivalent characterizations of the property that D is a Montel
space with respect to the topology defined by the graph norms of
operators belonging to Z/(D). Such characterizations are the
reflexivity of =^(D, D^), the ultra weak continuity of all continuous,
positive, or bounded linear functionals on JS?(Z), D+) and the con-
dition that D is of type I in the sense of G. Lassner and We

Timmermann [20].

Note that the problem of investigation of the completion of
L+ (D) arose in [18] in connection with the study of the time devel-
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opment of thermodynamical systems in quantum statistics.

Under some additional condition, W. Timmermann [28] described

the dual of Jr. This description is similar to the algebraical part of

Theorem 5. 4. a). Some aspects of the duality described in Theorem

5. 4. b) were previously investigated by J.-P.Jurzak [8]. The order

topology was investigated by K. Schmudgen [25] and H. Araki and

J.-P.Jurzak [2], For Frechet Montel domains K. Schmudgen [23,

24] proved the ultraweak continuity of uniformly continuous and of

positive linear functional on L+ (D) by other methods. This was a

generalization of earlier results of S. L. Woronowicz [29], T. Sherman

[27], and G. Lassner and W. Timmermann [19]. Concrete Frechet

domains have been investigated, e. g., by G. Lassner [16], G. Lassner

and W. Timmermann [20], and K. Schmudgen [23, 25].
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§2. Notations and Preliminary Results

In this section, we fix some definitions and notations. Moreover,

we collect some well-known or simple facts for later use.

Suppose that D is a dense linear subspace of a complex Hilbert

space H. We denote the norm, the unit ball, and the scalar product

of H by || • ||, UH, and <.»•>, respectively. We assume the scalar

product to be linear in the second argument. For a closable linear

operator A on //, let D(A), A*, A = A**, and \\A\\ denote the domain,

the adjoint, the closure, and the norm of A, respectively. If A is a

trace class operator, v (A) — trace ((A* A)1/2) denotes the nuclear norm

of A. If A is unbounded, we set ||^4|| = oo. Similarly, if A is not a

trace class operator, we set v(A)=oo.

The following definition was introduced by G. Lassner [16] :

L+CD) = t4eEnd(D) :Dc/)(4*) and ,4* (D) C £>}.

Note that L+ (D) is a *-algebra of closable operators with involution
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A--+A*\ D (the restriction to D of A*;B

We provide D with the weakest locally convex topology such that
the seminorms

\A<p\\

are continuous for all A^L+(D). This topology is denoted by t0 It
is called the graph topology.

The space D is said to be a Frechet domain if it is a Frechet
space with respect to the graph topology. In this case, there exists
a sequence (An) in L+ (D) such that the following conditions are
satisfied :

a) The topology of D is generated by the sequence of seminorms

(Z>E^-*P^II). Moreover, D=r\D(AJ.
n=l

b) For each A^L^(D)^ there exists n^N such that

c) A!<P = <P, \\An<p\\2<<An+1<p,<p>, and \\An<p\\<\\An+1(p\\ for all n^N and

We assume throughout that D is a Frechet domain. Moreover,, we
fix a sequence (An) satisfying the conditions a), b), and c). Note
that every Frechet domain is reflexive ([4,22]).

Let D denote the complex conjugate locally convex space of D9

i. e.? the space which arises when the multiplication with complex
numbers is replaced by the multiplication with the complex conjugate
numbers.

Let D+ be the space of all continuous antilinear functionals on
Z), endowed with the topology of uniform convergence on bounded
subsets of D. D+ is exactly the strong dual of 5. The elements of
D or D are denoted by Greek letters <p, (p, 37, „ . „ . Elements of D+

(and of //) are denoted by Latin letters /, g, /z, . . . . The value of
/e£)+ at the point <p^D is denoted by <^, />, its complex con-
jugate number by </, <p)e Note that the correspondence between

and the linear functional

sets up an antilinear topological isomorphism between D~*~ and the
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strong dual D' of D. Therefore, the definition of D+ here is equiv-
alent to the definition of D+ in [13].

We always identify f^H with the functional

which belongs to D+. Thus, H and D become dense linear subspaces
of D+ and the imbeddings DdH and HdD+ are continuous.

If E and F are locally convex spaces, 3? (E, F) denotes the
linear space of all continuous linear operators mapping E into F.
We use the abbreviation £? for the space &(D,D+). Note that
the mapping which assigns to TEEJ^7 the sesquilinear form

is an isomorphism of J£? onto the space of all continuous sesquilin-
ear forms defined on DxD (see, e.g., [12] §40). Therefore, we
can define an involution T-*T+ of 3? by the equation

An operator T^<£ is said to be hermitian if T=T+. We define a
partial order relation on the real linear space J^ of all hermitian
elements of 3? as follows :

Ti<T2 if and only if <#?, 7^><<£>, T2<p)

for all (p<=D.
For E, F<E{Z>, //, D+}, we denote

(E, F) - {r<EE^ : There exists R^^(E, F) such that
T(p = R(p for all

We regard the elements of L+ (D) as operators from D into Z)+. Then
L+ (D) becomes a subspace of 3? . More precisely,

L+ (D) = V (A D) n * (D+, D+)

(see [17]). Consequently, there are extensions of the operators ^4n

which belong to J^(D% D+). We denote these extensions by -4n.
Let ^Cc^ be the space of all finite rank operators belonging to

, i.e., of operators of the form

»=1

Define also



590 KLAUS-DETLEF KURSTEN

<\\An<p\\
for all £>,

Now, we state an easy characterization of the elements of ^.

Proposition 2. 1. & is the set of the restrictions to D of orthogonal

projections onto complete (with respect to the norm topology induced by
H) linear subspaces of De

Proof: Each Pe^> has a continuous extension Pe=£f (D+, D).
Clearly, the range of P \ H = P is a norm-complete subspace of D,
Conversely, let Q, be an orthogonal projection onto a norm-complete
linear subspace of D. According to the closed graph theorem, A Q
(=(£M+)*) belongs to J^(//,/f) for all A^L+(D). Since \\A(QJ)\\
<\\AQ\\ i l /H, Q, belongs to &(H, D). In particular, Q(UH) is a
bounded (with respect to the graph topology t) subset of D. Therefore,
the seminorm

is continuous. Since

for all /e//, Q^ has a continuous extension Q^J?(D+,H). Finally,
the assertion follows from the fact that Q^Q^e^ (D4', D) is an extension
of a r D.

The following definition of a partial multiplication on 3? is taken
from [13].

Definition 2 92 e We say that the product Tn°. . . °T± of elements of
& is defined if there are spaces E0, . . . , En belonging to {D, //, D+] such

that Tj^W (Ej.^Ej). Let RJ^^(EJ^l, E}) denote the continuous exten-
sion of Tj. Then the product Tn°a . . °Ti is defined by

This partial multiplication has the following property (cf8 [13]).
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Proposition 2. 3. // n>k> I and if the product 7>. . . 0^ is defined,

then

for all <p9

Usually, we endow the space 3? = «£? (Z), Z)+) and its subsets with

the topology of uniform convergence on bounded subsets of D.

This topology is called the uniform topology. It is denoted by TD.

Next, we collect some topological properties of Z>, Z)+, and

Proposition 2. 4.
a) The system

is a fundamental system of bounded subsets of D.

b) For B^&, let B^^(D^^D) denote the continuous extension of B.

Then the system of seminorms

defines the topology of D+.

c) The sequence of sets

is a fundamental sequence of bounded subsets of D+.

d) The system of seminorms

defines the topology TD.

e) The sequence

(».).6y

is a fundamental sequence of bounded subsets of

The assertions a), b), and d) were obtained in [13]. It was also

mentioned in [13] that e) follows from the theory of locally convex

spaces.

Proof of 2. 4. c) : Since D is reflexive, it suffices to show that the

polar of \<p^D : ||-4n^||<l} is contained in An(UH}. For, let/ be an
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element of this polar. This means that |</3 ^> | <||-4B^|| for all
Consequently, there is a linear functional h on An(D) such that

Since the norm of h is not larger than 1, there exists g£^UH such that

<g, An9y = h (Ajp) =<y»
for all y>eD. Since D is dense in Z>+, the equation

<Ad>,9>> = <0,Ajp> (ft^efl)

implies

<£& 9>> = <& 4#> = </,?>> (9 e £>) .

This completes the proof.

We refer to [1] for the theory of operators in a Hilbert space
and to [11, 12, 21] for the theory of locally convex spaces.

§ 30 Completely Continuous Operators

In this section, we investigate a space of completely continuous
operators.

We make use of the s-product D'eD+ defined by L. Schwartz
[26], Let EC denote the dual of the locally convex space £, endowed
with the topology of uniform convergence on compact convex circled
sets. By definition, the s-product D'eD+ is the space &.((D'ye, D+)
of all continuous linear operators from (-D')c into D"1", endowed with
the topology of uniform convergence on equicontinuous sets. Since
D is reflexive, the equicontinuous subsets of (D') ' are exactly the
bounded subsets of D. Therefore, D'eD+ is a topological linear
subspace of &[TD]. Note that D' and D+ are complete locally
convex spaces. They have the approximation property because the
semi-norms described in Proposition 2. 4. b) can be given by semi-
definite scalar products. This implies that D'eD+ is isomorphic to

the complete injective tensor product D'®BD+ (see [12], §43. 3, (7)),
We use the following generalization of the familiar concept of

completely continuous operators between Banach spaces0 A continuous
linear operator between locally convex spaces is said to be completely
continuous if it transforms weakly convergent sequences into con-
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vergent sequences. Our next proposition shows, in particular, that
D'eD+ is the space of all completely continuous operators from D
into D+.

Proposition 38 1. For TEi<&. the following assertions are equivalent:
a) T^D'eD+.
b) T belongs to the closure of ^ in ^[rD]0

c) For each bounded subset McD, T(M) is relatively compact in D+.
d) For each weakly convergent sequence (<pn) in Z), (Tipn) converges in

Proof-. Since D' and D+ fulfil the approximation property, D'eD+

is the closure of the set of all finite rank operators in &[TD~] ([12]
§43. 3, (6)). Since D is dense in D+, & is dense in the set of all
finite rank operators. Hence, a) and b) are equivalent.

The equivalence of a) and c) follows from the fact that a weakly
continuous operator belongs to D'eD+ if and only if it maps the
equicontinuous subsets of (DO ' into relatively compact subsets of
D+ ([12] §43.3. (2)).

The implication c)=>d) follows from the fact that a weakly con-
vergent sequence converges if it is contained in a compact set.

Remember that each bounded subset of D is contained in a
weakly compact and weakly sequentially compact set of the form
B(UH) (J3e^). Therefore, the implication d)=>c) follows from the
fact that weakly compact and sequentially compact sets are com-
pact (see, e.g., [10] 7. 7., 17. 8.). This completes the proof.

Remark : If T belongs to (D'sD+) f } L + ( D ) , then it transforms weakly
convergent sequences of D into convergent sequences of D, Fur-
thermore, it maps bounded subsets of D into relatively compact
subsets of D (see [14]).

§ 4e Nuclear Operators

In this section, we investigate properties of the space J f ( D + , D )
of nuclear operators from D+ into D.

Since D is assumed to be a Frechet space, each element of the
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complete projective tensor product D(^)^D is the sum of an abso-
lutely convergent series ^<pn®(pn (<pn £ A </>„ ̂  D) . The correspondence
between lL*<Pn®<pn and the operator

sets up a linear isomorphism / between the tensor product
and the space Jf(D+^D) of nuclear operators from D+ into Z) (see,
e- g-5 [3] Theorem 2.1 or Lemma 4.1 below).

Let TK be the weakest locally convex topology on Jf(D+,D) such
that the seminorms

un : JT (D\ D} B 5->y (^nSAw r //) (n e JV)

are continuous. We want to show that rff is essentially the topology
of the projective tensor product.

Lemma 4. 1. Let pn denote the Minkowski functional of the convex
hull in D(g)D of

Then the seminorm-

is the continuous extension of pn.

Proof: Let qn: D^D-^R denote the continuous extension of pn,

Fix raEiJV, ee(0, 1) and x^D^^D. There exists a sequence (xk) in
such that

qn+k(x-xk)<ek

It follows that

pH Ui) < qn W +qn(x- xj <qn (x) +s.
i-xJ <qn+k(x~xk) +qn+k+i(

Consequently, there are representations
mi
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xk+1-xk= _2_
l-mkl

where ^eD, ^>/eJD, and

Therefore, the series Z <Pi®<l>i converges in D®KD to x and we have

/=!

/=!

Letting e-»0, we get

»n (/*)<?*(*).

In particular, the seminorm D®KD^x-*i>n(Jx) is continuous.
Therefore, it suffices to establish the converse inequality for elements

Let

1=1

be fixed. The operator

An(Jy)An\ H:

has a representation

such that

Moreover, we can assume that the vectors 57, and C; belong to the
linear span of [An<p,, ^4B^;} »=1. Define

Clearly, ^(./j)IB = ̂ (^)IB. Note that
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, /,¥»> = </, Aj

for all f^D+ and <p^D, Note also that An Is Injective. Therefore?

the operator An has a dense range,, Now9 the equality An(J(y—z))An

= 0 Implies J(y — z) = 09 i. e., j>=£. Finally, we get

This completes the proof0

Remark: G0 Lassner and W0 TImmermann [19] defined the space
©!(£)) = fSe^?(/f, //) : 4 61 and A S* are trace class operators for

all 4 eL+ (/>)}.
Clearly, S \H belongs to ^(D) If S Is an element of ^(D+

9 D)0

Gonversely9 each element of @i(Z)) Is the restriction to // of an
operator belonging to «/f(D+

9D)0 Indeed9 It has been shown by K.
Schmiidgen ([23] proof of Lemma 1 (5)) that each element of

is a linear combination of operators of the form

n=l

where (pB) Is an orthogonal sequence In D such that

n=l

for all l^N^ i.e., where Xi 9n®9n is an absolutely convergent series

In D®nD0

For 5e^(D+, D), 6s fD belongs to ^(D+
9D) 0 Our next theorem

characterizes such elements of ^(D +
9 D) 9 which can be extended to

nuclear operators from D+ Into D0 It also characterizes bounded
subsets of .yr(D+

9D)[rJ0

Theorem 4020 Let $Kc^(D+
9D) ^ a set of operators such that

sup [v(An°S°AH) i S<=m] <oo

for all n^Na Then there exist an operator B^^(H^D) such that B
>0 and

,H) and v
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Remark: If 5e#(/f, D) and B>Q then B = B^ belongs also to
<r(jD+ , //) ([13] Proposition 3.5). In this case, B°B = B2 belongs
to ^(D+ ,D). Consequently, it belongs to SI.

Proof of Theorem 4. 2: Since v (An°SoAn} =v (An°S^~°An), we can
assume that 5+eSK for all SeSK.

For arbitrary J91? B2 in L+(D) there are operators 53, 54 in
^ (//,//) and a natural number w such that Bl = B^An and jB2 =
An°Bt ([13] Proposition 5.5 and Corollary 5.6). Consequently,

In particular, the values

are finite. We choose a sequence (en) of positive real numbers such

that

Since

the set

M

is bounded in D. By a similar argument,

sup{||(

On the domain

we define the hermitian form

t : (ft #) ->* (ft #) =
a=l

We prove that ^ is closedc For, let (<pk) be a sequence in A such
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that

lim f(P*-p/,P*-pj)=0.
M-"°°

Since

for all k, /, n^N, the sequence (y>k) Is a Cauchy sequence in Da

Hence, there exists <pQ^D such that the sequence (<pk) converges to
<pQ with respect to the graph topology.

We show that <pQ^Dt and

lim *(0>*-?>o,?>A-?>o)=0. (1)
jfe->00

Given e>09 there exists k0 in N such that

if &>£0 and 1>A0. Keeping £>&0 fixed and letting /— »oo3 we get

In particular, this implies <pk — (pQ^Dt. Since D* is a linear space,
(pQ^Dt. Moreover, (1) is satisfied.

Hence, Dt is complete with respect to the norm ^-> (^ (9?, (p) ) 1/2.
But this means that £ is closed.

Let HI denote the closure of Dt in //. By the representation
theorem for closed positive sesquilinear forms (see, e. g., [9] Chap.
VI Theorem 2. 23), there exists a positive self-adjoint operator T
acting on Hl9 with domain Df, such that

for all
For ^eAf and 0&D(T)=Dt, we have

II(^)VII IMI



DUALITY FOR MAXIMAL OP*-ALGEBRAS 599

UJV,^>. (2)
n=l

Clearly, (2) holds also for <p^D(T) and p in the linear hull of M.
Corresponding to the orthogonal direct sum H = Hl@(HQHl}, we

define the positive self-adjoint operator T~l@Q. This, operator is

|| - 1 1— bounded because of IITVII2^6!!!^!!2- Moreover, it maps H into
Dtc:D. By the closed graph theorem, it belongs to «£?(//, D). We
define B=(T~1®^ \ D.

Now, for a fixed 5eSK, we consider the operator

The estimate

*./=! k.l=l

implies /?G^ (//,//) and y(/2)<l.
Finally, we show that S = B2°RoB2. For, let ?, y^ED. Using several

times (2) for <p in the range of S or S+ and ^ in the range of J5, we

get

1=1

Consequently, S = B2°R°B2. This completes the proof.

Corollary 4. 30 For B^&, let J5e^(D+, D) denote the continuous
extension of B. Then the sets

H,H) andv(R}<\] (B<E<%}
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form a fundamental system of bounded subsets of J f ( D + , D) [rj.

Proof: If 31 is a bounded subset of Jf (D+
? D) [rJ9 the set of

operators

satisfies the assumptions of Theorem 40 2, Consequently, there exists
B in ^ such that

9H) and y

This implies

mc:{BRBiR<=<g(H,H) and

because B.R5 is an extension of B°R°B and belongs to
Conversely3

vn(BRB) =v(AnBRBAn \ H) =»(An°BoRoBoAn)
<\\AnB\\ \\BAH\\»(R)=\\AnB\\

and

for all 5e«^ and n^Ne Consequently^ for each B^3$, S?B is a
bounded subset of ,/T ( J9+

9 jD) [r J 0 This completes the proof0

Remark : In particular^ it follows from Corollary 40 3 that each
element of Jf (D+

9 D) has a representation

BRB
with 5e^9 R<=<g(H,H}, and

We conclude this section by showing that nuclear operators on
D or on D+ have uniquely defined traces,,

Lemma 4040 Let (an) GE/! «?zrf /^^ (y,,) awrf (^?n) 4^ bounded sequences
in D+ and D9 respectively, such that

n=l

/or a// ^>9 (J)ELD. Then

s«x/»,
n=l
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Proof: By Proposition 2.4. a), there exist B^& and a bounded
sequence (gj in H such that B(gn)=(pn. We can also assume that
gn belongs to the norm-closure in H of the range of 5. Let 5e
J^(D+

9D) denote the continuous extension of B, Taking <p = Brj^ we
get

°° ~ °° _

n=l n=l

Therefore, the trace class operator

is the zero operator. This implies

Our next proposition is an immediate consequence of the pre-
vious lemma and of elementary properties of nuclear operators (see,
e.g.f [21] III 7.1).

Proposition 4. 5. Let S<^Jf(D,D} and T^^(D+,D+) be nuclear
operators. Then there are nullsequences ($O, (^>J in D, nullsequences

)5 (gn) ^ ^+
? and sequences (an)3 (4n) e/i JzicA that

/or a// ^^D <2^rf /eD+
0 TA^ /ra^j q/ 5" and T are uniquely defined

by the formulas

£a.<J.,^ (3)

tr ( 7 0 = : *„<&,&>. (4)
n=l

Remark: It follows from (3) and (4) that tr(S T) =tr(TS) if
D) and rej?. Furthermore, tr(4 5) =tr(5 4) if

(A-0) and Ae^(D,D), and tr(.R D =tr(T /?) if
and R<=3'(D+,D+').
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§5e Duality

The pairs (&, J f ( D + , D ) ) and (D'eD+, Jf(D+, £>)) are dual pairs
with respect to the bilinear mapping

CT,,S)->tr(:r,S). (5)

In this section, we consider some properties of these dual pairs.

Lemma 5.1. For S<=^(D^,D) and

Proof : Let 2 9n®4)n be an absolutely convergent series in
such that

n=l

For T<=V(.H,H),

Therefore,

-sup {|tr(r(^o (5 r /))%)**) I :Te^ and
= sup{|tr((Aorc^)5) | :Te^ and ||r||<l}
<sup {|tr ((AsT'AjS) \ : TtE V (H, H) and ||r||<l}

= v (44o (5 r /))%)=«. (5).

Finally, the assertion follows from the fact that

^ = (Ah° T°Ak : Te V (//,//) and

(see [13] Proposition 5. 1).

Lemma 5.2. Suppose that B<=@. Let B<=£'(D+,D) denote the

continuous extension of B.
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a) We have

tr (7X5/25)) =tr((B°ToB)**R)

for T^^ and RtEtf (H, //) with v(
b) We have

for

Proof: a) J? has a representation

where /„, gn^UH and Zil^K00- Then BRB is the operator

Consequently,

tr(T(BRB))=± an<Bfn,
n = l

Note that

for all 9, ([)^D. This implies

<B/, T%>-</, (5oTo

for all /, g^H. Further we obtain

71 = 1

b) Assertion b) is a consequence of assertion a) and of the fact that

| |K| |=sup{| tr(F/Z) | : /ZeJ?(/ / , / / ) and »(/?)<!}

for all 7eJ2?(//,/f). The proof is complete.

Lemma 5.3. Suppose that B<^&. Let B^^(D+, D) be the continuous

extension of B. Suppose further that 6 is a linear functional on D'eD+

such that

\ff(T) \£\\BoToB\\ (6)

for all T^D'sD+. Let P denote the orthogonal projection onto the norm-
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closure of the range of B. Then there exists an operator R in %> (H, H)
with v(R)<I and PRP = R such that

for all T^D'eD+
a This operator is uniquely defined. If the functional 0

is positive, R is also positive.

Proof : Because of (6), the mapping

a): (B°T°B)**-*0(T)

is a well-defined linear functional on the linear subspace

of &(H9 //). Moreover,

It follows from Proposition 30 1 that the elements of 2£ are compact
operators on H. Therefores there exists an operator Rl on H with
y(J?i)<l such that

ff(T) =

for all TEED'sD*. Defining the operator

we have

For /, g&H, the operator

belongs to D/£D+
0 Since

0 ( T f t g ) =tr((B°ToB)**R) =<S/,

the sesquilinear form

(7)

is uniquely defined on the range of B0 This implies that R is uni-
quely defined. Similarly, if 6 is positive,, the corresponding sesqui-
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linear form (7) is also positive. This implies that R is positive.

This completes the proof.

Theorem 5.4. a) The correspondence between sE:Jf(D+,D} and the

linear functional

tr(. 5) :D'eD+^R->tr(RS)

defines a topological linear isomorphism between Jf (£)+, -D) [rj and the
strong dual of D'eD+.

b) The correspondence between TeJ^ and the linear functional

tr (T . ) : Jf (D+, Z>) 3 £->tr (T R}

defines a topological linear isomorphism between ^[TD~\ and the strong dual

of

Proof: a) According to [3] Theorem 2. 1, the map

is a linear isomorphism of Jr(D+^D) ( = D®nD} onto the strong dual

of D'eD+. By Lemma 5. 1, it maps the set

onto the polar of S3Mfl (D'eD^). Therefore, it is also a topological

isomorphism.
b) Let B(D,D) denote the space of continuous bilinear forms on

DxD. Using the isomorphisms Jf(D+, D^lr^D^D, &~B(D, Z)),

and the well-known representation of the dual of D^)ZD (cf. Lemma
4. 1 and [12] §§40, 41), we see that the mapping

j?3r->tr(:r.) (8)
is an isomorphism of the linear space =S? onto the dual of Jr(D+,D)

M.
It follows from Lemma 5. 2. b) that the polar of the bounded

subset %1B of J f ( D + , D) [rj, defined in Corollary 4.3, is the set of

functional

{tr(r.):re^ and l l^oTo.Bil^l} .

This means that the mapping (8) is a topological isomorphism between

&\TD~\ and the strong dual of ^CD+,D)[rJ. The proof is com-
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plete.

Remarks'. 1. It is not difficult to show directly that the dual of

D'eD+ is isomorphic to J f ( D + ^ D } as a linear space. Indeed, each

SE=.N(D+, D) has a representation

S=BRB

with 5e«^, # e ^ (H, //) , and v(R)<^oo. It follows, therefore, from
Lemma 5. 2. b) that the functionals tr(0 S) are continuous on D'eD+.

By Lemma 5. 3, the linear mapping

is a surjective mapping. As a consequence of Lemma 5. 1, it is also
injective.
2. On condition that L+(Z>) is a self-adjoint 0/?*-algebra (i.e. that
D=H [D(A*) : ,4<EL+CD)}), W. Timmermann [28] proved that the
dual of ^[TD] is algebraically isomorphic to &i(D) . This implies
also the isomorphism of the linear spaces (D'eD+)' and «V(D+,D).
3. It is well-know that, for arbitrary Frechet spaces E and F, the

dual of E(§)xF is algebraically isomorphic to the space B(E,F) of all
continuous bilinear forms on ExF. The problem whether this linear
isomorphism is also a topological isomorphism with respect to the

strong topology of the dual of £(§)ffF and the bibounded topology of
B(E,F) is the "problem of topologies" of A. Grothendieck. In [6]
p. 70 Remark 2, A. Grothendieck remarked without giving a proof
that the "problem of topologies" has a positive solution for subspaces
of the product of a sequence of Hilbert spaces. On the basis of
this remark, J. -P. Jurzak [8] stated a result which is equivalent to
Theorem 5. 4. b) . Actually Corollary 4. 3 contains the positive solu-
tion of the "problem of topologies" for Frechet domains of Op*-
algebras.
4. The functionals

tr(. S) :&EiT-*tr(TS) (S^Jr(D+,D))

were called normal functionals by G0 Lassner, W. jTimmermann and

K. Schmiidgen ([19, 23]). We will use the terminology of H. Araki

and J. -P. Jurzak [2] : The weak topology o(&, Jf(D+, Z>)) is refered

to as the ultraweak topology. A linear functional on & is said to be
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ultra weakly continuous if and only if it is of the form tr(. 5) for
some

Corollary 5, 5- Each continuous linear functional 0 on J^[rD] is the
sum of an ultraweakly continuous linear functional Ol and a continuous
linear functional 02 which vanishes on D'eD+.

Proof : The functional 0f (D'eD+) has a representation

where S^Jf (D+, £>). We can define

0i = tr(. 5) and 02 = 6-0l9

Remarks: I, The decomposition 0 = 6l + 02 in the above corollary
is unique.
2. The following argument of W. Timmermann shows that 0l and
62 are positive if 6 is positive. Let 0 be a positive continuous linear
functional on &[TD~]. Note that the subspace # (//, 7/) CJS? is isomor-
phic to the W*-algebra &(H,H). The restrictions 0X f #(//,//)
and 02 1 # (//, //) are positive because they are the normal and the
singular part, respectively, of the positive linear functional 0 \ <g (H9

//)„ Since the positive cone of # (/f, //) is r^-dense in the positive
cone of & by [13] Corollary 6.2, 0j and ^2 are positive.

Now, we are going to prove some properties of the locally convex
spaces D'eD+, &, L+(D), and tf(D+,D).

Lemma 5. 69 Each closed convex circled subset of D'eD+ or
which absorbs the sets S3nn«^*(weJV), is a neighbourhood of zero in
D'eD+ or ^[r^l, respectively. In particular, the spaces DfeD+ and ^\r^\
are quasi-barrelled locally convex spaces.

Proof', We take the polars with respect to the pairing (5). Let ^
be a closed convex circled set which absorbs the sets S3ran^. By
Lemma 5e 1, the polar of ^ in Jf(D+,D} is r^-bounded. Therefore,
the bipolar of ^ in 3? is a neighbourhood of zero for the uniform
topology TD. But the intersection of this bipolar and D'eD+ or & \

respectively, is ^6 This proves the lemma.
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Theorem 5. 70 a) D'eD+ is a complete barrelled DF- space,

b) ^[TD~] is a bornological DF-space,
c) L+ (£>) [rD] and & (D+, D) [rD] are DF-spaces,

Proof: All subspaces of =^[rD] admit fundamental sequences of
bounded sets.

a) Is a consequence of the facts that a complete quasi-barrelled
space Is barrelled and that a quasi-barrelled space with a funda-
mental sequence of bounded sets is a DF-space.

In the same way, it follows that ^"[rD] is a DF-space,
We show that the topology of ^\TD~\ is the Mackey topology.

For, let ySlC.Jf(D+9D) be a convex circled subset which is compact
with respect to the weak topology a(Jf(D+, D), ^"). (The duality
between J f ( D ^ , D ) and 3F is given by (5).) For each n^N, the
set of a (Jf (D+, £)), #") -continuous linear functional

{ t r (T . ) r TeES3nnJ*-}

is pointwise bounded on 3K. According to the principle of uniform
boundedness (see, eD g., [10] 12. 4), we get

sup {|tr(r,5)|:7'eJB l ln#',5 leSK}<oo.

By Lemma 5. 1, SOI is ^-bounded. By Corollary 4. 3, it is contained in

9lB={BRB:R<=Etf (H,H) and v(R)<l]

for some B^$ta As a consequence of Lemma 5 0 2 0 b ) , 9?B is equi-
continuous. Since each weakly compact convex circled subset of the
dual of ^{TD~\ is equicontinuous, ^r[rD'] is a Mackey space.

Next, we show that every bounded linear functional on ^\TD~\
is continuous. By a bounded functional, we mean a functional
which is bounded on each bounded set. Since ^\TD\ is a DF-space,
it suffices to show that a bounded linear functional is continuous

on each of the bounded sets S3nn«^r. Let B be a bounded linear
functional on ^[TD]O For a fixed natural number ?zs let B be the
inverse operator of Friedrich3s extension of Ana Furthermore, let H^
be the closure in the Hilbert space H of the range of An and let
P be the orthogonal projection onto Hlo For TeJ^, we define the
linear mapping
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J(T):H13f-+PBTBff=H1.

Since

<Af<p,PBTBA.^ = <BPA.<P, T</,y = <<

for all <p, (/>^D, T coincides with the mapping

D3p^(An)

This implies that

is a bijective mapping of IF onto some linear space S£ of continuous
finite rank operators on HI. Moreover, T'eS3n if \\J(T)\\<\* Since
6 is bounded, the linear functional

is continuous with respect to the operator norm topology of
Consequently, it has a representation

where (/*) and (ft) are sequences in Hl such that

ll/JI

Since An(D} is dense in HI, we can choose the sequences (fk) and
(ft) in -4B(D) (see, e.g., [21] III 6.4). For an arbitrary s>0, we
find m^N such that

Then we define the nuclear operator

S : D+ 3/-* S < (A) -1 (/») , /> UJ -1 (ft) e Z).

For TIeSnn^r, we get the estimate

= 1
ft = »-rl

< £ I KUJ -'(/*) 1 1



610 KLAUS-DETLEF KURSTEN

This proves that 0 can be approximated uniformly on S^fl^ by a
r^-continuous linear functional,, Thus? 0 is ^-continuous on S3nn^"8

Now5 part b) of the theorem follows from the fact that a locally
convex space is bornological if and only if its topology is the Mackey
topology and each bounded linear functional is continuous0

In order to prove c)9 it suffices to show that the intersection Qt
= r\Wn of a sequence (^n) of closed convex circled neighbourhoods
of zero in L^(D)[rD"] or ^ (D+

9 D) [r^], respectively9 is again a

neighbourhood of zero if it absorbs the sets 35nn V (D+, D). Let *„

be the closure of % n in &[TD']. The intersection n Wn absorbs the
sets »„ since S3nn ^ (D+

9 D) is dense in S3n ([13] Corollary 6.3).
Consequently, it is a neighbourhood of zero in the DF-space &[TD'].
Finally, the set ^ is a neighbourhood of zero because it is the inter-

section of fl ̂ n and L+ (D) or # (Z)4", D), respectively. This completes
the proof of the theorem.

J. -P. Jurzak [8] considered Frechet domains D which are quasi-
normable in the sense of A0 Grothendieck [5], For such domains,
it follows from [8] Theorem 2 that &[TD] is a bornological locally
convex space. We show that the same is true for D'sD+, ^(D+

9Z))9

and

Proposition 5. 80 // D is a quasi-normable Frechet space (with
respect to the graph topology}, then the spaces £KeD+

9 ^ (D+
9 D)

L+ (Z)) [TO] and ^\TD~\ are bornological locally convex spaces,

Proof: The quasi-normability of D implies the quasi-normability

of -D0JD ([6] I §1.3. Proposition 7). Consequently, each subspace
of the space ^[rj (which is isomorphic to the strong dual of

D0j[D) satisfies the strict Mackey convergence condition (see [5]
Definition 4). This implies that the associated bornological topology
of an arbitrary subspace of ^[TD] coincides with TD on bounded
sets. Note that a convex circled subset of a DF-space is a neigh-
bourhood of zero if and only if its intersection with any convex
circled bounded set is a neighbourhood of zero in this bounded set0

Thus, each subspace of ^[r^], which is a DF-space9 is also a borno-
logical locally convex space,, Finally 9 the assertion follows from
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Theorem 5. 7.

Remark : D is quasi-normable if it is a Schwartz space ([5] Prop-
osition 17) or if it is of the form

where T is a self-adjoint operator ([7] 2, 7. 16). D is not quasi-
normable if it is a Montel space but not a Schwartz space ([5] Prop-
osition 17) or if L+(D} [TD~\ is not bornological. Such Frechet
domains exist as shown by K. Schmiidgen in [23, 25].

§ 6. Normality of the Positive Cone

The positive cone of 3? is normal with respect to the topology
TD because the neighbourhood of zero

[T^&i Kp, 7»|<1 for all <p(EM}

is saturated with respect to the positive cone for each bounded subset
M of D, Consequently, each continuous linear functional is a linear
combination of positive continuous liner functionals ([21] V). It is
also known that each ultraweakly continuous linear functional is a
linear combination of positive ultraweakly continuous linear functionals
([23, 2]). In this section, we establish an analogous result for
bounded linear functionals on &[TD~\. More precisely, we show that
the positive cone of JS? is normal with respect to the associated

bornological topology of &\TJ^\. Among other things, this result is
applied to the decomposition of a positive linear functional into an
ultraweakly continuous positive linear functional and a singular posi-
tive linear functional.

Let r0 denote the associated bornological topology of J?[rD], i. e.,
the strongest locally convex topology on & such that the sets 83n

are bounded. This topology coincides on SPh with the order topology
in the sense of H. Schaefer [21]. It was called the ^-topology by
H. Araki and J. -P. Jurzak [2, 8]. A priori, the order topology of
L+(D) D^ may be different from the topology induced by r0.
However, these topologies coincide if the condition An(D)=D of
H. Araki and J. -P. Jurzak [2] is satisfied. Therefore it would be of
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Interest to answer the following question,

Does there exist a cofinal sequence (An) in L+(D)H^h with
An(D)=D for any Frechet domain D ?

So far the author knows, the only examples of Frechet domains

constructed In the literature are of the form

where T is a self-adjoint operator on H and (/„) is a sequence of

real-valued functions on the spectrum ©(T1) of 7", which are mea-

surable with respect to the spectral measure of T and satisfy (/n(0)2

</n+i(0 for all £e@(jT) and n^Na Such domains have been

studied systematically by K. Schmiidgen [25]. They fulfil clearly the

condition of H. Araki and J0 -P. Jurzak0

Under the condition An(D)=D, H. Araki and J, -P. Jurzak [2]

proved that the positive cone of 5£ (and of some subspaces) is

normal with respect to the topology rOB Here we prove this fact

without using the condition An(D)=D.

Theorem 68 L The sets

* ((O) = {T(=&: There exists k^N such that

for all

form a basis of neighbourhoods of zero in J^[r0] if (en) runs through the
sequences of positive real numbers.

Proof : The sets ^((ej) are convex circled sets which absorb each

of the sets 83*. Hence, they are neighbourhoods of zero in ^h].

Conversely, let ^ be a convex circled neighbourhood of zero in
e£?[r0]0 Then 5ft33*C^ for some positive numbers dk. We have to

show that * Z) # ( (en) ) for some sequence OJ . We define the
sequence (en) by induction such that

for all k^N0 This yields that
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2 Z e^Mn.axU.m))'^!. (9)
n,m = l

We show that ^((en))c^. For let Te^f and /ceJV be given
such that

I<P,7V>I^IX<?>,4,?»>
n=l

for all ^eD. Setting

we get

I <?, 7V> | < O, ^> < 1 \9\ | | \A<p\ | < (£l) -
1! \A<p\ |2

For each positive real number c, the inequality

is satisfied. Taking the infimum over all positive real numbers c,
we get

Therefore, there exists an operator Rs^V (H, H) with p||<2(e1)-
1

such that

n,m=l

(see, e.g., [13] §5). Since

<\\R\\ \\Any\\ \\A^\\
|| \\AJ\\, \\Amp\\ \\AJ\\],

it follows that

In view of (9),

k
T— ]T

n,m=l
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belongs to the convex hull of (jSn^na Consequently, it belongs to
^o This proves the theorem.

Since the sets tft ( (ej ) are saturated with respect to the positive
cone of <£h, we get the following two corollaries,,

Corollary 60 28 The positive cone of &h is normal with respect to

the topology r0o

Corollary 60 30 Each bounded linear functional on <£?\TD~\ is a linear

combination of positive bounded linear functionalsa

It is known that the associated bornological topology of the strong
dual of a Frechet space has a basis of strongly closed neighbourhoods
of zero ([11] §29. 1)0 This implies the following three assertions,

Corollary 6* 40 The rD-closures of the sets <% ( (ej ) (defined in

Theorem 60 1) form a basis of neighbourhoods of zero in

Corollary 6* 50 The topologies r0 and TD induce the same topology on

Proof s If ^ is a r^-closed neighbourhood of zero in J^[r0]? then
^rn(D'sD+) is a barrel in D'eD+, According to Theorem 5, 70 a),
it is a neighbourhood of zero in D'eD+

e

Corollary 60 Go Each bounded linear functional 0 on ^\rD~\ is the

sum of an ultraweakly continuous linear functional Ol and a bounded linear

functional 02 which vanishes on D'eD+
a The functionals Ol and 02 are

positive if 0 is positive.

Proof i Since 6 is r0-continuous5 the restriction 0 \ (D'sD^") is TD-
continuous. By Theorem 5. 40 a), it is of the form

where 5e^(JD+,D). We can define ^ = tr(. 5) and Q2 = 0-0lB

Now5 suppose that 0 is positive,, In this case, the functionals
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are positive, as well Note that 02(AHoT°An)=Q for all TeJ5". This
implies that the functionals

are the normal and the singular part of o)n I <% (//, //) . Consequently,
they are positive. Finally, the assertion follows from the fact that
each positive T^&h is of the form T=An°R<>An for some n^N and
some R^^(H,H} with R>0 (see [13] Proposition 5.1).

Remark : In the above corollary, the representation 6 = 0l + 02 is
unique.

§7e Fr6chet Montel Domains

In this section, we apply the preceding results to the special
case, where D is a Frechet Montel space. In particular, we give a
new proof of a result on trace representation of linear functionals,
which was obtained in its general form by K. Schmiidgen [23]. We
collect the results in the following theorem.

Theorem 7, 1. For a Frechet domain Z), the following properties are
equivalent :
a) D is a Montel space,

b) &[?D\ is a Montel space .

c) &\JD] is reflexive.
d) Each bounded linear functional on ^[TD~\ is ultraweakly continuous.
e) Each positive linear functional on L+ (D) has a representation

n=l

where (0>B) is a sequence in D.
f) Each continuous linear functional on L+ (,Z)) [TD~\ has a representation

where 5e^r(D+, D).

g) & is dense in L+(D) [rD],
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h) Each complete (with respect to the norm topology) linear subspace of
D has finite dimension, i. £., D is of type I in the sense of G. Lassne?
and W. Timmermann [20].

Proof: a)=^>b) : It follows from Theorem 4.2 that each bounded
subset of Jf (D+, D) [r J is contained in

) and

for some positive B^^(H^D) with the continuous extension
& ( T)+ U\ T *=><-<=£> \JLJ ,/i )0 i-iet

6 1 5 JZ71

.0= \ X a/i^

be the spectral representation of the positive self-adjoint operator 59

For each n^N, the orthogonal projection

Pn=
(1/n, °o) (1/n, oo)

has a continuous extension Pn^£?(D+, H) because Pn(H)c:D (see
Proposition 20 l)e Now assume that D is a Montel space. Then the
bounded set B(UH) is relatively compact in D. Consequently, it is
also compact with respect to the norm topology of H. This implies
that Pn and Pn are finite rank operators. The estimate

vk(B
2RBB-PnB

2RB2PJ = v(

<\\AkoB\\ \\BoAk\\ ||B-5
<2^1||^|| ||^o5|l \\BoAk\\v(R)

shows that each bounded subset of Jf(D^^D) [rj can be approxi-
mated uniformly by sets of finite dimension. Consequently3 it is
precompact. Since Jf (D* ', D) [rff] is a Frechet space, it is barrelled
and each bounded subset is relatively compact. This means that

tyT(D+, D) [rrc] is a Montel space. Since ^\_^D\ is isomorphic to the
strong dual of Jf(D+,D) [rj, it is also a Montel space.

The implication b)i^>c) is obvious.
c) ^>d) : Assume that ^\TD~\ is reflexive. Note that barrelled

subspaces of reflexive locally convex spaces are again reflexive.
Therefore, D'sD+ is reflexive. Hence, ^[rj =D'eD+. Now, the asser-
tion follows from Corollary 6. 6.
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d)=>e) : The positive linear functional 0 on L+ (D) has a positive
linear extension o) to & because L+(D)n&h is cofinal in &h. The
positive linear functional o> is necessarily bounded on ^[r^]. As a
consequence of Corollary 6. 5, the restriction o) I (Z)'eZ>+) is continu-
ous. By Lemma 5.3, there exist B$E@ and R^^(H,H} with v(R)
<1 and R>Q such that

w(T)=tr(T(BRS))

for TeD'sD+
9 where Bej£?(D+, D) denotes the continuous extension

of B. It follows from Theorem 1.1 that D'eD+ is ultraweakly dense
in £*. Since a) is ultraweakly continuous by assumption d),

for all Tej^. The operator R has a representation

n=l

where/neC/H , an>0? and 2an<oo. Consequently, B/?5 has the represen-

tation

MB : D+3f^£ an<Bfn,
n = l

Setting ^n= (an)
1/25/n, we obtain

=tr(T(BRB))

for all

e)=>f) : Since each continuous linear functional on I^+(-D)[rz?] is a
linear combination of positive linear functional, it suffices to show
that each functional of the form

has also a representation

where 61eJ/'(D+
5D)0 In order to do this, we note that the conver-

gence of the series
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for all T<EL+(D) implies that

n=l n=l

for all k^N. This means that the series 2 <pn®<pn converges abso-

lutely in D®ffD0 Thus, the nuclear operator S can be defined by

f )=>g) : I f IF is not dense in L+(D) [rB], then there exists a
continuous linear functional 0 on L+(D)[rI?] such that ^O and
0(D=0 for all TeJ5". It follows from Theorem 5. 40 a) that 0 can-
not be of the form T-*tr(T S) with S<=^(D+,D) because & is
dense in D'eD+

0

g)=>h):Let HI be a complete (with respect to the norm topo-
logy) linear space, which is contained in D. According to Proposi-
tion 20 lp the orthogonal projection P of D onto HI belongs to ^0

Therefore, the seminorm

is rp-continuouSo If IF is dense in i+(D)[rz>], then

for some TeJ^ This implies that the dimension of Hl = P(D) is
finite.

h)=>a) Assume that D contains a bounded, but not relatively
compact subset Ma Since D is a Frechet space, there exist £>00

k^N and a sequence (<pn) in M such that

Il^(ft-Pj||>e (n=t=w). (10)

The set {^4^JneAr is bounded in D0 By Proposition 2 0 4 a a ) , it is
contained in £([/#) for some B^^0 Let

be the spectral representation of the positive self-adjoint operator B0

Because of (10), B(UH) is not relatively compact in H. Therefore,
the complete (with respect to the norm topology) linear subspace
of D

(d, oo) (5. o
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Is of infinite dimension for some <5>0. This completes the proof of
the theorem.

Remarks-. 1. The equivalence of a), e), f), and h) in the preceding
theorem was essentially obtained by K. Schmiidgen ([23, 24]) who
generalized earlier results of S. L. Woronowicz [29], T. Sherman [27],
and G. Lassner and W. Timmermann [19].
2. Let S£ and ®/ be dense linear subspaces of &\T^\. Suppose that
X is symmetric (i.e., X = [T^ ;T<=&}) and that % f) S£h is cofinal
in JS?,.

It is a consequence of the proof of Theorem 7. 1 that the
following conditions are also equivalent to the Montel property of D :
-Each positive linear functional on X is of the form

n=l

where (<pn) Is a sequence in D.
- Each continuous linear functional on ^/\r^\ has an ultra weakly

continuous extension to & '.
D) [rj is a Montel space.
D) [rj is reflexive.

- D'eD+ is a Montel space.
- D'eD+ is reflexive.

Since the strong dual of a reflexive Frechet space is always a
bornological locally convex space (see [11] §29. 4. (4)), we get the

following result.

Corollary 78 2. // D is a Frechet Montel space, then <&\TD~\ is a
bornological locally convex space.
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