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Duality for Maximal Op*-Algebras on
Fréchet Domains
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Klaus-Detlef KURSTEN*

Abstract

The completion with respect to the uniform topology of the maximal Op*-algebra
L*(D) on a Fréchet domain D is denoted by #. It is isomorphic to the second strong dual of

the complete injective tensor product D'®.D’ of the strong duals of D and D, where D is
endowed with the topology generated by the graph norms of operators belonging to L*(D)
and D denotes the complex conjugate space of D. The predual of %, i. e., the dual of

D’@,D—’ is isomorphic to the space (D', D) of nuclear operators mapping D’ into D.
These facts, together with the fact that the positive cone of £ is normal with respect to
the order topology, are applied to the study of bounded, positive, and continuous linear

functionals on &#. It is also shown that D’®,D’ is a barrelled DF-space, that L*(D) is a
DF-space, and that the subspace #cL*(D) of finite rank operators is a bornological DF-
space. There are given several characterizations of the Montel property of the Fréchet
domain D. One of them is the reflexivity of Z.

§ 1. Introduction

The present paper is concerned with the study of the completion
with respect to the uniform topology of the maximal Op*-algebra
L*(D) on a Fréchet domain D. (For precise definitions, see Section
2.) It is a continuation of [13]. There it was shown that this com-
pletion is the space £ (D, D") of continuous linear operators from
D into the space D* of continuous anti-linear functionals on D.

It is the aim of the present paper to investigate the following
dualities : The space £ (D, D*) is the second strong dual of its
subspace of completely continuous operators. It is the strong dual
of the space # (D, D) of nuclear operators from D* into D.

Some applications concern properties of several locally convex
subspaces of £ (D,D*). E.g., L*(D) is a DF-space. Its subspace #
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of finite rank operators is even a bornological DF-space.

These results, together with the fact that the positive cone of
&£ (D,D*) is normal with respect to the order topology t,, are
applied to the investigation of bounded, positive, and continuous
linear functionals on # (D, D*) and on L*(D).

We assume throughout that D is a Fréchet domain, i.e., that D
is a Fréchet space in the topology defined by the graph norms of
operators belonging to L*(D). By [15], some of the results can be
generalized to more general domains. However, in this more general
situation, the results and the proofs become more complicated.
Therefore they will be published separately.

The pattern of the paper is as follows. In Section 2, we intro-
duce definitions and notations and recall some known or easy
results, In Section 3 and Section 4, we investigate in more detail the
space of completely continuous operators from D into D* (denoted
by D’eD") and the space A4 (D*, D) of nuclear operators from D*
into D, respectively. Section 5 deals with the dualities (D’eD*)’=
N (D*, D) and (N (D*,D)) =% (D,D*). One of the applications
is the orthogonal decomposition of uniformly continuous linear
functionals on L*(D) into their ultraweakly continuous and singular
parts (Corollary 5.3). It will also be shown in Section 5 that the
locally convex subspaces L*(D) and & of £ (D, D*) are DF-spaces
and that D’eD* is even a barrelled DF-space. In Section 6, we
prove that the positive cone of £ (D, D*) is normal with respect to
the order topology 7,, Consequently, bounded linear functionals on
& (D, D*) are linear combinations of positive linear functionals.
Moreover, they admit also an orthogonal decomposition into an
ultraweakly continuous and a singular part. Section 7 contains
some equivalent characterizations of the property that Dis a Montel
space with respect to the topology defined by the graph norms of
operators belonging to L*(D). Such characterizations are the
reflexivity of £ (D, D*), the ultraweak continuity of all continuous,
positive, or bounded linear functionals on % (D, D*) and the con-
dition that D is of type I in the sense of G. Lassner and W,
Timmermann [20].

Note that the problem of investigation of the completion of
L* (D) arose in [18] in connection with the study of the time devel-
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opment of thermodynamical systems in quantum statistics,

Under some additional condition, W. Timmermann [28] described
the dual of #. This description is similar to the algebraical part of
Theorem 5.4.a). Some aspects of the duality described in Theorem
5.4.b) were previously investigated by J.-P.Jurzak [8]. The order
topology was investigated by K.Schmiidgen [25] and H. Araki and
J.-P. Jurzak [2]. For Fréchet Montel domains K.Schmiidgen [23,
24] proved the ultraweak continuity of uniformly continuous and of
positive linear functionals on L*(D) by other methods. This was a
generalization of earlier results of S. L. Woronowicz [29], T. Sherman
[27], and G. Lassner and W, Timmermann [19]. Concrete Fréchet
domains have been investigated, e.g., by G.Lassner [16], G. Lassner
and W.Timmermann [20], and K.Schmiidgen [23, 25].
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§ 2. Notations and Preliminary Results

In this section, we fix some definitions and notations. Moreover,
we collect some well-known or simple facts for later use.

Suppose that D is a dense linear subspace of a complex Hilbert
space . We denote the norm, the unit ball, and the scalar product
of H by ||« |l, Uy, and <,,.), respectively. We assume the scalar
product to be linear in the second argument. For a closable linear
operator A on H, let D(4), A*, A=A** and ||4|| denote the domain,
the adjoint, the closure, and the norm of A4, respectively. If 4 is a
trace class operator, v(4) =trace ((A4*A)¥?) denotes the nuclear norm
of A4, If A is unbounded, we set |l4||=co. Similarly, if 4 is not a
trace class operator, we set v(4) =oco,

The following definition was introduced by G. Lassner [16]:

L*(D)={A<End(D) : Dc D(4*) and A*(D)cD}.

Note that L*(D) is a *-algebra of closable operators with involution
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A->A* D (the restriction to D of A*,,
We provide D with the weakest locally convex topology such that
the seminorms

D> p—||4¢l|

are continuous for all A=L*(D). This topology is denoted by f. It
is called the graph topology.

The space D is said to be a Fréchet domain if it is a Fréchet
space with respect to the graph topology. In this case, there exists
a sequence (4,) in L*(D) such that the following conditions are
satisfied :

a) The topology of D is generated by the sequence of seminorms
(D3¢—||4,9]). Moreover, D=8D(A_n).
n=1
b) For each AL* (D), there exists n&EN such that

[<Ap, o> | <40, >  (pED).

©) dio=0, [l4.0|P<{4,00, ¢, and [|A,0||<[| 4,010l for all nEN and
peED,

We assume throughout that D is a Fréchet domain. Moreover, we
fix a sequence (4,) satisfying the conditions a), b), and c). Note
that every Fréchet domain is reflexive ([4,22]).

Let D denote the complex conjugate locally convex space of D,
i.e., the space which arises when the multiplication with complex
numbers is replaced by the multiplication with the complex conjugate
numbers,

Let D* be the space of all continuous antilinear functionals on
D, endowed with the topology of uniform convergence on bounded
subsets of D. D* is exactly the strong dual of D. The elements of
D or D are denoted by Greek letters ¢, ¢, 7,.... Elements of D*
(and of H) are denoted by Latin letters f, g, A,.... The value of
feD* at the point p=D is denoted by <gp, f>, its complex con-
jugate number by {f, ¢>. Note that the correspondence between
fE€D* and the linear functional

D3 o—<{f, o>

sets up an antilinear topological isomorphism between D* and the
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strong dual D’ of D. Therefore, the definition of D* here is equiv-
alent to the definition of D* in [13].

We always identify f&H with the functional

D3 ¢—<g, >
which belongs to D*. Thus, H and D become dense linear subspaces
of D* and the imbeddings DCH and HC D" are continuous,

If E and F are locally convex spaces, Z(E, F) denotes the
linear space of all continuous linear operators mapping E into F,
We use the abbreviation % for the space ¥ (D, D"). Note that
the mapping which assigns to 7% the sesquilinear form

Dx D> (¢, ) —><p, Ty

is an isomorphism of % onto the space of all continuous sesquilin-
ear forms defined on DXD (see, e.g., [12] §40). Therefore, we
can define an involution T—T* of £ by the equation

Ko, T*>=<Tp,$> (p,¢€ D).
An operator T is said to be hermitian if T=T7"*. We define a

partial order relation on the real linear space %, of all hermitian
elements of & as follows:

T,<T, if and only if <¢, T1¢)> <<p, Ty
for all o= D.
For E, Fe{D, H, D*}, we denote
€ (E,F) ={Te% : There exists Re ¥ (E, F) such that
To=Rep for all p=D}.

We regard the elements of L* (D) as operators from D into D*, Then
L*(D) becomes a subspace of #. More precisely,

L*(D)=% (D,D)N ¢ (D*, D*)

(see [17]). Consequently, there are extensions of the operators A,
which belong to % (D*, D*). We denote these extensions by 4,.

Let #CZ be the space of all finite rank operators belonging to
L™ (D), i.e., of operators of the form

k
D> <p—>§1 o 0>¢, (KEN, @, $,€D).

Define also
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B,={TeZL: Ko, Ty | <|l49ll 14,4l
for all ¢, gD},

#={Be<¥ (D*,D): B>0},
P={PcsH:P=P}.

Now, we state an easy characterization of the elements of £,

Proposition 2.1. & is the set of the restrictions to D of orthogonal
projections onto complete (with respect to the norm topology induced by
H) linear subspaces of D.

Proof : Each P2 has a continuous extension Pe ¥ (D*, D).
Clearly, the range of P H=P is a norm-complete subspace of D.
Conversely, let Q be an orthogonal projection onto a norm-complete
linear subspace of D. According to the closed graph theorem, 4 Q
(=(Q.4%)*) belongs to Z(H, H) for all AeL*(D). Since |[A(Q NI
<|14Q1l1 IIfll, Q belongs to £ (H, D). In particular, Q (Uy) is a
bounded (with respect to the graph topology ¢) subset of D. Therefore,
the seminorm

q: D= f-sup{lKQg, O l:2€U4}

is continuous. Since

o flI<qg(H)
for all f€H, Q has a continuous extension Q €% (D*, H). Finally,
the assertion follows from the fact that Q 0 €.% (D", D) is an extension
of Q| D.

The following definition of a partial multiplication on % is taken
from [13].

Definition 2.2. We say that the product T,o... oT, of elements of
& is defined if there are spaces E,, ..., E, belonging to {D, H, D"} such
that T, € (E,_,E,). Let R,eZX(E,_,E,) denote the continuous exten-
sion of T;. Then the product T,o...oT, is defined by

Two...oTwp=R, (... (Rp)...) (peD).

This partial multiplication has the following property (cf. [13]).
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Proposition 2.3. If n>k>1 and if the product T,o... T, is defined,
then
Ko, Thou oo oT1p> =L (Tp11) To. .. o (1) “@, Tho. .. o T
Sor all ¢, ¢=D.

Usually, we endow the space =% (D, D") and its subsets with
the topology of uniform convergence on bounded subsets of D,
This topology is called the uniform topology. It is denoted by 7.
Next, we collect some topological properties of D, D*, and Z[z;].

Proposition 2. 4.
a) The system
{(B(Uy) :B= #}
is a fundamental system of bounded subsets of D.
b) For BE A, let BE,?(D*, D) denote the continuous extension of B.
Then the system of seminorms
D*3 f—||Bf]] (BER)
defines the topology of D™.
c) The sequence of sets
(A, (U)) sen

is a fundamental sequence of bounded subsets of D™,
d) The system of seminorms

LST—||BoToB|| (BEA)
defines the topology tp.
e) The sequence
(%n)nEN
is a fundamental sequence of bounded subsets of ¥ [tp].

The assertions a), b), and d) were obtained in [13]. It was also
mentioned in [13] that e¢) follows from the theory of locally convex
spaces.

Proof of 2.4.c):Since D is reflexive, it suffices to show that the
polar of {¢=D:||4,0||<1} is contained in A,(Uy). For, let f be an
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element of this polar. This means that [{f, ¢>|<||4,0l| for all p= D,
Consequently, there is a linear functional 4 on A4,(D) such that

k(4,0) =<f, 0> (pE D).

Since the norm of A is not larger than 1, there exists g&Uy such that

g 4> =h(4.p) =<f, >
for all p&D. Since D is dense in D*, the equation

{Aup, 0> =K, 49> (o, 9€D)
implies

(A.g, 0> =<g, 4.9>={f, 9> (pED).
This completes the proof.

We refer to [1] for the theory of operators in a Hilbert space
and to [11, 12, 21] for the theory of locally convex spaces.

§ 3. Completely Continuous Operators

In this section, we investigate a space of completely continuous
operators,

We make use of the e-product D’eD* defined by L. Schwartz
[26]. Let E; denote the dual of the locally convex space E, endowed
with the topology of uniform convergence on compact convex circled
sets. By definition, the e-product D’eD* is the space &,((D"):, D*)
of all continuous linear operators from (D’); into D", endowed with
the topology of uniform convergence on equicontinuous sets. Since
D is reflexive, the equicontinuous subsets of (D’)’ are exactly the
bounded subsets of D. Therefore, D’eD* is a topological linear
subspace of Z[rp]. Note that D’ and D* are complete locally
convex spaces. They have the approximation property because the
semi-norms described in Proposition 2.4.b) can be given by semi-
definite scalar products. This implies that D’eD* is isomorphic to
the complete injective tensor product D’®ED+ (see [12], §43.3. (7)).

We use the following generalization of the familiar concept of
completely continuous operators between Banach spaces. A continuous
linear operator between locally convex spaces is said to be completely
continuous if it transforms weakly convergent sequences into con-
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vergent sequences. Our next proposition shows, in particular, that
D’eD* is the space of all completely continuous operators from D
into D*,

Propesition 3.1. For T2, the following assertions are equivalent
a) TeD'eD*.
b) T belongs to the closure of F in ZL[rp].
c) For each bounded subset M C D, T(M) is relatively compact in D*.

d) For each weakly convergent sequence (p,) in D, (Te,) converges in
D-,

Proof : Since D’ and D* fulfil the approximation property, D’eD*
is the closure of the set of all finite rank operators in Z[rp] ([12]
§43. 3. (6)). Since D is dense in D*, & is dense in the set of all
finite rank operators. Hence, a) and b) are equivalent,

The equivalence of a) and c) follows from the fact that a weakly
continuous operator belongs to D’eD* if and only if it maps the
equicontinuous subsets of (D’)’ into relatively compact subsets of
D* ([12] §43.3. (2)).

The implication ¢)=>d) follows from the fact that a weakly con-
vergent sequence converges if it is contained in a compact set,

Remember that each bounded subset of D is contained in a
weakly compact and weakly sequentially compact set of the form
B(Uy) (BE#). Therefore, the implication d)=c) follows from the
fact that weakly compact and sequentially compact sets are com-
pact (see, e.g., [10] 7. 7., 17. 8.). This completes the proof.

Remark : If T belongs to (D’eD*) N L* (D), then it transforms weakly
convergent sequences of D into convergent sequences of D. Fur-

thermore, it maps bounded subsets of D into relatively compact
subsets of D (see [14]).

§ 4. Nuclear Operators

In this section, we investigate properties of the space 4 (D*, D)
of nuclear operators from D' into D.
Since D is assumed to be a Fréchet space, each element of the
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complete projective tensor product D®.D is the sum of an abso-
lutely convergent series 3¢,8¢, (¢,€ D, ¢,D). The correspondence
between > ¢,&¢, and the operator

D2 f~3 {pn f39,ED

sets up a linear isomorphism J between the tensor product D®.D
and the space 4 (D*, D) of nuclear operators from D% into D (see,
e.g., [3] Theorem 2.1 or Lemma 4.1 below).

Let 7, be the weakest lccally convex topology on A (D*, D) such
that the seminorms

v,: /' (D*,D)2S—>v(4,SA, 1 H (nEN)

are continuous. We want to show that 7, is essentially the topology
of the projective tensor product.

Lemma 4.1, Let p, denote the Minkowski functional of the convex
hull in DRD of

{eeD:||4,0|<1}@{peD:||4,9/|<1}.
Then the seminorm.
D®.D>3x—v,(Jx)

is the continuous extension of p,.

Proof : Let g,: D®.D—R denote the continuous extension of p,.

Fix neN, ¢=(0,1) and xeﬁ@,D. There exists a sequence (x;) in
D®D such that

Gurr (X —%3) <e* (kEeN).
It follows that

Da (1) < ¢, (%) +¢, (x—x1) <ga(x) +e.
Drrr (X1 —%3) L@ (X —%3) +Gppr1 (X —X441)

<et4-ett! (kEN).

Consequently, there are representations

1
x1=l=21 0, Q¢
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Mr+1

xk+1_xk=l Z+1 0,9, (keN),

=m,

where ¢, D, ¢,€D, and

= il 11411<.05) +5,

Mp+1

2 Mupill 1 Anadil| e+

l=my+

Therefore, the series 3 ¢,&¢, converges in D&.D to x and we have
l"n(.]x) =U(l§1 <An§0l">An¢l)

<T gl 140lI<q.() +23 ¢
Letting ¢e—0, we get
(J5) <gu(x).

In particular, the seminorm D®.D=x—v,(Jx) is continuous.

Therefore, it suffices to establish the converse inequality for elements
of DRD.
Let

y=3, ¢®p:€ DD
be fixed. The operator

A9 A Hi HS 3. CAupr, 340
has a representation

fﬁé $my G
such that

=l 1Kl =5, ().

Moreover, we can assume that the vectors 7, and {, belong to the
linear span of {4,p,, 4.¢:}7-,. Define

=% (A) @ (U)X,
Clearly, 4,(Jy) A,=A4,(Jz)A,. Note that
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A fo0={f, 4.9

for all f€D* and ¢=D. Note also that A, is injective. Therefore,
the operator A, has a dense range. Now, the equality A(J(—2))A,
=0 implies J(y—2) =0, i.e., y=z. Finally, we get

200 =0, < T Il IGlI<o.).

This completes the proof.

Remark : G, Lassner and W, Timmermann [19] defined the space
©,(D)={S€P(H,H): A4S and 4 §* are trace class operators for
all AeL*(D)}.

Clearly, S | H belongs to &,(D) if S is an element of 4 (D*, D).

Conversely, each element of ©,(D) is the restriction to H of an
operator belonging to 4 (D*, D). Indeed, it has been shown by K.
Schmiidgen ([23] proof of Lemma 1 (5)) that each element of
&,(D) is a linear combination of operators of the form

H3 =3 <ew, f50n,

where (¢,) is an orthogonal sequence in D such that
% 14, P<eo

for all [eN, i.e., where 3 ¢,&¢, is an absolutely convergent series
in D®nDo

For Se/ (D*, D), §1 D belongs to € (D*, D). Our next theorem
characterizes such elements of € (D*, D), which can be extended to

nuclear operators from D* into D. It also characterizes bounded
subsets of A (D%, D)[z.].

Theorem 4.2, Let MCF (D*, D) be a set of operators such that
sup {v(4,085°4,) : S&eM} o

for all neN. Then there exist an operator BE ¥ (H, D) such that B
>0 and

M {BoRoB:Re¥ (H, H) and v(R)<1}.
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Remark :1If Be¥ (H,D) and B>0 then B=B" belongs also to
% (D*,H) ([13] Proposition 3.5). In this case, BoB=DB? belongs
to € (D%, D). Consequently, it belongs to #.

Proof of Theorem 4.2: Since v (4,0804,) =v(4,087°4,), we can
assume that ST for all S,

For arbitrary By, B, in L*(D) there are operators B;, B, in
% (H,H) and a natural number n such that B,=B;°4, and B,=
A,°B, ([13] Proposition 5.5 and Corollary 5.6). Consequently,

sup {v(BoSeB,) : SeM}
=sup {v(Bsod,08°4,°B,) : S&M}
<UBsll | Bl sup {v(4,08°4,) : S€M} oo,

In particular, the values
¢, =14sup {v((4p) %S (4,)%) : SEM, k<n, [<n}

are finite. We choose a sequence (g,) of positive real numbers such
that

pILTRSE
Since
sup {[|4,5¢]|: SEM, o€ U}
<sup {[|4,08]| : SEM} <sup {r(4,08) : SeM} <co,
the set

M=U{S(Uy) : SeMm}
is bounded in D. By a similar argument,
sup {[| (4.) %l : o€ M} <c,.
On the domain
Dt= {SDED: EE”HA,‘QDHZ<OO},

we define the hermitian form

L (0, )9, §) = X (A, A,

We prove that ¢ is closed. For, let (¢,) be a sequence in D, such
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that

lim ¢(p—¢1, o —¢1) =0.

koo

Since

|14, (s — @) |F< (e,) 't (0 — @1, 01— 1)

for all £, [, nEN, the sequence (¢;) is a Cauchy sequence in D.
Hence, there exists ¢,€D such that the sequence (¢,) converges to
¢, with respect to the graph topology.

We show that ¢, D, and

&2‘1 t(0r— o, Pa— @) =0. (1

Given ¢>0, there exists k£, in IV such that

Hoe— @1, Pe—1) = gls,,IIAn (s —1) |1P<e

if £k, and 1>k,. Keeping k>k, fixed and letting [—o0, we get

t(Pr—Po, Pr—@o) = >;ls,,lIA,.(sok—soo) [[P<e.

In particular, this implies ¢,—¢,eD,. Since D, is a linear space,
0, €D,. Moreover, (1) is satisfied.

Hence, D, is complete with respect to the norm ¢— (¢ (g, ¢))"
But this means that ¢ is closed.

Let H, denote the closure of D; in H. By the representation
theorem for closed positive sesquilinear forms (see, e.g., [9] Chap.
VI Theorem 2. 23), there exists a positive self-adjoint operator 7T
acting on H;, with domain D,, such that

To, Tg>=t(p, $)
for all ¢, ¢=D,.
For oM and ¢=D(T)=D,, we have

T alldglP< 3 ali(4)%ll ligl

< 2 el <o,

% € Dt 3
KT, T 1= | 2 A, 48|
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= KX & (40, 95 1<l
ToeD(T*)=D(T),

(T, $) =T &a(4) %, . @)

Clearly, (2) holds also for ¢ D(T) and ¢ in the linear hull of M.
Corresponding to the orthogonal direct sum H=H,®(HOH,), we
define the positive self-adjoint operator 77'@0. This operator is
||+]|]—bounded because of |[[T¢|[?>e¢]lp|l’. Moreover, it maps H into
D,cD. By the closed graph theorem, it belongs to ¥ (H, D). We
define B=(T7'@0) | D.
Now, for a fixed SEI, we consider the operator

R:DSo— 3 e (480 (4)%.
k. 1=1
The estimate
kél e ((4p)%8°(4,)?) Skzz=:1 &6,

implies Re¥ (H, H) and v(R)<l.

Finally, we show that $=B%RcB2 For, let & n=D. Using several
times (2) for ¢ in the range of § or §* and ¢ in the range of B, we
get

{B*RoB%*, n)=<{RB%, B)
= Z g€ (4,) %80 (4,)*B%, B*p)

k=1

Il

3 63 & (40 (S (4)°B%), B
e T*(S(A)'B%), B
(S (4B, m> =<B%, 2 &, (4)*S 1)

= <BZS, T*(S*p)>=<§ S = <S$, 7.
Consequently, S§=B?RoB? This completes the proof.

i

I
I IMs B £

Corollary 4.3. For BE#, let Be £ (D*, D) denote the continuous
extension of B. Then the sets

Nz= {BRB:R= ¥ (H, H) and v(R)<1} (BEX)
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form a fundamental system of bounded subsets of A (D*,D)[z].

Proof : If N is a bounded subset of A4 (D*, D) [z.], the set of
operators

M={SID:S5€N}

satisfies the assumptions of Theorem 4.2. Consequently, there exists
B in # such that

M {BoRoB:R= ¥ (H,H) and v(R)<1}.
This implies
NC (BRB:Re % (H,H) and v(R) <1} =%,

because BRB is an extension of BoRoB and belongs to &£ (D*, D).
Conversely,

v,(BRB) =v(4,BRBA, | H) =v(A,oBoRoBoA,)
<||4,Bl| ||B4,|lv(R) =||4,B|| [1(4,B)*||l»(R)

and
[|(4,B)*|| =||4,B||<co

for all B€# and nEN. Consequently, for each Be%#, Nz is a
bounded subset of A (D*, D)[z;]. This completes the proof.

Remark : In particular, it follows from Corollary 4.3 that each
element of A (D*, D) has a representation

BRB
with BEe#, Re¥ (H, H), and v(R)<]I.

We conclude this section by showing that nuclear operators on
D or on D* have uniquely defined traces.

Lemma 4.4. Let (a,) €I, and let (f,) and (¢,) be bounded sequences
in D* and D, respectively, such that

3 0 fa 95<, 9>=0
for all ¢, p=D. Then
> 0 fus 2 =0.
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Proof : By Proposition 2.4.a), there exist BE# and a bounded
sequence (g,) in H such that B(g,) =¢,. We can also assume that
g, belongs to the norm-closure in H of the range of B. Let Be
L (D*, D) denote the continuous extension of B. Taking ¢=By, we
get

,‘% a,{Bf,, 1>{Bg, g.> =n§l a,{ f., Bp><¢, Bg,> =0.
Therefore, the trace class operator
H> [~ aBf., fra.cH
is the zero operator. This implies
X il fur 00 =% 0 fus Be> =3 a(Bf., 8> =0.

Our next proposition is an immediate consequence of the pre-
vious lemma and of elementary properties of nuclear operators (see,

e.g., [21] III 7. 1).

Proposition 4.5. Let S€A (D, D) and TN (D, D*) be nuclear
operators. Then there are nullsequences (¢,), (¢,) in D, nullsequences
(f), (&) in D*, and sequences (a,), (b,) €I, such that

So =§1 @i fus ©Pn

Tf =3 bS8

for all oD and fED*. The traces of S and T are uniquely defined
by the formulas

r($) =3 alfrr 0 ®)
0 (1) =3 b, 2. @)

Remark : It follows from (3) and (4) that tr(ST)=tr(T S) if
SeN (D*,D) and Te¥. Furthermore, tr(4 §) =tr(§ 4) if SN
(D,D) and A€¥%(D,D), and tr(RT)=tr(T R) if Tewx (D*, D)
and Re ¥ (D*, DY),
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§5. Duality

The pairs (&, /' (D*, D)) and (D’eD*, #(D*, D)) are dual pairs
with respect to the bilinear mapping
(T, §)—tr (T S). (%)

In this section, we consider some properties of these dual pairs.

Lemma 5.1. For SeA/(D*,D) and kEN,

v (8) =sup{|tr (T ) | : TeB,NF}
=sup{|[tr (T S) | : TEB,}.

Proof : Let 2 0,Q¢, be an absolutely convergent series in D&®.D
such that

Sf =§1 $@us [OUn (feD").
For T€¥% (H, H),

tr(4ioTo4)8) =2 gy AreToAuh>

=% ign, T Ay =tr (T(4o (S | D) o4 **).
Therefore,
v (8) =v (4,0 (S | D)oAy)
=sup {|tr (T (4o (S | D)oA4)**) | : TEF and ||T||<1}
=sup {|tr ((440oT°4,)S) | : T€F and ||T||<L1}
Ssup{|tr((4,0T°4,)S) |: Te¥ (H, H) and ||T]|<1}

=sup {|tr (T (4o (S I D)od)**) | : TEF (H, H), ITI|<1}
=v(4se (S T D)ody) =v(8).

Finally, the assertion follows from the fact that

B,={A,0ToA4,:T=¥ (H, H) and ||T]||<1}
(see [13] Proposition 5.1).

Lemma 5.2. Suppose that BEH. Let Be¥ (D', D) denote the
continuous extension of B.
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a) We have
tr (T(BRB)) =tr ((BoT>B)**R)

for TE€® and Re¥ (H, H) with v(R)<oo.
b) We have

||[BoToB||=sup {|tr (T(BRB)) |: Re¥¢ (H, H) and v(R) <1}
for TeZ.

Proof: a) R has a representation

R: DB¢—>n2:1an<f,., PD8&ns

where f,, g, €Uy and 3 |a,|<co. Then BRB is the operator
D3 f~3 aBf,, fBe,ED.

Consequently,
r (T(BRB)) =3 a,(B/,, TBg..

Note that
{By, T Bg)=<{p, BeT°B¢)

for all ¢, ¢=D. This implies
(Bf, TBgy={f, (B-TB)**g)

for all f, g&H. Further we obtain

tr (T (BRB)) =§l @, fus (BoToB)**g,>=tr ((BoT>B)**R).

b) Assertion b) is a consequence of assertion a) and of the fact that
[[Vil=sup{ltr(V R)|:Re¥(H,H) and v(R) <1}
for all Ve¥ (H, H). The proof is complete.

Lemma 5.3. Suppose that BE #. Let B€ % (D", D) be the continuous

extension of B. Suppose further that 6 is a linear functional on D’eD*
such that

|60(T) | <||BoTeBlj| (6)
for all TeD’eD*, Let P denote the orthogonal projection onto the norm-
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closure of the range of B. Then there exists an operator R in € (H, H)
with v(R) <1 and PRP=R such that

6(T) =tr (T (BRB))

for all TED’eD*. This operator is uniquely defined. If the functional 0
is positive, R is also positive.

Proof : Because of (6), the mapping
: (BoToB)**—0(T)
is a well-defined linear functional on the linear subspace
Z ={(BoTeB)**: T D’eD"}
of ¥ (H, H). Moreover,
llol| <1

It follows from Proposition 3.1 that the elements of % are compact
operators on H. Therefore, there exists an operator R, on H with
v(R,) <1 such that

0(T) =0 ((BoTeB)**) =tr ((B-ToB)**R))
for all TeD’eD*. Defining the operator
R:D=¢—PRPop,
we have

v(R) <1,

PRP=R,

6(T) =tr (P(BoToB)**PR,) =tr ((B oToB)**R)
=tr (T (BRB)).

~ For f, g€ H, the operator
Tye:D29—><f, 008
belongs to D’eD*. Since
0(Ty.) =tr ((BoToB)**R) ={Bf, RBg,
the sesquilinear form
(¢, $) =<, Rp> )

is uniquely defined on the range of B, This implies that R is uni-
quely defined. Similarly, if @ is positive, the corresponding sesqui-



DUALITY FOR MAXIMAL OP*-ALGEBRAS 605

linear form (7) is also positive. This implies that R is positive,
This completes the proof.

Theorem 5.4. a) The correspondence between s€A (D*, D) and the
linear funciional

tr(. ) : D'eD*sR—>tr(R S)
defines a topological linear isomorphism between N (D*, D)[z.] and the
strong dual of D’eD*,
b) The correspondence between TEF and the linear functional

tr (T.): /' (D*, D)R—-tr (T R)

defines a topological linear isomorphism between £ [tp] and the strong dual
of ¥/ (D, D)[z].

Proof : a) According to [3] Theorem 2.1, the map
S—tr(. S)

is a linear isomorphism of 4 (D*, D) (= D@ED) onto the strong dual
of D’eD*, By Lemma 5.1, it maps the set

{Sex (D*, D) :v,(S) <1}
onto the polar of B,N (D’«D™). Therefore, it is also a topological
isomorphism,
b) Let B(D, D) denote the space of continuous bilinear forms on
DxD. Using the isomorphisms 4 (D*, D)[z]= DR.D, =B (D, D),
and the well-known representation of the dual of E@ID (cf. Lemma
4.1 and [12] §§40, 41), we see that the mapping

F3T->tr (T.) (8)

is an isomorphism of the linear space # onto the dual of 4 (D*, D)
[=].

It follows from Lemma 5.2.b) that the polar of the bounded
subset Np of A (D*, D)[r:], defined in Corollary 4.3, is the set of
functionals

{tr(T.): T and ||BoToB;|<1}.

This means that the mapping (8) is a topological isomorphism between
Z[zp] and the strong dual of 4 (D*,D)[r:]. The proof is com-
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plete.

Remarks: 1, It is not difficult to show directly that the dual of
D’eD* is isomorphic to A (D*, D) as a linear space. Indeed, each
Ses (D*, D) has a representation

S=BRB
with Be#, Re¥ (H, H), and v(R)<{co. It follows, therefore, from

Lemma 5.2.b) that the functionals tr (. §) are continuous on D’eD*.

By Lemma 5.3, the linear mapping
N (D*, D)2S—>tr(. S)e(D’eD")’

is a surjective mapping. As a consequence of Lemma 5.1, it is also
injective.

2. On condition that L*(D) is a self-adjoint Op*-algebra (i.e. that
D=N{D(A*): A=L*(D)}), W. Timmermann [28] proved that the
dual of F[rp] is algebraically isomorphic to ©&;(D). This implies
also the isomorphism of the linear spaces (D’eD*)’ and 4 (D%, D).
3. It is well-know that, for arbitrary Fréchet spaces E and F, the

dual of EQ,F is algebraically isomorphic to the space B(E, F) of all
continuous bilinear forms on EXF. The problem whether this linear
isomorphism is also a topological isomorphism with respect to the

strong topology of the dual of E®.F and the bibounded topology of
B(E, F) is the “problem of topologies” of A.Grothendieck. In [6]
p.70 Remark 2, A.Grothendieck remarked without giving a proof
that the “problem of topologies” has a positive solution for subspaces
of the product of a sequence of Hilbert spaces. On the basis of
this remark, J. -P. Jurzak [8] stated a result which is equivalent to
Theorem 5.4.b). Actually Corollary 4.3 contains the positive solu-
tion of the “problem of topologies” for Fréchet domains of Op*-
algebras,

4. The functionals

tr(. §): Z3T—tr (T S) e (DY, D))

were called normal functionals by G. Lassner, W.,Timmermann and
K. Schmiidgen ([19, 23]). We will use the terminology of H. Araki
and J.-P. Jurzak [2]: The weak topology ¢ (&, # (D*, D)) is refered
to as the ultraweak topology. A linear functional on % is said to be
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ultraweakly continuous if and only if it is of the form tr(. §) for
some Se4 (D*, D).

Corollary 5.5. Each continuous linear functional 6 on F[zp] is the
sum of an ultraweakly continuous linear functional 0, and a continuous
linear functional 6, which vanishes on D’e D*,

Proof : The functional 0] (D’eD*) has a representation
T—tr (T S),
where S/ (D*, D). We can define
6,=tr(. §) and 6,=60-0,.

Remarks:1. The decomposition #=6,46, in the above corollary
is unique.
2. The following argument of W.Timmermann shows that 6, and
0, are positive if 6 is positive, Let # be a positive continuous linear
functional on #[r;]. Note that the subspace ¥ (H, H) C % is isomor-
phic to the W*-algebra #(H,H). The restrictions 6, € (H, H)
and 6, € (H, H) are positive because they are the normal and the
singular part, respectively, of the positive linear functional 6] € (H,
H). Since the positive cone of ¥ (H, H) is rp-dense in the positive
cone of % by [13] Corollary 6.2, 6, and 8, are positive.

Now, we are going to prove some properties of the locally convex
spaces D’eD*, &, L*(D), and ¥ (D*, D).

Lemma 5.6. Each closed convex circled subset of D'’eD* or F[zp],
which absorbs the sets B,NF (nEN), is a neighbourhood of zero in
D’eD* or F[tp], respectively. In particular, the spaces D'eD* and F[zp]
are quasi-barrelled locally convex spaces.

Proof : We take the polars with respect to the pairing (5). Let #
be a closed convex circled set which absorbs the sets 8,N%#. By
Lemma 5.1, the polar of % in 4 (D*, D) is z,~bounded. Therefore,
the bipolar of # in % is a neighbourhood of zero for the uniform
topology 7. But the intersection of this bipolar and D’eD* or £,
respectively, is %. This proves the lemma,
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Theorem 5.7. a) D’eD* is a complete barrelled DF-space.

b) Flrp] is a bornological DF-space,
c) L*(D)[zp] and € (D*, D)[tp] are DF-spaces.

Proof : All subspaces of Z[rp;] admit fundamental sequences of
bounded sets.

a) is a consequence of the facts that a complete quasi-barrelled
space is barrelled and that a quasi-barrelled space with a funda-
mental sequence of bounded sets is a DF-space.

In the same way, it follows that #[rp] is a DF-space.

We show that the topology of #[cp] is the Mackey topology.
For, let M4 (D*, D) be a convex circled subset which is compact
with respect to the weak topology o(4 (D*, D), #). (The duality
between A (D*,D) and & is given by (5).) For each n&N, the
set of o (A (D*, D), F)-continuous linear functionals

{tr(T.): TeB,NF}

is pointwise bounded on IR. According to the principle of uniform
boundedness (see, e. g., [10] 12. 4), we get

sup {|tr (T, 8) |: T€B,NF, S} <co.
By Lemma 5. 1, M is 7,-bounded. By Corollary 4. 3, it is contained in
Np=(BRB: R ¥ (H,H) and »(R) <1}

for some BE#. As a consequence of Lemma 5.2.b), RNz is equi-
continuous. Since each weakly compact convex circled subset of the
dual of Z[zp] is equicontinuous, F[7p] is a Mackey space.

Next, we show that every bounded linear functional on %[r;]
is continuous, By a bounded functional, we mean a functional
which is bounded on each bounded set. Since #[r,]is a DF-space,
it suffices to show that a bounded linear functional is continuous
on each of the bounded sets B,NF. Let & be a bounded linear
functional on F[rp]. For a fixed natural number =z, let B be the
inverse operator of Friedrich’s extension of A4,. Furthermore, let H,
be the closure in the Hilbert space H of the range of A4, and let
P be the orthogonal projection onto H;,. For T4, we define the
linear mapping
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J(T):H,>f—->PBTBfcH,.
Since
(4.9, PBTBA,$>=<{BPA,p, T>=<p, T $}
for all ¢, ¢=D, T coincides with the mapping
D3¢— (4)*J(T) 4.
This implies that
J:T=J(T)

is a bijective mapping of # onto some linear space Z of continuous
finite rank operators on H,. Moreover, T8, if ||J(T)||<1. Since
6 is bounded, the linear functional

w: FSR—0(J(R))

is continuous with respect to the operator norm topology of Z%.
Consequently, it has a representation

w: R—_>k—§ <fk, R gk>a
where (f,) and (g) are sequences in H; such that
Elllfkll lgel|<loo.

Since 4,(D) is dense in H,, we can choose the sequences (f,) and
(g) in A,(D) (see, e.g., [21] III 6.4). For an arbitrary ¢>0, we
find m&eN such that

3 IAN i<,

Then we define the nuclear operator

§: D73 f >3 (AW, £>(A) g € D.
For Te%B,N%, we get the estimate
[0(T) —te (T 8) | =l (J(T))—tr (T S) |

= |3 i, PBTBgY =3 <(4) ™ fi, T(A) "8 |
=1 2 <), TU) (@)

=m+

<, 2 AT T4, (4) 7 e I<e,



610 KLAUS-DETLEF KURSTEN

This proves that ¢ can be approximated uniformly on 8,N% by a
p—continuous linear functional. Thus, @ is rp-continuous on B,N Z.
Now, part b) of the theorem follows from the fact that a locally
convex space is bornological if and only if its topology is the Mackey
topology and each bounded linear functional is continuous.

In order to prove c), it suffices to show that the intersection %
=N%, of a sequence (%,) of closed convex circled neighbourhoods
of zero in L*(D)[rp] or % (D', D)[rp], respectively, is again a
neighbourhood of zero if it absorbs the sets B,N % (D*, D). Let €,

be the closure of %, in Z[rp]. The intersection N %, absorbs the
sets 9B, since B,N¥ (D*,D) is dense in B, ([13] Corollary 6. 3).
Consequently, it is a neighbourhood of zero in the DF-space #[zp].
Finally, the set % is a neighbourhood of zero because it is the inter-

section of N %, and L*(D) or ¥ (D*, D), respectively. This completes
the proof of the theorem.

J. -P. Jurzak [8] considered Fréchet domains D which are quasi-
normable in the sense of A.Grothendieck [5]. For such domains,
it follows from [8] Theorem 2 that #[r,] is a bornological locally
convex space. We show that the same is true for D’eD*, € (D*, D),
and L*(D).

Proposition 5.8. If D is a quasi-normable Fréchet space (with
respect to the graph topology), then the spaces D’eD*, € (D*,D) [zp],
L*(D)[zp] and Z[zp] are bornological locally convex spaces.

Proof : The quasi-normability of D implies the quasi-normability

of D®.D ([6] I §1.3. Proposition 7). Consequently, each subspace
of the space Z[rp] (which is isomorphic to the strong dual of

DR®).D) satisfies the strict Mackey convergence condition (see [5]
Definition 4). This implies that the associated bornological topology
of an arbitrary subspace of #[rp] coincides with 7, on bounded
sets. Note that a convex circled subset of a DF-space is a neigh-
bourhood of zero if and only if its intersection with any convex
circled bounded set is a neighbourhood of zero in this bounded set.
Thus, each subspace of #[zp], which is a DF-space, is also a borno-
logical locally convex space. Finally, the assertion follows from
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Theorem 5. 7.

Remark : D is quasi-normable if it is a Schwartz space ([5] Prop-
osition 17) or if it is of the form

D=ND(T,
n=1

where T is a self-adjoint operator ([7] 2, 7.16). D is not quasi-
normable if it is a Montel space but not a Schwartz space ([5] Prop-
osition 17) or if L*(D)[zp] is not bornological. Such Fréchet
domains exist as shown by K.Schmiidgen in [23, 25].

§ 6. Normality of the Positive Cone

The positive cone of &% is normal with respect to the topology
7p because the neighbourhood of zero

{TeZ: |<e, Tey|<1 for all o= M}

is saturated with respect to the positive cone for each bounded subset
M of D. Consequently, each continuous linear functional is a linear
combination of positive continuous liner functionals ([21] V). It is
also known that each ultraweakly continuous linear functional is a
linear combination of positive ultraweakly continuous linear functionals
([23, 2]). In this section, we establish an analogous result for
bounded linear functionals on #[rp]. More precisely, we show that
the positive cone of & is normal with respect to the associated
bornological topology of #[r;]. Among other things, this result is
applied to the decomposition of a positive linear functional into an
ultraweakly continuous positive linear functional and a singular posi-
tive linear functional.

Let 7, denote the associated bornological topology of ZL[zp], i.e.,
the strongest locally convex topology on % such that the sets B,
are bounded. This topology coincides on %, with the order topology
in the sense of H. Schaefer [21]. It was called the p-topology by
H. Araki and J.-P. Jurzak [2, 8]. A priori, the order topology of
L*(D) N %, may be different from the topology induced by z.
However, these topologies coincide if the condition 4,(D)=D of
H. Araki and J.-P. Jurzak [2] is satisfied. Therefore it would be of
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interest to answer the following question.’

Does there exist a cofinal sequence (4,) in L*(D)N%, with
A,(D) =D for any Fréchet domain D?

So far the author knows, the only examples of Fréchet domains
constructed in the literature are of the form

D=1 £.(T),

where T is a self-adjoint operator on H and (f,) is a sequence of
real-valued functions on the spectrum &(7T) of T, which are mea-
surable with respect to the spectral measure of 7 and satisfy (f,(¢))?
<fuou(@ for all t€&(T) and n&N. Such domains have been
studied systematically by K.Schmudgen [25]. They fulfil clearly the
condition of H. Araki and J.-P. Jurzak,

Under the condition 4,(D)=D, H. Araki and J.-P. Jurzak [2]
proved that the positive cone of # (and of some subspaces) is
normal with respect to the topology 7,, Here we prove this fact
without using the condition A4,(D)=D.

Theorem 6.1. The sets
U () ={TeL: There exists kEN such that

k
I<p, Toy| < Z=len<90, A0
for all p=D.}

form a basis of neighbourhoods of zero in Z[z,] if (e,) runs through the
sequences of positive real numbers,

Proof : The sets % ((e,)) are convex circled sets which absorb each
of the sets %B,. Hence, they are neighbourhoods of zero in Z[z,].

Conversely, let % be a convex circled neighbourhood of zero in
Z[r]. Then 6,8,C% for some positive numbers d,, We have to
show that # D% ((s,)) for some sequence (5,). We define the
sequence (¢,) by induction such that

®
>0, &> ¢,<<27%%4,
n=1

for all k€N. This yields that
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k
2 Zl Efm (Elamax(n,m)) _1<l- (9)

n,m=

We show that % ((s,)) C%. For let T€e¥ and kEN be given
such that

(<o T 1S 3 ek, Ao

for all p=D. Setting

we get

<, Tp) | <<p, Adp> <llgl| [|4plI< (&) 7| Apl[

For each positive real number ¢, the inequality
3
Ko, T¢> | = I4'1; i Kep+iteT P, T (co+ite™ ) Y
=0

<@ T Gy +i) P
= @ @llgll+e4g1)

is satisfied. Taking the infimum over all positive real numbers ¢,
we get

<o, Td> <2 () M| 4el| 11441l
Therefore, there exists an operator Re % (H, H) with ||R]|<2(g) ™
such that

k
T=AoRoA= 3 eg,A,0R°A,

n,m=1

(see, e.g., [13] §5). Since

<@, Ao Ro A, P> | = [<A,p, RA,P) |
<RI |l 4.0l 1441l
<2(e) "'max (|| 4|l |48, (140l 114911},

it follows that
A,,DROA,,‘E2 (51) _I%max(n,ml'

In view of (9),

k
T= Z 2sn€m(515max(n.m))_12—1515max(n.m)AnoRoAm
1

n,m=
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belongs to the convex hull of UJ,#,. Consequently, it belongs to
% . This proves the theorem,

Since the sets % ((s,)) are saturated with respect to the positive
cone of Z,, we get the following two corollaries.

Corollary 6.2. The positive cone of £, is normal with respect to
the topology .

Corollary 6.3. Each bounded linear functional on L[tp] is a linear
combination of positive bounded linear functionals.

It is known that the associated bornological topology of the strong
dual of a Fréchet space hasa basis of strongly closed neighbourhoods
of zero ([11] §29.1). This implies the following three assertions.

Corollary 6.4. The rtp-closures of the sets U ((e,)) (defined in
Theorem 6. 1) form a basis of neighbourhoods of zero in £[z.].

Corollary 6.5. The topologies t, and tp induce the same topology on
DD,

Proof. If % is a tp—closed neighbourhood of zero in #[r], then
% N (D’eD*) is a barrel in D’%D*, According to Theorem 5.7. a),
it is a neighbourhood of zero in D’eD*.

Corollary 6.6. Each bounded linear functional 0 on ZL[rp] is the
sum of an ultraweakly continuous linear functional 0, and a bounded linear
Sfunctional 6, which vanishes on D’eD*. The functionals 6, and 0, are
positive if 6 is positive.

Proof : Since 6 is z,~continuous, the restriction 6 [ (D’eD") is 7p-
continuous, By Theorem 5. 4. a), it is of the form

D’eD*2T—tr (T S),

where Se/ (D*, D). We can define 0,=tr(. §) and 0,=60—6,.
Now, suppose that @ is positive, In this case, the functionals
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0,: ¥25T—0(A,cT-A,)
are positive, as well. Note that 6,(4,07°4,) =0 for all Te#. This
implies that the functionals

¢ (H,H)2T—0,(4,0T°4,),

¢ (H,H)2T—0,(A4,cT-A,)

are the normal and the singular part of o, ¥ (H, H). Consequently,
they are positive. Finally, the assertion follows from the fact that
each positive 7€ %, is of the form T=4,0Ro4, for some nEN and
some Re¥ (H, H) with R>0 (see [13] Proposition 5.1).

Remark : In the above corollary, the representation 6=60,+6, is
unique,

§7. Fréchet Montel Domains

In this section, we apply the preceding results to the special
case, where D is a Fréchet Montel space. In particular, we give a
new proof of a result on trace representation of linear functionals,
which was obtained in its general form by K.Schmiidgen [23]. We
collect the results in the following theorem,

Theorem 7.1. For a Fréchet domain D, the following properties are
equivalent :
a) D is a Montel space,
b) ZLlrpl is a Montel space.
c) Plrp] is reflexive.
d) Each bounded linear functional on Fltp] is ultraweakly continuous.
e) Each positive linear functional on L* (D) has a representation

0:L*(D) ST~ g, T,
where (@,) is a sequence in D,
£) Each continuous linear functional on L*(D)[tp] has a representation
0:L"(D)=T—-tr (T S),
where S/ (D*, D).
g) F is dense in LY (D) [zp].
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h) Each complete (with respect to the norm topology) linear subspace of
D has finite dimension, i.e., D is of type I in the sense of G. Lassner
and W, Timmermann [20].

Proof : a)=>b) : It follows from Theorem 4.2 that each bounded
subset of A (D*, D)[r.] is contained in

{BPRBB: Re ¥ (H, H) and v(R) <1}

for some positive BE¥ (H, D) with the continuous extension Be
L (D*,H), Let

B=§z dE,

be the spectral representation of the positive self-adjoint operator B,
For each n€N, the orthogonal projection

P~ am=B  rug,
W/, ) Wn, )
has a continuous extension P,&.%(D*, H) because P,(H)CD (see
Proposition 2.1). Now assume that D is a Montel space. Then the
bounded set B(Uy) is relatively compact in D. Consequently, it is
also compact with respect to the norm topology of H. This implies
that P, and P, are finite rank operators, The estimate

vy (B.RBB— P B*RB*P,) =v(A4,°Bo (((B—BP,)RB
+BP,R(B—BP,)) | D)o Bo4,)

<||4wBl| ||BoA4y| ||IB—BP,||(|Bl|+|BP,i})»(R)

<2n7Y|BI| || 4o Bl| ||Bo4ullv(R)

shows that each bounded subset of 4 (D, D) [r.] can be approxi-
mated uniformly by sets of finite dimension. Consequently, it is
precompact. Since 4 (D*, D)[z;] is a Fréchet space, it is barrelled
and each bounded subset is relatively compact. This means that
N (D*, D)[r:] is a Montel space. Since Z[rp] is isomorphic to the
strong dual of A (D*, D) [z.], it is also a Montel space.

The implication b)=c) is obvious.

c¢) ©>d) : Assume that #[rp] is reflexive. Note that barrelled
subspaces of reflexive locally convex spaces are again reflexive.
Therefore, D’eD* is reflexive. Hence, #[rp] =D’eD*. Now, the asser-
tion follows from Corollary 6. 6.
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d)=>e) : The positive linear functional # on L*(D) has a positive
linear extension ® to % because L*(D)N.%, is cofinal in &,. The
positive linear functional @ is necessarily bounded on Z[zp]. As a
consequence of Corollary 6.5, the restriction o [ (D’eD*) is continu-
ous. By Lemma 5.3, there exist BE# and RE¥ (H, H) with v(R)
<1 and R>0 such that

w(T) =tr (T (BRB))

for TeD’eD*, where Be % (D*, D) denotes the continuous extension
of B. It follows from Theorem 1.1 that D’eD* is ultraweakly dense
in &. Since o is ultraweakly continuous by assumption d),

w(T) =tr (T (BRB))

for all Te#. The operator R has a representation

R: Daw;; 3 fus @ fos

where f,€Uy, 2,>0, and 3" a,< co. Consequently, BRB has the represen-
tation

BRB:D*> f—é a,<Bf., f>Bf..
Setting ¢,= (a,)’Bf,, we obtain

0(T) =w(T) =tr (T (BRB))

=3 aBf,, TBSY= o, To>
for all TEL*(D).

e)=>f) : Since each continuous linear functional on L*(D)[zp] is a
linear combination of positive linear functionals, it suffices to show
that each functional of the form

w: L*(D) T3 <o,, Tow) (D)

has also a representation
LY (D)ST-tu (TS,

where S/ (D*, D). In order to do this, we note that the conver-
gence of the series

Ms

$@u, T,

n=1
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for all TeL* (D) implies that

2 Al =3 <o (40> < o

for all k€N, This means that the series ) ¢,&¢, converges abso-
lutely in D®,D. Thus, the nuclear operator S can be defined by

§:D*> f—>§1<¢n,f>so,.eD.

)>g):If F is not dense in L*(D) [rp], then there exists a
continuous linear functional # on L*(D)[rp] such that #+0 and
0(T)=0 for all Te£#. It follows from Theorem 5. 4.a) that 6 can-
not be of the form T—tr(T S) with SeA4 (D%, D) because & is
dense in D’eD*,

g)>h) :Let H, be a complete (with respect to the norm topo-
logy) linear space, which is contained in D. According to Proposi-
tion 2,1, the orthogonal projection P of D onto H, belongs to £.
Therefore, the seminorm

L* (D) T—||P-ToP||
is tp—continuous. If & is dense in L*(D)[rp], then
[|Po(Id—T)-P||<1

for some 7%, This implies that the dimension of H;=P(D) is
finite,

h)>a) Assume that D contains a bounded, but not relatively
compact subset M., Since D is a Fréchet space, there exist ¢>0.
k€N and a sequence (¢,) in M such that

The set {4:p,},ey is bounded in D. By Proposition 2.4.a), it is
contained in B(Uy) for some BEZ#. Let

B=gz dE,

be the spectral representation of the positive self-adjoint operator B.
Because of (10), B(Uy) is not relatively compact in H. Therefore,
the complete (with respect to the norm topology) linear subspace
of D

H,=( S dE;) (H) = B( g X1Ey) (H)

(@, ) (8, %)
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is of infinite dimension for some 6>0. This completes the proof of
the theorem,

Remarks: 1. The equivalence of a), e), f), and h) in the preceding
theorem was essentially obtained by K.Schmiidgen ([23, 24]) who
generalized earlier results of S.L. Woronowicz [29], T. Sherman [27],
and G. Lassner and W, Timmermann [19].

2. Let & and % be dense linear subspaces of £[7,]. Suppose that
Z is symmetric (l.e., F={T":T€Z}) and that N %, is cofinal
in &,.

It is a consequence of the proof of Theorem 7.1 that the
following conditions are also equivalent to the Montel property of D:
-Each positive linear functional on £ is of the form

0: 5T <p., To,>,
n=1

where (p,) is a sequence in D.

- Each continuous linear functional on #[7rp] has an ultraweakly
continuous extension to Z.

- /' (D*, D) [r:] is a Montel space.

- N/ (D*, D) [z.] is reflexive.

- D’eD* is a Montel space.

- D’eD* is reflexive.

Since the strong dual of a reflexive Frechet space is always a
bornological locally convex space (see [11] §29. 4. (4)), we get the
following result.

Corollary 7.2. If D is a Fréchet Monitel space, then L[zp] is a
bornological locally convex space.
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