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§ 08 Introduction

Let an be the topological Lie algebra of all formal vector fields
on Rn with the Krull topology ; i. e.

<**= (Z?-i/,(*i, • • • , *„ ) 3/3*. |/t-e«[[^, - . .,*.]]}

where JS[[#i, e 8 0 , ^ n ] ] is the ring of formal power series in n vari-
ables. In [3] I. M. GePfand and D. B. Fuks have calculated the
entire cohomology of ctn. In this paper we shall study the following
subalgebra of an :

The cohomology of this subalgebra was first studied by B. L. Feigin
in [2] in order to construct the characteristic classes of flags of
foliations. In the same paper the entire cohomology of aitn-i was
calculated by using a result about a cohomology with nontrivial
coefficients (cf. [4]). Concerning a more general case A. Haefliger
questioned whether

//KaBir,/S)=#''(ct r,/S) for i^2n (canonically).

In [12] K. Sithanantham proved this isomorphism for i^n — r by
adopting the method of [13]. In this paper we prove this isomor-
phism for i^n+r using the tool which they employed and the
result obtained in [7]. The Main theorem of this paper is the
following :
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Theorem. Let c : ar - *&r.n-r be the natural inclusion. Then t induces

an isomorphism of cohomology

e*:H'(arin-r;R) - »tf'(a r;JZ) for i

It is known that //*(ctr;U) is 2r-connected ([3]).

Corollary,,

H*(ar.n-r;R)=0 for i^2r,

and

This paper consists of 5 sections. In § 19 we prove a key pro-

position which is a useful tool to calculate the cohomology of the

classical infinite dimensional Lie algebras. In § 2, we recall the

definition of the Weil algebra and a spectral sequence converging

to it. In § 3, we make the theorem obtained in [7] appropriate to

the general infinite dimensional case. In § 45 we shall prove the

main theorem. In § 55 we give a result and a conjecture concern-

ing the Weil algebra of an infinite dimensional Lie algebra.

The author would like to express his gratitude to professors N.

Shimada and M. Adachi for their encouragement and helpful sug-

gestions.

§ 1. Proof of a Key Proposition

In this section we prove a key proposition which plays an

important role in calculating the stable cohomology of transitive

infinite Lie subalgebras of an.

First we recall a definition and notations. Let k be a commu-

tative field of characteristic zero. In this section cochain complexes
and algebras are defined over k.

Definition 1. 1. An operation of a Lie algebra g in a cochain

complex {Cq,d}q=Qili2i is a pair (c,ff) where:

(i) 6 is a representation of g in the graded module C*, homo-
geneous degree zero.

(ii) c is a linear map of g to the space of endomorphisms of
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C*, such that each t (X) (JSfeg) is homogeneous of degree —1.

(iii) The following relations hold :

0(X) = c(X)d + dc(X) ZEEg (1. 2)

<([*, Y]) =0(X)c(X) -c(X)0(X) X, Feg.

When there is given an operation of a Lie algebra g in a cochain
complex C*, we say that C* is a g-cochain complex. The subcomplex

of C* consisting of g-invariant elements annihilated by c(X) for

all X&Q is called the basic subcomplex of C*, denoted by CB*-&asiC

or C*asic.

Next we consider a special case ; i. e. an operation of a finite

dimensional abelian Lie algebra T. It is well-known that any

representation of Lie algebra T can be extended to an action of the

universal enveloping algebra of 7", which is denoted by f/(T). Now

we state the key proposition and prove it (cf. [11]).

Proposition 1. 3. Let T be a finite dimensional abelian Lie algebra

and [Cq, d} q==QiL2,... be a T-cochain complex. Then if each Cq is a pro-

jective U(T) -module, we have

//'•(Q=0 for z<dimT.

Proof. Since T is abelian, U(T) is isomorphic to a polynomial
algebra. Hence we can consider the Koszul resolution (cf. [9, p 204]) :

0 - >/\nT®U(T)-^/\n-lT®U(T)-^-» ---- 8-*U(T)-^-»k - >0

where n = dimT and A* is the p-th exterior product of T. Since

both operators d and d are commutative with action of U(T), we

can define the following double complex :

, d', d"} ,

Then we have the following two spectral sequences (cf. MacLane

[9, XI. 6] and Cartan-Eilenberg [1, XIII. 2]) :

Consider the first spectral sequence. By the Cartan formula (1.2)

the operation of U(T) on /f*(C) is trivial because for any cocycle
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c and X^T, 0(X)c=c(X}dc + di(X)c=d(i(X}c} is a coboundary.
Hence we have

Note that H^(T)=0 for -0<0 or £>H=dim:r. Consider the second
spectral sequence. Since each Cq is a projective [7(7") -module, this

spectral sequence collapses and we obtain

'£;

,

I/

Figure 1

Therefore for the first spectral sequence,

Let r be the first integer such that Hr(C)^=0. Then

Consider £00-term0 Then we have 'E^n'r=H-n^(k(^)umC)a Since
H^kQSuvjC) =0 for x<0? we obtain -n + r^0? i. e.3 r^?z. Hence
H{(C)=Q for i<w=dimT0 This completes the proof0

Remark. If C° = 0, then Hl(k^umC)=0 for i^O. Hence Hf

= 0 for i<*na
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§2. The Weil Algebra

In this section we consider a spectral sequence associated to a
filtration of the Weil algebra of 2ln.

Let k be a field of characteristic zero. Let g be a Lie algebra
and g* a dual space of g with respect to a canonical topology.

Definition 2.1. The Weil algebra of a Lie algebra g, denoted by
W(f l ) j is Ag*®<Sg* as algebra, where the exterior algebra Ag* is
generated by 1-forms a eg*, and the symmetric algebra ,Sg* by
2-forms Qa for a eg*.

Its differential is defined by da = dla + Qa^ where di(xt=/\2Q* is the
differential of a in the cochain complex of the Lie algebra g with
coefficients in k,

Its g-operation is defined by making c(X) (for XZEQ) operate
as the obvious anti-derivation on Ag* and trivially on Sg*.

Consider the bidegree

Then we have a natural filtration J^ r=F°DF1DF2D---, where Fs =
!JLi2p£sW2p'*j which is compatible with the differential d.

The associated graded module is

\*g*(8)^8* f°r s = 2piP = Q> 1»2 , •••
0 otherwise.

By the calculation we have

=
I 0 otherwise.

Now we consider the Lie algebra an of formal vector fields on
Rn and its maximal abelian subalgebra

T= ft A + • • • + XnDn ; ̂  e k] where A - 3/3*,-.

Lemma 2. 2. 77z£ continuous dual space a* flrarf ^fe m-th tensor

product (x)ma* (??2>0) o/ a* are free U(T) -modules.

The proof of this lemma can be found in [12],
Since /\qa^Spa* (q+p>0) is a direct summand of (x)*+*ct*, we
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get the following corollary :

Corollary 20 3e E2/- ?(ctn) is a protective U(T) -module where p+q>Q,

It Is easy to check that the an cochain algebra structure of
W(aJ induces a T-cochain complex structure on E2

Q
p(an)a Hence

from Proposition 1,3 and corollary 2.3 we have the following pro-
position :

Proposition 2e 4,

)=0 for

Remark, Let g be a finite dimensional reductive Lie algebra. The
following fact Is well-known :

where /*(g) Is the algebra of polynomials on g invariant under coad-
joint operation. In the case of an, it seems that the following
holds :

When p = l, this is true (see [4]).

§ 38 The Cohomology of Formal (^-invariant Vector Fields

In this section we recall the result obtained in [7] where a simi-
lar type of cohomology was studied.

First we recall a few facts about topological vector spaces over
discrete fields,, which are useful in studying infinite dimensional Lie
algebras.

Let A be a topological field with the discrete topology. We say
that a topological vector space E over A is linearly compact when E
is a projective limit of finite dimensional discrete vector spaces.

Let £ be a topological vector spaces over J, and £* the topo-
logical dual of E, We topologize E* by prescribing, for a system of
neighborhoods of the origin, the collection of all sets of the form F1,
where F is a linearly compact subspace of E and Fx is its annihi-
lator in E*.



FORMAL VECTOR FIELDS PRESERVING A FOLIATION 645

Let E and F be topological vector spaces. Consider the ordi-

nary tensor product E*(X)F* and give it the discrete topology. We

define the topological tensor product of E and F to be the space

(£*(X)F*)*, which will be denoted by E(X)F. We note that when E

and F are linearly compact, so is £"(5)F(see [5]).

Now we recall a formal G-invariant vector fields. Let g be a

linearly compact Lie algebra ; that is, a topological Lie algebra and

linearly compact as a topological vector space. Consider the direct

sum ctn©jR[[Xl](x)g, denoted by an>8, where #[[#]] is the ring of

all formal power series in w-variables over R and linearly compact

with respect to the Krull topology. From definition, the canonical

action of an on #[[*]] induces the action of an on jR[[>]](x)g. We

define the bracket operation as follows :

where J^tean, //,eJ?[[^]](^)g and the bracket [//l5 H2] is induced

by the bracket operation g(x)g->g. Hence we may give <*„,„ the

structure of linearly compact Lie algebra.

Before we state the fact concerning the cohomology of ctn.8 we

review a notation Define :

where W*S*+l(g*) is the ideal of Weil algebra W(& generated by

the (n + l)-th symmetric product space SH+1($*). Let Qln be the Lie
algebra of all nXn real matrices.

Let TT : ctn.8 - >gln0g be the projection defined by

0.3 Z7»i(fl' + afr'+ (higher order)) 9/3*'

and

, - • •, * ( x ) g - ()g =g

where e is a canonical projection. Then n induces a cochain map

0(70 : WB(grB0g) - >C*(an.fl)

where C*(an,B) is a cochain complex of an§8 with values in R. (see

Hamasaki [7, p. 408]).

Proposition 3. 1. If g is a linearly compact Lie algebra, then n

induces an isomorphism
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Remark, In [7] this proposition was proved on condition that g
is a finite dimensional Lie algebra. But the finite dimensionality is
not essential. We need the following two conditions :

ii) with respect to a basis {<yt} ie l of g*, there is a family {£,- £E
g;ie/} such that o>, (£,-)=! (i=j), 0 (otherwise).

It is known that, when £ is linearly compact or discrete9 £" = £"**
(see [5]). Since /?[[#] ]*(H)g* is discrete,

Since g* is discrete, we can find {£feg**;ie/} such that tw f ( f y )
— 1 (i= j)9 0 (otherwise) . Hence above two conditions are satisfied0

§40 The Main Theorem

In this section we will state the main theorem and prove it.

Let t : a, =JB[M]®«r ---- >ann_ r =I?[[*]]®JT©IS[[>, j>]]<8>«"~r

be the inclusion map to the first factor of the direct sum0

Theorem 48 L The inclusion map c induces an isomorphism of coho-

mology

^:^(a r.n_ r)^^(a r) for i^

First consider the Lie algebra ctr,a = dr©<R[[V|] (S)an_r (x =
' n — 7

U 1 , - - - , ^ ) ) defined in §3. Since /£[[*] ](g>/2[[>]] =fl[[^, y\\ (y =
(y, B « %jv"~ r))3 ^r,s _ is isomorphic to ar.w_ro Using this fact we
consider the following commutative diagram concerning the canonical
projections :

where ic is a canonical projection which is a left inverse of c and TT,

T£ are projection introduced in § 30 By the naturality of construc-

tion we obtain the following commutative diagram:
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C*(a,) -

where C*(ct) is the continuous cohomology of a. On the other
hand by the Proposition 3. 1, we have :

Lemma 4.2.

Taking cohomology of the above diagram we have the following

commutative diagram :

H*(ar)

Hence in order to prove the theorem we consider the relation

between the truncated Weil algebras Wr(glr) and W,(gIr©oB_r).

Note that W(Qlr®aH-,)~/\*(tfr®a,-r)*®S*(Qlr®an-J*^/\*&®
5*8t*<8)A*a:-r(8)5*air_rS^(8rr)(g)^(o._r). Since the ideal in Wfal,®

ctn_ r) generated by Sr+l($?) is contained in the ideal generated by

•Sr+1(9^-©£n-r)*5 we have a canonical homomorphism and a commu-

tative diagram

Lemma 4e 4.

is an isomorphism for i<^

Proof, The truncated Weil algebra Wr(Qlr)<8)W(an-r') has a natural

filtration induced by that of the Weil algebra W($r®an..r}. By the

calculation we have

= IU. ,^tf (fllr ; 5^ (8Ir) ) ®H^ (an_ r ;
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Consider the case that /?>r and q<ri-ra Then p—j^p-r>Q and
q — i<ji — r or i<0. From Proposition 2.3, in this case

E?'q = Q for p>r and q<n-r.

On the other hand the truncated Weil algebra Wr($r®an-r} also
has a natural filtration. The £2-term of the corresponding spectral

sequence is

S,.,6,//'(Qlr ; -Wr)) (x)//?-''(an-, ; S'-'Ctw)) for j&^r,
0 when /> is odd or j&>2r9

By the construction, $ preserves the filiations. Hence we have a

homomorphism of spectral sequences where

Note that

(4.5) EK-^EK and ^E^.^E^ for A^l .

In order to prove the lemma, we shall show the following by in-

duction :

Figure 2
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is a monomorphism for /?^2r,

and an isomorphism for p^2r — 2(k — 1) or p + q^n+r.

When A = l, @%'q is an identity map for p^2r or p-\-q^n-^-r. Assume

that (*fe) holds. Consider the first case i.e. p^2r. Then <P£i* is a

monomorphism, and 0^2k^+2k~l is an isomorphism because p — 2k^2r

$p-2k.q+2k-I Qp.q $P+2k,

4 * 4-
q-2k + l

- _ _

By diagram chasing and considering (4. 5) we can see that

is a monomorphism for p^2r. Next consider the second case
2r -2 {(k + !)-!}. Then fyf and 0J-2*.«+2*-i are isomorphisms, and
0p+2k.q-2k+i js monomorphism because p + 2k^2r. By diagram chasing

and considering (4. 5) we can see that ^fcf+i) is an isomorphism
for p^2r — 2 {(£ + !) — 1}. Next consider the last case, i.
Then &$* and 0£-2*-«+2k-i are isomorphisms. If p + 2k>2r and ^-
<w-r, then £f4

+»-«-»-+1s'jB*;-2*-M*+1sO. Hence <p*f »•«-»-! is mono-
morphism. When q — 2kjr\^n — r, considering j^ + ^^w + r, we have

Hence p + 2k^2r+l. Since Eg^^S'EU^'^O and (*fc),
is monomorphism. In the same way as the second case we see that
$f(f+D is an isomorphism for p + q^n+r. This proves (**+i). Hence
(*fe) holds for any positive integer k. Using this, now we prove
the Lemma. Consider the jE^-term. Then we see that

0p.q . £p*q _ >'Ep'q

is an isomorphism for p-\-q^n-\-r. Since each spectral sequence con-
verges, we see that

0* : Hi(Wr(Qlr}®W(an.r^ - ^(W^l&a^}

is an isomorphism for i^n+r. This completes the proof of Lemma
4.4.

It is well-known that the Weil algebra is acyclic (cf. Natsume
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[10]). By the Kunneth formula, we have

By the diagram (4. 3) we obtain

Hl(ar}=Hl(artn^ for

This completes the proof of the main Theorem 4. 18

§50 Some Remarks

In this section we shall give a result and a conjecture concern-
ing the Weil algebra of an infinite dimensional Lie algebra.

The structure of the Weil algebra W(Q) of a finite dimensional
reductive Lie algebra g is almost completely determined. By con-
traries there seems to be no study of the infinite dimensional case
but [10] where the cohomology H*(W(an), gU of gtn-basic subco-
chain algebra of W(an) was determined by calculating the spectral
sequences. The result is

where /* (gfn) is the algebra of polynomials on g invariant under
coadjoint operation by g. Note that we can deduce this result using
the following Theorem (see Kamber and Tondeur [8, Theorem
5 064]) :

Theorem §0 L Let (g, 5) be a reduced pair of Lie algebras and 6:
g— >lj an equivariant splitting of the exact h-module sequence 0— >§— »fl— >8/
I)->0. Let K(6) : w(fy-*w(g) be the Weil homomorphism, Then the
induced map on §-basic elements

is a homotopy equivalence,

Since the pair (an, gtn) satisfies above conditions (see [7]), we
have

We can also apply the above theorem to the pair (H2n,&$2n) where
H2n is the Lie algebra of Hamiltonian vector fields on R2n and $$2n
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is the Lie algebra of the Symplectic group.

Even if the total cohomology is calculated, we are rather inter-

ested in the jE2-term of the spectral sequence converging to //*
(M^(ctJ, gln). Consider the filtration of W (ctj f l^_6f ls ic induced by

the one of W(an) studied in § 2. By the similar calculation we have

In [3] and [4], the following was calculated :

El' * = H * (anMn ;«)=/* (8r J /deg>2n,

10 otherwise.

Using Proposition 2. 3 we can easily see that

^0 for />>0, q<n.

The vast range remains unknown. But studying the Theorem 5. 1

it seems that In+i=El1'2*.

Figure 3
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