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§ 1. Introduction

For each odd prime p there is a connective spectrum J which is
called the image of/ spectrum (see [3] or [7, 1.5]). Let */* (CP°°)
be the reduced /-homology of an infinite-dimensional complex
projective space CP°° and let J* (CP°°;Z/(j&)) be that with Z / ( p )
coefficients. They are rings, since / is a ring spectrum and CP°° is
an //-space. Knapp [6] showed that for every rc>l, J^CP^^Z^^
the ring of integers localized at p, and J2n-i(CP00) is a finite direct
sum of cyclic /^-groups. He also described its order and the number
of direct summands in it. Therefore the additive structure of J*(CP°°;
Z / ( p ) ) is known. After that, using complex ^-theory, Schwartz [9]
determined the multiplicative structure of the even dimensional part
of J.(CP-;Z/(/>)).

The purpose of this paper is to give an explicit Z/(p) -basis for
the odd dimensional part of J* (CP°°; Z/(/?)). The result is stated
in Theorem 9. We also give an alternative description of Schwartz'
generators in Proposition 12. More precisely, we will compute the
kernel and the cokernel of a certain operation in the reduced,

connective, first Morava ^-homology groups &(1) * (CP°°) (see [7]).
In fact, if SZ/(p) denotes the Moore spectrum of type Z/(p\ then
jZ/(p)=J^SZ/(p) is the fiber of a map ft *(!)->H5"*"13^!) which
induces the above operation and comes from a suitable Adams
operation in k (1) -theory (see §2).
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The paper is organized as follows. In §2 we describe the spectrum

J briefly and collect basic results about k (1) * (CP 3). From them

we derive some data on the behavior of the operation 6 in &(! )*
(CP00), In §3 we introduce several functions from the ring of integers
Z into itself for use of the next section. §4 is devoted to prove

Theorem 90 In §5 we review the result of Schwartz. Proposition 12
is proved there.

The author would like to thank the referee whose criticisms and
suggestions were invaluable.

§2, The Jb(l)-Homology of CP°°

For the most part we follow the notation and terminology of [7],
Let BP^l; be the first Johnson- Wilson spectrum at an odd prime

/?, which is a summand of the localization at p of the spectrum
representing connective complex A-theory (see [5])0 Then £(!) =
BP^\y/^SZ/(p) represents connective first Morava A'-theory0 Both
BP(\/ and k(\) are complex oriented ring spectra, and their coeffi-
cient rings are

and

*,(*(!)) =Z/(/»|>]

respectively, where the degree of v is 2(p— 1). The following lemma
is well known (e.g., see [7, 4. 1]).

Lemma 1. Let E be a complex oriented ring spectrum. Write E* =
E*(pt.) and £*=£*(/>/.). Then

(a) There is an element *6E£2(CP~) such that E* (CP00) =£*[[>]]
and E*(CP~xCP~)=£*[[>®l, 1®*]].

(b) There is a formal group law FE over E* which is defined by

/£"(*) =F£(*(g)l, l(g)*), where p: CP°° xCP~->CP~ is the H-space
structure map,

(c) E*(CP~) is a free E^-module on /3ne£2K(CP°°), n>0, dual to xnl
that is, (x™, finy=dmn where < , > denotes the Kronecker product,

We recall the definition of Adams operations in 5P<l>-theorye
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According to Araki [2], the logarithm for FBp<i> is

(in £P<1>*(CP°°;Q)). For ?eZ prime to p, there is a map
j3P<l>->£P<l> satisfying the following properties:

(i) log (? • 0* (*))=?• h>g (*);
(2. 1) (ii) ^? is multiplicative', and

(iii) $q(v}=qp-lv.

By Lemma l(a) , in J3P<1>*(CP°°) we may write

(2.2) ^r(**)=S*m,-^m + l'C*"1)

for some imifeZw. In the case m = l we have

*i.o=l,
(2.3) bLl=-(q*-i-V/p and

(cf. [45 p. 379]). This follows by comparing both sides of the equa-
tion (2. l ) ( i ) . Since </>q(xm) =</>9Wm by (2. l ) ( i i ) , it follows that for

(2. 4) bmil=m>blil and

From now on, for each odd prime p9 we choose q so that its
image under the reduction Z-»Z/(/?2) generates the multiplicative
group of units in Z/(£2), and use such a q. It is known that if

mod(/0 then qp~l=l mod(/?), so

for some c£iZ. Our choice of q is equivalent to the assertion that

mod(/0.
By [5] there is a fibration

where HZ(P) denotes the integral Eilenberg-MacLane spectrum local-
ized at p. Then the map $q- 1: 5P<1>->5P<1> can be lifted to a
unique map ft ^P<1>->Z2(J>~1)^^<1>. Let/ be the fiber of 0. Thus
one has a fibration
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where 575 is known to be multiplicative (see [10]). Smashing SZ/(p)
with this fibration gives rise to a fiber sequence

(2. 5) S*

By (ii) and (iii) of (2.1), (^-1) (»') = C?1'^" -!)»'' in
Therefore by the definition of 0

(2.6) 0(0') =0 in *,(*(!)).

In general, if jf is an //-space, then k ( l ) # ( X ) is a ring and by
(2. l)(i i) the operation <fiq: k (l)i(X)-*k (l),-(-Y) is a ring homomor-
phism. Therefore the operation 0: k(l}i(X)-^k(\)i.2(p-i)(X} satisfies
a formula

(2. 7) 0(«-0) =«(«) .jS + a-f lGB) + 0-0(a) -0Q3)

for all a, /3^A;(l) z(Jf) , where -denotes the Pontrjagin product (cf. [ID]),
Take X=CP°°. It follows from Lemma 1 (c) and degree considerations
that

(2.8)
10 otherwise

where n' = [_(n — !)/(/?— 1)], the largest integer not exceeding (n— I)/
(/?—!). Combining this with (2.5) yields exact sequences

0

for all n^.Z. It follows from (2.6) and (2.7) that

(2. 10) 0 (»''&•) =vi*0(fij}

for all iJ>Q.
Let n be a positive integer. Multiplication by n in Z induces on

CP°° = K(Z,2') the map niCP^-^CP00 which is factored as a com-
position

CP-—CP~ x. .xCP;-^-*CP°°
n

where A is the diagonal and // the iterated multiplication. On the
other hand, with the notation of Lemma l(b), let [11^00 =# and
inductively let {n}F(x) = F(\n — l~\F(x)9 x) where F=FE. Then the
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induced homomorphism n*: E2(CP°°}-*E2(CP00) sends x to [ri]FM.
Specializing to the case E = k ( l ) and n=p, we have the following
important result from [2, Corollary 11.4] (or [8, Theorem 5.5 with

Theorem 2. p* (*) =vxp in

Corollary 3. For n>l p*: £(l)2n(CP~)^£(l)2n(CP°°) is given by

( v^fii if n=ip for some i>l

0 otherwise.

Proof. For i>l we have

Theorem 2

»' if n^i/)

O otherwise.

By Lemma l(c), in 5P<1>* (CP°°) we may write

(2.11) ^(A,) = i:c..X/S.-^-i,
y=o

for some c^j^Z^. Then in A(1),(CP°°) we have

(2.12)
where cHiJ

Lemma 4. In Z/(p)

(i) cBil = c(»-(^-l))
(ii) cnj = cn/ptj/p if n = 0 mod(p) and j = 0 mod(p).

(iii) ^n.y = 0 if n^O mod(p) and j=—n mod(j&).
(iv) cMi2^0 if n= — I mod(p).

Proof. In general it follows from (2. l)(ii) and [1, Lecture 3]
that
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for all aGBP(iy*(X) and aeJ3P<l>* (Z). Apply this formula to
the case X=CP°° by setting a = xm and a=fin. Then the left-hand
side is

0* «**,&» = by Lemma 1 (c)
^O) otherwise

_fl if m = n

10 otherwise

and the right-hand side is

<^(*W),0*(A.)>
= <IIlbm.iv

ixm+i(p-1\ZicniJv
jpn-j(p-»y by (2-2) and (2 .H)

= y b -c -vi+j(xm+i(p~l) 8 y

k
(p-u,k-jCnj if m = n — k(p— 1) and A>

otherwise.

Therefore bni0cntQ = l and for k>\

In particular for ^ = 1

bn-p+i, icn. o + bn-p+ii Qcni i = 0

and for k = 2

bn-2P+2,2Cn, 0 + bn-2p+2, lCn. 1 + ^n-2p+2, 0Cn. 2 = ^.

By these equalities, (2.3) and (2.4), we have

and

^n.2~ ~~^n-2j'+2,2 ^n-2p+2, \Cn. I

= (n-2p+2) (-c
=c(n-2p+2}{-

in Zy,). Hence part (i) follows. For part (iv), suppose n = — 1 mod(/>).
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Then in Z/(p)

Thus part (iv) follows from the choice of q.
To prove parts (ii) and (iii) we use a relation

in k(l)2n(CP°*)9 n>l. First suppose n = Q mod (/?), i.e., n=ip for
some i>l. Then the left-hand side is

apy
P*0(PiP) =P* ( Z %y-%-*c,-i)) by (2. 12)

apy
= JLCip.kV^pitfip-w-n)k=i

= S ^^-V-'^ft.^-!, by Corollary 3

and the right-hand side is

Op*(Pip}=0(viPi} by Corollary 3
=»'•*(&) by (2.10)

=»' S ^.X-^-^-i) by (2.12)

By equating the coefficients of yt+>~1A-/0'-i) in both sides, part (ii)
follows. Next suppose w^O mod(/?). Then the left-hand side is

=J&*(Z ^.X-^-^-i)) by (2. 12)

cH.^+k'% by Corollary 3
W

and the right-hand side is equal to zero, by Corollary 3. Since
n—j(p — \}=hp for some k if and only if j = — w mod(/0, part (iii)
follows.

Part (i) of this lemma determines a constant c in [10, Lemma

i.i].
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§3. Several Functions

In this section we make some notation and conventions.
Let N be the set of positive integers and let M be the set of

nonnegative integers. Throughout the rest of this paper we will use
the letters

to denote integers.
For each / with l<l<p— 1, we define a function /,: Z-*Z by

for m^Z. Then every n^N can be uniquely expressed as f i ( m )
where m^M. For each k with l<k<p and for each I as above,
we define a function gkJ:Z-*Z by

for i^Za For each r>0 and for each / as above, we define a subset
Mfti of M by

{m\0<m<l+l} if r = Q

m
* " '

Obviously, for any / as above, the MrJ with r>0 constitute a partition
of M.

Proposition 58 Let l<l<p—l and r>l . Then every m^Mrii can
be uniquely expressed as gk,i(i) where i^Mr-u and l<k<p.

Proof, If m^Mr,i for r>l , then m>/ + l, i.e., m — />!, so there
is a unique expression

m — l = ip + k

where i>0 and l<k<p. That is, m=qkii(i). Thus the proposition
follows from the observation that, when k runs over {1, 29 . . . , /?},
£*.z(0 belongs to MrJ if and only if i belongs to Mr^lit.

Corollary 68 Every n&N can be uniquely expressed as
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where l = n mod(/?—!) with 1 <l<p— 1; 1 <ks<p for 1 <j<r; r>0; and
I^MQJ (where if r = 0 then n=fl(i}').

Proof. Use Proposition 5 repeatedly.

Hereafter we will fix an integer / with l<l<p—l and suppress
it in related notation. So we simply write f,gk and Mr for //,&./
and Mr.i respectively.

For each h>Q we define three functions
1 7 / ^ 1 rjr . ry ^^
rh, LrA, Jtlh.A >^r

by

if A = 0

if

if

if

if

for jeZ, respectively. Then

(3. 1 ) F0 (m) =/(m) , Go (j) =j - 1 , #„ ( j) =/(j)

and if /z>0

(3. 2)

for m,jeZ. Furthermore for I<J<T?Z we have

(3. 3) (p - 1 ) G» 0') + #» (« -j) =/(&... ft (m) - 1 ) .

The proofs are immediate.

§4. The Odd Dimensional Part of J*(CP~;Z/(j>))

Our objective of this section is to compute J2n-i(CP°°;Z/(p)) for

By (2.9) it is isomorphic to the cokernel of 6:

. Let us compute this cokernel. In doing so, we
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deal with n^N such that n~l mod(p— 1), where / is a fixed integer
with l<l<p— I, (This reflects the existence of a /^-equivalence

In that case, n=f(m) for some m^M, and then n — j ( p — l } = f ( m — j }
for all jeZ. Therefore (the upper part of) (2.8) and (2.12) are
rewritten as

=Z/(p) Vbto-n \0<j<m}

and

respectively, and by (2. 10)

for l<j<m, These facts lead to the following situation for
( O i m ) f : L e t n=f(m). Then J2n_1(CrP°°;Z/(/?)) has elements

4(^-^,0.^), j=l, . . . , 771

(where if m = Q it has no elements) among which the only relation
that contains the first term is

Especially (2. 10) enables us to use an inductive method for com-

puting the cokernel of 0: k (1) 2f(m}(CP°°}-+k(l )2/(m-i) (CP°°) for

For example, it follows from (2.9) and (2.10) that if
(CP00) satisfies ^(j8)=0, then ^(z;'j8)=0 for all i>l. We will use
this fact frequently but implicitly0

Theorem 7» For every h>0 we have
(a) For mE:M there exists the following situation.

(h;m):Let n=Fh(m). Then J2n_l(CP°°;Z/(p)) has elements

(see (3. 3) ) among which the only relation that contains the first
term is



J-HOMOLOGY OF COMPLEX PROJECTIVE SPACE 663

(b) In the situation (h\m) for meM0,

««(»G*°")j8^o.-y))=0

for all j=l, . . . , m.

We first show part (b).

Proof of Theorem 7(b). We argue by induction on m^ (For m = 0
there is nothing to prove. ) Assume that

where l<i<l. Consider the situation (/z;i). Then the relevant
elements are

^"Xci-*) for

and the relevant relation is

j=2

It follows from the inductive hypothesis that

*(»G*W^A(|._,))=0 for

By Lemma 4(i),

^/(.•).i=^'/(«-l)=^W-*+l)

which is nonzero, since \<l — i-\-l<l. Hence

*(»c*a)^«-i))=o.
This proves the case m=i and the result follows.

Proof of Theorem 7 (a). We argue by induction on h. By (3. 1)
the situation (0;m) ' coincides with the situation (0;m), which begins
our induction. Assume that the situations ( /z;m) with m^M are
given. Since for m^M0 there is a trivial result as in Theorem 7(b),
we may suppose that m^M — M0. Then by Proposition 5

where i>0 and !<

Lemma 8» /^ ^A^ situation (h;ip + k + l), the following results hold
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for all i>0 and k = l, 2, . . . , p.
(i) In the situation (h\ip + k + l) for \<k<p,

if 2<j<ip + k + l and j^k mod(/>).
(ii) In the situation (/z; ip+l +/),

(iii) In the situation (h;ip-\-k + l) for

de(y ^Hhap+k-i+i)) =

and

(iv) /w ^/z^ situation (h^ip+p + l)^ there is a relation

and

=£0.

Proof, We prove this by induction on i. Assume that the lemma
is true for i<£.

Consider first the situation (A ;*£ + !+/). Then it follows from
part (i) for the case i=t — l and k=p that the relevant relation
becomes

~ ( Gf tCDn v
,ldfl Vy HHh((t-l)p+p+l})

( Gh(5p+1)

- , w

By Lemma 4(i),

=0.

Since f(tp +!+/) = -! mod(^)3 by Lemma 4(iv)

^/C^

and by Lemma 4 (iii)
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These imply that
«. f GA(2) / Q \ _A
°0(P PHh((t-Up+p-l+fi) —V

and

This proves parts (i) and (ii) for the case i=t and k = l.

Assume inductively that the lemma is true for i=t and k<j
where 2 <j <p — l. Consider the situation (h;tp+j + l). Then part
(i) for the case i = t and k=j follows from parts (i) and (iii) for
the case i=t and k=j—\. Therefore the relevant relation becomes

« ( Gh(sp+j)
(tp+j+i),sp+j°d (v

By Lemma 4(i),

which is nonzero, since l<j—l <p — 2. Since f(tp+j + l) = —j mod(p)9

by Lemma 4 (iii)

These, together with the inductive hypothesis, imply that

and

This proves part (iii) for the case i = t and k=j, so part (iii) for
i = t follows.

Consider finally the situation (h^tp+p+l). Then part (i) for the
case i = t and k=p follows from part (i) for the case i = t and
k=p— 1. Therefore the relevant relation becomes

_L v1 ;? f Gh(sp+p)
~r 2

s=0

By Lemma 4(i),
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By Lemma 4(ii)?

These, together with part (iii), imply that
« / Gh

C'0Q(V

s=0

and

This proves part (iv) for the case i = t.
Thus we have shown the lemma for i = t, which completes the

inductive step and Lemma 8 follows.

We return to the proof of Theorem 7(a). In the situation (A;
)5 by Lemma 8(iv)

^(^(1)^(W-i)^-i+»)

In the situation (A;i/> + l - f0 3 by Lemma 8(i)

From these equalities and the proof of Lemma 8 it follows that in
the situation (h;ip+l+l),

_, , -
j=i h

and there are no other relations which contain the term

In this way for ieAf we have

(A + 1 ; i) ': Let n = F& (i) . TA^n J .̂! (CP°° ; Z/ (j&) ) has elements

among which the only relation that contains the first term is

Rewriting this by using (3a2), we can find the situation

This completes the inductive step and the result follows.
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Consequences of the above argument in the situation ( h \ g k ( i ) )
can be stated as follows.

(4.1) Let n=Fhgk(i). Then in J2n_l(CP°°;Z/(p^

(i) among the elements

dd (^^A^co-m)) with \<m<gk (i) ,

the only possible nonzero elements are

« / GA ,,(.;) + (*-!)** • A 1

= de(v
h+1 &W-")' J = 0, 1, • - . , «

(and

8.<.vG*mflSlft_lW) t/*=j»;

(ii) ^/z^ element

zj nonzero ;
(iii) £/Z£ relation in ( / z+ l ; i ) x , which occurs in the situation

Now we come to the main result.

Theorem 9. Let n > 1 and write it in the form

(for details see Corollary 6}, Then a Z/(p) -basis for J2n_1

is given by the elements

-1+ E ktp
l~l

=

where l<j<r.

Proof. Since n=FQ(m) where
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we start with the situation (0 ; m) . Since

m=gkl(ml} where m1=gk2...gkr(i)9

by (4.1)(ii)

must be a basis element in J2n-i(CP00;Z/(p))9 and in view of (4.1)
(iii) the problem turns on the situation (1;^). Since

MI =&2 ("O where w2 =&3 . . . ftr (i) ,

by (4.1)(ii)

must be a basis element in J2n1-i(CP00'^/(p)) where nl = Fl(ml)^ from

which we see that

S / k2P+kl~lO \

*<° /W}

is a basis element in J2n-i(CP0°iZ/(p'))9 and in view of (4. 1) (iii)
the problem turns on the situation (2;m2). Continue this procedure,
whose end is given by Theorem 7(b). Thus the result is obtained,,

This theorem provides information about the C W- filtration degree
of generators of J2n-i(CP°°).

§5. The Even Dimensional Part of J*(CP°°;Z/(p))

Our objective of this section is to compute J2n(CP00iZ/(p)) for
n>\.

By (2.9) it is isomorphic to the kernel of 0: ̂ (l)2n(C'P00)->

A(l)2(n_ (^_1) J(CP00). Let us compute this kernel. To do so we will
need the following, which is the connective version of [8, Theorem
5. 6 with rc = l]0

Theorem 10, As a Z/(p) \v}-algebra k(\)*(CP~) is generated by
the elements ft i for i>Q with relations

Recall that
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where a&7t2(p-u(JZ/(p)) is a unique element such that ye(a)=v.
(This follows from (2.5) and (2.6).) The following result was
proved in Schwartz [9] as Theoreme 7(ii).

Theorem 11. J2*(CP°°\Z/(p)} is a free Z/(p) [a]-module on

generators

Vu for i>0 and \<l<p-\

where the degree of Viti is 2((l + l)pi — 1). Its multiplicative structure is
given by

a(p -i)/(/»-i) j^. i+m if i=j and

P if i*j

where i,J>0 and l<l,m<p—l.

We can describe Viit in terms of the Bt.

Proposition 12. For i>0 and \<l<p-l,

^(^.i) = (-i)'a-1)A-n\A-l-zX).
* J = 0 p

Denote by V'iti the right-hand side of the above equality.

Lemma 13. For i>0 and l<l<p-l, e(V'u)=Q.

Proof. We first show that

(5.i) ff(n(A-1-zX))=o
j=0 P

by induction on i. Since ^(^)=0 (by (2.8) and (2.9)) and 0(0) =0,
it follows from (2.7) that 0(^f~1-y)=0. Assume that (5. 1) is valid
for i<k. Then we have

kn
y=o

.TL(B*1-v>') ^ (2;7). and the inductive

,^t> ' hypothesis

8jr1-B*') by (2.6)
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which is zero, because by Theorem 10 0(^1} can be expressed as a
linear combination of monomials including £ ,-, 0<i<k — 1, for degree
reasons and if 0<i<k— 1

/s^n (/j'71 -**'') =o.

Thus (5. 1) follows. A similar argument gives

e (p1, . n (ft-1 - /) )=*(&). n (ft1 - /)
* j=o * * j=o *

=0

and the result follows.

Proof of Proposition 12. From (2.6), (2.7) and Lemma 13 it

follows that 0(vkV'iil)=Q for all &>0. From this and Theorems 10, 11

it is clear that the vkV'i>i form a Z/ (p) -basis for our kernel. In order

to prove the proposition, it suffices to verify that the F-j satisfy the

same relations as in Theorem 11. By Theorem 10 we have

Since

?" if

fpi AA " i

we get the desired relations. The verification for the remaining case

is similar to the proof of Lemma 13. So Proposition 12 follows,.
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