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§1. Introduction

For each odd prime p there is a connective spectrum J which is
called the image of J spectrum (see [3] or [7, 1.5]). Let J, (CP>)
be the reduced J-homology of an infinite-dimensional complex
projective space CP> and let J.(CP=;Z/(p)) be that with Z/(p)
coefficients. They are rings, since J is a ring spectrum and CP= is
an H-space. Knapp [6] showed that for every n>1, J,,(CP>) =Z,,
the ring of integers localized at p, and J,_1(CP) is a finite direct
sum of cyclic p-groups. He also described its order and the number
of direct summands in it. Therefore the additive structure of J, (CP=;
Z/(p)) is known. After that, using complex K-theory, Schwartz [9]
determined the multiplicative structure of the even dimensional part
of J.(CP=;Z/(p)).

The purpose of this paper is to give an explicit Z/(p)-basis for
the odd dimensional part of J. (CP=;Z/(p)). The result is stated
in Theorem 9. We also give an alternative description of Schwartz’
generators in Proposition 12. More precisely, we will compute the
kernel and the cokernel of a certain operation in the reduced,

connective, first Morava K-homology groups k.(l)*(CP"") (see [7]).
In fact, if SZ/(p) denotes the Moore spectrum of type Z/(p), then
JZ/(p) =] ~SZ/(p) is the fiber of a map 6:k(1)—>>2*Pk(l) which
induces the above operation and comes from a suitable Adams
operation in k(l)-theory (see §2).
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The paper is organized as follows. In §2 we describe the spectrum
J briefly and collect basic results about /:‘(l)*(CP’). From them

we derive some data on the behavior of the operation 6 in k),
(CP~). In §3 we introduce several functions from the ring of integers
Z into itself for use of the next section. §% is devoted to prove

Theorem 9. In §5 we review the result of Schwartz, Proposition 12
is proved there,
The author would like to thank the referee whose criticisms and

suggestions were invaluable.

§2. The k(1)-Homology of CP~

For the most part we follow the notation and terminology of [7].

Let BP71 ) be the first Johnson-Wilson spectrum at an odd prime
p, which is a summand of the localization at p of the spectrum
representing connective complex A-theory (see [3]). Then £(l)=
BP{1> ~SZ/(p) represents connective first Morava K-theory. Both
BP<1, and k(1) are complex oriented ring spectra, and their coeffi-
cient rings are

m, (BP{1>) =2, [v]
and

T (k1)) =Z/(p)[v]

respectively, where the degree of v is 2(p—1). The following lemma
is well known (e.g., see [7, 4.1]).

Lemma 1. Let E be a complex oriented ring spectrum. Write E, =
E,(pt.) and E*=E*(pi.). Then

(@) There s an element x=E*(CP~) such that E*(CP~)=E*[[x]]
and E* (CP=xCP~) =E*[[x®1, 1®x]].

(b) There is a formal group law Fy over E* which is defined by
w(x) =Fz(xQ1, 1Qx), where p: CP>xXCP=—CP> is the H-space
structure map.

(c) E.(CP~) is a free E,~module on B,EE,,(CP~), n>0, dual to x";
that is, <x™, B,>=0,, where { , > denotes the Kronecker product.

We recall the definition of Adams operations in BP{l)-theory.
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According to Araki [2], the logarithm for Fgpg, is
log (x) =3 p—ivl+p+...+pi“1xp"
120
(in BP{1>*(CP~;Q)). For ¢q&Z prime to p, there is a map ¢
BP{1>—BP1) satisfying the following properties :
@) log(g-¢*(x)) =g-log(x);
2.1 (1) ¢* is multiplicative;and
(ili) ¢*() =¢".
By Lemma 1(a), in BP<1)*(CP~) we may write

(2.2) P (x™) =3 b, pixmtieD
i20
for some b, ,€Z,. In the case m=1 we have
bl.Ozla
(2.3) biy=—(¢'=1)/p and

b ,=¢" (g =1)/p
(cf. [4, p.379]). This follows by comparing both sides of the equa-
tion (2.1) (). Since ¢?(x™) =¢?(x)™ by (2.1)(ii), it follows that for
m=2
bpo=1,
2.4 bp=m+by, and
bpo=meby ,+27'm(m—1)-b%,.

From now on, for each odd prime p, we choose ¢ so that its
image under the reduction Z—Z/(p?) generates the multiplicative
group of units in Z/(p?), and use such a ¢. It is known that if
¢Z0 mod(p) then ¢*'=1 mod(p), so

¢ —l=cp

for some c&€Z. Our choice of ¢ is equivalent to the assertion that
¢Z0 mod (p).
By [5] there is a fibration

>0 BP{1>—>BP{>—"*>HZ,
where HZ ; denotes the integral Eilenberg-MacLane spectrum local-
ized at p. Then the map ¢?—1: BP{1>—>BP{1l)> can be lifted to a

unique map 0: BP{1>—>2*¥"PBP{1>, Let J be the fiber of . Thus
one has a fibration
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]l*BPG >_i__, 20D BPC1S

where 7, is known to be multiplicative (see [10]). Smashing SZ/(p)
with this fibration gives rise to a fiber sequence

@5 TR —sJZ/ () ok (1)~ TR (L),

By (ii) and (iii) of (2.1), (¢*—1) (@) =(¢'??—1)¢' in =, (BP1)).
Therefore by the definition of @

(2.6) @) =0 in =, (k(1)).

In general, if X is an H-space, then £(1).(X) is a ring and by
(2.1) (ii) the operation ¢?: k(1);(X)—k(1);(X) is a ring homomor-
phism. Therefore the operation &:k(1);(X)—=k(1); 541 (X) satisfies
a formula
2.7 O(a-B)=0(a)-B+a-0(B) +v-0(a)-0(B)

for all @, Bk (1);(X), where-denotes the Pontrjagin product (cf. [10]).
Take X=CP=, It follows from Lemma 1(c) and degree considerations

that
i Z/(0) (0Ba-sr |0 <0’} if i=2n and n>1
(2.8) k() (CP~) = /(p) {'Bu-io-1 10 n} i1 2 n and n

0 otherwise

where n'=[(n—1)/(p—1)], the largest integer not exceeding (n—1)/
(p—1). Combining this with (2.5) yields exact sequences
~ 7, -~
0——J,.(CP=; Z/ () ——k (1) (CP~)
- [ ~

k(1) ga20-0 (CP™) ——Jpu 1 (CP™; Z/ () ) —0
for all neZ. 1t follows from (2.6) and (2.7) that
(2.10) 0 ('B,) =v'+0(B))
for all 7, j=>0.

Let n be a positive integer. Multiplication by 7 in Z induces on

CP~=K(Z,2) the map n:CP"—CP>= which is factored as a com-
position

(2.9)

CP~—5CP=X... XxCP~—£>CP~
—_—
where 4 is the diagonal and g’ the iterated multiplication. On the
other hand, with the notation of Lemma 1(b), let [1]z(x)=x and
inductively let [n]r(x) =F([n—1]r(x),x) where F=Fz. Then the
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induced homomorphism n*: E*(CP=)—>E?*(CP~) sends x to [n]s(x).
Specializing to the case E=k(l) and n=p, we have the following
important result from [2, Corollary 11.4] (or [8, Theorem 5.5 with

n=1]).
Theorem 2. p* (x) =vx? in k(1)2(CP~).

Corollary 3. For n>1 p,: k(1);,(CP=)—k(1),,(CP=) is given by

£1 () = Oﬂ if n=ip for some i>1

otherwise.

Proof. For i>1 we have

<y pa (Bo) > =<p* (%), B>
={p* (%)%, B
= (x?)’, B by Theorem 2
={vix®?, B>
o if n=ip

0 otherwise,

By Lemma 1(c), in BP(1>, (CP=) we may write
2.11) B B) =5 enBusror
for some ¢, ;=Z,. Then in I~c(l)*(CP°“) we have
2.12) 0B =% 60/ Busron

where ¢, ;€Z/(p).

Lemma 4. In Z/(p)

Q) cpi=cn—(p—1) where ¢=(g**—1)/p.

(1) Cuj=Cniposss if n=0 mod(p) and j=0 mod(p).
@iii) ¢, ;=0 if nZ0 mod(p) and j=—n mod(p).
iv) ¢, ,#0 if n=—1 mod(p).

Proof. In general it follows from (2.1)(ii) and [I, Lecture 3]
that
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' (Ka, ap) =<¢*(a), ¢*(a)>
for all aeBP{1>*(X) and a=BP<1>,(X). Apply this formula to

the case X=CP~ by setting a=x" and a=p§,. Then the left-hand
side is

¢ (1) if m=n
P (Kx™, B)) = [ by Lemma 1(c)
¢*(0) otherwise
_ [1 if m=n
o otherwise

and the right-hand side is

<P (x™), ¢ (B>
=X by, 2™V, 6, B, se-py by (2.2) and (2.11)

= ; by, iCp, 0" XD B D

k

{Z b,,_k(p_l)_k_,-c,,,,- if m=n—k([)—1) and k_>.0

— Ji=0
0 otherwise.

Therefore b, ,,=1 and for k>1

k
,;:) bk p-1.8=s6n.; =0.
In particular for k=1

bp+1.16m,0F bn—ps1,0601=0
and for £=2
bu-2p+2.26n.0F bnp+2.1601F bnm2p42,062.2=0.
By these equalities, (2.3) and (2.4), we have
Cno=bn0=1,
a1 = —bppri1=—(—p+ Db =c(n—p+1)
and

Cn2=""bu 2122 bn2prs16n1
=—(—2p+2)b,—27"(n—2p+2) (n—2p+1)b%,
—(n—=2p+2)byc(n—p+1)
=n—2p+2) {—c(cp+1) =27 (n—2p+1) +32(n—p+1)}
=c(n—2p+2) {— (cp+1) +27%(n+1)}

in Z4. Hence part (i) follows. For part (iv), suppose n=—1 mod ().
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Then in Z/(p)
Crnz=6(—=1+4+2) {=1+27%(=1+1D} =—c.

Thus part (iv) follows from the choice of g.
To prove parts (ii) and (iii) we use a relation

P*ﬂ(ﬂn) =0P* (.Bn)
in k(1),(CP=), n>1. First suppose 2=0 mod (p), i.e., n=ip for
some :>1., Then the left-hand side is

Gn’
£+0(Bip) =px ( kgl Cipa?* " Bis-r0-1) by (2.12)

ap)’

= k; Cip 0" P (Bip—ro-)

= 'E(_wc,-p,,-,v""lv‘"""‘l’ﬁ,-_,-(,_l) by Corollary 3
J, 1

l/

— i+j—1

= 21 Cipitd" T Bicio-n
=

and the right-hand side is

Op« (Bip) =0 ('B,) by Corollary 3
=v'+6(B) by (2.10)
=v' ‘2: € " " Bicie- by (2.12)
i=1

i’ X
= JZ_:I ¢ VT Bi -1

By equating the coefficients of v**/78,_;,_;, in both sides, part (ii)
follows. Next suppose #Z0 mod(p). Then the left-hand side is

PO =pa(E e Buser) by (2.12)

=,Z=1 o’ " Pu (Buio-1)
= D T by Corollary 3

1<j<n/
n—j(p—1)=kp

and the right-hand side is equal to zero, by Corollary 3. Since
n—j(p—1) =kp for some £ if and only if j=—n mod(p), part (iii)
follows.

Part (i) of this lemma determines a constant ¢ in [10, Lemma
1.1].
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§3. Several Functions

In this section we make some notation and conventions.

Let N be the set of positive integers and let M be the set of
nonnegative integers., Throughout the rest of this paper we will use
the letters

hyi,j, klymyn 1, st
to denote integers.
For each [ with 1<I/<p—1, we define a function f;: Z—Z by

Sim) =l4+m(p—1)
for meZ., Then every n&N can be uniquely expressed as f;(m)
where meM. For each k with 1<k<p and for each [ as above,
we define a function g,,;: Z—Z by
8 (1) =ip+k+1
for ieZ. For each r>0 and for each [ as above, we define a subset
M, of M by
{{mlOSm<l+l} if r=0
rl= 14+1 r—1 2 D)<
[m)(+ YT D) Sm< ] i >0,
A+ +pt+...+D)

Obviously, for any [ as above, the M, , with 7=>0 constitute a partition
of M.

Proposition 5. Let 1<I<p—1 and r=>1. Then every meM,, can
be uniquely expressed as g, ,(i) where i€ M, ,, and 1<k=<p.

Proof. If meM,, for r>1, then m>I+1, i.e.,, m—I[>1, so there
is a unique expression

m—Il=ip+k
where i>0 and 1<k=<p, That is, m=gq,,;(@). Thus the proposition

follows from the observation that, when £ runs over {l,2, ..., p},
g.:(1) belongs to M, if and only if i belongs to M,_, .

Corollary 6. Every nEN can be uniquely expressed as

flgkl.lgkz.l e i (@)
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where |=n mod (p—1) with 1<I<p—1;1<k,<p for 1<5<r;r>0; and
ieM,, (where if r=0 then n=f,()).

Proof. Use Proposition 5 repeatedly.

Hereafter we will fix an integer [ with 1<I/<p—1 and suppress
it in related notation. So we simply write f, g and M, for f, g.,
and M,,, respectively.

For each >0 we define three functions

FhaGluHh:Z "Z
by
f if k=0
F,= _
fgl...gl if h>0,
h
Jj—1 if A=0
Gy (j) =\Jjp if h=1
(PP pP 24 Lo+ D if B>1,

H,(j) =) p*

for j€Z, respectively. Then

@G.D Fy(m) =f(m), Go(j) =j—1, Hy(j) =f())
and if £>0

Fyoy(m) =F,g(m),
(3.2) Gh+1(j) :Gh(jp) +G,(2) =G, (1),

Hin () =Hig(j—1)

for m,jeZ. Furthermore for 1<j<m we have

(3.3) (DG +Hy(m—j) =f(&...&0m)=1).

—

h
The proofs are immediate.

§4. The Odd Dimensional Part of J,.(CP~;Z/(p))
Our objective of this section is to compute jZn_l(CP*’;Z/(p)) for
n=1.

By (2.9) it is isomorphic to the cokernel of @:k(1),,(CP~)—>

1;(1)2(,,_(,,_1))(CP°"). Let us compute this cokernel. In doing so, we
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deal with neN such that n=[/ mod(p—1), where [ is a fixed integer
with 1</<p—1. (This reflects the existence of a p-equivalence

p-1
> CP““:I\__/IX,, )

In that case, n=f(m) for some meM, and then n—j(p—1) =f(m—))
for all j&Z. Therefore (the upper part of) (2.8) and (2.12) are
rewritten as

k() 2ron (CP=) =Z/ (p) ' Brinrp |0<j<m}

and
0(Brem) = Zi Cram. V' Brom-»n
=

respectively, and by (2.10)
0@ Brim-») =00 (Brim-»)
for 1<j<m. These facts lead to the following situation for m& M.
(0;m)’: Let n=f(m). Then jz,,_l(CP‘”;Z/([J)) has elements
0 (W Bron-n)s J=1, ..., m
(where if m=0 it has no elements) among which the only relation
that contains the first term is

j;l cfom. 100 (V" Brim-i) =0.
Especially (2.10) enables us to use an inductive method for com-

puting the cokernel of 8: k(1) z5m (CP=) =k (1) 35y (CP=) for me M.

For example, it follows from (2.9) and (2.10) that if ﬂe/;(l)zf(m_l,
(CP=) satisfies 0,(8) =0, then d,(¥'8) =0 for all i>1. We will use
this fact frequently but implicitly.

Theorem 7. For every h=>0 we have
(@) For m&M there exists the following situation.

(h;m): Let n=F,(m). Then jz,,_l(CP”;Z/(p)) has elements
g (th(])ﬂHh(m—f)), Jj=1L ..., m
(see (3.3)) among which the only relation that contains the first
term is

z G, () _
Z1 Crem.,00 (0 ngh(m—j)) =0.
=
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(b) In the situation (h;m) for me M,,
05 (UGh(i),BHh(m—j)) =0

Sor all j=1, ..., m.
We first show part (b).

Proof of Theorem 7(b). We argue by induction on m. (For m=0
there is nothing to prove.) Assume that

3@ Buynn) =0 for 1<m<i—1

where 1=<i<l. Consider the situation (k;¢). Then the relevant
elements are
5o(vch(j).311h(i—j)) for 15j=i

and the relevant relation is

cf(i).laﬂ (th(l)ABHh(i—l)) + EZ Cf(i)_,ag (UGh(J)‘BHh(i_j)) =0.
It follows from the inductive hypothesis that

5@ (UGh(i)‘BHh(,-_j)) =0 for 23]31.

By Lemma 4(i),
croa=cf@—1)=c(l—i+1)

which is nonzero, since 1<[/—i4+1=<]. Hence
G, (D)

Gg (v ﬁHh(i—n) =0.

This proves the case m=i and the result follows.

Proof of Theorem 7(a). We argue by induction on A By (3.1)
the situation (0;m)’ coincides with the situation (0;m), which begins
our induction. Assume that the situations (h;m) with meM are
given. Since for m& M, there is a trivial result as in Theorem 7(b),
we may suppose that meM —M,. Then by Proposition 5

m=g,() =ip+k+I
where i>0 and 1<k=<p.

Lemma 8. In the situation (h;ip+k+1), the following results hold
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Sor all 120 and k=1,2, ..., p.
(1) In the situation (h;ip+k+1) for 1<k<p,

G, (D
95 (v ,BHh(ipuH—j)) =0

if 2<j<ip+k+!l and jZk mod(p).

(i) In the situation (h;ip+141),
G,m

05 (" Buya-vprpen) #O0.
(111) In the situation (h;ip+k+1) for 1<k<p,

G,
g (0 .Byh(ip+k-1+x)) =0

and

G,
0 (™" Bu,i-vpep+n) 0.

(iv) In the situation (h;ip+p+1), there is a relation

G, (1)
(0" .BHh(ip+p—1+z))

G, (ip)

i+1
=—c! _Z!Cf(iu).fao @™ Buyi-nprpen)
=

and

Gy,
9™ ABHh((i—1>P+!l+l)) #0.

Proof. We prove this by induction on i, Assume that the lemma
is true for i<t

Consider first the situation (h;tp+1+41). Then it follows from
part (i) for the case i=¢t—1 and k=p that the relevant relation
becomes

G,
h
Crap+1+n.106 (U ABHh((t—l).ﬁ+ﬁ+l))

G, @
h
+Craps1+n,206 (0 19Hh<(:-1)p+p-1+t>)

Gy, (sp+1) _
Bayt-s-p+p+n) =0.

+;Z'i Crapri+n,sp+106 (0
By Lemma 4(i),
Craprrna=cf(tp+1) =c-f () =0.
Since f(tp+1+1)=—1 mod(p), by Lemma 4(iv)
Crapr1+n,270

and by Lemma 4 (iii)
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Crapr1+n.sp41=0.

These imply that

s, G@
G5 (0" ﬁHh((t—l)P+P—1+l)) =0

and

G,
s (0™ .31{,,((:—1)1:+p+1)) #0.

This proves parts (i) and (ii) for the case i=¢ and k=I1.

Assume inductively that the lemma is true for i=t and k<j
where 2=<j=<p—1. Consider the situation (4;¢p+j+I). Then part
(i) for the case i=¢ and k=j follows from parts (i) and (iii) for
the case i=t and k=j—1, Therefore the relevant relation becomes

G,
h
Crapri+n.10 (0 Buyap+i-1+n)

G (sp+1)

t
+ ZE) Crapei+n.sp+s00 (U .BH,,((t—s—np+p+z)) =0.
=

By Lemma 4(i),

Craprirna=CJfUp+j—1+D =c- f(j—1+1) =c(—j+1)
which is nonzero, since 1<j—1<p—2, Since f(tp+j+I)=—j mod(p),
by Lemma 4 (iii)
Craprivn,spri=0.

These, together with the inductive hypothesis, imply that
05 (Uch(l).BHh(tp+j—1+t)) =0

and

G, (1)

AN ‘BHh((t—l)pHHI)) #0.

This proves part (iii) for the case i=t and k=j, so part (iii) for
i=t follows.

Consider finally the situation (A;¢p+p+I). Then part (i) for the
case i=t and k=p follows from part (i) for the case i=¢ and
k=p—1. Therefore the relevant relation becomes

Gy
h
Craprpenas (0" By pss-14n)

t
+ ZO Cf(tp+p+t).sp+p58 (v
=

G, (sp+1)
h —
ABHh((t—-s—l)P+P+l)) - 0-

By Lemma 4(i),
Cf(tp+p+1).1=C'f(tP +p—1 +0) =C‘f(l" 1) =c.
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By Lemma 4(ii),
Crap+p+D).sb+p —CFa+Dp (s+p —CF(E+1).5+1-
These, together with part (iii), imply that

G,
c+0g(v k /3Hh(m+p—1+l))

G ((s+D)p)
v

t
+ Zo Cre+n,s+10 /911,,(<t—(,+1))p+p+1)) =0
=

and

0 (vch(p)ﬂﬁh«t—1)p+p+1)) #0.
This proves part (iv) for the case i=¢.
Thus we have shown the lemma for i=¢, which completes the

inductive step and Lemma 8 follows.

We return to the proof of Theorem 7(a). In the situation (4;
G—=1)p+p+1D), by Lemma 8(iv)

G,

0 (v .BHh((i—x)hp—un)

< G,UP
=—c '21 Cran. 06 (" ABHh((i—l—j)P+p+l))-
iz

In the situation (k;ip+1+1), by Lemma 8(i)

G, @
0 (0" :BHh(<i-1)p+p—1+1)) =0.

From these equalities and the proof of Lemma 8 it follows that in
the situation (h;ip+1+1),

G,UD +G, @ ~G, D

i
'21 Cry, 106 (0 ‘Bﬂh((i—j—l)P'H’H)) =0
i=

and there are no other relations which contain the term

G, (B +G, @ G,
h h h
0 (v Buyi-np+p+n)-

In this way for i€ M we have
(h+1;i)": Let n=F,g (). Then Jp_,(CP~;Z/(p)) has elements
G, D +G, @ - . .
95 (v HOP D Gh(l)ﬂflth(i—i—l))’ J=1 ..,
among which the only relation that contains the first term is

LD HCLD =GO

,Z=1 Cra. 08 ( ‘BHhEp(i—i-l)) =0.

Rewriting this by using (3.2), we can find the situation (A+1;1).
This completes the inductive step and the result follows.
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Consequences of the above argument in the situation (h;g,())
can be stated as follows,

(4.1) Let n=F,g,(). Then in J,,(CP=;Z/(p))

(1) among the elements

Gy m . .
3@ ™" ﬂHh(gk(i)-m)) with 1=m=g, (1),
the only possible nonzero elements are
G, +B
3 (™ .BthI,(i-j—l))
Gy (D +E-Dp" . .
=0y (v **! Ba, -1 J=0,1, ..., 1
(and
G, )
0 @™ Bu,e, o) if k=p);

(ii) the element

G, (k) G, (k)
og(0* ‘Bth‘,(i-l)) =0(v"

_ G, ()
=0, (v ﬂf(i)ﬁh+l)

Bu, @)

is nonzero; and
(iii) the relation in (h+1;1)’, which occurs in the situation (h;g (1)),
yields

: Gy )+ E-Dp"
2 i, 0 (0 IBHh_H(i—J)) =0.
=1

Now we come to the main result.

Theorem 9. Let n>1 and write it in the form
J&, .. g @)
(for details see Corollary 6). Then a Z/(p)-basis for .72,,_1 (CP=;Z/(p))

is given by the elements

S
—1+ % kyptT1
t=1

% (0 B A o)

4
ks+1

where 1 <s<r,

Proof. Since n=F,(m) where

m=g,...& @,
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we start with the situation (0;m). Since

m=g, (m;) where m;=g,...& (i),
by (4.1) (i)

3y (0" Brimps)

must be a basis element in jz,,_l(CP"";Z/(p)), and in view of (4.1)
(iii) the problem turns on the situation (l;m,). Since

m, =g, (m;) where m,=g, ...& (i),
by (4. 1) (ii)

k,p
95 (v ‘Bf(mz)ﬂ)

must be a basis element in -72,11_1(CP°°;Z/([1)) where n,=F;(m;), from
which we see that

kypth -1
G* B f(mz)pZ)

is a basis element in J,_,(CP~;Z/(p)), and in view of (4.1) (iii)
the problem turns on the situation (2;m,). Continue this procedure,
whose end is given by Theorem 7(b). Thus the result is obtained.

This theorem provides information about the CW-filtration degree
of generators of Jpu 1  (CP),

§5. The Even Dimensional Part of J.(CP~;Z/(p))

Our objective of this section is to compute jZn(CP“;Z/(p)) for
n=>1,

By (2.9) it is isomorphic to the kernel of 6:k(1),(CP~)—

/;(1)2(,,_(,_1)) (CP=). Let us compute this kernel. To do so we will
need the following, which is the connective version of [8, Theorem
5.6 with n=1].

Theorem 10. As a Z/(p)[v]-algebra k(1) (CP~) is generated by
the elements B; for i>0 with relations

ii =UP‘;8 Qe

Recall that
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ok (JZ/($)) =2/ (p) [«]

where a€my,_,(JZ/(p)) is a unique element such that z(a)=uv.
(This follows from (2.5) and (2.6).) The following result was
proved in Schwartz [9] as Théoréme 7(ii).

Theorem 11. J,,(CP=;Z/(p)) is a free Z/(p) [a]-module on
generators

Vii for i20 and 1<I<p—1

where the degree of V., is 2((+1)pi—1). Iis multiplicative structure is
given by

a(p‘—1)/(p—1)V if i=j and 1+m<p—1
V“.V’._m— p‘+(pt /- DV, lemepi1 if i:j and l+m>p_.1
0 if 1£)

where i, j >0 and 1<I, m=p—1,

We can describe V;; in terms of the ,BP;.

Proposition 12, For i>0 and 1<I<p—1,

7 (V. D= (=1)i¢ 1)‘31 'H(ﬁp l_vpz

Denote by V;,; the right-hand side of the above equality.
Lemma 13. For i>0 and 1=<I<p—1, 6(V.,) =0.

Proof. We first show that
5.1) 0(T (g —#)) =0
i=0

by induction on i. Since 6(8,) =0 (by (2.8) and (2.9)) and 6(v) =0,
it follows from (2.7) that (8 '—2)=0. Assume that (5.1) is valid
for :<k. Then we have

0(1L (8 ~o"))

_ L j by (2.7 d the inducti
=0(‘3p 1_vﬁk).n(ﬁp'1_vt,) thgthes)isan e 1nductive

_g(‘@p 1) H(ﬁ’ 1 v’l by (2.6)
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which is zero, because by Theorem 10 0(ﬂ§;1) can be expressed as a
linear combination of monomials including B, 0<i<k—1, for degree
reasons and if 0=<{<k—1]

k-1 P
B IL (851 —*) =0
i=0
Thus (5.1) follows. A similar argument gives

08 TL (3 —0)) =08} - L8 ")
=0

and the result follows.

Proof of Proposition 12. From (2.6), (2.7) and Lemma 13 it
follows that (+*V; ;) =0 for all £>0. From this and Theorems 10, 11
it is clear that the »*V;, form a Z/(p)-basis for our kernel. In order
to prove the proposition, it suffices to verify that the V), satisfy the
same relations as in Theorem 11. By Theorem 10 we have

V:',I'V;,m

; o = S j
=(_1)t(l—l)+s(m l)ﬁ;-:-m.n( :jl_vﬁ)z
i=0

i-1 . .
— (___ 1)i(1+m—2) ;}-m. H (‘32}(1:—1) —211’1‘8;’;1—]—02”)
i=0

i=1 . . .
— (_ 1)i(l+m—2)‘Blp-l}-m.Eo(vplﬁ§;1_201,113;7-1_*_02’1)
=(— l)i(l+m—2)‘8;?m.iﬂ (“‘vpj(ﬂ:,-_l—-v’j))

i=0
—( — il+m=2) Ql+m  ( __ i 1+p+... "—l.i—l p—1__ Pj
_.( 1) + 2‘3#. ( 1) Lo+ +P Eo(‘@ﬁ’l v )

) _ i _ i—-1 _ ;
— (_ l)t(l+m l)v(ﬁ D/ 1)48;;’"' H( ﬁ]_ l_vﬁ )°
Jj=0
Since

gitm if [+m<p—1

I+m #

B Im>p 1,

we get the desired relations. The verification for the remaining case
is similar to the proof of Lemma 13. So Proposition 12 follows.
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