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The Orders of Invariant Eigendistributions

By

Jiro SEKIGUCHI*

Introduction

In a series of papers, Harish-Chandra studied the invariant eigendistributions
and in particular established a fundamental theorem which states that any
invariant eigendistribution on a connected semisimple Lie group is locally L1

(cf. [H]). It may be available to reconsider this result from the view point of
microlocal analysis.

On the other hand, recently Hotta and Kashiwara [HK] have shown that
the system of differential equations which governs an invariant eigendistribution
on a semisimple Lie algebra is regular holonomic (=a holonomic system with
regular singularities in the sense of [KK]). Among other things they showed,
by using this result, that the holonomic system in question corresponds to the
intersection cohomology complex defining Springer's representations of the Weyl
group through the Riemann-Hilbert correspondence.

In this paper we examine a microlocal property of the invariant eigendis-
tributions. The results of this paper is quite unsatisfactory in comparison with
those mentioned above. But the author hopes that our attempts will be developed
in future.

We now explain the contents shortly. In the first half we consider the
homonomic system M^ which governs an invariant eigendistribution on a
connected linear semisimple Lie group. An invariant of a holonomic system is
the set ordA(u) of the orders along each irreducible component A of the charac-
teristic variety of the system in question. Here u is a section of the system
on the generic points of A. We attempt to determine ord^(w) for the system
MI. Unfortunately, we cannot do it for every irreducible component A of the
characteristic Ch(*SKx) but if an irreducible component A of Ch(^) satisfies
the condition (A) in (3.1), we can calculate the orders along A. In this case,
though c5^z is not a simple holonomic system in the sense of Sato-Kashiwara,
ord^w) along such an irreducible component A consists of only one element 0.
This is the main result of the first half (Theorem (3.4)). It rarely occurs that
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the set of orders are determined exactly. The author believes that this dis-
tinguished result connects with Harish-Chandra's theorem on the local integra-
bility mentioned above. In the second half, we restrict our attention to the
system m* of the differential equations on §I(n, R) to which an invariant eigen-
distribution is a solution. In this case we have a sufficient information on the
nilpotent orbits of §I(n, (7) (cf. [He, KP]). Accordingly, we can examine a
microlocal property of the system 32 j in some detail by using the structure of
nilpotent orbits (Theorem (4.5)). Furthermore we show that 0 is always
contained in ordj(w) for any irreducible component A of the characteristic
variety of the system 32^.

The author wishes his hearty thanks to Professor M. Kashiwara for show-
ing his unpublished result on holonomic systems (Theorem (2.8)) which plays a
fundamental role in the proof of Theorem (3.4).

§ 1. The Characteristic Variety of an Invariant Eigendistribution

(1.1) Let G be a connected linear semisimple Lie group and let g be its
Lie algebra. For any element A of g, we define vector fields RA and LA on G
in the following manner. If f(g) is a C°°-function on G, then

Here A-+eA denotes the exponential mapping of g to G. We frequently use the
notation (RAf)(g)=<A, /?,>/.

Identifying g with the totality of left invariant vector fields on G, we have
an isomorphism of the tangent bundle TG over G to GXg. Then the cotangent
bundle T*G over G is identified with Gxg*, where g* is the dual of g.

(1.2) Let f(g) be a C°°-f unction on G. Then for any geG, we define the
element dgf of g* by the formula

d.2.1) (dgf}(X}=(Rxf}(g} (VZeg) .

Similarly we define for any C°°-f unction $(Z) on g*, the element d$ of g by
the formula

(1.2.2)

We frequently use the notation (di$)([jL)=([i, D^)(j).

(1.3) Let gc be a complexification of g and let S=S(gc) be the symmetric
algebra over gc. Let / be the subalgebra of all invariants of S by the action
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of G. Then it follows from Chevalley's theorem that there exist homogeneous
elements 0i, ••• , <f>r of / such that /=C[0i, ••• , 0r], where r is the rank of g.
For later use, we denote by /+ the ideal of / generated by <j>l} ••• , <fir.

(1.4) Let g? be the complexification of g* and let AT? be the totality of the
nilpotent elements of g?. Then it follows from [Ko] that N$={X^g$m, $(X)=Q
for any ^e/+}.

Let U be the universal enveloping algebra over gc. Then there is a (linear)
bijection s of 5 onto U. For the sake of convenience, we set P^ = s(^) for any
0eS. Then it also follows from Chevalley's theorem that s\I is a bijection of
/ onto the center Z of U.

(1.5) Let P(g, Dg) be a differential operator on G with analytic coefficients.
Then the principal symbol a(P) of P is a function on T*G^Gxg* (see [B]).
As usual, we identify U with the totality of left invariant differential operators
on G. Then we have the following lemmas.

Lemma (1.6). (1) For any A eg, we have

0(RAXg, X)=<i, A> , a(LA}(g, J)=-a g-lA> .

(2) Let (j) be a homogeneous element of S. Then

Proof. Obvious.

Lemma (1.7). Let <f>(g, X) be a function on T*G = GXg. Then the Hamilton

vector field H<j> is expressed by

(1.7.1) Hf=<drf, Dg)-<dg$+)diW, Di> .

Proof. Let 0, <p be functions on T*G. We now calculate the Poisson
bracket {0, <[>}. The result is

(1.7.2) {$, <]>}(g, Z)=<drf, d^-Wrf, d^>+a [d^, d,0]> .

This is shown as follows. The formula (1.7.2) is obvious in the case where
$(g, X) and <p(g, X) are independent of X and in the case where $(g, X) is inde-
pendent of g and <J)(g, X) is independent of X. Accordingly it suffices to show
(1.7.2) in the case where $=a(RA} and <f)=G(RA>} for A, A' eg. In this case,
we have

This implies (1.7.2). Since Hf(<p)={$, </>}, the lemma follows from (1.7.2).
q. e. d.

Lemma (1.8). (1) For any A eg, we have
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(2) // <j> is a homogeneous element of I, then H0(P=(dt$, Dgy.

Proof. (1) is a direct consequence of Lemma (1.6) (1) and Lemma (1.7).
We now prove (2). Let ^ be a homogeneous element of /. Then it follows

from the definition and (1.2.2) that

This implies that ((dx(j>)l, Ay=(AA, d^y=Q for any A^Q. Therefore we have
(dz<f>)A=Q. On the other hand, since 0 is independent of g, we have dg$=Q
for any g^G. Hence, in virtue of Lemma (1.7), we conclude that (2) holds.

q. e. d,

(1.9) Take an algebra homomorphism I of Z into C and define the system
of differential equations on G :

(VPeZ),
(1.9.1)

(RA+Lju=0

It should be noted here that if T is an invariant eigendistribution on G,
then T is a solution of the system (1.9.1) for an appropriate infinitesimal
character I,

Let Gc be a connected complex semisimple Lie group whose Lie algebra is
QC and contains G. Let 3) be the sheaf of holomorphic differential operators
on Gc. Corresponding to the system (1.9.1), we define a coherent left Ideal /x

of 3) by
<**= 2 S)(P-I(P))+ 2 &(RA+LA) .

P(=Z A<EQ

Then M^—S)/^^ is a coherent left ^-Module on Gc. Let, further, € be the
sheaf of microdifferential operators on T*GC and define Mi^eie®^^.

Proposition (1.10). The characteristic variety of 3&i is contained in the
analytic subset

g*=* and ^eAT*} of

Proof. Since
)=<1, A-g~lA>

(V^eJ, homogeneous),

it follows that if (g, X) is contained in the characteristic variety of JZX , then

<i,A-g-lA>=0
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From these equations, we find that gX=X and ^eATJ. q. e. d.

(1.11) If (g, 1} is contained in A and h^Gc, then (hgh~l, hZ) is also con-
tained in A. In this way, Gc acts on A. Let {fa, • • • , AN} be a complete set
of representatives of nilpotent orbits in g? and set Ct={gfa: g^Gc], the Gc-
orbit of fa and A(={(g9 2)^GCXQ%; ted, gZ=A}.

It follows from the Jacobson-Morozov lemma that for each /, there exist
elements fjtt and fa of gj such that </^, fjtir ^7) is an S-triple, that is, [/**, fa"]
=2^, [><, ̂ 7]=—2^7, W<, ̂ 7]=A*<- Now fix 2 and define a+=Z8cW t)={ylegc;
A^/U and a_=Z8cW7). Let m be the orthogonal complement of a+©a_ with
respect to the Killing form on gc. Take any element g0 of Gc such that
(go, fa)^A( and define the mapping

F:(a_0m)Xa + —> A(

by F(A, 5)=(exp A(g0 exp 5) exp (-A), exp A- fa). Then F(0, 0)=(#0, **) and
JF(0, 0) is non-singular, so we get a coordinate system near (gQ, fa) by choosing
a basis in a_®m, a+. Accordingly, Ai is a complex manifold and dim Ai=dim Gc.
Since ZGc(^i)={geGc; ^t=^} is not connected in general (cf. [Ko, p. 363]),
so is Ai. Let A'i,i, A'ii2, • • • , A'itki be all the connected components of Ai and
set Ai=Ai and Ai,j=A'itj (/=!, • • • , &*). Then each yfj ) i 7- is an irreducible

JV kt

analytic subset of GcXg? and A={J (J Aiti is the decomposition of A into
1=1 .7=1

irreducible components.

Theorem (1.12). The system M^ is holonomic for any 1.

Proof. Due to Proposition (1.10) and the definition of a holonomic system,
it suffices to show that for each irreducible component Aitj of A, dim^t,y=
dim Gc. But this is already shown in (1.11).

Remark (1.13). It is known that MI is regular holonomic (cf. [HK, p. 28]).

§2. A Theorem on a Holonomic System

(2.1) Let X be a complex manifold and let T*X be the cotangent bundle
over X. Let o) be the fundamental 1-form on T*X. Then its differential da)
is the symplectic form on T*X and do) gives a 1—1 correspondence between
tangent and cotangent vectors on T*Zand this extends to a 1—1 correspondence
between holomorphic vector fields and holomorphic differential 1-forms. Thus
we obtain an identification H: T*(T*Z)-»T(T*Z). We set 3C=-H((o).

As usual 8X denotes the sheaf of microdifferent'ial operators of finite order
on T*X (cf. [B]). For any P(x, Dx)^€x with ord P=m, we set

P(x, Dx)=Pm(x, Dx)+Pn.i(x, Dx)+ •••



684 JIRO SEKIGUCHI

where Pk(x, £) is homogeneous with respect to the cotangent variable f of
degree k.

(2.2) Let V be an involutory submanifold of T*X and consider a coherent
d^-Module M—8XIS- such that Supple V, where & is a left Ideal of 6X.

Definition (2.3) (cf. [KO]). Let u be a section of <3A. Then a principal
symbol of u is a solution $ of the following system of differential equations on

(2.3.1) L(
P

m^=Q for every Pe£^m) which annihilates u.

(For the definitions of JCY, L£m) and e\^\ see [KO].)

(2.4) From now on we always assume that M is holonomic and V is
Lagrangian.

Definition (2.5) (cf. [KK]). Let u be a section of M. Then an order of u
along V is a complex number a such that (3C—a)<f>=Q for a principal symbol 0
of u. We denote by ordv(u) the set of orders of u along V.

(2.6) Some properties of ordv(u) are examined in [KK, Chap. I], The pur-
pose of this section is to prove the following theorem due to M. Kashiwara.
We reproduce its proof with his permission.

Theorem (2.7) (M. Kashiwara). Let M be a holonomic system as in (2.2).
Let u be a section of M and let p=(x0, £0) be a point of V. Assume that there
exists a microdifferential operator P(x, Dx)=Pm(x, Dx)+Pm-i(x, Dx)+ ••• defined
in a neighbourhood of p in V such that Pu=Q and that Ha^——X at p. Then

Here for a vector field v leaving p fixed, Tr (v ; TPV) is the trace of the linear
endomorphism

Proof. First we shall prove the following lemma.

Lemma. // v is a vector field on V leaving p fixed, then we have v(f)—
(l/2)Tr(v;TpV)f at p for any

In fact, choosing a coordinate system (tlf ••• , £„) of V near p such that p=Q,
n

we can write v= S tjVj for some vector fields vlf ••• , vn. Then it follows from

the definition that Tr(z;; TPV)= Jj v/fj)(0). Set dt=dtl/\ •-• /\dtn and let a(t)

be a function on V such that f=a(t)Vdi. Then we have
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v(a(t)Vdi)\t=!,= {v(a(t)-)Vdi+a(t)v(VTt)}\t=<,

and

j=i

Thus we obtain the lemma.

Now we return to the proof of Theorem (2.8). Let 0 be a solution of the
system (2.3.1). Since Ha^+T leaves p fixed, the lemma above induces that

at

Noting that

tf.CF>(0) =-(fti-l(*0, ?o)- ̂  S £§T(*°>

we conclude that

-i(*o, fo)- y S |̂ ;̂

Thus the theorem follows from (2.3). q. e. d.

§3. Main Theorem

(3.1) Let us return to the situation in §1. Fix an irreducible component
At,j of A and consider the following condition for Aitj.

Condition (A). Fix (g, Z)^Al.j and we take Zegc such that <^, Z^-B(X, Z)
(Zegc). Here B denotes the Killing form on QC- Then there exist H, Y in gc
and ^e/+ such that

(3.1.1) [ff, Jf]=2X, IH, Y^=-2Y, £X, Y^=H,

(3.1.2) H-g'lH+drf=0.

We note that this condition depends only on Altj but does not on the choice
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Of (g, X).

Lemma (3.2). Assume that h is a regular nilpotent element of g* and there-
fore d is the regular nilpotent orbit of N%. Then for any AU (/=!, • • • , &i),
the condition (A) holds.

Proof. It follows from the Jacobson-Morozov lemma that the condition
(3.1.1) always holds. Accordingly, it suffices to show the existence of an ele-
ment <j) of /+ satisfying (3.1.2). It follows from [Ko, Th. 9] that in this case,
the set M={d$; 0e/+} is an r-dimensional vector space (r=rank gc). Since
X is regular, dim ZQC(X)=r. Therefore we find that M=ZQC(X). But H-g^H
is contained in ZQC(X) and (3.1.2) is shown. q. e. d.

Remark (3.3). (1) The system M^\Altj is simple in the sense of Sato-
Kashiwara.

(2) The condition (A) does not hold for every irreducible component Aiti

(cf. §4).

Theorem (3.4). Let u be the generator of the system <3ttn such that u=l
mod^x. Take an irreducible component Aitj of A such that the condition (A)
holds for Aitj. Then we have ord^ i>j.(M)={0}.

Proof. Let p=(gQ, /W be a point of Ai.j. If ^=0, it is easy to show that
ordyiiij.(w)={0} because, in this case AitS is contained in the base space. Thus
we may assume that /^O without loss of generality. Then there is an element
A of QC such that <^, A>=1. We take X^QC such that B(X, Z)=<^, Z> for
any Zegc. Then it follows from the condition (A) that there exist H, Fegc

and 0e/+ such that X, H, Y satisfy (3.1.1) and (3.1.2) for (g, X)=(g0f ^). Now
m

we write 0= S 0*, where ^AeJ is homogeneous of degree k. It should be

noted that there exists no non-zero homogeneous element of / with degree 1.
Set Qk = s ( $ k ) and

1 m
P=-^(LH+RH}+ S (RA-«

£ k=2

Then P is contained in £GC and Pu=Q. Since

1
a(P)(g, «=Ta H-g

£t

it follows from Lemma (1.8) that
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Hence we have
m
2

k=Z

at p. From the definition it follows that H^=2Xt. Therefore we find that
#ffCp) =— <^«, D*> at p. Since 3?=<Z, D^, this implies that H0^= — 3£ at />.
Then applying Theorem (2.8) to the operator P, we find that

where P* is the adjoint of P. Accordingly, to prove the theorem, it suffices to
show

(3.4.1)

(3.4.2)

We now prove (3.4.1). For this purpose, set

+ 2 (Rj-«-

Then P^Pi+P.i and ordR^-l. Since P*=-Plf we have
(T0(Pi+Pf)=0. This shows (3.4.1).

The equality (3.4.2) will be shown in the following lemma. Hence the
theorem is proved.

Lemma (3.5). Under the assumption in Theorem (3.4), we have

Proof. We first note that

TpAttJ=(Q, Q

Under this identification, any tangent vector v^T^Aitj is expressed by v—
<E, Dgy+<FXi, D2y with E^(QC^ and F^egc^. Then

[v, ftcP)+^] (at p]

(at
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Therefore Ha(ip^+!£ transforms the vector <£, /^>+<F^ lf D^ to

I m

- S (fe-
&=2

Hence Ha(fP^+2C induces the mapping of (gc^i)®(9c^z)J" to itself defined by

-j[F, If];,, y[£, ^o^l-

Accordingly we have

We now calculate

-dim

-dim [8Cf Z]-Tr^gcC

Here we used that TrQcadH= 0. We recall that adH\ZQC(Y) is an endomor-
phism of ZQC(Y) and if we take a basis ulf ••• , wp of ZQC(Y) such that ad(H)ut

= — HiUi with a non-negative integer n< (l^/^/>), then dim gc= S (nf+1). Hence*=i
we have

-ydim [gc, F]-— dim [gc, Z].

On the other hand, since g0X=X and therefore gQ is an automorphism of
Z8C(X), we have

Then by an argument similar to the above, we find that

= - dim [gc,
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From these equations, we finally obtain

TpAtlJ)

]->y[[F, //], X

— , C, X]=0. q. e. d.

§4. An Example

(4.1) In the previous sections, we treat a holonomic system MH on a con-
nected linear semisimple Lie group. Needless to say, for the holonomic system
which governs an invariant eigen-distribution on a semisimple Lie algebra, a
claim similar to Theorem (3.4) holds. We note here that Hotta and Kashiwara
[HK] studied the system in quite a detail.

In this section, we mainly concentrate on the holonomic system on Q=
, R) which governs an invariant eigendistribution on g a little more.

(4.2) We first introduce some notation. Set g=3l(n, fi), gc=3l(n, C), G =
SL(n, JB) and Gc=SL(n, C). Let S be the symmetric algebra over gc and let
P[gc] be the algebra of polynomials on gc. Let, further, I=SG and /*=P[gc]G

denote the subalgebra of S and P[gc] consisting of G-invariant ones, respectively.
Let E^j be an n X n matrix whose (/, /)-entry is 1 and others are 0 and set

1 n

El=Eil -- ^Ejj. We define polynomials PZ(X), ••• , Pn(X} on gc by the fol-
72 j=i

lowing formula:

(4.2.1) det «/„- Jf)=^n+ A(XWB-'-P8(XWB-8+ - +(-l)BPB(X) .

It should be noted that P^ is a homogeneous polynomial of degree k. We
denote by Pjf the element of 5 obtained by substituting the (f, /)-entry of X
for Elj (i=£j) and the (z, /)-entry of X for £t in the polynomial Pk. Then the
following is well-known :

(4.2.2)

Let 5 be the Cartan subalgebra of gc consisting of diagonal matrices. As
usual, we identify § with C71"1 by the correspondence diag (tlf ••• , tn}-*(ti, ••- , tn)
(ti-\ ----- h^n=0). Let 5* be the dual of f) which is also identified with Cn~l.
For any ^=Wi, ••• , 2.n}^* Wi+ ••• +^r:::0), we define an algebra homomorphism
X* of SG to C in the following way. Let pl(X) be the f-th fundamental sym-
metric polynomial of ^, ••• , ^n. Then X^(j5(P2, ••• , Pn))=$(pz(Z), ••• , pn(M for
any #(P,, - , PB)eS° (cf. (4.2.2)).
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(4.3) For any 0eS, let 9(0) denote the constant coefficient differential
operator on gc which corresponds to 0 (cf . [HC]). On the other hand, for any

, we define a vector field r(A) by the condition that r(A) assigns to any
the tangent vector \_A, X~],

Using these notation, we introduce a system of differential equations. For
an element 1 of §*, let Ix be the algebra homomorphism of SG to C. Define a
system on g:

f
(4.3.1)

(T(A)u=Q

Needless to say, an invariant eigendistribution T on g corresponding to the
infinitesimal character X* is a solution of the differential equations in (4.3.1).

Let 3) denote the sheaf of differential operators on gc. Corresponding to
the system (4.3.1), we define the coherent Ideal /^ of 3) by

Then yix=^D/^2 is the coherent ^-Module on gc corresponding to the system
on QC defined in (4.3.1). Let G be the sheaf of microdifferential operators on
T*gc and define Jlx—G/6®Sx- We note that Six is an ^-Module.

By the correspondence d(Elj)-*Ejl (i=£j), d(Ei)-+Eit we identify T*gc with
8cXgc. Then, by an argument similar to that (1.10), we see that the charac-
teristic variety of 31 1 is contained in the analytic set

Here N denotes the set of nilpotent elements of gc. Later we shall show that
dim J=dimgc and therefore the ^-Module Jlx is holonomic for any 2e^* (cf.
Theorem (4.5)).

(4.4) To examine the structure of A in detail, we review on nilpotent
matrices and their commuting matrices (cf. [G, He]).

Let i)=(pi, -" , pn) be a partition of n, that is, p^ ••• ̂ pn^Q and p^+ •••
-\-pn = n. Associated with 77, we define a matrix

Jp k '

where Jp = O 1
0 1

0

1
0 1

0

a pxp matrix.

Let Pn be the totality of partitions of n. Set C^ = {gJ^g~1; g^Gc}, the con-
jugate class of /7 and
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Here p(X) is defined as follows (cf. [G]). Let m1} ••• , mk be the multiplicities
of different eigenvalues of X in the decreasing order. Then p(X)=(mi, ••• , mk,
0, ••• , 0) and is regarded as a partition of n.

n-k

We introduce a partial ordering on Pn. For any two partitions i}=(pi, ••• , pn)
j j

and v=(qi, ••• , qn} of n, define rjl^v if and only if S />iS^.S Qj for any /. Then

the following lemma is known.

Lemma (4.4.1) ([He, KP]). Given r}=(plf - , pn\ »=(tfi, - , ?JePn. If
7]>v and no partition is between them (i.e. rj and v are adjacent in the ordering],
then one of the following two possibilities holds for ^ and u :

(I) There is an i^N+ such that pk~Qk for k^i, i+1 and ql = pi~l'^Qi+i

(II) There are i, /eTV4", i<j, such that pk—qk for ki^i, j and ql=pl — l =
?,=/>,+!.

Furthermore, in the case (I), we have codim^3?Cp=2 and in the case (II), we
have codim^ £u=2(/— •/)•

Theorem (4.5).
(1) For any r]^Pn, A(i]) is an irreducible component of A and di

n2— 1 (=dim gc).
(2) Ar(^

•ri^v

(3) A— \J A(ij) is the irreducible decomposition of A.
V^Pn

(4) Given TJ, vePn. // y>v and t] and u are adjacent in the ordering, then

Remark. (1) The irreducible decomposition (3) of A is simpler than that
of the corresponding analytic set in the Lie group case (cf. (1.11)).

(2) We conjecture that the converse of the statement (4) is valid. Namely,
we conjecture that if dim(A(r])^A(u})=nz— 2, then ^ and v are adjacent in the
ordering.

Proof. (1) and (3) are proved by arguments similar to those in (1.11). (2)
is a consequence of Propositions 2.1 and 2.2 in [G]. What we must note here
is that in this case, the set A'(r]} is connected.

To prove (4), we need two lemmas.

Lemma (4.5.1). Set Z=C3 and Sk = {(x, y, z)eZ; xk+1-yz=Q}. We con-
sider the cotangent bundle T*Z of Z and denote by (f , 77, 0 the conormal variables.
Let Al and Az be the closure of the conormal bundle of Sk — {0} and the origin,
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respectively. Then A± C\ Az — {(0; f, 77, 0 e T*Z; f=0}. In particular,
I /• -I 0\

Lemma (4.5.2). Set Z=8l(£, C) an^ S? fs fAe closure of the set {^eZ; X
is conjugate to X0}, where XQ= 0 1

0 0

0.

Identify the cotangent bundle T*Z with ZxZ as in (4.3). Let A1 and A2 be the
closures of the conormal bundles of S*— {0} and the origin, respectively. Then
Air\A2={(Q, F)eZxZ; Z?(7)=0}, where D denotes the discriminant polynomial
on Z=8l(k, C). In particular, codim^^n^^l (/=!, 2).

Lemma (4.5.2) is less obvious than Lemma (4.5.1). Accordingly, we only
give here a proof of Lemma (4.5.2). That of Lemma (4.5.1) may be accomplished
by an argument similar to the one given below.

We are going to prove Lemma (4.5.2). Set Gk—SL(k, C) and 1=
{A^%l(k, C); [A, XQ~]=Q}. For the sake of convenience, we consider the ele-
ment £=[1 ] (g, fceC*-2, *eEC). Then glg~l={gAg-1 ; A^l} is the

Iff Ik-2

U h 1J
centralizer of the element g(tXQ}g~l (eSf— {0}) for any ifeC*. Now we let
the parameter t tend to zero. Then we find that the set M={gAg~l ; A^l,
g,h<=Ck-z, x<=C} is contained in the set {A^Z; (0, A)^ A^Az}. It is easy
to check dimM=dimZ— 1. Furthermore it follows from the definition that for
any A^M, at least one eigenvalue of A has multiplicity ^2. This means that
D(A)=Q for any A^M. Comparing the dimensions of M and the set S=
{A^Z; D(A)=Q], we find M=S. Therefore it follows that ^1n^2={(0, A)^
ZxZ; D(A)=Q}. Hence Lemma (4.5.2) is shown.

We return the proof of Theorem (4.5) (4). Let 77 and v be the partitions
of n such that 7] >v and that 77 and v are adjacent in the ordering. Then it
follows from Lemma (4.4.1) that there are two possibilities. We first consider
the case (I) in Lemma (4.4.1). Let Y^C^. Then it follows from Theorem 3.2
in [KP] that there are an open neighbourhood U of Y in QC and a local coordi-
nate system (x, y, z, tlt ••• , tp, ulf ••• , uq) on U (£+#+3:=dmi gc) such that Y
corresponds to the origin of U and

7 = {(*, y, z, t, u}^U; Ml= - =uq=Q, xk+1+yz=Q}}

={(x, y, z,

Here k is the number uniquely determined from 77 and v (cf. Lemma (4.4.1)
and [KP, Th. 3.2]). Let n be the projection of T*gc to the base space gc and
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set 7c'l(U)=V. Then under the identification in (4.3), V=UXQC and

Here we used the notation in Lemma (4.5.1). Accordingly, Lemma (4.5.1) im-
plies that

If the case (II) of Lemma (4.4.1) occurs between f] and v, one can show the
claim in (4) by an argument similar to the above, using Lemma (4.5.2) instead
of Lemma (4.5.1). Hence the proof of Theorem (4.5) is completed.

(4.6) We shall next obtain a theorem similar to Theorem (3.4).
Fix a partition rj^Pn. A condition similar to (A) in (3.1) is then:

Condition (A'). For any (A, X)^A'(rf, there exist H, Fegc and
such that

(4.6.1) IH, xi=2X, IH, n=-2y, ix, Y^=H.

(4.6.2) lH,A] + dzf=0.

Here dx<j> means the element of gc defined by

(4.6.3) (dzfrZ=$(X+tZ)\tss0 for any Zegc.

Though (4.6.1) follows from the Jacobson-Morozov lemma, Condition (A')
does not hold for every

Theorem (4.7). Let i}=(pi, ••• , pn) be a partition of n such that pi=k,
p2= -~ =Pn-k+i=l, Pn-k+z= ••• =pn=Q- Then the condition (A') holds for A(ij).
And in this case, for any ^elj*, if u is the generator of the Ideal /*, that is,

^, we have

Proof. Let us take an element (A, X}^Af(f]}. We may assume that
X = \Jk 1 without loss of generality. As is easily seen, there is an element

L oJ
g of Gc such that gXg~1=X and gAg~l-=\Al 1 (A^ is a kxk matrix and

L Az\
A2 is an (n-k)X(n-k) matrix). Accordingly, from the first time we may set

. Since A commutes with X, it follows that Al=ajk+ S

with complex numbers a0, aly ••• , ak-i. We take
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' k-1
k-3

-'(*-!)
0 ,

Y—t -1

0
2(k~l) 0

4(£-2) 0

' o
2(6-1) 0

o /
Then we find that (4.6.1) holds for X, H, Y. Furthermore [#, ZWB "I,

L oj
where B=^2al(Jk)

1, a kxk matrix. On the other hand, it follows from the

definition that dz/\=f(/*)i"1 1 (*=2, • • - , & ) . Noting this, we set <f>=
L Oj

— S2*aiPi+1. Then we obtain that [//, ^H-d^^O and that //, F and 0 are
<=i

required ones. The rest of the proof is shown by an argument similar to (3.3).
q. e. d.

Remark (4.8). If f]^.Pn does not satisfy the assumption in Theorem (4.7),
the condition (A') does not hold for A(r[).

(4.9) We conjecture that ord^c^w)— {0} for any 2el)* and 7]^Pn (cf. (3.5)).
In the rest of this section we give a weak version of this conjecture. For this
purpose we introduce some notation.

Let T] be a partition of n and let /7=</i, • • • , /P> be the defining ideal of
the irreducible analytic subset C^ of gc. Since each P^(X} is contained in /,,

P
we write /\(-Y)= S utj(X)fj(X) (M0-(^)eP[gc]). Identifying S with P[gc], for

j=i
any /eP[gc], we denote by /* the elements of 5 corresponding to /. Then
it follows from the definition in [KO, p. 152] that the differential operator

on = ^ c ) is of the form

.

where Lacu; ;>=£acu^> if ulj^I^ and L3CM;p— o-(5(M*;-))
::=w£ if otherwise (cf. [KO,

Lemma 2.1]). Accordingly, any principal symbol $ of the system Jlx along A(i))
is a solution of the system of differential equations on £ A

(4 9 1 0=2,

Noting this, we consider the system of differential equations on
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(4.9.2)

We note that the system (4.9.2) is in involution and that any solution of (4.9.2)
is also that of (4.9.1).

Theorem (4.10). For any iq^Pn, ord^C3?)(w) contains 0.

Proof. To prove this, we recall a lemma.

Lemma (Tanisaki [T]). Set i)—(pi, ••• , pn\ Assume that p^ ••• ^pk>Pk+i
= ••• =£n=0. We define polynomials which vanish on C^. For any X<^QC, we
consider all the k-minors of the matrix t!n—X (t is an indeterminate) and regard
them as polynomials of t. Let f™i(X\ ••• , /™r«,m)(^) be the coefficients of the
term tm of these polynomials, where r(i, m) denotes the number of the minors
above. Using these, we define an ideal 1^ of P[gc] generated by f f j ( X \ i=l,
"• , n, m— 0, 1, ••• , u(i), j— 1, 2, ••• , r(i, m). Here we set u(i)=pn.l+l+pn-i+2+'-'
(/=!, 2, ••• , n). Then

£, = {*egc; f(X)=Q for any /e/J}.

Remark. DeConcini-Procesi [DP] introduced an ideal of P[gc] which has
the same property as /^. The following is a conjecture: 1^=1^.

We return to the proof of Theorem (4.10). Let us take (A0,
As in the case of the proof of Theorem (4.7), we may assume that X0=J7] (cf.
(4.4)) and A0= where each At is a pxXpt matrix (i=1, ••• , k}.

Pi
Since [Z0, ̂ 40]=0, each Al is of the form A= S a l J ( J P i )

j . If we can choose

and 0e/^, homogeneous, such that

[ft, X,-]=2X0, [_H0, XQ-] = -2Y
(4.10.1)

we can prove the theorem by an argument similar to the proof of Theorem
(3.3). Hence it suffices to show the existence of H<>, Y0, <f> with the condition
(4.10.1).

For this purpose, we define polynomials in /£. For any X = ( X I J ^ ^ Q C , we
set X^=(xl]}utm^i,^n and define
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Then due to the lemma above, we find that the polynomials fmii (z=l, 2, • • • , k,
f=0, 1, ••• , pm) are contained in 1^ and that djr0 /m,t=f 0 ]. Here

Tt-l
Jm

' Tt-l
Jk J

Jp is the Jordan matrix of size p. Noting this we can take HQ, F0egc and
$<=/;J with the conditions above by an argument similar to the proof of Theorem
(4.7). Hence the theorem is proved.
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