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Heyting Valued Considerations on Some
Fundamental Existence Theorems

in Modern Analysis

By

Hirokazu NlSHlMURA*

Abstract

Following the honorable tradition of Rousseau's [6] treatment of Weierstrass theorems
in several complex variables, we give some other specimens of transfer from intuitionistic
theorems to classical ones. The classical theorems which we deal with in this paper include
the implicit function theorem and Cauchy's local existence theorem in ordinary differential
equations.

§ 1. Preamble

Rousseau [6] has shown that an intuitionistic division theorem in
one variable, interpreted in the Heyting valued set theory V(0) with
Q being the topology £)(Cn~l) of C*"1, gives rise to the classical
Weierstrass division theorem in n variables. Following these lines,
we will show that the inverse function theorem, demonstrated intui-
tionistically and interpreted in the Heyting valued set theory V(Q)

with Q being the topology of some appropriately chosen space of
parameters, is nearly the classical implicit function theorem. Similarly
it will be demonstrated that Cauchy's celebrated local existence
theorem for ordinary differential equations, established intuitionisti-
cally and interpreted in the Heyting valued set theory V(Q} with
Q being the topology of some appropriately chosen space of param-
eters, gives rise to the classical theorems concerning the smooth
dependence of local solutions on parameters and on initial condi-
tions.

The organization of the paper goes as follows. After reviewing
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some rudiments of Heyting valued set theory and elementary
Intuitionistic analysis in Section 2, we deal with the internal and
external aspects of a simple fixed point theorem In Section 30 Section
4 is devoted to the internal and external aspects of the Intuition-
istic inverse function theorem, while Section 5 treats Cauchy's local
existence theorem for ordinary differential equations both Internally and
externally. Most theorems and definitions are headed by (Internal),
(external), (ZFC) or (ZF r) to stress their nature0 For technical reasons
we deal almost exclusively with the complex or holomorphic case.

§ 2e Preliminaries

2. 1. Intuitionistic Set Theory
By ZFi we mean a first-order intuitionlstic theory with a unary

relation symbol E and two binary relation symbols EE and = satisfy-
ing the following nonlogical axioms :

(Al) Equality axioms : u = u,

-»(p(v), and

(A2) Extensionality :

(A3) Pairing: =kV 'x

(A4) Union:

(A5) Power sets: 3^V x(x^v<

(A6) ^-induction:

(A7) Infinity: 3

(A8) Separation:

(A9) Collection:

In the above list V # e o ° and 3 ^ ° ° ° are abbreviations of V#
(E^;->--0 and 3 ^ ( E % A 0 0 0 ) « Since V^ and 3^ will usually appear

in these forms, we will often write V* and EU simply for \/x and

2.2. Heyting Valued
Let V be a standard universe of ZFG and let Q be a complete

Heyting algebra. For each ordinal a we define V^ Inductively to
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be the set of all ordered pairs <M, Ew> such that :

(1) Eu<=Q;

(2) u is an ^-valued function defined on a subset 2 (u) of V(®

for some ordinal

(3) \/x^@ (u) (M(

Now V(Q} is defined to be the class UaeonF^j which is to be called
an (Q-valued) sheaf model, can be considered to be a Heyting valued
model of ZFt by defining [Ew]] with

(1) lEu~J\ = Eu,

and by defining iM^yJ and [[M = Z/]] with the following simultaneous
induction

(2) I«eo]] = v,6»(.)(i'0')AEa=^I),

(3) [[B=»3]=A,69(.)(H(*)->-l[xe»]]AA,6fl(.,(o(j')->[I>ea]]) A

and then by assigning a Heyting value O^J to each nonatomic sen-
tence <p inductively as follows :

(4)
(5) I
(6) l

(8)
(9)

Now we have

Theorem 2.2.1. Vw is a model of ZF,.

The class V can be embedded into Vw by transfinite induction
as follows :

y= {<x, \y\xGy} and Ej) = l for j^eF.

For «eF(fi> and peQ, we define ar/" to be the element of Vw

such that

and E(ar/»)=EaAA
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In the sequel we implicitly identify #9 y^V(Q} time and again
provided E#=J)>]] = 1.

20 3B Sheaves over Complete Heyting Algebras
A presheaf over a complete Heyting algebra Q is a triple <(•$*, E9 |~~>

of a set S and two functions E : S— *Q and [~~ » Sx@->S with the
following properties :

(i)
(2)

(3)

For convenience we often say simply that S is a presheaf over
Q without mentioning E and T explicitly. Members 0, & of a pre-
sheaf 5 over .Q are said to be compatible whenever ar^b = b\~^a,
A subset F of 5" whose members are pairwise compatible is called
compatible. A presheaf .5' over Q is called a sheaf over ,0 if for any
compatible subset F of S there exists a unique g^S such that :

(1) /e=F implies ^fE/=/,

(2) E£=V{E/i/<EF}.

The subset {^e5|E^=/?} is denoted by /"(/?, 5).

Theorem 2.3.1. For awjv MeF f f l ) , fl= {^eF^l^e^-E.*} is a sheaf

to be called the sheaf represented by u. Conversely, for any sheaf S over

Q, there is an element u^V'Q) such that the sheaf u represented by u is

isomorphic to S.

Similarly we have

Theorem 2 8 3 0 2 0 Let ul,u2^V(Q\ Then any function f : ul-^u2 in V(Q)

renders a unique junction f:uL-*u2 such that for each

This gives a bijective correspondence between junctions f:u1-^>u2 in

and junctions g : Ui~^u2 such that

E4lfl = E^(fl) and

for any p&Q and
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2. 4. Intuitionistic Linear Algebra

Definition (ZFj) . A relation ^ on a set S is called apartness if for
any a, b, c&S, we have:

(1)

(2)

(3)

Definition (ZFJ. A ring S with apartness =£ is called an
apartness ring if for a, 63 ceS, we have:

(1)

(2)

Definition (ZFJ. An apartness ring S with 1 is called an

apartness field if for any aELS9 we have:

(1)

(2)

Definition (ZE^. Let F be an apartness field. Then an F-
module T with apartness =£ is called an apartness vector space over F
provided for any a, a' '^F and any w5 w'5 y, v' &T^ we have:

(1)

(2)

Definition (ZFj) . Let 7" be an apartness vector space over an
apartness field F. A finite set [e^ . . . , en] of vectors is called an
apartness basis if

(1) {*i, • • • j t f f j is apartness linearly independent, ise0?

V t«i, • • • , fl

(2) T is generated by {*l5 . . . , en] , L e. ,

Theorem 2 B 4 0 1 (ZFj) . Let T be an apartness vector space over an

apartness field F0 If {0l5 . . . , em] and {e{, . . . , e'n] are bases for T, then
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Definition (ZFO. Let T± and T2 be apartness vector spaces over
an apartness field F. A mapping ^ . - T ^ — »!T2is called a homomor phism

if

A homomor phism <p : Tl->T2 is called an embedding if

VM, z>e ̂ (^(M) =$0(r;)-»M = z;).

A homomorphism ^ : Tl—>T2 is called an apartness embedding if

An (apartness) embedding y> : Tl-^>T2 is called an (apartness} isomor-

phism if

The determinant of an rcXra matrix is defined to be the well-
known polynomial of n2 variables. And we have

Theorem 2 9 4 0 2 (ZF,). // F is an apartness field, hi Fn^Fn is
a homomorphism and M is the matrix of /z, then M is invertable iff
det M^Oj where det M is the determinant of M0

2050 Elementary Intuitionistic Analysis

In this subsection we review some rudiments of intuitionistic
analysis which are indispensable for our later discussion,, Now that
such a readable exposition as Bishop and Bridges [1] is available,
our exposition here can hopefully be sketchy.

Let X be a topological space with topology fl = O(-X"). Then the
usual Dedekind construction in V(Q} gives the system R(® which is
externally the sheaf of real-valued continuous functions on X. Simi-
larly C(Q}=R(®+iR(^ is externally the sheaf of complex-valued
continuous functions on X. There is a standard apartness relation
=£ in R(Q}ix^y iff x<y or *>j. An apartnes subfield 31 of R(Q}

containing R is called a real-like field if $t is complete (i. e0? every
Gauchy sequence converges) .
Elementary real analysis, including a slightly weaker version of the
mean value theorem, can be developed internally by using any
real-like field Dt in place of Re Notice that the completeness of $i
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plays a crucial role in defining the familiar function exp as the
limit of an infinite series and in defining the Riemann integrals of
continuous functions as the limit of finite sums. Similarly an apart-

ness subfield E of C(Q} containing C is called a complex-like field
if S is complete. The most important complex-like field that we
often encounter is H whose representing sheaf is the sheaf of holo-
morphic functions on X, where X is surely required to be a com-
plex manifold or the like in such a case. For all the variety of
real-like and complex-like fields, we have the following.

Theorem 20 581 (ZFC). // Q is the topology D (X) of a topolo-
gical space X, then for any real-like field $1 in V(®\ the totality of

open subsets of 3tn is externally the totality of open subsets of XxRn
0

Similarly, for any complex-like field K in V(Q\ the totality of open
subsets of ©" is externally the totality of open subsets of XxCn.

Proof. See Rousseau [6] or Takeuti [8],

Similarly we have

Theorem 2.5.2 (ZFC), // Q is the topology O(X) of a topological
space X, then, for any real-like field SJt, the sheaf of ^-valued continuous
functions on 9$" is externally the sheaf of real-valued continuous functions
on XxRn. Similarly, for any complex-like field E, the sheaf of ^-valued

continuous functions on S" is externally the sheaf of complex-valued con-
tinuous functions on XxCn

a

Proof. See Rousseau [6] or Takeuti [8],

Theorem 2.5.3 (ZFC). // O is the topology D(C7) of an open
subset U of Cm, then the sheaf of holomorphic functions on Hn is

externally the sheaf of holomorphic functions on Cm+n.

Proof. See Rousseau [6] or Takeuti [8],

The following definition is necessary in Sections 4 and 5.
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Beieitloe (Internal). Let Q be the topology £)([/) of an open

subset U of Cn
0 Then we need the following definition In F(fl) : For

any linear mapping T:JBp-»Hq and any positive number M, we
write \\T\\ <M if \\Tx\\ < M\\x\\ for any x^H*, where ||x|| is the
square root of the sum of the squares of the components of x as
usual.

The following style of the Internal mean value theorem will be
required in Sections 4 and 50

Theorem 2 0 5 e 4 (Internal). Let Q be the topology O(E7) of an open
subset U of Cn

a Then we have following in V(Q}: For any holomorphic

mapping f from an open ball W of Hp to Hq and any x, y<=W, if \\Df

(£*+( l -£) jOII<Af (0<f< l ) for some positive number M, then \\f(x)
—/OO \\<M\\x — y\\, where Df(z) for z^W is the derivative of f at z
and so is a linear mapping from Hp to Hq whose matrix is the so-called

Jacobian matrix of f at z.

Proof, This follows readily from the Internal version of the mean
value theorem, for which the reader Is referred to Bishop and Bridges
[1 ; p. 48]. Q. E. D.

The following theorem is indispensable in Section 4,

Theorem 2,5.5 (ZFC). Let Q be the topology O(f7) of an open
subset U of C"a Let f be a holomorphic function from an open subset

W of Cn+p=CnxCp to Cq and let f be its internal correspondent in
V(Q} under Theorem 20 50 3. Then the internal function D/ is externally
the function D2f^ where D2f is the partial derivative with respect to the
second variable and so determines a linear mapping from Cp to Cq at each
point of W,

The following definition Is indispensable In the proof of Theo-
rem 50 48

(internal). Let Q be the topology O(£7) of an open
subset U of Cn

a Then we need the following definitions In V(Q} :
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Let /, g be bounded functions from the same subset W of Hp to

Hq, We write ||/||<||g|| if, for any positive number 37, HgOOII^?
for any x^W implies \\f(x)\\<rj for any x^W. Similarly we write
a^$|g||, where a and /? are positive numbers, if, for any positive
number rj, IL?(#)I |<^ for any x^W implies <x

The following definition and theorem will be used in the proof
of Theorem 58 38

Definition (internal). Let U be an open subset of C* with its

relative topology £ = £)(£/). Then we need the following definition
in V(Q} : Let W be an open subset of JET* and AdW be an open ball.
Then A is said to be well contained in W (notation : A C W) if there
is an open ball A'dW with the same center and a larger radius.

Theorem 2. 58 6 (internal) . Let U be an open subset of Cn with its
relative topology £)(£/). Then we have the following in V(Q} : Let f be a
continuous function from an open subset J of Hp to an open ball W of
Hq with center £0. Then, for any open ball /'C/, there is an open ball
W'GW with center £0 such that f(J')dW.

So far we have succeeded in proving this theorem only exter-
nally, so we would be glad to see someone try to establish Theorem
5. 3 without resort to Theorem 2. 5. 6.

§30 Fixed Point Theorem

The main purpose of the present section is to establish the follow-
ing well-known classical theorem as the external reformulation of
an intuitionistic simpler version. The method is the prototype of all

the succeeding sections.

Theorem 3. 1 (external) „ Let X be a topological space, E be a (real

or complex} Banach space, and U be an open ball with center 0 and radius
a. Let v be a continuous mapping from XxU to E such that
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for any x e ^5 j>b jy2 e t/5 where k is a constant such that 0<&<10 Then,
if \\v(x, 0)||<X1 — k) for any x^X, there exists a unique continuous

mapping f i X-^-U such that

/(*)=»(*,/(*))

for any x&Xa

We can derive the above theorem from the following internal
one, whose external counterpart is usually regarded as an easy cor-
ollary of the above one.

Theorem 302 (internal) . Let X be a topological space with topology

Q = €)(X)B Then we have the following in V(Q) : Let E be a Banach space
over R(Q} or C7(0) and U be an open ball with center 0 and radius a. Let
v be a mapping from U to E such that

\\v(yl}~v(y2}\\<k\\yl-y2\\

for any jb y2^U, where k is a constant such that 0<A;<1. Then, if
IKO)||O(1 — k), there is a unique element z&U such that z = u(z)0

Proof 0 The standard proof of successive approximation still holds
literatim in V(0\ The proof is divided into uniqueness and ex-
istence parts.
(a) uniqueness : Let w, z^U be such that v(z)=z and v(w)~wa

Then we have

Since &<1 by assumption it must be the case that z = w0

(b) existence : We would like to define inductively a sequence (jO
in U such that y0 = Q and y» = v(yn,1) for any n>\0 Suppose that
a finite sequence (yp)Q^P^n in (/is defined with yQ = Q and yp=v(yp-\)
(l<p<n), then we have by induction that

(*) \\yp- yp-i\\<kp~l\\yi\l
Therefore

(**) IWI^d+A+' - '+^-^I I^H^IWI/d-AXa.

In particular? ||^n||<C^5 and so we can safely define yn+i to be v(yn)0

It is also easy3 by using (*) and (*#)3 to see that the sequence (jyn)
defined inductively in the above manner is a Cauchy sequence and
its limit £ = lim yn is the desired fixed point0 Q, E0 D0
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Now we would like to transfer this internal fixed point theorem
without parameters to the external fixed point theorem with para-
meters.

Proof of Theorem 3. 1. Let Q = £>(X) and E(Q} be an internal
Banach space in V(Q} represented by the sheaf of continuous func-
tions from X to E, We know well that there is a bijective corres-
pondence between external open sets of XxE and internal open
sets of E(Q\ In particular, XxU corresponds to the internal open
ball I/(0) with center 0 and radius a. We know well also that there
is a bijective correspondence between external continuous functions
from XxU to E and internal continuous functions from U(3) to E(Q\
In particular, the external function v corresponds to the internal
function F(0) : U(Q}-^E(Q\ It is easy to see that these internalized
entities satisfy the conditions of Theorem 3. 2. Indeed we have in

(I) Hi^U) -»(0)(j>2)li<*ibi-J>2|| for any yl9

(II) |K»(0)||<*(1-*).

Thus the conclusion of Theorem 3. 1 follows from the externali-
zation of the conclusion of Theorem 3. 2. Q. E. D.

We conclude this section with three comments.

( I ) Not only the proof of Theorem 3. 2 but also the derivation
of Theorem 3. 1 can be carried out even internally.

( I I ) Theorem 3.2 still holds even if we replace R(Q} or C(fl)

by any real-like or complex-like field.

(III) Theorem 3. 2 still holds with obvious modifications for
complete quasinormed linear spaces. For the definition of a
quasinormed linear space and its related concepts, the reader
is referred to Bishop and Bridges [1 ; Chap. 7, §5],

§4. Implicit Function Theorem

Let us begin this section with an internal version of the well-
known inverse function theorem.
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Theorem 4.1 (internal). Let U be an open subset of Cq with its

relative topology £? = €)(£/)• Then we have the following in V(™ : Let f be
a holomorphic mapping from an open subset WdHp to Hp

a Let y^W
such that Df(yo) is invertible. Then there is an open neighborhood W0 of
j>0 and an open neighborhood W1 of £0— /(j>o) such that f is bijective from
W0 to Wi with a holomorphic inverse,

Proof. We can choose positive numbers M, a, ft satisfying the
following conditions :

( II ) The open ball of Hp with center j>0 and radius a is con-
tained in W;

(III) ||/)/(jr)-/)/(j0)||^^L. for any j>€=J5P such that \\j-j0\\

O;

(IV) ||l>/(>)-H/U)-£)ll< for any *e=JEP such that |k-^li

Let v be a function to be defined as follows :

for any y, z^H" such that \\y—yt\\<.a and \\Z—ZQ\\<,&. Then it is
easy to see that J(y) =z iff v(z, y) —y. Since

and

\\v(z,yj-v(z,y2)\\
-z)\\

^) (y2-yi}\\
<M\\f(y2) -/OO -Df(y0} (y2-y,)\\

<ylb2-^ll,

we can apply an internal version of Theorem 3. 1 and the desired
result follows directly only by letting Wl be the open ball with
center ZQ and radius /3 and w0 be the inverse image f~l(Wi) of Wl

under /. Q8 E. D.

The external dividend of this theorem goes as follows.
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Theorem 4. 2 (external) . Let f be a holomorphic mapping from an
open subset AdCp+q=Cq xCp to Cp. Let (*0,JVo)eW be a point such that

jD/O09j>o) is invertible, Then, for any holomorphic function v defined on

an open neighborhood Ui of XQ with values in Cp such that V(XQ) =f(x^y^>

there exist an open neighborhood UQ of x0 contained in U\ and an open

neighborhood AQ of (#0,jVo) such that there is a unique holomorphic function

u:UQ-*Cp satisfying u(xQ)=yQj (x9 M(*)) ^A0 and f(x9 M(X))=Z;(*) for
any x&UQo

Proof, Take any open neighborhood U of XQ such that D2f(x, j>0)

is Invertlble for any ^eC7, and then apply Theorem 4. 1 in F(fl)

with 0=O(C7). Q.E.D.

§ 5o Cauehy's Local Existence Theorem

We begin this section with an internal version of GronwalPs
lemma.

Theorem 5, 1 (internal) . Let X be a topological space with topology

Q = O(X). Then we have the following in V(Q} : Let <p(t), $(i) and w(t)

are continuous R(Q} -valued functions on a closed interval \a, b~\ with </>(t)

>Q, Then, if

(5.1.1)

then we have

(5. L 2) w(t}

Proof. The standard proof holds literatim internally. Let v ( t ) =

^(s}w(s}ds. Since v' 00 = ^ (0 w (t) and ^(0>0, (5.1.1) yields$'Ja

(5 .1 .3 )

By multiplying exp( — \ <fi(a)da) on both sides of (5. 1.3) and trans-
Ja

porting the second term of the right hand to the left, we have

(5.1.4)
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Therefore, by integrating both sides of (5.1.4), we have

(5. 1. 5)

which yields

(5. 1. 6) 0

Thus the desired inequality (5.1.2) follows0 Q. E8 D.

Proposition 5e 2 (internal). Let U be an open subset of Cq with
its relative topology fl=O(f/). Then we have the following in F(0):
Let / be a holomorphic function from / X W to Hp, where / is an
open ball in H and W is an open ball of Hp. Then a holomorphic
function u:J-»W, where /C/ is an open ball with center £0, is a
solution of the differential equation

(5.2.1) *'=/(*,*)

iff

(5.2.2) « (0=M(*o)+ \ f(s,u(
J*0

where the integration is taken along the linear path fi->Z0 + £ (^ — ̂ 0)

Just as in the standard case, GronwalPs inequality gives the
uniqueness theorem for ordinary differential equations.

Theorem 5e 3 (internal). Let U be an open subset of Cq with its

relative topology fl = O(C7). Then we have the following in V(Q) : Let u^
v be two solutions of (5. 20 1) defined on the same open ball J with center
tQ. If u(t0)= v(tQ)9 then u = v on J.

Proofa Let/'C/ be an arbitrary open ball containing tQa Then
there is an open ball W<^W such that u(t)9 v(t)^W for any
t^J'. Then there is a positive number M such that
<M for any t^J', x^W\ Since

-0(011
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we can apply Theorem 5. 1 to convince ourself that u = v on J' .
Since J'^J was an arbitrary open ball containing £0, the proof is
complete. Q. E. D.

Now we would like to deal with an internal version of Gauchy's
local existence theorem for ordinary differential equations.

Theorem 5»4 (internal). Let U be an open subset of C9 with its
relative topology /2 = £)(£/)• Then we have the following in V(Q) : For any
t0^I and any x0^W^ there exists an open ball Jdl with center t0 such

that there is on J a unique solution u of (5.2. 1) such that u(t0)=xQ.

Proof. The uniqueness part was dealt with in Theorem 5. 3, so
we have only to deal with the existence part. We can take an open
ball /ac/ with center tQ and radius a and an open ball BdW with
center XQ and radius b such that there are positive numbers M, k

satisfying ||/(f, *)|| <M and \\D2f(t, x}\\<k for any (f , *) e /, X B.
Let r be an arbitrary positive number such that r<^b/(M + kb) and
r<0. Then kr<^l and Mr<£(l— kr}. Let Jr be an open ball with
center t0 and radius r. Let Vr be the space of all continuous func-
tions y : Jr->H p such that \\x0— y\\<f, where x0 is regarded as the
constant function t^xQ. Then, for any y^ y^ yi^Vr and any
we have

(5.4.1) \ f(s,yl(s))-f(s,}>2(s»\\<kr\\yl-y2\\, and

(5.4.2)

Thus we can apply the method of Theorem 3. 2 to the function g

on Vr such that g(y) is the function /H-**O+\ f(s,y(s}}ds,
JtQ E. D.
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The external dividend of the above internal theorem are the
following two theorems concerning the dependence of a solution
of x'=f(t, x) on parameters and on initial conditions respectively,,

Theorem 5,5 (external). Let /cC7 be an open ball, WdCp be an

open ball and Pc.Cq be an open ball. Let f be a holomorphic mapping
from IxWxP to Cp, Then, for any (t09 x,, z0)<=IxWxP, there exist
an open ball ,/C/ with center tQ and an open ball TcP with center z0

such that there is a unique holomorphic function u : J X P-*CP satisfying

u(tQ, $ =x0 for any z^P and u (t) = /(*, u(t), z) for any (t, z)

Proof. Apply Theorem 5.4 in F(£?) with Q=O(P). Q,. E0 D0

Theorem 5,6 (external) „ Let f be a holomorphic function from
I X W to CP

3 where I is an open ball in C and W is an open ball in CP
0

Then, for any (a, b)^IxW9 there exist an open ball /C/ with center
a and an open ball UdW with center b such that there is a unique

holomorphic function u:JXjxU-»Cp satisfying u(tQ, £0? XQ) = XQ for any
(t0, XQ) ̂ JxU and u' (t, tQ, x0) = f(t, u' (t, tQ, x0)) for any (t, t0, XQ) e
/X/xC/5 where u' is the derivative of u with respect to the first
variable,

Proof, Apply Theorem 5.4 in 7(fi) with Q = £>(IxW), where tQ

in that theorem is represented externally by the function (t, x)*-^t
and x0 in that theorem is represented externally by the function
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