Minimizing Indices of Conditional Expectations onto a Subfactor

By

Fumio HIAI*

Abstract

For a pair of factors $M \supseteq N$, let $\mathscr{E}(M, N)$ be the set of all conditional expectations from M onto N. We characterize $E_0 \in \mathscr{E}(M, N)$ whose index is the minimum of {Index $E: E \in \mathscr{E}(M, N)$ }. When $M \supseteq N$ are II₁ factors, we establish the relation between Index E_0 and [M: N].

Introduction

Jones [5] developed the index theory for type II₁ factors using the coupling constant and Umegaki's conditional expectation [10]. Kosaki [6] extended it to arbitrary factors. Let M be a factor and N a subfactor of M. We denote by $\mathscr{E}(M, N)$ the set of all faithful normal conditional expectations from M onto N. The index Index Eof $E \in \mathscr{E}(M, N)$ was introduced in [6] based on Connes' spatial theory [3] and Haagerup's theory on operator valued weights [4] as follows: Index $E = E^{-1}(1)$ where E^{-1} is the operator valued weight from N' to M' characterized by the equation $d(\varphi \circ E)/d\varphi = d\varphi/d(\varphi \circ E^{-1})$ of spatial derivatives. Here φ and ψ are faithful normal semifinite weights on N and M', respectively. See also [9, 12, 11].

As shown in [2, Théorème 1.5.5], $\mathscr{E}(M, N)$ contains at most one element if the relative commutant $N' \cap M$ is C1. But $\mathscr{E}(M, N)$ has many elements in general. Indeed, when $\mathscr{E}(M, N) \neq \emptyset$, the map $E \mapsto E | N' \cap M$ is a bijection from $\mathscr{E}(M, N)$ onto the set of all faithful normal states on $N' \cap M$ (see [1, Théorème 5.3]). The aim of this paper is to discuss the problem when Index E takes

Communicated by H. Araki, February 24, 1988.

^{*} Division of Applied Mathematics, Research Institute of Applied Electricity, Hokkaido University, Sapporo 060, Japan.

FUMIO HIAI

the minimum value for a fixed pair $M \supseteq N$.

§1. Main Result

From now on, let M be a σ -finite factor and N a subfactor of M with $\mathscr{E}(M, N) \neq \emptyset$. We first note the following two facts:

1° If Index E < 4 for some $E \in \mathscr{E}(M, N)$, then $N' \cap M = \mathbb{C}1$ (see [6, Theorem 4.4]). In this case, $\mathscr{E}(M, N)$ consists of one element.

2° If Index $E \ll \infty$ for some $E \in \mathscr{E}(M, N)$, then $N' \cap M$ is finite dimensional (see [6, Proposition 4.3]). In this case, since (Index E)⁻¹ $E^{-1} \in \mathscr{E}(N', M')$, it follows from [4, Theorem 6.6] that each operator valued weight from N' to M' is bounded. Hence Index $E' \ll \infty$ for every $E' \in \mathscr{E}(M, N)$.

The fact 2° shows that either Index $E \leq \infty$ for all $E \in \mathscr{E}(M, N)$ or Index $E = \infty$ for all $E \in \mathscr{E}(M, N)$.

Theorem 1. Assume that Index $E < \infty$ for some (hence all) $E \in \mathscr{E}(M, N)$.

(1) There exists a unique $E_0 \in \mathscr{E}(M, N)$ such that

Index $E_0 = \min \{ \text{Index } E : E \in \mathscr{E} (M, N) \}$.

- (2) If E∈ & (M, N), then the following conditions are equivalent:
 (i) E=E₀;
 - (ii) $E | N' \cap M$ and $E^{-1} | N' \cap M$ are traces and

 $E^{-1}|N'\cap M=(\text{Index }E)E|N'\cap M;$

(iii)
$$E^{-1}|N' \cap M = cE|N' \cap M$$
 for some constant c.

(3) If $N' \cap M \neq C$, then

$$[\text{Index } E: E \in \mathscr{E} (M, N)] = [\text{Index } E_0, \infty).$$

Proof. We first show that there exists an $E_0 \in \mathscr{E}(M, N)$ satisfying condition (ii) of (2). Let φ and ψ be faithful normal semifinite weights on N and M', respectively. By [1, Théorème 5.3], we can choose an $E \in \mathscr{E}(M, N)$ such that $E | N' \cap M$ is a trace. For every unitary u in $N' \cap M$, we have by [3, Proposition 8 and Theorem 9]

$$\frac{\frac{d(\varphi \circ uEu^*)}{d\psi} = u \frac{d(\varphi \circ E)}{d\psi} u^*}{= \left(u \frac{d(\varphi \circ E^{-1})}{d\varphi} u^*\right)^{-1}}$$

$$=\frac{d\varphi}{d(\psi\circ uE^{-1}u^*)},$$

where $uEu^* = E(u^* \cdot u)$. Hence $(uEu^*)^{-1} = uE^{-1}u^*$. Since $uEu^* | N' \cap M$ = $E | N' \cap M$, we get $uEu^* = E$ by [1, Théorème 5.3] again, so that $uE^{-1}u^* = E^{-1}$. This shows that $E^{-1} | N' \cap M$ is a trace. Choosing minimal projections f_1, \dots, f_n in $N' \cap M$ with $\sum_i f_i = 1$, we define a positive invertible element h in the center of $N' \cap M$ by $h = \sum_{i=1}^n \alpha_i f_i$ where

$$\alpha_i = \left(\sum_{i=1}^n E(f_i)^{1/2} E^{-1}(f_i)^{1/2}\right)^{-1} \frac{E^{-1}(f_i)^{1/2}}{E(f_i)^{1/2}}, \quad 1 \leq i \leq n.$$

Now let $E_0 = h^{1/2} E h^{1/2}$. Then $E_0 \in \mathscr{E}(M, N)$ follows from

$$E_0(y) = E(hy) = E(h)y = y, \quad y \in N.$$

Since

$$\frac{d(\varphi \circ E_0)}{d\psi} = h^{1/2} \frac{d(\varphi \circ E)}{d\psi} h^{1/2}$$
$$= \left(h^{-1/2} \frac{d(\psi \circ E^{-1})}{d\varphi} h^{-1/2}\right)^{-1}$$
$$= \frac{d\varphi}{d(\psi \circ h^{-1/2} E^{-1} h^{-1/2})},$$

we get $E_0^{-1} = h^{-1/2} E^{-1} h^{-1/2}$ and hence

$$\frac{E_0^{-1}(f_i)}{E_0(f_i)} = \frac{E^{-1}(h^{-1}f_i)}{E(hf_i)} = \alpha_i^{-2} \frac{E^{-1}(f_i)}{E(f_i)} = c, \quad l \leq i \leq n,$$

where $c = (\sum_{i=1}^{n} E(f_i)^{1/2} E^{-1} (f_i)^{1/2})^2$. Therefore $E_0^{-1} | N' \cap M = c E_0 | N' \cap M$, so that c =Index E_0 .

(1) For each $E \in \mathscr{E}(M, N)$, let *h* be the Radon-Nikodym derivative of $E | N' \cap M$ with respect to the trace $E_0 | N' \cap M$. Since $E = h^{1/2} E_0 h^{1/2}$ follows from $E | N' \cap M = h^{1/2} E_0 h^{1/2} | N' \cap M$, we obtain $E^{-1} = h^{-1/2} E_0^{-1} h^{-1/2}$ as above. Hence

Index
$$E = E_0^{-1}(h^{-1})$$

= (Index E_0) $E_0(h^{-1})$
 \geq Index E_0 ,

because

$$l = E_0(1) \leq E_0(h)^{1/2} E_0(h^{-1})^{1/2} = E_0(h^{-1})^{1/2}$$

Moreover it is readily checked that $E_0(h^{-1}) = 1$ holds if and only if h=1, i. e. $E=E_0$. Therefore (1) is proved.

FUMIO HIAI

(2) (i) \Rightarrow (ii) is seen from the construction of E_0 , and (ii) \Rightarrow (iii) is trivial. To show (iii) \Rightarrow (i), assume that $E \in \mathscr{E}$ (M, N) satisfies (iii). Then c = Index E. Let h be as in the proof of (1). Because $E_0^{-1} = h^{1/2}E^{-1}h^{1/2}$ and

Index
$$E_0 = E^{-1}(h)$$

= (Index E) $E(h)$
= (Index E) $E_0(h^2)$
 \geq (Index E_0) $E_0(h^2)$,

we get

$$E_0((h-1)^2) = E_0(h^2) - 1 \leq 0,$$

implying h=1 and thus $E=E_0$.

(3) Assuming $N' \cap M \neq \mathbb{C}1$, we choose nonzero projections p_1 and p_2 in $N' \cap M$ with $p_1 + p_2 = 1$. For each $h = \alpha_1 p_1 + \alpha_2 p_2$ with $\alpha_1, \alpha_2 > 0$ and $\alpha_1 E_0(p_1) + \alpha_2 E_0(p_2) = 1$, letting $E = h^{1/2} E_0 h^{1/2}$ we obtain $E \in \mathscr{E}(M, N)$ and

Index
$$E = E_0^{-1}(h^{-1})$$

= (Index E_0) $(\alpha_1^{-1}E_0(p_1) + \alpha_2^{-1}E_0(p_2))$.

Therefore Index E can take any real numbers in [Index E_0, ∞).

§ 2. Case of II_1 Factors

Now let M be a type II₁ factor with the normalized trace τ . For a subfactor N of M, let $E_N \in \mathscr{E}(M, N)$ be Umegaki's conditional expectation [10] with respect to τ . Then Index E_N coincides with Jones' index [M:N] (see [6]). By definition of Jones' index [5], $[M:N] < \infty$ if and only if N' on $L^2(M, \tau)$ is finite. In this case, let τ' be the normalized trace on N'.

Theorem 2. Let $M \supseteq N$ be factors of type II_1 with $[M:N] < \infty$, and f_1, \dots, f_n be minimal projections in $N' \cap M$ with $\sum_i f_i = 1$. (1) If $E_0 \in \mathscr{E}(M, N)$ is as in Theorem 1, then

Index
$$E_0 = [M:N] (\sum_{i=1}^n \tau(f_i)^{1/2} \tau'(f_i)^{1/2})^2$$
.

(2) The following conditions are equivalent:
(i) [M:N]=min {Index E: E∈ & (M, N)};

676

MINIMIZING INDICES

(ii)
$$\tau' | N' \cap M = \tau | N' \cap M$$
.
(3) If $[M:N] \ge 4$, then
 $[M:N] \ge 4(\sum_{i=1}^{n} \tau(f_i)^{1/2} \tau'(f_i)^{1/2})^{-2}$.

Proof. (1) We can take $E = E_N$ in the first part of the proof of Theorem 1. Since $E_N | N' \cap M = \tau | N' \cap M$ and $E_N^{-1} | N' \cap M = [M:N]$ $\tau' | N' \cap M$ (see [6]), we have $E_0 = h^{1/2} E_N h^{1/2}$ where $h = \sum_{i=1}^n \alpha_i f_i$ and

$$\alpha_{i} = (\sum_{i=1}^{n} \tau(f_{i})^{1/2} \tau'(f_{i})^{1/2})^{-1} \frac{\tau'(f_{i})^{1/2}}{\tau(f_{i})^{1/2}}, \qquad l \leq i \leq n.$$

Therefore

Index
$$E_0 = E_N^{-1}(h^{-1})$$

= $[M:N] \sum_{i=1}^n \alpha_i^{-1} \tau'(f_i)$
= $[M:N] (\sum_{i=1}^n \tau(f_i)^{1/2} \tau'(f_i)^{1/2})^2$

(2) Because condition (i) means $E_N = E_0$, it follows from Theorem 1 (2) that (i) is equivalent to $E_N^{-1} | N' \cap M = [M:N] E_N | N' \cap M$, that is, $\tau' | N' \cap M = \tau | N' \cap M$.

(3) Since $[M:N] \ge 4$, we get Index $E_0 \ge 4$ (see 1° before Theorem 1). Then the desired inequality follows from (1).

Remarks. Let $M \supseteq N$ be type II₁ factors with $[M, N] < \infty$.

(1) Let H(M|N) be the entropy considered in [7]. It was shown in [7, Corollary 4.5] that condition (ii) of Theorem 2 is equivalent to the equality $H(M|N) = \log[M:N]$. In particular if [M:N] = 4, then $\sum_i \tau(f_i)^{1/2} \tau'(f_i)^{1/2} = 1$ by Theorem 2(3), so that (ii) holds. In this connection, see [7, Corollary 4.8].

(2) Let $N \subseteq M \subseteq M_1 \subseteq M_2 \subseteq \cdots$ be the sequence of type II₁ factors obtained by iterating the basic construction [5]. The following result is in [8]: If $H(M|N) = \log[M:N]$ (equivalently $[M:N] = \min$ $\{ \text{Index } E: E \in \mathscr{E}(M, N) \}$), then $H(M_n|N) = \log[M_n:N]$ (equivalently $[M_n:N] = \min \{ \text{Index } E: E \in \mathscr{E}(M_n, N) \}$) for every $n \ge 1$.

References

[1] Combes, F. and Delaroche, C., Groupe modulaire d'une espérance conditionnelle dans

FUMIO HIAI

une algèbre de von Neumann, Bull. Soc. Math. France, 103 (1975), 385-426.

- [2] Connes, A., Une classification des facteurs de type III, Ann. Sci. École Norm. Sup. Sér. 4, 6 (1973), 133-252.
- [3] _____, On the spatial theory of von Neumann algebras, J. Funct. Anal., 35 (1980), 153-164.
- [4] Haagerup, U., Operator valued weights in von Neumann algebras, I, II, J. Funct. Anal., 32 (1979), 175-206; 33 (1979), 339-361.
- [5] Jones, V., Index for subfactors, Invent. Math., 72 (1983), 1-25.
- [6] Kosaki, H., Extension of Jones' theory on index to arbitrary factors, J. Funct. Anal., 66 (1986), 123-140.
- [7] Pimsner, M. and Popa, S., Entropy and index for subfactors, Ann. Sci. École Norm. Sup. Sér. 4, 19 (1986), 57-106.
- [8] _____, Iterating the basic construction, Preprint.
- [9] Strătilă, Ş., Modular Theory in Operator Algebras, Editura Academiei and Abacus Press, Tunbridge Wells, 1981.
- [10] Umegaki, H., Conditional expectation in an operator algebra, Tohoku Math. J., 6 (1954), 177-181.