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Minimizing Indices of Conditional Expectations
onto a Subfactor

By

Fumio HIAI*

Abstract

For a pair of factors MDN, let & (M, N) be the set of all conditional expectations from
M onto N. We characterize E,€ € (M, N) whose index is the minimum of {Index E: E€
& (M,N)}. When MDON are II; factors, we establish the relation between Index E, and
[M:N].

Introduction

Jones [5] developed the index theory for type II, factors using
the coupling constant and Umegaki’s conditional expectation [10].
Kosaki [6] extended it to arbitrary factors. Let M be a factor and
N a subfactor of M. We denote by & (M, N) the set of all faithful
normal conditional expectations from M onto N. The index Index E
of E€ & (M,N) was introduced in [6] based on Connes’ spatial
theory [3] and Haagerup’s theory on operator valued weights [4]
as follows:Index E=E"'(1) where E~'is the operator valued weight
from N’ to M’ characterized by the equation d(p°E)/d¢=dep/d(¢-E™")
of spatial derivatives. Here ¢ and ¢ are faithful normal semifinite
weights on N and M’, respectively. See also [9, 12.11].

As shown in [2, Théoréme 1.5.5], & (M, N) contains at most
one element if the relative commutant N'NM is Cl. But & (M, N)
has many elements in general, Indeed, when & (M, N)=# @, the
map E—E|N'NM is a bijection from & (M, N) onto the set of
all faithful normal states on N'NM (see [1, Théoréme 5.3]). The
aim of this paper is to discuss the problem when Index E takes
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the minimum value for a fixed pair M2N.

§ 1. Main Result

From now on, let M be a o-finite factor and N a subfactor of
M with & (M, N)+ @. We first note the following two facts:

1° If Index E<4 for some E€ & (M, N), then NN M=C1 (see
[6, Theorem 4.4]). In this case, & (M, N) consists of one element.

2° If Index E<{oco for some E=& (M,N), then N'NM is
finite dimensional (see [6, Proposition 4.3]). 1In this case, since
(Index E)E'e & (N, M’), it follows from [4, Theorem 6.6] that
each operator valued weight from N’ to M’ is bounded. Hence
Index E'<co for every E'e & (M, N).

The fact 2° shows that either Index E<co for all E€ & (M, N)
or Index E=oo for all E€ & (M, N).

Theorem 1. Assume that Index E<co for some (hence all) ES
& (M, N).
(1) There exists a unique Ey= & (M, N) such that
Index Ey=min{Index E:Ec & (M, N)}.
@) If E€& (M, N), then the following conditions are equivalent :
(i) E=Ey;
(ii) E|N'NM and E7'|N'NM are traces and
E7'\N'NM=(Index E)E|N'NM;
Gii) EYN'NM=cE|N'NM for some constant c.
) If NNNM=+Cl, then
{Index E: E€ & (M, N)} =[Index E,, o).

Proof. We first show that there exists an E e & (M, N) satisfying
condition (ii) of (2). Let ¢ and ¢ be faithful normal semifinite weights
on N and M’, respectively. By [1, Théoréme 5.3], we can choose
an E€ & (M, N) such that E|[N'NM is a trace. For every unitary
u in N'NM, we have by [3, Proposition 8 and Theorem 9]

d(geuu*) _ d(poE)
d¢ d¢

= )"
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—___do
d(gouEw*)’
where uEu*=FE (u*-u). Hence uEu*) '=uE W* Since uEu*|N'NM
=E|N'NM, we get uEu*=E by [1, Théoréme 5.3] again, so that
uE 'w*=E™', This shows that E-'|N'NM is a trace. Choosing mini-
mal projections f;, +++, f,in N'NM with 3, f;=1, we define a positive
invertible element % in the center of N'NM by h=3%7,a;f; where
n _ LET( ) .
= N2 F-1( £)1/2) -1 i <<
Now let E,=h"2EhY?, Then E,& & (M, N) follows from
Ey(») =E(hy) =E(W)y=p, yEN.
Since
d(poE,) —pl2 d(p°E) AV
d¢ dg
_—_<h-1/zd(¢’°E_1) }1-1/2>_1
dp

- d
- d(gbOh‘VzE'lh'W) ’

we get Ej'=h"Y2E"1172 and hence
E'(f) _ ET'hTf) L E7(f) .
= o= i = s 1< é ,
E(f)  EGfy O E(f =T
where ¢= (X1, E (fi)YV2E1(f:)V?) 2% Therefore Ej (N’ N M=cE|N' N M,
so that ¢=Index E,.

(I) For each E€ & (M, N), let h be the Radon-Nikodym deriv-
ative of E|N'NM with respect to the trace E,|N'NM. Since E=
h2ER2 follows from E|N'NM=h"2Eh"?|N'N M, we obtain E'=
h™2E;1h~2 a5 above. Hence

Index E=E;'(A7Y)
= (Index E,)E, (k™)
=Index E,,

because
1=E (1) SE,(h)V?E (b)) 2 =E,(h™) 2,

Moreover it is readily checked that E(A™')=1 holds if and only
if h=1, i.e. E=E,. Therefore (1) is proved.
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(2) (@)= (i) is seen from the construction of E,, and (ii) > (iii)
is trivial. To show (iii) > (i), assume that E< & (M, N) satisfies (iii).
Then ¢=Index E. Let A be as in the proof of (l1). Because Ej'=
hl/ZE—-lhl/Z and

Index E,=E~!(h)
= (Index E)E(h)
= (Index E)E,(h?)
= (Index Eg) E,(h),
we get
E,((h—1)%) =E, (k") —1=0,
implying A=1 and thus E=E,

(3) Assuming N'NM+#CI1, we choose nonzero projections p; and
p,in N'NM with p,+ p,=1. For each h=a p,+a,p, with a;, a,>0
and o F, (p) + a,E(p) =1, letting E=HI72Eh"? we obtain Ec
& (M, N) and

Index E=E; (A7)
= (Index Ey) (ai'Eo(p1) +a5'Eo(p,)).

Therefore Index E can take any real numbers in [Index E, o0).[]

§2. Case of II, Factors

Now let M be a type II, factor with the normalized trace =,
For a subfactor N of M, let Eye & (M, N) be Umegaki’s conditional
expectation [10] with respect to z. Then Index Ey coincides with
Jones’ index [M: N] (see [6]). By definition of Jones’ index [5],
[M:N]<co if and only if N’ on L?(M,r) is finite, In this case,
let 7’ be the normalized trace on N’.

Theorem 2. Let MDN be factors of type 11, with [M : N]<oco, and
Siy o0, fo be minimal projections in N'NM with 3, f;=1.
(1) If E,e & (M, N) is as in Theorem 1, then

Index E,=[M:N] (3t (f)¥e ()02
i=1

(2) The following conditions are equivalent :
1) [M:N]l=min{Index E:E€ & (M, N)};
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G) o |NNM=c|N'nM.
(3) If [M:N1=4, then

[M: NI 24 (S ()1 (),

Proof. (1) We can take E=Ey in the first part of the proof of
Theorem 1. Since Ey|N'NM=c|N'NM and EF | N'NM=[M:N]
o |IN'NM (see [6]), we have E,=h2Eyh’? where h=3",a; f; and

(s N1/2,. ¢ F)1/2 T () <<
a; —(Er(ﬁ) T (.f:) ) T(ﬁ)l/z ’ 1=Z=n-
Therefore

Index E;=Ej'(h™Y)
=[M: NS ai's' (f)
= [M: N] (fi:alr(ﬂ)mfl(fi)l/z)z-

(2) Because condition (i) means Ey=EFE, it follows from Theorem
1(2) that (i) is equivalent to Ey'|IN'NM=[M:N]Ey|N'N M, that is,
' |INNNM=t|N'NM.

(3) Since [M:N]=4, we get Index E,=4 (see 1° before Theo-
rem 1), Then the desired inequality follows from (1). |

Remarks. Let M2N be type II, factors with [M, N]<co.

(1) Let H(M|N) be the entropy considered in [7]. It was shown
in [7, Corollary 4.5] that condition (ii) of Theorem 2 is equivalent
to the equality H(M |N) =log[M : N]. In particular if [M:N]=4,
then >,7(f)Y* (f)**=1 by Theorem 2(3), so that (ii) holds. In
this connection, see [7, Corollary 4. 8].

(2) Let NCMCS M, SM,S--- be the sequence of type II, factors
obtained by iterating the basic construction [5]. The following re-
sult is in [8]:If H(M|N) =log[M : N] (equivalently [M: N]=min
{Index E: Ec & (M, N)}), then H(M,|N) =log[M,: N] (equivalently
[M,: N]=min{Index E:Ec & (M,, N)}) for every n=1.
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