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Additivity of Quadratic Maps

By

Yaakov FRIEDMAN* and Josuke HAKEDA**

Abstract

The set of observables of a Quantum Mechanical System need only be closed under a
"quadratic" product. It is shown that an additive structure of this set (whose existence
is less natural) is uniquely determined by this multiplicative structure.

§ 0. Introduction

Jordan algebras were introduced by Jordan, von Neumann, and Wigner [13]
as a model for the observables in a quantum mechanical system. Emch [4]
provides further justification for this algebraic model. Although there is no
doubt about the naturalness of the multiplicative structure, the physical mean-
ing of the additive structure is unclear. Yet an additive structure is necessary
to perform calculations, and thus we are led to consider representations of the
multiplicative structure in linear spaces. A basic question arises: must the in-
duced map between two such representations be linear ?

An examination of the formulations of measurable quantities in quantum
mechanics reveals that all such quantities can be expressed in terms of a quad-
ratic operation, (cf. [6]). In associative algebras this product has the form
xyx. Abstractly, we shall speak of a quadratic product of x and y and a set
which is closed under the quadratic product will be called a quadratic semigroup.
Evidently, the observables of a quantum mechanical system need be closed only
under the quadratic maps i.e., they form a quadratic semigroup.

We consider representations of quadratic semigroups in linear spaces. In
this context the quadratic product can always be linearized to determine a ternary
algebraic structure on the linear space. Among all Banach spaces, the JB*-
triples (defined below) are the only ternary algebras known at this time whose
multiplicative structure is a quadratic semigroup. We formulate the question
of the first paragraph in this context: must a bijection between two /5*-triples
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which preserves the quadratic product be linear ? We give a positive answer
to this question in this article.

The quadratic map is related to the squaring map, which was used by Segal
in [19] to give an Axiomatics of Quantum Mechanics. We want to mention that
the model based on squaring maps leads automatically to ordered spaces, while
the quadratic maps could be defined also in non-ordered spaces.

In section 1 we will define /£*-triples and recall the background needed to
read this article. In section 2 the main result will be proven. Namely, we will
show that any mapping between /J3]/F*-triples (with no abelian component) which
preserves quadratic products, is the sum of a linear isomorphism and a conjugate
linear isomorphism. In the final section our main result will be used to prove
uniqueness of a representation of an involutive semigroup.

This work was done while the second-named author was visiting the Depart-
ment of Mathematics, University of California, Irvine. He would like to express
his sincere thanks to Professor Bernard Russo for hospitality and for valuable
discussions concerning /B*-triples. Both authors wish to thank him for calling
our attention to an error in the first draft and to thank Professor T. Barton
and a referee for helpful discussions.

§ I. Preliminaries on JJ5*-trip!es

/5*-triples are the algebraic structure associated with bounded symmetric
domains in Banach spaces [15], [20]. They contain the class of C*-algebras and
/J3*-algebras and could be considered as their generalization. The usual defini-
tion of /5*-triple is as follows :

Definition 1. A Banach space U over C is said to be a JI?*-triple if it is
equipped with a triple product (a, b, c)-*{abc} mapping UxUxU to U such
that:
( i ) {abc} is linear in a and c and conjugate linear in b ;
(ii) {abc} is symmetric in the outer variables i.e., {abc} — {cba} ;
(iii) for any x^U, the operator d(x) from U to U defined by:

(1.1) 3Wy = {xxy}, y^U

is hermitian (i.e., exp(z'fd) is an isometry for all real t) with nonnegative
spectrum ;

(iv) the product satisfies the following identity, called the "main identity";

(1.2) d(x}{abc} = {(d

(v) the following norm condition holds:
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If U is a C*-algebra, then U becomes a /5*-triple with the product

ab*cj
rcb*a/i o\(1.3)

Moreover, any closed subspace of B(H) (the space of bounded operators on
a Hilbert space H} closed under this product is a /£*-triple. If U is a /£*-
algebra, it becomes a /5*-triple with the product

(1.4) {abc}=(a*b*)*c+a*(b*<>c)-(a°c)*b* .

See [20] for the proof.
The triple product of a 7B*-triple is determined by the geometry of the

unit ball in these spaces and any linear isometry preserves the triple product
structure [15], [20].

To describe the multiplicative structure of a /B*-triple, introduce a conjugate
linear operator Q(x) for any x^U, defined by:

(1.5) QWy={xyx}, y^U .

The following definition describes the "multiplicative semigroup" structure
of a /B*-triple :

Definition 2. We shall say that an arbitrary set G is a quadratic semi-
group if there is a mapping (a, b)-+Q(a)b of GxG— >G such that:

(1.6)

for any x, y,

It is known [17], [20] that in a Jordan triple system (in particular a JB*-
triple), the main identity (1.2) implies (1.6). Since the main identity also involves
addition, it cannot be used to describe the multiplicative structure of a JB*-
triple.

The basic building blocks for /^-triples are the tripotents, defined as ele-
ments of U satisfying:

(1.7) u = Q(u}u.

The set of tripotents is a partially ordered set with order

(1.8) v<u if and only if v=Q(v)u .

Two tripotents u and v are said to be orthogonal if u+v and u—v are tripo-
tents. It is known [16] that the condition u is orthogonal to v (denoted by
u_Lv) is equivalent to

(1.9) {uuv}=Q, {vvu}=0 or [uvU} = {vuU}=0 .
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For such u and v we also have

(1.10) u-\-v^u and u+v^v .

A tripotent u is said to be minimal if Q^v^u (and v a tripotent) implies u—v.
If u is a minimal tripotent then (cf. [16]) for any xe£7 there is aeC such that

(1.11) [uxu}=au.

An important tool for studying /J3*-triples are Peirce projections and Peirce
decompositions with respect to any tripotent u. It is easy to verify from the
definition that for a tripotent u, the spectrum of the operator 8(u\ defined by
(1.1), is contained in the set {0, 1/2, 1} (see [20] for details). Thus U can be
decomposed into eigenspaces of this operator:

(1.12) U

where x^Uk(u) if and only if

(1.13)

for jfe=0, 1, 2.
From this and (1.2) follow the Peirce rules :

(1.14) {tf,(«X/,(«)£/{(M)}cE/,_

for any k, j, /e{0, 1, 2} and {U k(u)U j(u)U M} = {0} if k-j+l<£{0, 1, 2}.
Moreover, it can be shown [16] that

(1.15) {UJJjU} = {UU,Ut} = {Q}

when { k , j } = {0,2}.
The subspace Uz(u) has a binary structure defined by

(1.16) x°y = {xuy} for x,

With this product Uz(u) becomes a /5*-algebra with identity u and involution

(1.17) x* = {uxu}

For more about the structure of this /5*-algebra, see [20 : Section 19]. Note
that for arbitrary x^U, from (1.16) it follows that

(1.18) {uxu}<=UM

and any element of Uz(u) is of this form.
For any tripotent u^U and k=Q, 1, 2 there are contractive projections

Pk(u} from U onto U k(u). These projections are:
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(1.19)

Sometimes we need to decompose U relative to two tripotents u and v. If
these decompositions commute i.e., [Pj(u), Pk(v)']=Q for any /, &e{0, 1, 2}, we
will say that u and v are compatible. It was shown [18] that u and v are
compatible if and only if {uuv}^.Uz(v). For instance if v^U ' k(u) for some k,
then u and v are compatible. Also if u and v are compatible and Pz(u}v—§
then PI(U)V and PQ(u)v are orthogonal tripotents. See for details, Corollary 1.8
of [18].

In addition to the relation of orthogonality defined above, we will need two
other relations between tripotents. We will say that u is collinear to v if :

(1.20)

and w is said to govern u if

(1.21) w^UtW and u^Uz(w).

The following simple lemmas about these relations will be used later.

Lemma 1.1. Let w, u be tripotents and suppose that w governs u. Then v—
Q(w)u is a tripotent orthogonal to u. Moreover p = l/2(u+v+w) and q=
\/2(uJrv—w} are a pair of orthogonal tripotents.

Proof. By [3, Proposition 1.6] v is a tripotent orthogonal to u, w governs
v, u = Q(w)v, Q(u+v)w = w and Q(w)(u+v)=u-rv. Thus Q(u+v-rw)(u+v+w)

(u+v)ww}~]=£(u +v+w) implying p is a tripotent. Simi-
larly one checks that q is a tripotent. Since p+q=u+v and p—q—w are tri-
potents, p is orthogonal to q. D

Lemma 1.2. Let u, v and w be tripotents, u^Uz(v} and suppose that w
governs v. Then there is a tripotent Wi governing u.

Proof. Let v' = Q(w)v and u' = Q(v)u. Then v=Q(w)v' and u — Q(v}uf=
Q(Q(wy}u' = Q(w}Q(v'}Q(w}u'(=UJiw}. Thus by [18], u and w are compatible.
Moreover, u^U2(v) and w^Ui(v) implies Pz(u)w=Pz(u)P2(v)w=Q and thus w =
Pi(u)w+PQ(u}w : =WI+WQ where wl and WQ are orthogonal tripotents [18: Rk.
1.9]. Since wQA.u, we have u =Pz(w}u = Q(wl

J
rwQ)zu =Q(wl

JrwQ)[Q(w1)u +
2{wluwQ}+Q(wo)u'] = Q(w1 + wQ')Q(wl')u = Q(w1Yu=Pz(wl')u, that is, wl=P1(u}w^
Ui(u) and u=Pz(wl)u^Uz(wl}, i.e. wl governs u. D
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/5*-triples in general may not have tripotents, so we will consider only
JBW*-triples defined as follows: U is said to be a JBW^-tmple if U is a JB*-
triple and is the dual of a Banach space U*, called the predual of U.

It is known that the second dual of a /5*-triple is a /8*-triple [2], and
that the product in a /£W*-triple is separately u>*-continuous [1]. For any
element x of a JBW*-triple U there is a polar decomposition assigning to x a
unique tripotent u (called the support tripotent of x) such that u belongs to the
smallest /£W*-subtriple containing x, and x is strictly positive in the JBW*-
algebra U2(u). Moreover if x^U k(v} then also u^U k(v\ see [12: 3.14]. Two
elements x, y in U are said to be orthogonal if there is a tripotent u such that
x^Uz(u) and y^UQ(u). For any element f^U* there is a unique tripotent
u=u(f) in U such that:

(1.22) f=f0p2(u)=f*Q(u)z

and / is a positive faithful functional on U2(u) [5 : Prop. 2].
A subspace W of U is said to be an ideal if {abc}^W whenever one of the

elements a, b or c is in W. We say that W is a summand if there is a sub-
space W of U such that any x^W is orthogonal to any y<=W and U=W@W.
It is known [10], [11] that the u;*-closed ideals in a JBW*-triple U coincide
with the summands in U.

A /5*-triple W is said to be abelian if {ab{cde}} = {{abc}de} = {a{dcb}e\
holds for all a, b, c, d, e in W. For a /J3PF*-triple this is equivalent to Wi(u)
=0 for all tripotents u^W.

A tripotent v in a JBW*-trip\e U is said to be an abelian tripotent if U2(v)
is an abelian /£W*-triple and v is said to be a complete tripotent if [70(v)=0.
It is known that the extreme points of the Ball U are the complete tripotents.

A JBW*-triple is said to be of type / if it is generated as a weak*-closed
ideal by an abelian tripotent. It is known [10], [11] that any JBW*-triple U
can be decomposed into a direct sum of Uf and U NI where Uf is of type / and
UNI does not contain abelian tripotents. A /£W*-triple W is said to be of
type /! if W contains a complete abelian tripotent. It is also shown in [10],
[11] that U x can be decomposed into a direct sum W@W where W is of type
/! and W does not contain type /x summands.

A type 1 1 /5W*-triple W can be decomposed further into a direct sum W—
@W n for some set of cardinal numbers n such that Wn is of type /i, », defined
as /£W*-triples containing a colinear family {v3}3^j of n complete abelian
tripotents such that W n=spa5.{W 2(v fii j^J}, or equivalently C\{Wi(Vj):
-{0}.

A family {/the/ in £7* is said to be complete if /t(s)=0 for some se£7 and
all fe/ implies s=0.

Definition 3. We will say that f^U* has property G (governing) if there
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is a tripotent w in U governing v(f) (the support tripotent of /).

The following technical proposition plays an important role in the proof of
the main result.

Proposition 1.3. Let U be a JBW*-triple with no type /i direct summand.
Then there is a complete family {/the/ in U* such that for each fe/, ft has prop-
erty G.

Proof. Let U=UI@UNI where Uj is of type / and UNI has no type I
summands and let {/ihe/ consist of all points of Ball (£//)* with an abelian sup-
port v(ft) and all /e)£/^7)* satisfying property G.

By [11: 5.9], for any given abelian tripotent v in UI} there is a complete
tripotent w in U2 such that v is an abelian ^-projection in a type / JBW*-
algebra U2(w). By our assumption on UIt A={x^U2(w): x^ — x} is a JBW*-
algebra of type / with no type /j summand. So, by [9: Lemma 5.3.2], there
are a ^-projection u and a symmetry s in A such that Q(s}v=u and Q(s)u=v.
(Note that u and s are tripotents in £7). Since Q(s)(u+v)=u+v, u+v and s
operator commute and so it follows that Q(u+v)s is a (w+z;)-self-adjoint sym-
metry in U2(u+v] (Q(u+v)s is a tripotent in U). From (1.14) follows that also
s=P1(u)P1(v)Q(u+v)s satisfies Q(s)v=u and Q(s}u=v. Moreover, since Q(s)(u+v)
— u+v, s is a self-adjoint symmetry in Uz(u+v) and hence a tripotent in U
which is governing v. Thus any ft with abelian support v(fl) satisfies prop-
erty G.

To show that such ft form a complete family in (£//)* it is enough to show
that the abeliam tripotents are w;*-dense in U2. Indeed, if g in (£//)* vanishes on
all abelian tripotents and is not zero, denote by u its support tripotent. By
[11] Uz(u) is a type / JBl/F*-algebra and therefore there is an abelian projection
v in this algebra which is an abelian tripotent. Thus g(v)=Q contradicts the
faithfulness of g on U2(u).

If g^(UNI)* and u = u(g\ then the JBPF*-algebra U2(u) has no type /direct
summand. Thus by [9: Proposition 5.2.15] there are tripotents Ui and UH for
l^f, y^4, i^j such that Uij=Ujt, ut orthogonal to Uj if i^j, u — u^u^Uz+u^
and Utj governs ut. It is easy to verify that uik + Uji is a tripotent governing
M t + M j for {i, j, k, /} = {!, 2, 3, 4}, and {*', k}r\{j, l} = 0. Thus each element
of {Ui+Uj} has a governing tripotent. Define gi=g°P2(Ui) and gij=g°P1(ui')Pl(Uj).
Then g=g°P2(w)=]>]g*+ S ^. Since u(gi}^U2(ul} and M(^0)eL72(Mi+wA

i i<J
from Lemma 1.2 it follows that gt and gi3 satisfy property G. Thus g is in
the span of {/ihej. D
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§ 2. Main Result

Definition 2.1. A map ^ from a /B*-triple U to another complex JB*-
triple V is called a quadratic map from U to V if $ satisfies

(2.1) #(Q(fl)«=0({a6fl})=WflW

Remark 2.2, Any quadratic map 0 maps tripotents into tripotents. More-
over, since the order e^f on the set of tripotents is defined by e=Q(e)f, 0
preserves the order of tripotents. If 0 is bijective, then 0(0)=0.

Lemma 2.3. Let U and V be JB*-triples. Let <f> be a bijective quadratic
map from U to V. Then u and v are orthogonal tripotents in U if and only if
0(w) and <j>(v) are orthogonal tripotents in V. Moreover,

(2.2) 0(u+i;)=0(iO+0(!0.

Proof. Since v<u+v, we have $(v)<^$(u+v). Then there exists a tripotent
w in V such that 0(w+i>)= <j>(v)+w and w is orthogonal to $(v) (see [5: Cor.
1.7]). Hence,

Since M and v are orthogonal tripotents, we have $(u)=Q($(u))w, that is,
Since $ is orthogonal to <j>(v\ 0(w) is also orthogonal to

Let w\=<j)~l(w\ Since (j>(w)^(j>(u+v), we have ^(w)
Moreover, since 0'1 is also a bijective quadratic map, it maps orthogonal
tripotents <]>(v) and $(w) into orthogonal tripotents v and w. Thus

and (M+V)=^(^)+M)=^(M)+^(Z;). D

Corollary 2e40 L^^ £7 anrf V be JBW*-triples. Let $ be a bijective quadratic
map from U to V, then any Peirce subspace of a tripotent u is mapped by <j> onto
the corresponding Peirce subspace of 0(w), i.e.,

(j>»Pk(u}=Pk(<j>(u}}»<j>*Pk(u} for k=2, 1, 0.

Proof. Let u be an arbitrary tripotent in U. Then
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Pl(u)U={x^U: Q(u}x=Q and Q(v)x=Q for all tripotents v

orthogonal to u}, and

: Q(v)x=x for some tripotent v orthogonal to u}.

In each case k=2, 1, 0, Pk(u)U is determined by the quadratic products and
orthogonality. Since 0(0)=0, we have, by (2.1), and previous lemma

<f>(Pk(u)U)=Pk(<f>(uW for k=2, 1, 0 .

Thus for any x^U there is y^V such that <j>(Pk(u)x)=Pk((p(u}')y} implying
)x). D

Corollary 2.5. // 0 is as in Corollary 2.4, then the relations of collinearity
and governing of tripotents are preserved by $.

Proof. Let u and v be tripotents of U. If u^Pi(v)U and v^P^u^U, then,
by Corollary 2.4, $(u) and $(v) are tripotents of V and $(u)^Pi($(vy)V and

If v^PMU and u^Pi(v)U, then, by Corollary 2.4 (f>(v}^P2((f>(uW and
)V. D

Lemma 2.6. // ^ zs GS m Lemma 2.3, J/zen ^(—u)=—(p(u) for arbitrary
tripotent u in U.

Proof. Set v=<p~l((<f>(—u}-\-<j>(u))/2). Using the definition of y, the quad-
ratic property of <j) and Pz(^(uy)=Pz(^(—u), it is easy to verify that Q(<j>(v}}<}>(v)
=(v) and ( ) ( v } = Q ( ( ) ( v ( u } ^ ( > ( Q ( v } u \ Thus

implying — v=v. Therefore v=Q and (f>(—u)=—(f>(u). D

Lemma 2.7. Le^ U be a JBW*-triple. Let <j) is a bijective quadratic map
from U to another JB*-triple V. Then for any two orthogonal tripotents u and
v in U and any x and y in U, we have

Proof. Let z=Q(u)x+Q(v)y. Observe that

<j>(z}=<l>(Q(u+v}Q(u±v}z)
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Since the identity holds for signs + and — , by averaging the two identities we
will have

y) . D

Corollary 2.80 Let U9 V and <f> be as in Lemma 2.7 and let x and y be two
orthogonal elements in U, i.e., {xyU}=0, then $(x) is orthogonal to <J>(y) and

Proof. Let u be the support tripotent of x. Then x=Q(u)x, x=P2(u)x
and y=PQ(u)y. From Corollary 2.4 follows that $(x)= Pz($(uy)$(x) and $(y)=
Po($(u))$(y). Thus $(x) is orthogonal to $(y\ Let v be the support tripotent
of y then y = Q(v)y and the result follows from the lemma. D

Lemma 2.9. Let U, V and <j> be as in Lemma 2.1, and let u and w be tri-
potent s in U with u governed by w. Then for any x and y in U, we have

Proof. Let v=Q(w)u, p=(u+v+w)/2 and q=(u+v— w)/2. Then by Lemma
1.1, p and q are orthogonal tripotents. From (1.6), for any z^U, we have

Similarly, Q(u)Q(q)Q(u)(te)=Q(u)z. Thus by using Lemma 2.7 and (2.1), we
have

n

By use of Proposition 1.3, from this lemma, it is possible to prove additivity
of 0 in case when U have no type /i summands. On the other hand any tri-
potent u in a type A /£W*-triple does not satisfy the conditions of previous
lemma. Thus, we must treat such triples separately. With the help of the
following lemma this will be done in Lemma 2.11.

Lemma 2.10. Let U and V be JBW*-triples andU =®Ua where Ua is a w*-
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closed ideal of U. If $ is a bijective quadratic map from U to V, then V=
@6(Ua) where 6(Ua} is also a w*-closed ideal of V. Especially, if x—^xa

a&A a^A

where xa^Ua and (f>(x}= ^} (f)(x)a where $(x)a^$(Ua\ then $(xa)=$(x)a for
every

Proof. By Corollary 2.8, we have (f>(Ua^=$(U^, V=$(U a)@<l>(U aY and
<j>(Ua)=(<f>(Ua))

±J-. Thus $(Ua) is a summand in V and a ^-closed ideal of V.
For any x^U let u be the tripotent in the polar decomposition of x. Decom-
pose u into a sum of orthogonal tripotents ua<^Ua. Then xa~P2(ua)x, $(x)a

-Pz(<j)(uay)<j)(x} and <f>(x}a=(f>(xa) for aeA D

Lemma 2.11. Let W be a JBW*-triple of type h with no abelian summand
and let (j* be a bijective quadratic map from W to a JBW*-triple V. Then $ is
additive.

Proof. Since properties of being abelian and complete are preserved by <f>f

V=<j>(W) is of type /i. Moreover from the classification of JB J7*-triples [10]
W can be decomposed into W=@Wn for some cardinal numbers n, where each
Wn is a /£W*-triple of type 7li7l. By Lemma 2.10 it is enough to prove the
proposition for Wn- Thus we will assume that W is of type Il>n. In this case
there is a maximal collinear family of n complete abelian tripotents {VJ}JGJ in
W such that W=sp3n{Wz(vj):j^J}f or equivalently

We shall prove first that for any pair of collinear complete abelian tripotents
u and v and any x, y in W we have

(2.3) <f>(QWx + Q(v)y)=$(Q(u)x)+$(Q(v)y} .

Denote a = Q(u}x and b=Q(v)y. Complete, by use of [10, 2.7], u and v to
a maximal collinear family {u, v}\J{Uj}j&j of complete abelian tripotents. Since
the subspace span {Wz(u), W2(v)}= (^W^uj) and a+b belongs to this subspace,

je/
from Corollary 2.4 it follows that 0(a+fr)espan{ V2(0(M)), V2(^(v)){. Thus

(2.4)

where aeF2(^(w)) and B^Vz(^(v)). But since a = Q(u)2(a+b) and b=Q(v)z(a+b)
we have

(2.5) and

implying (2.3).
Note that p=(u+v)/V^2 and q=(u—v)/V~2 form a pair of collinear com-

plete abelian tripotents. Moreover from (1.6), we have Q(u)(x/2)=Q(u/V~2)x
= Q(Q(u)p)x = Q(u)Q(p)Q(u)x and Q(u}(x/2)=Q(u)Q(q)Q(u)x. Thus for any x
and y in W, using (2.3) for the collinear tripotents p and q, we have
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(2.6)

From this follows that Q(vj)($(x)+(}>(y)— <f>(x+y))=Q for all / and thus
{Q}. So <>(x+y)=<j>(x)+<f>(y). D

Now we are able to prove additivity of <j) in the general case. Note that
if £/=C then $(z)=z\z\ is a quadratic map which is not additive. Therefore
abelian direct summands must be excluded.

Theorem 2.12. Let U be a JBW*-triple with no abelian direct summand, and
let ^ be a bijective quadratic map from U to another JBW*-triple V. Then $ is
additive i. e.}

(2.7) 0(*+30=0(*)+0(:v)

for any x and y in U,

Proof. Decompose U=UIl+0 into a direct sum of a type /x JBW*- triple
Ufl and a JB l/F*-triple 0 having no type 7X summands. Then $\UZl is a
quadratic bijection from L/"fl onto a type /i summands of V. Since £77i has no
abelian direct summand, Lemma 2.11 implies that $\Ufl is additive. Thus,
using Lemma 2.10 it is enough to show that $\0 is additive.

Let x=$(x) and y=$(y) for x, y^U. Then (2.7) is equivalent to (j>~1(x)+
+$~l(y)=<j>~l(x+y). By Proposition 1.3 choose a complete family {fi}iGl in 0*
such that each {/<} has property G. Thus, to prove (2.7) it is enough to show
that for each

(2.8)

Let u=u(ft). Then by (1.22), (2.8) will hold if
OCii^-Xj?) or

(2.9)

If /j had property G then by Lemma 1.2, there exists a tripotent w in
£7 such that w governs u. Thus (2.9) follows from Lemma 2.9 and (j>\U is
additive. D

Using the fact that 2{xyz}=Q(x+z)y-Q(x)y-Q(z)y, from Theorem 2.12
if follows :
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Corollary 2.13. Let $ be as in Theorem 2.12. Then for any x, y, z in U,
we have

(2.12)

Now we are able to show that 0 is real homogeneous.

Proposition 2.14. Let U and V be JBW*-triples and suppose U has no abelian
direct summand. Let ^ be a bijective quadratic map from U to V. Then $ is a
real linear isometry i.e.,

(2.10) 0U;c)=;i0(jc) for XELU, A e R ,

(2.11) W*)II = IWI for jcetf .

Proof. Let u be any tripotent of U. Then P2(u)U is a /BW^-algebra with
unit u under the operations x°y : = {xuy} and adjoint # : y-*y* : ={uyu} for x
and y in P2(u}U.

Since any positive element in P2(u)U is of the form y°y = {yuy} for self
adjoint y (i.e., y = {uyu}), (j> maps positive elements of Pz(u)U into positive ele-
ments of Pz($(uy)V. Moreover, if a and b are in P2(u)U and a<b in the sense
of /BPF*-algebra, then $(a)^$(b) in Pz($(u))V- From the additivity of 0, it
follows that (2.10) holds for all positive rational L Since $ is additive and
order preserving in the sense of JB FF*-algebra, Og^(^)^^([l/A]"1M)=[l/^]"1^(M)
holds for 0</1<1 where [1//Q denotes the integral part of 1//L Combining with
the condition 0(— >to)=— 0(^w) the map A-*$(Au) is continuous at ^=0, hence
also continuous on R. Thus we have

<j)(Xu)=X<j)(u) for any ^eR.

Finally, for any x^U, let u be the support tripotent of x. Then for any /!>0,
with /^VT we have

Since ^ is bijective, real linear and positive from the JB PF*-algebra P2(u)U to
the /W*-algebra PJ$(uW, and by [9: Proposition 3.3.10] ||*||=inf {^>0: -lu

<Xu] for x={uxu}^P2(u)U, <$> is norm preserving. D

A bijective quadratic map 0 need not be complex linear in general but the
following theorem shows that such (j> is an orthogonal sum of linear and con-
jugate linear maps.

Theorem 2.15. Let U be a JBW*-triple with no abelian direct summand, let
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$ be a bijective quadratic map from U to another JBW*-triple, let W1={
=£?K*) for all £ eC} and let Wz={x^U : 0(£*)=£0(*) for all ?e=C}. Then
i=l, 2) are orthogonal w* -closed ideals in U such that U=W1@WZ and <j> —

2 where

0

Proof. For any x and y in £7, for any a^Wi, and for any f eC, by Corol-
lary 2.13,

and similarly,

Thus Wi is an ideal of U. Similarly, Wz is also an ideal of U and W1r\Wz={Q\
implies that PFX is orthogonal to T72.

Let a^(Wl)
±. Then the support tripotent u = u(a) of a belongs to (Wi)L-

Since T^2 is an ideal, to show that a^W2 it is enough to prove that u^W2 or
<f>(iu)+i<j>W=Q. Define w—^~l((^(iu}-\-i^(u))/(2iy). It is easy to check that
and (j>(u}—(j)(w) are orthogonal tripotents. Thus

But by Corollary 2.8 0(w;)e0(Wrf)C0(PF1)
± implying 0(i£;)=0 or J&(/W)=—/J&(H).

Thus wel^2 and a={wGM}eFT2. Therefore (W;r
1)

±c:Wr
2 or FF^^O1 implies

£7=^1©^ and Wt (i=l, 2) are w;*-closed ideals. D

§ 3. Applications

As an application to von Neumann algebras, we have the following theorem,
which is a generalization of a result of the second named author [7].

Theorem 38L Let M and N be von Neumann algebras and suppose M has no
abelian direct summand. Let $ be a bijective quadratic map (i.e., <f>(ab*a)=
0(a)0(&)*0(fl)) without assuming additivity of 0 from M to N. Then <j> is a real
linear isometry. Moreover, there exist four central projections pi, p2, ps, p* in M
such that pijrp2+p3+p4=l and
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0 is a linear *-ring isomorphism on Mp1;

0 is a linear *-ring anti-isomorphism on Mpz;

<j> is a conjugate linear *-ring isomorphism on Mps;

0 is a conjugate linear *-ring ant i-isomorphism on Mp±.

Proof. Under the triple product {abc} : =(ab*cJrcb*a}/2, Mis a /£W*-triple.
By Proposition 2.14 and Theorem 2.15, there exist two w;*-closed orthogonal
ideals M1 and M2 in triple sense such that M=Mi0M2, (j)\Ml is linear and 0]M2

is conjugate linear. Obviously, M* are von Neumann subalgebras of M with
central projections et as an identity (/=!, 2).

From the definition of 0 we have 0(6*)=^(6)* for any b^M, i.e., 0 is *
preserving. Define <p(x)=$(xei)+$(xez)*. Then <p is a C*-isomorphism between
M and N. Hence there exist central projections fl and fz such that /i+/2=l,
0|M/i is *-ring isomorphism and <p\Mfz is *-ring anti-isomorphism [12]. There-
fore if we put />i=0i/i, p2=e1f2, Pz—e2fz and />4=0z/i, then /> l f />2, Js and ^4

satisfy all the requirements of the theorem. D

The following Corollary is a special case of [7].

Corollary 3.2. Z,g£ M and JV be von Neumann algebras and suppose M has
no abelian summand. Let $ be an ^-semigroup isomorphism from M to N, that
is, 0 is a bijective map from M to N which satisfies $(ab)=$(d)$(b) and $(a*)=
0(a)*. Then <j> is an orthogonal sum of a linear and a conjugate linear ^-isomor-
phism.

Proof. Obviously, a ^-semigroup isomorphism 0 is a bijective quadratic
map from M to N. Applying Theorem 3.1, we have the conclusion. D

We finish this paper with the problem discussed in the introduction:

Proposition 3.3. Let G be a quadratic semigroup (defined by Definition 2)
and Tti, K2 be two faithful representations of G onto JBW*-triples with no abelian
direct summand U\ and Uz respectively, then the induced map 7r2°7rr1 between this
two representations is a real linear isometry.

Proof. Obviously n^Ki1 satisfies the conditions of Proposition 2.14 and
thus the conclusion follows. D
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