On Bounded Part of an Algebra of Unbounded Operators

Bу

Subhash J. BHATT*

§1. Introduction

By an Op^* -algebra A is meant a collection of linear operators, not necessarily bounded, all defined in a dense subspace D of a Hilbert Space H, satisfying $TD \subset D$ for all $T \in A$, which forms a^* algebra with vectorwise operations (T+S)x=Tx+Sx, $(\lambda T)x=\lambda Tx$ (λa scalar), (TS)x=T(Sx) and the involution $T \rightarrow T^*=T^*|_D$, T^* denoting the operator adjoint of T. It is also assumed that the identity operator $1 \in A$. The * subalgebra $A_b = \{T \in A \mid T \text{ is bounded}\}$ is the bounded part of A. Throughout, $\|\cdot\|$ denote operator norm on A_b .

 Op^* -algebras have been investigated in the contect of quantum theory and representation theory of abstract (Non-Banach)* algebras, in particular, enveloping algebras of Lie algebras. Among selfadjoint Op^* -algebra [13], there are two classes that are better behaved viz. symmetric algebras ([5], [8], [9]) and countably dominated algebras ([2], [10], [11]). The objective of this paper is to examine role of A_b in the structure of these two classes of algebras.

An Op^* -algebra A is symmetric if for each $T \in A$, $(1+T^*T)^{-1}$ exists and $(1+T^*T)^{-1} \in A_b$. We prove the following that shows that in a symmetric algebra A, A_b is very closely tied up with A, algebraically as well as topologically; and this infact characterizes symmetry.

Theorem 1. Let A be an Op*-algebra.

(a) If A is symmetric, then A_b is sequentially dense in A in any * algebra topology τ on A such that $B_0 = \{T \in A_b | ||T|| \leq 1\}$ is τ -bounded.

(b) Let τ be any * algebra topology on A such that the multiplication in A is τ -hypocontinuous, and B_0 is τ -bounded and τ -sequentially complete. If $(A_b, \|\cdot\|)$ is sequentially τ -dense in A, then A is symmetric.

An Op^* -algebra A is countably dominated if the positive cone A^+ of A contains a cofinal sequence (A_n) in its natural ordering. We assume $A_n \ge 1$ and

Communicated by H. Araki, January 11, 1988.

^{*} Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar 388 120, Gujarat, India.

 $A_1=1$. Additionally, $A_n^{-1} \in A$ for all *n*, then *A* is said to satisfy *condition* (I) [2]. In non commutative integration with countably dominated algebras, significant role is being played by the σ -weak topology and ρ -topology (introduced in [3]) defined below.

For each *n* define normed linear space (n_{A_n}, ρ_{A_n}) by

$$n_{A_n} = \left\{ T \in A \mid \rho_{A_n}(T) = \sup_{x \in D} \frac{|\langle T x, x \rangle|}{\langle A_n x, x \rangle} < \infty \right\}.$$

Then $A = \bigcup n_{A_n}$, and ρ -topology on A is the inductive topology [14] defined by the embeddings $id_n: (n_{A_n}, \rho_{A_n}) \to A$. Note that $A_b = n_1$. Now consider $\beta(D, D)$, the space of bounded sesquilinear forms on $D \times D$ with bibounded topology τ_{bb} defined by the seminorms $\beta \to \sup\{|\beta(x, y)| \mid x \in K_1, y \in K_2\}$, K_1 and K_2 varying over bounded subsets of (D, t_A) , where t_A is the *induced topology* on D defined by the seminorms $x \to ||Tx||$ ($T \in A$). (Note that t_A is metrizable due to countable domination and (D, t_A) can be assumed Frechet without loss of generality [11]). Then $(\beta(D, D), \tau_{bb})$ is the strong dual of the Frechet Space $D \otimes D$ (projective tensor product). The σ -weak topology on A [2] is the relative topology induced on A by the weak topology $\sigma(\beta(D, D), D \otimes D)$, A being naturally embedded in $\beta(D, D)$ by $T \to \beta^T : (x, y) \to \langle Tx, y \rangle$. We also consider the following two other topologies, the first one defined completely in terms of the bounded part A_b of A; and the other in terms of order structure on A.

(a) Dixon topology: Let Δ be the collection of all strictly positive functions on $A \times A$. For each $\delta \in \Delta$, let $N(\delta) = |co| \cup \{\delta(S, T)SB_0T | S, T \text{ in } A\}$, |co|denoting the absolutely convex hull. Let $\theta = \{N(\delta) \mid \delta \in \Delta\}$. Since $1 \in B_0$, each $N(\delta)$ is absorbing. Thus θ forms a 0-neighbourhood base for a locally convex linear topology \mathcal{T} on A. It was considered first in [4] for a class of abstract topological * algebras called generalized B^* -algebras which are realizable as EC^* -algebras [8] viz. symmetric Op^* -algebras A with bounded part A_b a C^* algebra.

(b) Order topology: ([12], [14]): Let τ_{oh} be the order topology on $A^b = \{T \in A \mid T = T^*\}$ viz. the largest locally convex linear topology making each order interval bounded. Let ψ be a τ -neighbourhood base for τ_{oh} . For $U \in \psi$, let \tilde{U} be the complex absolutely convex hull of U in A. Then $\tilde{\psi} = \{\tilde{U} \mid U \in \psi\}$ is a *o*-neighbourhood base for a locally convex linear topology τ_o (complexification of τ_{oh}).

We also prove the following.

Theorem 2. Let A be a countably dominated Op^* -algebra satisfying condition (I). Then on A,

$$o = \mathfrak{I} = \tau_{bb} = \tau_o$$
.

Proofs of both the theorems are presented in Part 3. In Part 2, we give a

couple of lemmas that are needed and that appear to be of some independent interest. Finally the results are applied to countably dominated algebras.

§2. Preliminary Lemmas

Recall that in a topological * algebra (A, t) (viz. a topological vector space with separately continuous multiplication and continuous involution), multiplication is called *hypocontinuous* if given a bounded set B in A, and a 0-neighbourhood U, there exists 0-neighbourhoods V_1 and V_2 such that $BV_1 \subset U$, $V_2B \subset U$. The following is wellknown.

Lemma 2.1. In a topological algebra, joint continuity of multiplication implies hypocontinuity, and hypocontinuity of multiplication implies sequential joint continuity.

Lemma 2.2. Let A be a countably dominated Op*-algebra on a dense subspace D of a Hilbert Space H. On $A_b=n_1$, the norm $\rho_1(\cdot)$ is equivalent to the operator norm $\|\cdot\|$.

Proof. For a $T \in A_b$,

$$\rho_1(T) = \sup\{|\langle Tx, x \rangle| : x \in D, ||x|| = 1\}$$
$$= \sup\{|\langle Tx, x \rangle| : x \in H, ||x|| = 1\}$$
$$= w(T)$$

where w(T) is the numerical radius of T. By Halmos [7, p. 173], numerical radius defines a norm on A_b equivalent to the operator norm; in fact, $1/2||T|| \le w(T) \le ||T||$. Note that the validity of the lemma can also be alternatively seen by noting that for $T=T^*$ in A_b , $\rho_1(T)=||T||$, and so for any T in A_b , $\rho_1(T)\le ||T|| \le 2\rho_1(T)$.

*Op**-algebra A is ρ -closed [3] if each (n_{A_n}, ρ_{A_n}) is a Banach space. Also as discussed in [2, Proposition 5.1], in the presence of condition (I), there exists an onto isometric isomorphism $T^{(k)}: (n_{A_k}, \rho_{A_k}) \rightarrow (n_1, \rho_1)$. Hence the following is immediate.

Corollary 2.3. Let A satisfies condition (I). Then A is ρ -closed iff $(A_b, \|\cdot\|)$ is a C*-algebra.

The following lemma sheds some light on the role of A_b in the structure of A.

Lemma 2.4. Let A be an Op*-algebra. (a) If B is a ρ -bounded * idempotent in A, then $B \subset B_0$. In particular, B_0 is closed in ρ .

(b) If a *subalgebra B of A is a Banach *algebra under any norm |.| such that $(B, |.|) \rightarrow (A, \rho)$ is a continuous embedding, then B consists of bounded operators.

(c) Let A be ρ -closed. Let $T \in A$, $T \ge 0$. If n_T is an algebra, then n_T consists of bounded operators; in particular, T is bounded.

Proof. By Proposition 1.2 in [3], boundedness of *B*, together with the fact that *B* is an idempotent, implies that there exists S>0 in *A* such that $|\langle T^n x \rangle| \leq (Sx, x)$ for all $x \in D$, $T \in B$, for all $n=1, 2, 3, \dots$. Given $T \in B$, $Q=T^*T \in B$; and so for all *n*,

$$||Q^n x||^2 = \langle Q^{2n} x, x \rangle \leq ||x|| ||Q^{2n} x||.$$

Hence iterating, for all $x \in D$, we obtain

$$||Qx|| \le ||x||^{(1-1/2^n)} ||Q^{2^n}x||^{1/2^n}$$
$$\le ||x||^{(1-1/2^n)} \langle Sx, x \rangle^{1/2^n}$$

for all *n*. This gives $||Qx|| \le ||x||$ for all *x*, and so $||Tx|| \le ||x||$ for all *x*, showing *T* to be bounded and $B \subset B_0$. (b) is immediate from (a); and (c) follows from (b).

Now for a locally convex linear topology t on A, consider the following statements

- (i) Involution in A is t-continuous.
- (ii) Multiplication in A is separately t-continuous.
- (iii) B_0 is *t*-closed.
- (iv) B_0 is *t*-bounded.
- (v) B_0 is the greatest member, under inclusion, of $\mathscr{B}^*(t)$ where $\mathscr{B}^*(t)$ is the collection of all absolutely convex, *t*-closed, *t*-bounded *idempotents in A.

The following describes basic properties of \mathcal{I} . This can be proved as in Dixon [4]. Part (d) is a consequence of Lemma 2.4(a).

Lemma 2.5. Let A be an Op*-algebra

- (a) \mathcal{T} satisfies (i)—(v).
- (b) I is finer than any locally convex topology t satisfying (i)—(v).
- (c) If A_b is a C*-algebra, then \mathfrak{T} is barrelled.
- (d) \mathcal{T} is finer than ρ .

§3. Proofs of the Theorems

Proof of theorem 1(a). Let A be symmetric. Then for all $T \in A$, $\overline{T}^* = \overline{T}^*$. This is a standard argument as in Lemma 2.1 in [8(I)] or Lemma 7.9 in [4].

734

Now given T in A, take $T_n = T(1+(1/n)T^*T)^{-1}$ for $n=1, 2, 3, \dots$ Note that $T_n = T(1+T^*T)^{-1} = T(1+\bar{T}^*\bar{T})^{-1} = T(1+\bar{T}^*\bar{T})^{-1}$

is in A and is a bounded operator with $||T_1|| \leq 1$. Hence

$$T_n = \sqrt{n} \left(\frac{T}{\sqrt{n}} \right) \left(1 + \left(\frac{T}{\sqrt{n}} \right)^* \left(\frac{T}{\sqrt{n}} \right) \right)^{-1}$$

is in A_b with $||T_n|| \leq \sqrt{n}$. Further

$$T - T_{n} = \frac{1}{n} T T^{*} T \left(1 + \frac{1}{n} T^{*} T \right)^{-1}$$
$$= \frac{1}{\sqrt{n}} (T T^{*}) \left(\frac{T}{\sqrt{n}} \right) \left(1 + \left(\frac{T}{\sqrt{n}} \right)^{*} \left(\frac{T}{\sqrt{n}} \right) \right)^{-1}$$

which is in $1/\sqrt{n} TT^*B_0$. Let τ be any topology on A such that (A, τ) is a topological *algebra. Let B_0 be τ -bounded. Then given a 0-neighbourhood V in A, there exists a 0-neighbourhood U such that $TT^*U \subset V$. Further, for sufficiently large n, $1/\sqrt{n} B_0 \subset U$. Hence for such n, $T-T_n \in TT^*U \subset V$ showing that $T_n \to T$.

(b) Given T in A, choose a sequence T_n in A_b such that $T_n \to T$ in τ . Then $T_n^* \to T^*$, and so by Lemma 2.1, $T_n^* T_n \to T^* T$. Let $S_n = (1 + T_n^* T_n)^{-1}$ which are in A_b with $||S_n|| \leq 1$. Now

$$S_n - S_m = (1 + T_n^*T_n)^{-1} (-T_n^*T_n + T_m^*T_m)(1 + T_m^*T_m)^{-1}$$

By hypocontinuity, given a 0-neighbourhood U, choose 0-neighbourhoods V_1 and V such that $B_0V_1 \subset U$; $VB_0 \subset V_1$; with the result, $B_0VB_0 \subset U$. Since $T_n^*T_n$ is Cauchy, $T_m^*T_m - T_n^*T_n \in V$ eventually. Hence $S_n - S_m \in B_0VB_0 \subset U$ eventually. Thus the sequence S_n in B_0 is Cauchy; hence $S_n \rightarrow S \in B_0$ by assumption. Then by sequential joint continuity of multiplication,

$$(1+T^*T)S = \lim (1+T_n^*T_n) (1+T_n^*T_n)^{-1} = 1 = S(1+T^*T).$$

Thus $S = (1+T*T)^{-1} \in B_0 \subset A_0$ showing that A is symmetric.

Proof of Theorem 2. Note that as discussed in [2], $\rho = \tau_{bb}$ follows from the ρ -normality of the positive cone in A, a consequence of condition (I). We show $\tau_0 = \mathfrak{T}$. Since τ_0 is the largest locally convex linear topology on A making each order interval in A^h bounded, $\tau_0 \geq \mathfrak{T}$ follows if each order bounded set M (which is contained in $[A_n, A_n]$ for some n) is \mathfrak{T} -bounded, where $(A_n), A_n \geq 1$ and $A_n^{-1} \in A$, is the sequence in A^+ defined by condition (I). Thus for all $Z \in M$, $-A_n^2 \leq -A_n \leq Z \leq A_n \leq A_n^2$; and so $-1 \leq A_n^{-1} Z A_n^{-1} \leq 1$, $A_n^{-1} Z A_n^{-1} \in B_0$. Now let $N(\delta)$ be a and \mathfrak{T} -neighbourhood of 0. Then

$$N(\delta) = |co| \cup \{\delta(X, Y) X B_0 Y | X, Y \text{ in } A\} \supseteq \delta(A_n, A_n) A_n B_0 A_n.$$

But

$$\delta(A_n, A_n)Z = \delta(A_n, A_n)A_n(A_n^{-1}ZA_n^{-1})A_n \in \delta(A_n, A_n)A_nB_0A_n \subset N(\delta).$$

Thus $M \subset (\delta(A_n, A_n))^{-1}N(\delta)$ showing that M is \mathcal{T} -bounded. Now to show $\tau_0 \leq \mathcal{T}$, we apply Lemma 2.5(b). The topology τ_0 is easily seen to satisfy (i) and (ii). Let $B \in \mathcal{B}^*(\tau_0)$. Then B \mathcal{T} -bounded as $\mathcal{T} \leq \tau_0$; hence its \mathcal{T} -closure \overline{B} is in $\mathcal{B}^*(\mathcal{T})$. Lemma 2.5(a) implies that $B \subset B_0$. The same argument applied to B_0 shows that τ_0 satisfies (iii) and (iv); and so also (v). Thus $\tau_0 = \mathcal{T}$; which, in view of Lemma 2.5(d), gives $\tau_0 \geq \rho$. On the other hand, for each n, each bounded subset in the normed linear space (n_{A_n}, ρ_{A_n}) is τ_0 -bounded. Hence the embedings $id_n(n_{A_n}, \rho_{A_n}) \rightarrow (A, \tau_0)$ are continuous, (n_{A_n}, ρ_{A_n}) being bornological. Since ρ is the largest locally convex linear topology on A making each of these embedings continuous, $\tau_0 \leq \rho$, and the proof is complete.

Corollary. Let A be an Op*-algebra.

- (a) If A is symmetric, then A_b is sequentially dense in (A, ρ)
- (b) Assume the following
 - (i) A satisfies condition (I)
 - (ii) The domain D of A is quasi-normable in the induced topology t_A .
 - (iii) A_b is a C*-algebra (in particular, A is ρ -closed or σ -weakly closed).

If A_b is sequentially dense in ρ -topology, then A is symmetric.

Proof. Theorem 1(a) gives (a). Note that if A satisfies (I) and is σ -weakly closed, then A_b is von Neumann algebra by [2]. Now (i) and (iii) in (b) together with Theorem 2 and Lemma 2.5(c) imply that (A, ρ) is barelled, and in a barelled algebra, multiplication is known to be hypocontinuous. Further, due to quasinormability, (A, ρ) satisfies strict condition of Mackey convergence [11]. From this, using Corollary 2.3 and Lemma 2.4(a), it is easily seen that B_0 is sequentially ρ -complete. Now the conclusion follows from Theorem 1(b).

Remarks. (a) Symmetry in an Op^* -algebra A is a very stringent requirement, since as noted in the proof of Theorem 1(a), $\overline{T}^* = \overline{T}^*$ holds, for all $T \in A$ which implies that in such an A, every hermitian element is essentially self-adjoint.

(b) Sequential density of A_b in (A, ρ) is not sufficient to make A symmetric. As shown in [11, Part 3], in the maximal Op^* -algebra L(D) on Schwartz domain D, every $T \in A$ can be approximated, even in some normed space (n_{A_k}, ρ_{A_k}) , by a sequence of finite rank operators in L(D).

736

Acknowledgements

The author is very much thankful to the referee for constructive suggestions that led to a thorough revision of the paper and to removal of some discripencies.

References

- [1] Allan, G. R., On a class of locally convex algebras, Proc. London Math—Soc. (3) 17 (1967), 91-114.
- [2] Araki, H. and Jurzak, J., On a certain class of * algebras of unbounded operators, Publ. RIMS Kyoto Univ. 18 (1982), 1013-1044.
- [3] Arnel, D. and Jurzak, J.P., Topological aspects of algebras of unbounded operators, Jr. Functional Analysis 24 (1979), 397-425.
- [4] Dixon, P.G., Generalized B*-algebras, Proc. London Math. Soc. (3) 21 (1970), 693-715.
- [5] ——, Unbounded operator algebras, Proc. London Math. Soc. (3) 23 (1971), 53-69.
- [6] Grothendieck, A., Sur les espaces (F) et (DF), Summ. Brasil Math. 3 (1954), 57-123.
- [7[Halmos, P.R., A Hilbert Space Problem Book, Narosa Publ. House, New Delhi, 1978.
- [8] Inoue, A., On a class of unbounded operator algebras I, II, III, IV, Pacific Jr. Math.
 64 (1976), 77-98; *ibid* 66 (1976), 411-431; *ibid* 69 (1976), 105-133; Jr. Math. Anal.
 Appl. 64 (1978), 334-347.
- [9] _____, Unbounded generalizations of left Hilbert algebras, I, II, Jr. Functional Analysis 34 (1979), 339-362; ibid 35 (1980), 230-250.
- [10] Jurzak, J.P., Unbounded Noncommutative Integration, D. Reidel Publ. Co., 1984.
- [11] —, Unbounded Operator algebras and DF spaces, Publ. RIMS Kyoto Univ., 17 (1981), 755-776.
- [12] Kunze, W., Zur algebraischen and topologischen struktur der GC*-algebren, thesis, KMU, Leipzig, 1975.
- [13] Powers, R. T., Self adjoint algebras of unbounded operators I, II, Comm. Math. Phys. 21 (1971), 88-124; Trans. American Math. Soc. 187 (1974).
- [14] Schaeffer, H.H., Topological Vector Spaces, MacMillan, London 1966.