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On Bounded Part of an Algebra of
Unbounded Operators

By

Subhash J. BHATT*

§1. Introduction

By an Op*-algebra A is meant a collection of linear operators, not necessarily
bounded, all defined in a dense subspace D of a Hilbert Space H, satisfying
TDCD for all TeA, which forms a * algebra with vectorwise operations
(T+S)x=Tx+Sx, (AT)x=2ATx (2 a scalar), (TS)x=T(Sx) and the involution
T—-T*=T*#|p, T* denoting the operator adjoint of 7. It is also assumed that
the identity operator l= A. The * subalgebra A,={T'=A|T is bounded} is the
bounded part of A. Throughout, ||-| denote operator norm on A,.

Op*-algebras have been investigated in the contect of quantum theory and
representation theory of abstract (Non-Banach)* algebras, in particular, envelop-
ing algebras of Lie algebras. Among selfadjoint Op*-algebra [13], there are two
classes that are better behaved viz. symmetric algebras ([5], [8], [9]) and
countably dominated algebras ([2], [10], [11]). The objective of this paper is
to examine role of A, in the structure of these two classes of algebras.

An Op*-algebra A is symmetric if for each T€ A, (14+T*T)* exists and
(14+T*T)'=A,. We prove the following that shows that in a symmetric alge-
bra A, A, is very closely tied up with A, algebraically as well as topologically;
and this infact characterizes symmetry.

Theorem 1. Let A be an Op*-algebra.

(@) If A is symmetric, then A, is sequentially dense in A in any * algebra
topology T on A such that By={T € A,||T| L1} is r-bounded.

(b) Let T be any * algebra topology on A such that the multiplication in A
is T-hypocontinuous, and B, is t-bounded and t-sequentially complete. If (As, -1
is sequentially t-dense in A, then A is symmetric.

An Op*-algebra A is countably dominated if the positive cone A* of A con-
tains a cofinal sequence (A4,) in its natural ordering. We assume A,=1 and
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A,=1. Additionally, Az A for all n, then A is said to satisfy condition (1)
[2]. In non commutative integration with countably dominated algebras, signi-
ficant role is being played by the ¢-weak topology and p-topology (introduced
in [3]) defined below.
For each n define normed linear space (n4,, 04,) by
na,={T €Al p,,(T)=sup %Z’;—‘g' <oo} .

Then A=Uny,,, and p-topology on A is the inductive topology [14] defined by
the embeddings id,: (n4,, p4,)—A. Note that A,=n,. Now consider B(D, D),
the space of bounded sesquilinear forms on D XD with bibounded topology T
defined by the seminorms B—sup{|f(x, ¥)| | x€K,, yE€K,}, K, and K, varying
over bounded subsets of (D, t,), where ¢, is the induced topology on D defined
by the seminorms x—|Tx| (TA). (Note that?, is metrizable due to countable
domination and (D, ¢,) can be assumed Frechet without loss of generality [11]).
Then (B(D, D), t;) is the strong dual of the Frechet Space D@D (projective
tensor product). The o-weak topology on A [2] is the relative topology in-
duced on A by the weak topology ¢(B8(D, D), D& D), A being naturally embedded
in B(D, D) by T—B":(x, y)—<Tx, y>. We also consider the following two
other topologies, the first one defined completely in terms of the bounded part
A, of A; and the other in terms of order structure on A.

(a) Dixon topology: Let A be the collection of all strictly positive func-
tions on AX A. For each 64, let N(0)=]co|\U{d(S, T)SB,T|S, T in A}, |co]
denoting the absolutely convex hull. Let 6={N(9)| d=A}. Since 1B,, each
N(0) is absorbing. Thus # forms a 0-neighbourhood base for a locally convex
linear topology 9 on A. It was considered first in [4] for a class of abstract
topological * algebras called generalized B*-algebras which are realizable as
EC*-algebras [8] viz. symmetric Op*-algebras A with bounded part A, a C*-
algebra.

(b) Order topology: ([12], [14]): Let 7,, be the order topology on A’=
{TeA | T=T*} viz. the largest locally convex linear topology making each
order interval bounded. Let ¢ be a r-neighbourhood base for 7,,. For U&d,
let U be the complex absolutely convex hull of U in A. Then §={{/|Uc¢}
is a o-neighbourhood base for a locally convex linear topology 7, (complexifica-
tion of 7,z).

We also prove the following.

Theorem 2. Let A be a countably dominated Op*-algebra satisfying condition
(D). Then on A,

p:g:TbDZTg .

Proofs of both the theorems are presented in Part 3. In Part 2, we givea
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couple of lemmas that are needed and that appear to be of some independent
interest. Finally the results are applied to countably dominated algebras.

§2. Preliminary Lemmas

Recall that in a topological * algebra (A, t) (viz. a topological vector space
with separately continuous multiplication and continuous involution), multiplica-
tion is called hypocontinuous if given a bounded set B in A, and a O-neigh-
bourhood U, there exists 0O-neighbourhoods V, and V, such that BV,CU, V.B
CU. The following is wellknown.

Lemma 2.1. In a topological algebra, joint continuity of multiplication implies

hypocontinuity, and hypocontinuity of multiplication implies sequential joint con-
tinuity.

Lemma 2.2, Let A be a countably dominated Op*-algebra on a dense subspace

D of a Hilbert Space H. On Ay=ny, the norm p,(-) is equivalent to the operator
norm ||-|.

Proof. For a T€A,,
p(T)=sup{!<Tx, x>| : x€D, |x|=1}
=sup{[<T'x, x| : x€H, || x|=1}
=w(T)

where w(T) is the numerical radius of 7. By Halmos [7, p. 173], numerical
radius defines a norm on A, equivalent to the operator norm; in fact, 1/2|T]||
=w(T)Z|T|. Note that the validity of the lemma can also be alternatively
seen by noting that for T=T%* in A, p«(T)=|T]|, and so for any T in A,,
o T)Z T =204(T).

Op*-algebra A is p-closed [3] if each (n4,, p4,) is 2 Banach space. Also as
discussed in [2, Proposition 5.17], in the presence of condition (I), there exists
an onto isometric isomorphism T¢*: (14, pa,)—(n1, p1). Hence the following
is immediate.

Corollary 2.3. Let A satisfies condition (I). Then A is p-closed iff (4s, |-1)
is a C*-algebra.

The following lemma sheds some light on the role of A, in the structure
of A.

Lemma 2.4. Let A be an Op*-algebra.
(@) If B is a p-bounded * idempotent in A, then BCB,. In particular, B,



734 SuBHASH J. BHATT

is closed in p.
(b) If a *subalgebra B of A is a Banach *algebra under any norm |.| such

that (B, |.)—(4, p) is a continuous embeding, then B consists of bounded operators.
(c) Let A be p-closed. Let Te A, T=0. If nrisan algebra, then ny con-
sists of bounded operators; in particular, T is bounded.

Proof. By Proposition 1.2 in [3], boundedness of B, together with the fact
that B is an idempotent, implies that there exists S>0 in A such that |[{T"x)|
<(Sx, x)for all x€D, TeB, for all n=1, 2, 3, ----- . Given T€B, Q=T*T<B;
and so for all #,

1Q"xP=<Q*"x, x><|x[l[|Q*"x] .

Hence iterating, for all xe D, we obtain
Qx| S| x| -12™]1 Q" x||**"
§|lx”(1—1/2n)<sx, x>1/2n

for all n. This gives |@x||<|/x| for all x, and so |Tx[|<||x| for all x, show-
ing T to be bounded and BCB,. (b) is immediate from (a); and (c) follows

from (b).

Now for a locally convex linear topology ¢ on A, consider the following
statements
(1) Involution in A is f-continuous.
(ii) Multiplication in A is separately ¢-continuous.
(iii) B, is t-closed.
(iv) B, is t-bounded.
(v) B, is the greatest member, under inclusion, of @*(t) where B*{) is
the collection of all absolutely convex, ¢-closed, ¢-bounded *idempotents
in A.
The following describes basic properties of 9. This can be proved as in
Dixon [4]. Part (d) is a consequence of Lemma 2.4(a).

Lemma 2.5. Let A be an Op*-algebra

(a) g satisfies (1)—(v).

(b) g is finer than any locally convex topology t satisfying (i)—(v).
(¢) If Ay is a C*-algebra, then T is barrelled.

(d) g is finer than p.

§3. Proofs of the Theorems

Proof of theorem 1(a). Let A be symmetric. Then for all T€E A, T*=T#,
This is a standard argument as in Lemma 2.1 in [8(I)] or Lemma 7.9 in [4].
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Now given T in A, take T,=TA1+1/n)T*T)* for n=1, 2, 3, ----- Note that
T, =TA+T*T) '=TA+T*T)'=TA+T*T)!

is in A and is a bounded operator with ||7,||<1. Hence

o (Y ()
is in A, with |T,|<+n. Further

1

n

1 T T \*/ T \\-!
—_——— ) —— — =
7T+ () (09)
which is in 1/4/n TT*B,. Let r be any topology on A such that (4, 7) is a
topological *algebra. Let B, be r-bounded. Then given a 0O-neighbourhood V
in A, there exists a 0-neighbourhood U such that TT*UC V. Further, for suf-

ficiently large n, 1/+/n B,CU. Hence for such n, T—T,TT*UCYV showing
that T,—T.

T—T,= TT*T(H%T*T)"I

() Given T in A, choose a sequence T, in A, such that T,—T in 7.
Then T#—-T%*, and so by Lemma 2.1, T¥T,—T*T. Let S,=1+T%T,)"* which
are in A, with ||S,[|<1. Now

Sa=Su=QA+T3T») (=TT o+ THRT )1+ THT m) " .

By hypocontinuity, given a O-neighbourhood U, choose 0-neighbourhoods V, and
V such that B,V,CU; VB,CV,; with the result, B,VB,CU. Since T*T, is
Cauchy, T#T ,—T*T .=V eventually. Hence S,—S,.=B,VB,CU eventually.
Thus the sequence S, in B, is Cauchy; hence S,—S& B, by assumption. Then
by sequential joint continuity of multiplication,

A+T*T)S=lm A+T3T,) A4+T3;T,)'=1=SA-+T*T).

Thus S=(1+T*T)*=B,C A, showing that A is symmetric.

Proof of Theorem 2. Note that as discussed in [2], p=t4 follows from the
p-normality of the positive cone in A, a consequence of condition (I). We show
7,=9. Since 7, is the largest locally convex linear topology on A making each
order interval in A" bounded, 7,=9 follows if each order bounded set M (which
is contained in [A,., A,] for some n) is T-bounded, where (4,), A,=1 and
A7*e A, is the sequence in A* defined by condition (I). Thus for all ZeM,
—AL<—A,SZ<A,<A%; and so —1<ARZARGL], ARZAR'eB,. Now let
N(0) be a and g-neighbourhood of 0. Then
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N©@=icol\U{o(X, Y)XB,Y|X, Y in A} 20(A4,, A.)ABoA, .

But
O0(An, A)Z=0(An, A)AN(AZZAZ)ALE0(As, An)AnBoACN(0).

Thus MC(6(A., A,)) *N(6) showing that M is -bounded. Now to show 7,<d,
we apply Lemma 2.5(b). The topology 7, is easily seen to satisfy (i) and (ii).
Let BE @*(,). Then B g-bounded as <t,; hence its <-closure B is in
B*9g). Lemma 2.5(a) implies that BCB,. The same argument applied to B,
shows that 7, satisfies (iii) and (iv); and so also (v). Thus 7,=9 ; which, in
view of Lemma 2.5(d), gives 7z,=p. On the other hand, for each n, each
bounded subset in the normed linear space (n4,, 04,) is 7o,-bounded. Hence the
embedings id.(n.,, p4,)—(A4, 7)) are continuous, (n,,, p4,) being bornological.
Since p is the largest locally convex linear topology on A making each of these
embedings continuous, 7,<p, and the proof is complete.

Corollary. Let A be an Op*-aigebra.
(a) If A is symmetric, then A, is sequentially dense in (A, p)
(b) Assume the following
(i) A satisfies condition (1)
(ii) The domain D of A is quasi-normable in the induced topology t,.
(iii) Ay is a C*-algebra (in particular, A is p-closed or c-weakly closed).
If A, is sequentially dense in p-topology, then A is symmetric.

Proof. Theorem 1(a) gives (a). Note that if A satisfies (I) and is o-weakly
closed, then A, is von Neumann algebra by [2]. Now (i) and (iii) in (b) together
with Theorem 2 and Lemma 2.5(c) imply that (A4, p) is barelled, and in a barelled
algebra, multiplication is known to be hypocontinuous. Further, due to quasi-
normability, (A, p) satisfies strict condition of Mackey convergence [11]. From
this, using Corollary 2.3 and Lemma 2.4(a), it is easily seen that B, is sequen-
tially p-complete. Now the conclusion follows from Theorem 1(b).

Remarks. (a) Symmetry in an Op*-algebra A is a very stringent require-
ment, since as noted in the proof of Theorem 1(a), T*=T* holds, for all T4
which implies that in such an A, every hermitian element is essentially self-
adjoint.

(b) Sequential density of A, in (A4, p) is not sufficient to make A symmetric.
As shown in [11, Part 3], in the maximal Op*-algebra L(D) on Schwartz do-
main D, every T € A can be approximated, even in some normed space (n4,, 04,)
by a sequence of finite rank operators in L(D).
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