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On a Banach Space of Functions Associated
with a Homogeneous Additive Process

By

Akihito HORA*

Introduction

Let (X(t))tET be a time homogeneous additive process on a probability space
(Q, £F, P), where T~N or R+ (the nonnegative real numbers). We consider
stochastic integrals of Wiener type:

0 dX(t].

The object of study of the present paper is the Banach space consisting of
integrands of such a integral. Our result gives a correspondence between the
spectrum (after [SI]) of this Banach space and the equivalency of LP(Q, P)-norms
of these stochastic integrals. Spectrum is one of those characteristics which
describe geometrical properties of a Banach space. There exists a celebrated
general theoryin eluding this concept, which is often called local theory of Banach
spaces (we refer to e.g. [SI], [PI]). We investigate the case of discrete time
(i.e. T=N) in §2, and, using the results, deal with the case of continuous time
(i.e. T=jR+) in §3.

We note that the space of differentiable shifts for a measure on an infinite
dimensional space is closely related to the above Banach space associated with
X(£) in the case of discrete time. More precisely, as we show in §4, these
Banach spaces are realized as spaces of the differentiable shifts for stationary
product measures on RN. As for differentiation of measures, we refer to [Bl],
[Y-H1] and [Shi].

Throughout the present note, we try to write as explicitly as possible the
constants which appear in inequalities though they may be far from the best
possible ones.

§ 1. Preliminaries

In the case of discrete time, our study is nothing but that of the Li-
convergence of sums of independent random variables. We propose in this sec-
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tion an inequality which will play an important role later. This inequality is
essentially due to H. Shimomura ([Shi], §2).

Let X be a real-valued random variable such that 0<J5!^T|<oo and EX=0,
and XQ, Xlf X2, ••• independent copies of X. The set of all real sequences with
finitely many nonzero terms is denoted by R$. For x=(x(k)}k^N^R^, put

(1.1) 11*11^=11 2

Then \\-\\DX is a norm on R? stronger than the weak topology. The
completion of R? with respect to \\-\\DZ is considered as a subspace of RN and

denoted by Dz. For x=(x(k$keNs=RN, we see that *eflz<=*sup E\ j} x ( k ) X k \
neJV k=Q

<oo from the martingale convergence theorem.

H. Shimomura showed in [Shi] that Dx is an Orlicz sequence space in the
following sense., Put

(1.2) Mx®

Mx(f) is an Orlicz function satisfying the A2-condition at t=Q. For x=(

(=R?, put \\x\\Mz=mf{p>Q; 2Mz(|^(fe)|//o)^l}. The completion of R? with

respect to the norm IHU^ is the Orlicz sequence space associated with the
Orlicz function MX.

From the elaborate estimation due to H. Shimomura, we can deduce the
following

Theorem 1.1. Under the above notations, an inequality

(1.3) K'\\X\\DZ^\\X\\MZ^K\\X\\DZ

holds for all x^R*. Here K and K' are positive absolute constants defined by

*"
iswhere a=sup P-^-du , ^=^((-1,1)°), 62= ( (4u'+|u|)JV, f l(du) (J

£^>0 J 0 W J fi

f/is standard normal distribution on R} and Ci< — ̂ -r^c2 on \u^R\ |M— 1|^—

(hence K' =0.019 ••• , #=2.836 •••) .

The proof is omitted. See [Shi], §2, particularly the proof of Theorem
2.5. n

The following proposition shows the relation of comparison between Orlicz
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functions to that between Orlicz norms.

Proposition 1.2. Let p>l and M be an Orlicz function. If \\x\\ M^
for all x<^R? (C is a positive constant}, then M(t)<2Cptp for all O^t^

Proof. Let {eQ, elf • • • } be the standard basis of R? . From \\e0+ ••• +en-i\\M
\-en-i\\ip, we get nM(l/Cn1/p)^L This means that the desired

result holds for f=(Cn1/p)~1. Now we interpolate the other values of t. Let
Take neJVsuch that (CCn+iy'^-'^f^CCn1'*)-1. Then (C(n+l)1/p)-p

^tp and M((Cnl'p)~l}^l/n — Cp(CnllpYp. Since i i v / n - p ~ —^' we get

M(t}^2Cptp. D

§2. The Case of Discrete Time

In this section we prove the correspondence between the spectrum of Dx

and the equivalency of LJQ, P)-norms (l^/>^2) of ^x(k)Xk (for x^Dx). We
k

have only to consider the case where the index p ranges between 1 and 2 be-
cause we will treat spaces of cotype 2 and their spectra. Later we will refer
to this reason again after explaining spectra of Banach spaces (before Theo-
rem 2.3).

First we show that we can estimate the moments of a random variable X
by comparing the norm of Dx with the /^-norrn. The situations are somewhat
different in the case p—2 and in the case l<ip<2.

(I) The case p—2. From [Y-H1] Theorem 9.1, we see that, if there exists
a positive constant C such that H^H^^CH*!!^ for all x^R?, then E\X\Z^
24C2s"2 log 1/1—s holds for 0<£<1. Computing the minimum in e, we get

(2.1) (E\X\Z)1/2<>3V6 logSC.

We note that \\x\\Dx^l/2V2 E\X\\\x\\iz always holds since Li-space is of co-
type 2.

(II) The case l^p<2. We cannot claim the existence of p-th moment of
X in this case.

Proposition 2.1. Let l^p<2. If there exists a positive constant C such
that \\X\\DX<C\\X\\LP for all x^R$, then

(2.2) (E\X\*)l'*£KCA(p, q}

holds for all q satisfying $<q<p, where K is an absolute constant in (1.4) and
A(p, q) is defined by
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(2.3) A(p, q} =

Proof. We follow the method in [Shi] Theorem 3.5. From the assump-
tion, using Theorem 1.1 and Proposition 1.2, we get Mx(t}^2KpCptp for O^f
<l/KC (Mx is an Orlicz function defined by (1.2)). Then, from the estimation
due to H. Shimomura, we obtain for 0<q<p,

--r
— 1

This is the desired inequality. D

Now we propose our result in the discrete time case.

Theorem 2.2. Let l<^p<^2. Assume that there exists a positive constant C
such that, if (yn} is a finite sequence of disjointly supported elements of R f , the
inequality

(2-4) \\^Xn\\
n n

holds. Then, for all q satisfying l^q<p, we obtain

(2.5) \\Hx(k)Xk\\Ll,Q^Kx(k)Xk\\Lq,a,k k

<KCA(p, g) | | ] x(k)Xk\\Lltto for all

Proof. We have only to prove the inequality for x^R* '. Take x =
(jc(0), ••• , x(k-l), 0, -OeEJR^. Put

+x(k-l)Xnk.l ,

Then {Y^}^EiN is a system of independent random variables with identical distri-
butions. Let a0, •- , am-!^R. Put

xn=(Q, ••• , 0, anx(Q), a n x ( l ] , ••• , anx(k-l\ 0,

t
(n+l)jfe-th

The elements xn's are disjointly supported. From the assumption (2.4), we get
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||(a0x(0), "• , a*x(k — l\ ••• , an-ix(Q), ••• , a m _i*(£— 1), 0, ~-)\\DZ

< C( s'lKO, - , 0, anx(0), •- , anx(k-T), 0, -)II4)1/P ,
\n=o z

i.e.,

/m-l \1/P

r.|(S l«»r)
\n=0 * /

for any m=l, 2,

(2.6)

The Banach space associated with YQ, Ylf ••• is denoted by DY (analogously to
Dx). Then (2.6) implies that \\a\\ Dy^CE\YQ\ \\a\\lp holds for all aefif. Hence,
from Proposition 2.1, we obtain

(2.7) (£| rol^'^tfC^Qfr, q)E\ YQ\ for all <? satisfying

(2.7) means the right inequality of (2.5). The left one is obvious for <?^1. D

Remark 1. The assumption (2.4) of the above theorem holds if Dx is of
type p. Conversely, since Dx is a Banach lattice of cotype 2, Maurey's theorem
assures that, if l^p<2f the assumption (2.4) implies the type p property of DX
([Ml], [PI]). Therefore, if l£p<2, we can equivalently replace (2.4) by the
assumption that Dx is of type p. We note that Maurey's theorem and our
result do not have mutual implication.

Remark 2. In the case p<2, we cannot claim q=p. In fact, ^-stable ran-
dom variables give a counterexample. In the case p=2, however, we can take
q=p=2. In fact, the inequality (2.6) implies (E\ y0i

2)1/2^3V6Tog~3 CE\ YQ\
accordingly to the discussion in the case p=2 (the inequality (2.1)).

There is a concept of spectrum which describes a geometrical structure of
Banach spaces. Here we recall briefly some properties of spectra of Banach
spaces. For details, we refer to [SI] and [PI]. The notation /£ denotes Rn

/ n \ l /P
equipped with the lp-norm : ( S U ( & ) i p ) for x^Rn. The Banach-Mazur dis-

\k=i /
tance between two Banach spaces E and F is denoted by d(E, F) (i. e. d(E, F)
=inf {I ITHIIT- 1 ! ! ; T is a linear isomorphism: £-»F}). A Banach space B is
said to contain /J's uniformly if, for any s>0, there exists a sequence (Fn) of
finite dimensional subspaces of B such that d(lp, Fn)^l+s for all n. The
spectrum of a Banach space B (denoted by Sp(B)} is defined by Sp(B)=
U^£^°°; B contains /J's uniformly}. A geometrical interpretation of Sp(B)
is as follows. Let p^Sp(B) and Fn be a corresponding n-dimensional subspace
of B. Then there exists an isomorphism T: /J->Fn such that HTIHIT^Il^l+s .
By an appropriate homothety, we can take \\T\\ = \\T~l\\^(l+£Y/z. Now cut the
closed unit ball of B by Fn. Then the section nearly coincides with the closed



744 AKIHITO HORA

unit ball of /£ (modulo isometry) for all n.
The spectrum of a Banach space B has the following properties:
(1) Sp(B) is a closed subset of [1, oo]
(2) 2^Sp(B) (This fact is known as Dvoretzky's theorem.)
(3) l<p^2 and p^Sp(B)=$[p, 2^dSp(B).

The property (3) comes from the fact that, for an arbitrary q such that q<ip<L2,
Lp is isometrically embedded into some Lg.

Moreover the following results due to Maurey-Pisier and Krivine are re-
markable :

(2.8) min S/?(£)=sup {l^p ; B is of type p},

maxSp(B)='mf {g^°o; B is of cotype q}.

Now let us return to our discussion. Since Dx is a Banach space of cotype
2, Sp(Dx) is a closed subinterval of [1, 2] whose left end point is the supremum
of type indices. We define Dp

x as the completion of Rf with respect to the
norm: \\x\\ D*. = |l2*(fc)^*IUpcfl). We denote by TP(B) the type p constant of a

Banach space B i.e. the smallest positive number C such that

holds for any finite sequence (xn) in B where (en) is a Bernoulli sequence of
independent random variables. Since ilS^nllz^^llSs^nllz^ holds if xn's are
disjointly supported, we readily obtain from Theorem 2.2 the following

Theorem 2.3. Sp(Dx}=[s(X\ 2] where s(X)=sup {l^p<2; Dx and Dp
x are

isomorphic}. Moreover if l<^p<s(X), their Banach-Mazur distance is estimated
as

(2.9) d(Dz, D&^2K inf A(r, P)Tr(Dx)
p<r<s(Z)

(K and A(r, p) are defined in (1.4) and (2.3)).

Thus, if Dx is so small that it cannot contain /£'s uniformly, then Dx must
be isomorphic to the small subspace (i.e. the closed linear hull of {Z0, Xlt • • • } )
of Lp(0, P).

§3. The Case of Continuous Time

Let (X(f)\^T be a time homogeneous additive process which is continuous
in probability and satisfies E\X(f)\<<x> for all t^T. Throughout this section,
we take T=R+. We assume that Jf(0)=0 constantly and EX(t)=Q for all t<=T
(otherwise we have only to consider X(t)-EX(t)-(X(0)-EX(Q)) instead of X(t)).
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Moreover we may assume without loss of generality that almost every sample
paths are right-continuous and have the left limit at each point, since any addi-
tive process which is continuous in probability can be equivalently deformable
to a process having this desired property. As for this fact, we refer to [II].
Then, for a finite subinterval /of T, we get £sup|Z(OI ^8£|Z(sup/)| using

tEiJ

Ottaviani's inequality and the right-continuity of X(t). Hence, by Lebesgue's
convergence theorem, lim E\X(t)—X(to)\=Q holds.

t-*t0

Put

Step(T)={Sc*/A* (finite sum); ck^R, Ak's are

mutually disjoint finite subintervals of T\

where IA is the indicator function of a set A. For x= S C f t / c ^ , « A +

put

(3-D l l* l lac*>=l l S Ck(X(tk+l}-X(tk}}\\Ll,Q,

Here we note that E \ X ( t ) \ is nondecreasing in if and, X(t)=Q a.s.&E\X(t}\
is degenerate at t=0 (i.e. for some <*>0, E\X(t)\=0 for all fe[0, a]). We
exclude this trivial case throughout the following discussions. Therefore we
assume that E\X(t)\ is strictly positive if £>0. Then IHUcjn becomes a norm
on Step(T).

We prove a simple proposition which estimates strength of IHIzxx) roughly.

Proposition 3.1. (1) IHUcx) is weaker than \\ • \\Lnnaj^ on Step(/) where J is
an arbitrary finite subinterval of T.

(2) IHbcx) is stronger than the topology of LQ(T) (which is by definition the
topology of convergence in Lebesgue measure} on Step (T).

Proof. (1) Let ^=Sc*/( t j f c l f j k + l 3eStep(/) . Then,

(2) Let ^eStep(T) and s>0. Express

where aj\^<\^k for all j and k. Then
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k

where m is the Lebesgue measure on T. Hence, \\x\\ Dw+Q=$E\X(m(\x\ >e))|
0. D

The completion of Step(T) with respect to the norm IHIzxx) is denoted by
D(X). We will describe the realization of D(X) as a subspace of LQ(T) in
Appendix to §3.

For x=Sc*/Hjfe, tA+1:eStep(T), put

(3.2) r

And for x^D(X), taking A^eStep (T) such that xn — > * in J9(Z), we put
7l-»oo

(3.3) f x(t)dX(t)= lim f xn(f)dX(t) (^(^-convergence).
Jr 7i-»oojr

If Z(0 is a /^-stable process (l</>^2), then D(Z) coincides with LP(T\ In
particular, if X(t) is a Brownian motion, then D(X) coincides with L2(T) and

\ x(t)dX(t) is Wiener's stochastic integral. Actually D(X) is nothing but the

set of those functions whose stochastic integrals \ x(s)dX(s) can be defined as
J o

J t
x(s)dX(s) <oo.

0
In the case of continuous time also, a similar result to Theorem 2.2 holds

as follows.

Theorem 3.20 Let l^p<2. Assume that there exists a positive constant C
such that, if (xn) is a finite sequence of disjointly supported elements of D(X)
(embedded in LQ(T)\ the inequality

y l / p(SlU.ll
n

holds. Then, for all q satisfying l<q<p, we obtain

(3.5) II f x(t)dX(f) <\\( x(t)dX(t)\\
H J r L1c^)~IUr l l i c f l )

\ x(t)dX(t) for all
JT L^Q)

In particular, under the above assumption, we get E\X(f)\q<.oo and
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*(fo)lfl=0 (for l^

Proof. Let <5>0 and Ad={Q=tQ<ti<t2< • • • } be a partition of T such that
tk+i-tk=d for each k. Put Fa={*eStep(T); x=ckl^k.tk+1

and Yk=X(tk+i)—X(tk\ Yk's are independent random variables whose distri-
butions coincide with that of X(d). For x=J}ckhtk,tk+1i^F8, we have IMUcx)

— \\(Ck)\\DY (as to the notation DY, see the proof of Theorem 2.2). Hence
(Fd, IHIzxJn) can be identified with (R$ , IHIz?F) by X++(CQ, clt • • • ) . From the

/ \1/p

assumption (3.4), we have \\^zn\\D<C(^\\zn\\Dp) if zn'$ are disjointly sup-
n * \ re F/

ported elements of J2f. Therefore, from Theorem 2.2, we get, for l^,

for all z^R$, and equivalently,

(3.6) x(t}dX(t) <:
ZiCfl)

for all

Since \J F5 is dense in D(Z) and the constant in (3.6) is independent of d, we
0>0

obtain the desired inequality (3.5). D

Remark. We cannot clain q—p if £<2, while, if p=2, we have the
inequality (3.5) at p—q—2 with a constant 3V6 log 3 C instead of KCA(p, q).

Characterization of the spectrum of D(X) has the same form as in the
discrete case. We denote by DP(X} the completion of Step(T) with respect to

the norm: \\X\\DP<Z<>= If x(t)dX(t)\\ and by TP(D(X)} the type p constant.
IJr l lLp(fi)

Theorem 3.3. Sp(D(Xy)=ls(X),2] where s(Z)-sup {1<P^2; D(X) and
DP(X) are isomorphic}. Moreover if l<p<s(X), their Banach-Mazur distance
is estimated as

(3.7) d(D(X\ D*(XD<2K inf A(r,

Appendix to § 3

We realize D(X) as a subspace of L0(T). The essentials in this appendix
were obtained through discussions with Y. Yamasaki.



748 AKIHITO HORA

Proposition A.I. Let J be a bounded subinterval of T and c a positive num-
ber. D(X)-topology and L0(T)-topology are equivalent on a set S^={zeStep (T) ;
\x\^c and x=Q outside J}.

Proof, We proved in Proposition 3.1 (2) that D(J£)-topology is stronger
than L0(T)-topology. Now we prove the converse implication on Sj. Let

and s>0. Express x=^ajI^lS+^pkI^k.tk^ where |a;-|^s<|/5J for

all j and k. Then

where m is the Lebesgue measure on T. This inequality implies the desired
result. D

For a bounded subinterval J of T and a positive number c, put

(A.3.1) Lcj={x^LQ(T); \x\<c a. e. and x=0 a.e. outside /}.

From Proposition 3.1 and Proposition A.I, we see LcjC.D(X] and £(Z)-topology

coincides with L0(T)-topology on Lcj. We note that f x(t)dX(t) and f y(f)dX(f)
JT Jr

are independent random variables if x and y are disjointly supported elements
of Lcj.

Remark. Put M(A)=( IA(t)dX(t) for a sum A of subintervals of /. Then
J T

M can be extended to an L^fi^valued (T-additive measure on / (see [D-U1],
Chapter 1). And

(A.3.2) f x(t)dX(t)=\ x(f)dM(t) for x^Lcj.
JT JJ

(The right hand side is an integration with respect to a measure M).

We define truncations of an element x of L0(T). Put, for k<=N,

x(f) if O^f^fe and \x(t)\^k
(A.3.3)

0 if t>k or

if O^^Jfe and

if 0^?^^ and

if t>k
We put
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(A.3.4) N(x)=suv\\x<*>\\Dw for
k(EN

and

D is a topological vector space with a fundamental system of neighborhoods
of zero: {{x<=D; N(x)<e} ; s>0}. Actually, as we see from Theorem A.2
below, N is a norm on D therefore D is a normed space. But here we need
not give a direct proof (which is not quite trivial). Clearly D-topology coincides
with D(Z)-topology on Lcj (in (A.3.1)) and \\x\\ D^=N(x) for

Theorem A.2. D is complete and contains Step(T) densely. Therefore we
obtain D(X}=D and

(A.3.5) \\x\\D<z>=N(x) for

Lemma. The following hold for

(1) N(x-x^) - >0
k— >oo

(2) JV(x)= sup ll^
k(=N

Proof. Since (zO) — %°"1}) is a sequence of disjointly supported functions,

(A.3.6) f x<k\i)dX(t)= il f (x™(t)-xU-l\V)dX(t)
JT J = 1JT

is a sum of independent random variables. Hence (A.3.6) converges in Lt(Q)
as ^-^oo if AT(x)<oo. This implies the property (1).

From the estimation

we obtain

(A.3.7) \\xlk'\\D^<\\x^\\D^+ sup ||xco_

The property (2) follows immediately from (1) and (A.3.7).
Since \x-x^\ ^ \x-x^\ holds, we obtain from (2) and (1)
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k—>oo

This completes the proof of Lemma. D

Proof of Theorem A.2. Lemma (1) implies that Step (T) is dense in D.
We prove the completeness of D. Let (#J be a Cauchy sequence of D. xn

converges to some element x in L0(T). Denoting by '<' an inequality which
holds except a constant factor, we have

The 3rd and 5th terms are arbitrarily small if m is sufficiently large and m<n
(Note that N(x^-x^^N(xn-xm) by Lemma (2)). So are the 1st and 4th
terms for fixed m and sufficiently large k by Lemma (3). Lastly the 2nd term
can be arbitrarily small if k is fixed and n is sufficiently large since j9-topology
coincides with L0(T)-topology on Lk

c,kikl. Thus xn converges to x in D. D

Remark. Theorem A.2 shows an ideal property of a Banach space D(X):
x^D(X), ;yeL0(T), | ;y| < \ x\ =} y^D(X). As for the values of D(X)-norm,
however, we have only \\y\\D<ix^2\\x\\D<iX) from | ; y | ^ i * l -

§4. Relation to Differentiable Shifts for Measures on RN

As we noted in the introduction, we state in this section the relation of the
spaces investigated in the preceding sections to the differentiable shifts for
measures. First we briefly recall the definition and some properties of differ-
entiable shifts. For details, we refer to [Bl], [Y-H1] and [Shi].

Let (V, $} be a measurable vector space and p a finite real measure on
(V, &\ We say that an element a of V is a differentiable shift of p if the
limit of t"1{p(A+ta)—p(A)} (as f->0) exists for all A<=$. The limit is denoted
by dap(A). The set function dap is also a real measure on V. The set of all
differentiable shifts of p is denoted by D^. We can prove that a^D^ holds if
and only if t~l(pta—p) is of Cauchy as £-»0 in the total variation norm IHIuar
of measures (where we put fjLta(A)=fjL(A+td)). The derivative da^ of p is
absolutely continuous with respect to p, whose density (ddaii/d^}(x} is called a
logarithmic derivative of p and denoted by l%(x) or l^(a ; x). Put \\a\\Dfi=\\dap\\var

for a^Dp. Clearly \\a 1^=11/511^^, ̂  holds for ae/)^. Let 0 be a set of .0-
measurable linear functional on V which separates V. For feCP and a^Dp,

we have fo3a^=<fl, 5>3i(5-/i) therefore |<a, f>! l |3itf-/i)ll«ar^l|3aA«Lar = l|fl|lv

Thus if V is sequentially complete in the weak topology a(V, 0), [Y-H1]
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Corollary to Theorem 3.1 shows that D^ is a Banach space with respect to
l l - l lv

Now we consider the case where V=RN and p is a product measure of a
one-dimensional differentiable probability v (we write fi=iS°). We write lv instead
of II for simplicity. For a— (a(£))fcejv^£^, we have

(4.1) W=J?0 «(*)«*(*)) >

(4.2) l|fl||^=P?llL1^)= sup || Jj

Here {/„(*(&))}*£# is a system of independent random variables on (RN, /j) with

the identical distribution and f IWO|dv(0<°°, f W0^^(0=0 hold. Thus, in the
J/2 Jfi

case where ^ is a product measure of one-dimensional identical probabilities,
the space D^ is one of those Banach spaces investigated in § 2 (the case of
discrete time).

Conversely we will prove that such J9/s cover all of Dx'§. That is, given
an arbitray real-valued random variable X satisfying E\X\<oo and EX=Q, we
can find a probability v on R whose logarithmic derivative /„ has the same
distribution (w. r. t. v) as that of X. We must exclude, however, the trivial
case where X=Q (a. s.) i. e. the distribution of X coincides with the Dirac
measure dQ since /v=0 (v-a. s.) would imply v=0 ([Y-H1] Lemma 3.1).

We begin with preliminary considerations. First let <p be a given strictly
positive function on R. We consider an equation

(43)

Let /(s)>0 and u be the probability which has the density /. Then (4.3) implies
that the distribution of lv with respect to v has the density <]). Now we put
(p=f/f and assume that (p is strictly decreasing. Integrating (4.3) on [_u, oo)
and changing the orders of integration, we get

(4.4)

Denote by h(u) the right hand side of (4.4). Differentiating (4.4) and using

(4.5) 9>-1a)=

If / is a solution of (4.3), so is an arbitrarily shifted function /(•+ constant).
This corresponds to the constant summand in (4.5). Thus we find a solution /
of (4.3) :
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(4.6)

Next let the distribution of X be a purely atomic measure whose support
is a finite set. Then the equation we should deal with is

(4.3)'

(where {a1} ••• , ara}=suppPz). Noting that d/ds exp (aks}/exp(aks)=ak, we
can construct a solution / of (4.3)' by patching the functions of the form:

Under these considerations, we prove the following

Theorem 4.1. Let X be a nontrivial real-valued random variable satisfying
E\X\<oo and EX=Q, Then there exists a probability measure v on R whose
density f satisfies f, /'eLiCR) and whose logarithmic derivative lv has the same
distribution with respect to v as that of X.

Note. The author's original proofs to Theorem 4.1 were accomplished in
the case where (i) the distribution of X is absolutely continuous with respect
to the Lebesgue measure or (ii) the support of the distribution of X is a finite
set. Afterwards Y. Yamasaki completed the proof in a general situation unify-
ing these two proofs.

Proof of Theorem 4.1. Denote by p the distribution of X. We divide the
proof into four steps.

(STEP 1) We define a function / which will prove to be one of the desired
solution. Put

(4.7) h(s)=( adp(a}.
J[s,°o)

h is increasing on (—00, 0), decreasing on (0, oo) and left-continuous. Moreover
h satisfies A(s)^0, A(-co)=0, A(oo)=0, /i(0)>0 and lim A(s)>0. Put

s-*o+o

(4.8) a = ' m f { s ; A(s)>0}, /3=sup{s;

(— oo<:a:<0<j3^oo). Denote by {sn}nGN the set of atomic points of p. Then
a^Sn^fi and h ( s n ) > \ s n \ p ( S n ) for sn^a, p. We express p as

(4.9)

where pl has no atomic points and dSn is the Dirac measure supported by sn,
Modifying (4.9), we put

(4.10) P/ = / D i + S 7 7 Z B a i B ,
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»•-••«•'
p(Sn) if Sn = 0

0 if sn=a, j8

And using this, we define

(4.11)

if

if s=0

if «<s<0

(—f corresponds to <p 1 in the preceding consideration before the theorem). 7
is left-continuous and increasing on (a, /3). Put

(4.12) ri=limr(s), r2=limr(s)
s-a *-j8

(— oo^^^O^^^00). The case ^=^=0 occurs if and only if p is a convex
sum of da and ^. In this case we can immediately verify the assertion of the
theorem (see around (4.3)'), so we shall assume fi<0 or f2>0.

We define f(f) on (—7-2, — fi) as follows: (i) If t=— p(s) for some se(a, ^),
we put

(4.13) /(0=A(s) (>0).

We can easily check the consistency of this definition, (ii) If there exists
no s satisfying f=— 7(5), we put

(4.14)

(then a<s£</3 and ^<— ^(s£)) and

(4.15)

(STEP 2) We prove continuity of / on (—7*2, 7*1) and extend / continuously
on R. To estimate \f(t)—f(t')\(—^<t<tf<—T^' we consider four possible
cases.

( i ) If £=—7(5) and t' —— 7(5') for some s, s'e(a, jS), we have

[ s ' , s )

Since /o^/o' and h(a)>Q on (a, 0), we see Hm \ f ( t ) - f ( t ' ) \ =Q.

( i i) If f=£—p(s ) for any se(a, )8) and f =—y(s') for some s'e(a, ]8), taking
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st of (4.14), we have t<— T(st)^t' and

I /(*)-/(*') I ̂  I /(0-/(-r(si)) I + 1 /(-r(s£))-/(n I
< h(st) | exp St(t+r(sty)-l \ + 1 f ( - T ( S t ) ) - f ( t > ) |

£'-£-»()*
(where lim|/(-f(st))-/(f ')!=() follows from (i)) .

(iii) If t—— r(s) for some se(a, £) and *'-£— f(s') for any s'e(a, ]8), taking
st' as above, we have t^—7(st'+Q)^t' and

I f(t'}-f(-J(st' +0)) | ̂  A(s t > ) | exp st> (t'

Moreover, noting f(—T(st'
 Jr^=h(st')-st'p(st'}=h(st' +0) since — r(st' +0)

we have /(-«
Si Si' r dp'Ca)

\ adp(a}. And since — r(s£ '+0)— f=\ — , , N , the same argument as
J c s j / , s ) Jcs^ . s ) /z(a-)Jcs j /
in (i) shows lim |/(-r(sr+0))-/(0|=0.

'

(iv) If t^—f(s) and ^ '^— 7(sr) for any s, s;e(a, £), taking s£ and s^, we
have, if st'<st, t<—Y(st)<^7(st>

Jrty<t' while the case st»=st is trivial. Then
we get lim \f(t')—f(t)\=Q from (ii) and (iii). This completes the proof of

t'-t-»0

continuity of / on (—f2 , — ̂ ).
Now we extend / continuously on R. Since p(a)=0 implies /(— ft— 0)=

)=0, we put

(4.16) /(0=0 on (-n, oo) if p(a)=Q.

But p(a)>0 implies f(—jl—^)=h(ajr^}—— ap(a). In this case we put

(4.16)' /(0=-a/tKa)expa(f+n) on (-fi, oo) i

Similarly we extend on (—00, —72) as

(4.17) /(f)=0 on (-00, -r2) if /o(j8)=0

on (-00, _r>) i

Thus we obtain a continuous positive function / on R.
(STEP 3) We show that / is differentiate except at most countable points

on R. The exceptional set is {fe(— fa, — ft); ^=— r(si)=— 7(s2) for distinct
slf s,e(a, jS)} U {-?(«), ~r(s+0); r(s)<r(s+0), se(a, j8)} W {-ft, -ft}- The
differentiability of / outside (—ft, —ft) and at if satisfying —
is obvious. And we have
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(4.18) /'(0=

if -r(s+o)<f<-r(s)
if t>-T

if t<-r

Hence the remaining case is the one where t=—7*(s) holds for some se(a, j8)
and —7 is strictly decreasing near s. To estimate f(tf)—f(t)/tf—t, we consider
two possible cases.

(i) If t' =—r(s') for some s'e(a, j8), we have

where we use also the fact that, for a fixed s, the difference between p and p'
are arbitrarily small in a sufficiently small neighborhood of s.

(ii) If *'=£— r(s') for any s'e(a, /3) and f < f , taking st- (see (4.14)), we
have ^-r(s(.+0)^'<-r(s£0 and

sn(S> '

These imply ^ , ^ w - > sh(s\ Quite similar is the case t'<t. Thus /
^ -f t'-+t

is differentiable at f and satisfies

(4.19) f ' ( t ) = s f ( t ) .

(STEP 4) Let v be the measure on R with the density /. We show that
the distribution of /'// with respect to v coincides with p. If s is an atomic
point of p', we have from (4.18) and (4.15)

/ f \ f - r (s)
(4.20) v(4-=s) = \ f(t)dt=

\ / / J -KS+O)

If a is an atomic point of p, we have from (4.18) and (4.16)'

(4.21) -
J ' J-n

Similarly, if /3 is an atomic point of p, we have from (4.18) and (4.17)'



756 AKIHITO HORA

(4.22)

If s is not an atomic point of p, we see from (4.19) that = s is equivalent
/ w

to f=— f(s). Hence, for a Borel set A containing no atomic points of p, we get

(4.23)

Thus (4.20), (4.21), (4.22) and (4.23) shows the desired result:

(4.24) v(-^B=p(B) for any Borel set B.

We see from (4.24) /, /'eLi(jR) noting that p is a probability on R satisfying

f |<7|d/D((7)<oo. D
J .R

Remark 1. Let 1<£5J2. A ^-stable random variable X satisfies the as-
sumption of Theorem 4.1. So we can construct a corresponding probability v
onR. If X is normalized to be E\X\=1, \\-\\DX=\\'\\IP holds on R$. Thus we
obtain a stationary product measure fjt=v°° such that Dp coincides with lp iso-
metrically.

Remark 2. We consider the case of continuous time. Let ft be a probability
on a space of functions on T=R+. If Step(T)djD^ holds, then, for x =

), we have

So, in this case, the problem is : how wide class of stochastic processes on T
does {^(/co.n; 3^)}^ cover? We have no satisfactory answers to this question.
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Added in proof. A remark about Theorem 4.1 and its note: After submitting the
revised version of this paper, the author was informed that H. Shimomura had succeeded
independently to complete the theorem in a general situation. His proof, which is simpler
than ours, will be soon published with some additional facts.




