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On a Geometric Realization of Ji(2)

By

Kouichi INOUE*

§ 0. Introduction

Let JL be the mod p Steenrod algebra and M be a bounded below left JL-
module of finite type. M is said to be realizable if there exists some spectrum
whose mod£ cohomology is isomorphic as Jl-module to M. For example, Jl
itself is realized as JL^H*(HZ/p ; Z/p). It is a general problem whether or not
given M is realizable, but there is no standard method to solve this problem.
So we have to try case by case. For many interesting cases, this problem was
solved. J. F. Adams [1] showed that there is no spectrum which realizes M =
Z/2-x+Z/2'Sq16x. E. H. Brown and S. Gitler [2] constructed certain spectra
B(fe) such that U*E(k)^tA/JL{7L(Sqi)\i>k}. H. Toda [8] stated that certain
algebraic properties of M assure its readability. In this paper we shall prove
that some more conditions give us useful information about the number of the
homotopy types of spectra which realize M. (Theorem 1.1)

JL(n) is a sub-Hopf algebra of Jl generated by |8, £l, ••• , &pn~\ with 5>*=
Sq2i for p=2. S. A. Mitchell [6] proved every JL(n) admits certain left Jl
module structure extended from its own algebra multiplication and also con-
structed finite spectra whose cohomologies are Jl(n) free. Hence we should ask
whether each JL(n) itself is realizable or not, because there exists a non-realizable
JL -module which is a direct summand of a realizable module.

Independently of Mitchell's work, D. M. Davis and M. Mahowald [3] gave
four different module structures on JL(l) (p=2) and proved the uniqueness of
the homotopy type of spectra which realize each Jl(l). For the case of JL(2)
(p=2), W.H. Lin [4] showed 1600 different JL -module structures. Theorem 2.2
gives an affirmative answer to the realization problem for JL(2) (p=2} with any
possible Jl-module structure and Theorem 2.4 shows the uniqueness of the
homotopy type of spectra which realize JL(2) with the specific ^-module structure
indicated by Mitchell [6].
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§1. The Number of the Homotopy Types

We work in the homotopy category of HZ/p*-local CW-spectra, because any
spectrum X has the same mod p cohomology group as its HZ/£*-localization X,
cohomology equivalence means (homotopy) equivalence and this category includes
usual bounded below ^-complete spectra. In larger categories, it might be im-
possible to count the homotopy types of spectra which realize the same JL-
module because of the existence of HZ/£#-acyclic spectra.

Theorem 1.1. Let M be a bounded below Jl-module of finite type with the
following properties :

(1) M ra^0 implies ExtsJ2's+n(M, Fp)=0 for s^l,
(2) Mn^Q implies Ext^'^CM, FP}=Q for s^2.
Then there exists a bounded below HZ/p*-local spectrum X such that M=H*X

as Jl-module. And let S be the set of the homotopy types of such spectra, then
the following inequalities hold : (Here \ S I means the number of the elements of

530

, M) | / ! AuUM) | < \ 53 I ̂  1 Ext^(M, M) | .

Proof. The existence of such a spectrum follows from Toda [8] by only
using the condition (1). We recall it for the further proof.

Fix a minimal resolution of M as ^-module:

s d1 d2 d5

0 < — M < — C° < — C1 < — C2 < ---- , where Cs-^®Exft*(M, Fp).

Cs is realized by a generalized Eilenberg-MacLane spectrum W8. And starting
from XQ=WQ, we can construct a sequence of spectra {Xs} satisfying the fol-
lowing conditions :

a) There are fibrations *2r*W^*X^*Xs-^^-*+lWs which induce exact
sequences :

k* if ?r*
Cs>s+n <^- HnXs <-^- HnXs_! <-^- C8's+n-1.

b) <5s+1=£*°7r*+1: CS+

c) There are split short exact sequences :

k*
0 — > M — > H*XS -4 ds+1(Cs+1) — > 0 .

Then the spectrum X=lim Xs realizes M.



GEOMETRIC REALIZATION OF JL(2) 777

*s

Next we prove any spectrum realizing M is homotopy equivalent to some
spectrum obtained by the above method. Let Y be such a spectrum, and gQ : Y
-+X0 be a map realizing e: C°=H*X0-»M^H*F. Since n^g^Q, gQ has a lift
gii Y-*Xi. Moreover there exists a map a: XQ-^^~1W2 such that a°g0— *2°gi,
because e is surjective. Even if we replace x2 by TT^T^— a°ilf we can proceed
the construction of another sequence of spectra {Xf

s} from which ^Y'=lim-3TJ
also realizes M, because each KS is required only to satisfy the above condition
b).

- lim X',=X'
I . I .

(**)

Now consider the Adams spectral sequence associated to this tower (**):

Exti*(H*X', H*F) =} [F, X']*.

Since we fixed a map gQ: F—> JT0 realizing e: C°—»M, there is one and only
one isomorphism j8: H*JT'—»H*F such that g*=i3°f'o*. (f's is a composition of
maps Jr'-> ••• ->jri+1-^JTi) And £eEEl'0=Hom^(H*JT', H*F) is represented by £0

in the spectral sequence. Since iC2°g\ = iC2°gi—(x.oi\ogi=iCzog\—ciogt = §^
[F, S"1^], we get d2(j8)=OeEl-1. And the condition (2) implies:

for s^2. So Ext^-'CM, M)^0, that is, d,+i(j8)=0. Thus there exists a map
5-: Y-*X' realizing /3. Since X' and Fare HZ/£*-local spectra, g is a homotopy
equivalence.

Next we construct a set function O which has S as its domain and the set
of subsets of ExtY(M, M) as its target. As studied above, the isomorphism
£': M=H*X-*H*X' is uniquely determined for any JTe]>] and any map /{: X'
—»JFo realizing s. We consider the Adams spectral sequence E?* = ExtJ*(H*X, H*Xf)

', X~]* associated to the tower (*), and put
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<S>(X'9 /J)=j8i-1(d.(j8/))eExt!i1(Mf M).

OPJtr, H*JT) — > Ext^CM, M)
UJ UJ

Let <S>(X')={Q>(Xr, /o) I for all possible /J's}, then <P has a property such
that ®(Jr')n®(X")^0 implies JTsJC". To see this, suppose ®(X', f'0)=

T /X, /'o), then from the above diagram,

Ext2-1 is defined as the (co)homology of sequence:

^* a3*
Horace1, H*X') — > Homi(C2, H*X') — > Hom^(C3,

t=

where the last isomorphism is due to the condition (1), and the vertical isomor-
phisms mean sending a map between spectra to its induced map between their
cohomologies.

So there exists a map hi X'-*^~lWi such that

i ^ - 0 0 ! * 0 ^ - n

And by taking maps a1 ', a" \ XQ-^^~1WZ such that

*»•/{=«'•/!, *.'/?=a*'/X,

we get the following equation :

/{*"(a'*-a**)=/i*o3a.

Again consider the Adams spectral sequence associated to the tower (**) :

'', H*JP) =^ [X', JT77]*.

Therefore j$'°fi"-1 is realizable, namely, Z'^-X'^.
On the other hand, for any [a°/o]eExt;V(M, M), we can construct a spec-

trum Xr from Tr^tfa-ao^. Then O(X', /J)=j8-1*[^2o/1']=[ao/0]. Thus we
can conclude:

JL O(JT)=ExtJk1(M, M),

where JL means disjoint union.
C^i C^i

Suppose the following situation: H*JT'< — M — >H*Xf. As studied above,
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jSl"1*d2(j80=lSJ"1*d2(j9J) iff ft'/Ja""1 is realizable. Thus there is a one-to-one cor-
respondence between ®(X') and Heq ( X')\ Aut jz(H* JT), where Heq(JT') is a
subgroup of Autji(H*Jf ') whose elements are induced from self homotopy equiv-
alences on X'. Then the inequalities in the theorem follow easily. (Q. E. D.)

Remark. It is very hard to calculate |Heq(J5T')| and, what is worse,
| Heq (X ')| may be different for each X' . So I had to find satisfaction in these
inequalities, regrettably.

§2. Realization of JL(2) (p=2)

Milnor basis of JL is an F2 vector space basis of JL written as
{Sq(ri, rz, r3f • • • ) | r^O}. See J. Milnor [5] for the further structures. Using
this notation, we can define JL(n) as a vector subspace of JL whose basis is
{Sq(rl9 rz, -•• , rB+1) | Q^ri<2n+2~i} . Pj is defined as Sq(Q, ••• , 0, 2s), where 2s is
occured in the t-th entry.

We consider the reindexed version of the May spectral sequence for
ExtX*(jZ(2),F2) according to D. C. Ravenel [7]:

}) F2) => ExtyM(2), Fa),
,/ . T?s,t,u _ ^ T?s+l, f ,w+ l -2 rU r . H,r *• £Lrr

Here, EQJL is the bigraded Hopf algebra associated with a decreasing filtra-
tion on Jl defined by setting \Ps

t\=2t— 1. In fact:

E0Ji = E(?I ; ^>0, s^O) , P{ : primitive.

Lemma 2.1. JL(2) has 1600 different Jl-module structures (Lin [4]), but every
E0JK2) has the same E0JL module structure such that:

Proof. JL has a free JL(2) basis {PJ, Pi, Pi, PJ, PJ} up to degree 23, the
maximal degree of JL(2). So weh ave only to show these are mapped into higher
filtration when they are applied to t, the fundamental class of JL(2). But this
is immediate because JL(2) has only such higher filtration degree elements in
the degree of P?.

I PJ I =1 , I Sq(5, 1) | -5, | S(7(2, 2) ] -4, | Sq(l, 0, 1) ] -6,

[ PI | -3 , | S?(6, 2) | =5, | Sq(3, 3) | -8, | S^(5, 0, 1) | -7, 1 5^(2, 1, 1) | =9,

I Pi I =5 , I Sg(5, 3) I =8, | Sg(7, 0, 1) | -8, | S^(4, 1, 1) | -9, | Sq(l, 2, 1) 1 -9,

I PJ | =7 , | Sq(6, 3) | -8, | Sq(5, 1, 1) | =10, | Sq(2, 2, 1) | -9,

I | -1 , | Sq(7, 3) | -9, | S?(6, 1, 1) | =10, | Sq&, 2, 1) [ =10, | S^O, 3, 1) | =11.

(Q.E.D.)
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Theorem 2020 For any Jl-module structure, JL(2) is realizable.

Proof. Ext|*J(F8f Ft)=*P(ht.j; i>0, /^O),

where deg hltj=(l, 2j(2i— 1), 2i— 1). Each /z l ) i7- is represented by [PJ] in the bar
complex. The above lemma and change-of-rings isomorphism induce :

Ext?**(Eou«(2), F2)-

where E=E(Pf ; £>0, s^O, £+s>3) and h'itj is an image of h i t j through the map
E0<J(2)->F2.

ExtS**(Fa, F2) — > ExtJJS(E0u*(2), F2)
UJ UJ

;7 . , __ > hf .fii,} ' ^ 'H..7

In the Ei-term, there is one element which might survive in the Ero-term
and give some non-zero element of ExtsJ:2's+n(JL(2), Fz} for s^l, 0^n^23. To
say precisely, since deg h[,5=(lr 8, 1), h[s

tt
2 is the lowest degree element in

{^|degz=(s+2, *, *)}. But deg /^2==8(s+2)>s+23 for s>l, so the element
mentioned above is h(,**.

d2(hi,z
2)=hizs, however, because the corresponding differential in the May

spectral sequence for ExtJ*(F2, JP2) is

HI
,*•>)

UJ

11
*2,22 ' ^ /Z l ,2 2 ' /Z l , 4 -

Therefore for any JL-module structure on JL(2), we can conclude
Ext^2's+n(cJ(2), F2)=0 for s^l, 0^n^23, that is, jl(2) is realizable. (Q. E. D.)

Note. We cannot proceed the same approach as the above for the realiza-
tion of JL(n) (n>2), because there might survive many elements in the Eoo-term
so as to generate obstructions in Extfj"2>s+m(J^(n), F2) for s^l, 0^77^^maxdeg
JL(n). For example, AI,42-^,oeExt|'0

8J11(E0cJ«(3), F2) is a permanent cycle, be-
cause there exists no element in E?'63 '* whose filtration degree is greater than
11, and EP'*-0 for f<64.

Next we will prove the uniqueness of the homotopy type of spectra which
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realize JL(2) with the specific JL -module structure indicated by Mitchell [6]. I
calculated in my master thesis its explicit presentation form as follows.

E 8l 8Z

Proposition 2.3. 0^-c^(2)^-jl<— C1<-C2^-0 is an exact sequence up to degree
27, where C1 and C2 are free JL -modules whose bases are {blt bz, b3r b±, b5} and
{0i, &2, s3, e*}, with their degrees:

deg ei=16, deg 02=20,

dl and dz are defined as follows :

dl(b3=Sq(S)+Sq(5, l)+Sq(2, 2)+Sq(l, 0, 1),

31(W=S^(0, 4)+S<?(6, 2)+S^(5, 0, 1)+S^(2, 1, 1),

ai(&,)=S^(0, 0, 2)+Sg(5, 3)+S^(7, 0, 1)+S^(4, 1, 1)+S^(1, 2, 1),

d\bJ=Sq(Q, 0,0,1),

, l)+Sq(2, 2)+Sq(l, 0,

, 4)+Sg(6, 2)+S^(5, 0, 1)+S^(2, 1,

)}62+S^(3, 1)6,,

«"(*»)= {S?(0, 0, 2)+S^(5, 3)+S^(7, 0, 1)+S^(4, 1, 1)+S^(1, 2,

+ {S^(1, 3)+S^(3, 0, 1)+S^(0, 1, l)}bz+{Sq(8)+Sq(2,

3>(eJ=Sq(Q, 0, 0, l)bl+{Sq(S)+Sq(59 l)+Sq(2, 2)+Sq(l, 0,

Proof. We can get them by a routine calculation. (Q. E. D.)

Theorem 2.4. There is one and only one homotopy type of spectra which
realize JL(2) with the Jl-module structure indicated by Mitchell [6].

Proof. We proved ExtsJ2-s+n(Jl(2\ F2)=Q for s^l, 0^7^23. But the fact
that d2(^2,2)=/ii.3 also implies:

2)=0 for

So we must indicate Ext^1(c^(2), JZ(2))^0, in other words,

is surjective.

Homi(C2,
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An easy calculation concerning dz verifies this statement. (Q. E. D.)
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