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Dirichlet Series and Convolution Equations

By

Carlos A. BERENSTEIN* and Daniele C. STRUPPA**

§ 0. Introduction

In this paper we wish to propose a totally new approach to the theory of
Dirichlet series, with the hope that our method will be able to shed new light
on some old problems in the area.

Our viewpoint is to consider Dirichlet series as a very particular case of
solutions of homogeneous convolution equations, and to consider these objects in
the framework of a general theory of Fourier analysis on non-algebraic varieties.

In view of the character of this paper (which has to be considered prelimi-
nary, even though a relatively large number of results is obtained), we would
like to briefly describe the philosophy which underlies our approach. From a
historical point of view, the theory of Fourier integrals has been devised to be
able to represent an "arbitrary" function as a linear combination of exponentials.
Thus, functions on R (or Rn) which are sufficiently small at infinity, were
given such representations with the use of exponentials with real frequencies.
When larger growths at infinity had to be handled, it became necessary to
allow the use of exponentials with complex frequencies and, as an immediate
consequence, the Fourier integral representations became essentially non-unique,
as every exponential exp(jc-z), z^C, has many integral representations (via the
Cauchy formula) as a limit of linear combinations of exponentials. In the sixties,
these natural considerations led L. Ehrenpreis to consider Fourier integral rep-
resentations of (for example) C°° functions, with the specific purpose of finding
out the existence of subsets S of C (which Ehrenpreis called sufficient sets) such
that integral representations could exist with frequencies in S. Ehrenpreis
developed a quite powerful theory (the so called theory of ^4t/-spaces [7]) with
the idea of studying integral representations with exponentials whose frequen-
cies were restricted to belong to some algebraic variety in C (or Cn). This
study, in particular, provided a wealth of results on solutions of systems of
linear constant coefficients partial differential equations (in which case S is the
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algebraic variety known as the characteristic variety of the system). This is
essentially the content of Parts A and B of [7].

It turns out, however, that there are many interesting cases in which one
cannot restrict the frequencies to some algebraic variety. This happens, for
example, when looking to the very classical results on analytic continuation,
such as the Fabry gap theorem [14], when the functions to be studied are
analytic in some half-plane, and have a representation of the form

/(*)=§ c,exp(*fl,z), (0.1)

for {dj} a sequence of complex numbers. A similars ituation occurs in the study
of Dirichlet series [6], which are again holomorphic in some half-plane, satisfy
suitable growth conditions, and have a representation such as (0.1); it is then
clear that (in these cases) the sufficient set is a sequence {a,-} of complex num-
bers and therefore far from being an algebraic variety in C.

The way Ehrenpreis dealt with these problems (in Part C of [7]) was to
consider {a,-} as a sequence of algebraic varieties, and to try then to apply his
results on such varieties.

Our approach in this paper (which we partially anticipated in a paper [2]
where the simpler case of the Fabry gap theorem was dealt with), consists in
considering {a,} as an analytic variety which arises as the zero set of an entire
function satisfying suitable growth conditions (which are dictated by the growth
of {a3} itself). In this framework, representations such as (0.1) are just a
particular case of more general representations for solutions of convolution
equations in spaces of holomorphic functions with growth conditions.

Let us now describe more precisely the contents of our paper. In Section
1, we introduce the weight p(z)=\z\p, p>l and the space AP,0(F) which will
be our main interest; for F a cone in C, ApiQ(F) is the space of functions
which are holomorphic in F, of order ^p and minimal type (see (1.2) for the
precise definition). Theorem 1.1 is a Paley-Wiener type theorem which charac-
terizes the dual space AP>Q(FY, identifying it with a space of entire functions
whose growth is bounded by a weight which reflects the non-symmetry of AP,0(F).
By taking f j t ^ A p i Q ( F y , f^Api0(F) one can define /ji*f which turns out to belong
to a space Ap, Q(F), with f a cone depending on F and p.; the chapter ends
with Theorem 1.3, where it is shown that, under natural conditions, /** is a
surjective operator. All of this is, so to speak, preliminary to section 2, where
interpolation in (AP,0(FY)" is studied. The main results of this section are
Theorems 2.4 and 2.5 which completely describe the space of functions f^Ap,0(F)
such that //*/=0; in particular, Theorem 2.5 shows that such functions have
the series representation (2.8) which naturally generalizes (0.1). Section 3 finally
applies this whole theory to the study of Dirichlet series of the form
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2cnexp(-,U), {/USC. (0.2)
71 = 1

In particular, Corollary 3.1 shows that (under natural hypotheses on {An})
if a series such as (0.2) converges in some cone F to a function in Ap,0(r),
then it actually converges in C to an entire function in Api0(C). Deeper results
(Theorem 3.3 and Corollary 3.2) give growth conditions on the coefficients cn

which appear in (0.2). Our results, as it is clear, only hold for Dirichlet series
whose frequencies {%n} are zeros of functions in (Ap,0(r)')~ and therefore we
have a precise control on their density, in particular, it has not escaped our
attention that even more interesting results could be obtained by replacing the
weight p(z)= z\p with the weight p(z)=elzl, as in this case the {J.n} might
become more dense; for the time being however, we have not yet been able to
deal with this case, as the interpolation theory would become, here, more
complicated: we plan to return to this question in the near future. The last
section of the paper deals with the problem of generalizing our method to the
case of several variables. As we pointed out in [2], this question (in principle
at least) does not give rise to new difficulties, but the details are not always
easy to work out. In order to clarify the situation, we examine, in Section 4,
the case of convolution equations in H(Q) for Q^Cn an open convex set (i.e.,
we look at a particularly simple situation, from the point of view of the
weights), and we prove a several variables version of the Fabry gap theorem
and other related results.

Acknowledgement. The second author expresses his gratitude to the De-
partment of Mathematics of the University of Maryland, where part of this
work has been carried out.

§1. Convolution in Ap,Q(r): Preliminaries

In this section we develop some preparatory material on convolution equa-
tions in spaces of holomorphic functions with suitable growth conditions.

Generally speaking, these are problems which have already been studied in
many different situations [1], [3], [4], [5], [16], [17], but the specific spaces we
have to deal with (and which originate while studying Dirichlet series) present
some new difficulties which make it impossible for us to refer to any previous
work.

Throughout the remainder of the paper, p>l will be a real number, and
a>l will be its conjugate, i.e., p~l+a~l = l; p=p(z) and q—q(z] will, respec-
tively, denote the subharmonic functions on C, p(z)=\z\p and q(z}—\z\a. To
begin with some familiar spaces [4], [5], we will denote by AP(C) the space
of all entire functions f^H(C) such that, for some A, B>Q,
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This space (with its natural topology) is usually known under the name of the
space of entire functions of order ^p and finite type. On the other hand, one
can also define the topological vector space AP,Q(C) of entire functions of order
<Lp and minimal type, i.e., those functions f^H(C) such that Vs>0, BA£>Q
such that

An important relation can be seen to link all these definitions [18] ; let
AP(C)' denote the strong dual space of AP(C\ i.e., the space of continuous
linear functionals on AP(C) endowed with the strong topology: one can then
define the Laplace transform of a functional fjt^Ap(CY as the entire function

fi(w}= p(z \ — >exp(— zw)) for z,

and it can be shown that (with the obvious meaning of the notations) [18]

and conversely
(1.1)

We now describe a considerably more complicated situation, which is the
one we need to develop in order to study general Dirichlet series. Consider an
open convex cone F, contained in /7+={zeC:Rez>0} with vertex at the
origin (this restriction, of course, is not necessary); for the sake of simplicity,
we will suppose that F=\z^C: —<p<argz<<p}, for some ^?e(0? rc/2] (so that
F=II+ for <p—K/2}} we now denote by AP>Q(F) the space of all functions
/eJf/CT) such that, for all s>0 and for all cones F'mF, (by this we mean
both that the vertex of F' is in F as well as the opening of F' is strictly
smaller than that of F)

|/(*)|^Cexp(e/>(z)), for z^F', (1.2)

for some constant C = C(e, F', /)>0. We will endow AP>Q(F) with the projec-
tive limit topology which (1.2) naturally induces.

Our first objective is to find and prove the analogous to (1.1) for Api0(F).
The first step, of course, consists in identifying the space Api0(Fy of linear
continuous functionals on ApjQ(F); we observe, first of all, that a linear con-
tinuous functional on ApiQ(F) can always be described by integration against a
measurable function u, supported in some cone

for some c^R+ and ae(0, <]j), and such that, for some A>Q,

\ u(z) | ̂ const. exp(—Ap(zy) , z^K, (1.3)



DIRICHLET SERIES AND CONVOLUTION EQUATIONS 787

K is shown in the following picture:

Therefore, to any u^Ap,Q(ry we can associate (in a non-unique way!) a value
c^R+ and an angle ae(0, <p}', if u is supported by K=K(a, c), then u is
supported by any K'=K'(af, c') with c'^c, a^af .

We now wish to define the Laplace transform of a functional
to do this, we first notice that the functions

belong (as functions of z] to ApitfJT), for every choice of w^C ; we therefore
define the Laplace transform on Ap^(Fy by the following formula:

}=(u, exp(— z-w)y=\Jc

where dA is the Lebesgue measure on C, i.e.,

u(w)=\ u(z)exp(—Z'w)dA(z). (1.4)
JK

Let us now write w, the dual variable of z, as w=\w\exp(i<p), ^^[0, 2;r),
and define the following auxiliary function

(which is a function of the argument of w and also depends on the angle a)
as follows:

0
COS(TT — a— <p)

0
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__

2 K/-plane

x+a

Theorem 1.1. Ap,Q(ry is isomorphic, via the Laplace transform, to the
space of entire functions f^H(C) such that, for some 5>0 and some ae(0, <p\
satisfy the inequality

| f(w} | rgconst. exp5 1 w \ afi((/> ; a)a — ~Re(u;) . (1.5)

We will denote by CAp.oCOT this space.

Proof. Let u^Ap,Q(ry, with supp(w)d#", and consider its Laplace transform
(1.4). By (1.3) we get (with a constant A which depends on u]

(1-6)

By the definition of K one has z=c+reie, with — a<*d<a, hence

Re(— z-w)= —

where, of course, a depends on our choice of K, which in turn depends on u
(but always ae(0, ^)). To compute the maximum in (1.6) we first estimate
cos(0+p). A simple computation shows that — cos(0+p)<0 for 0^^><(^/2)— a
or (37T/2)+tf<^<;27r while max(— cos(^+^)))=^(9; a)=f) for all other values of

(p. Therefore, the maximum to compute is given by

maxfr | w \ B— Arp— c \ w \ cos u>} .
r>0

Taking the derivative with respect to r we get that the maximum takes place
for r such that

\ w \ f l -
i.e.,
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which gives as maximum value:

l

with o — —^-—>1. That is,

| <;const. exp c(p) AlKp-^ —c Re(w) . (1.7)

On the other hand, if /3=0, the maximum is still given by the previous expres-
sion. Notice also that cRe(w)=c\w \co$(p is positive when /3=0, and so the
estimate (1.5) follows by taking

Of course, the bound in (1.7) is more precise, at it shows the relations between
the bound of u, those of u and its support. We have, therefore, proved that
(Ap,0(ryy is contained in the space of entire functions with bounds given by
(1.5).

To prove the converse, let u^AptQ(ry be represented by a measurable
function on R2, which we still denote by u, supported by a suitable cone
KdR2, and satisfying (1.3) in K. We can now define the Fourier transform
of u (as a function on R2} by

, 30- (1.8)

In (1.8), the variables x and y are real variables, while rj, £ are complex vari-
ables, as <3u is now defined on C2 (while u, the Laplace transform defined by
(1.4), is defined on C); we remark that the integral in (1.8) is finite, as it only
uses values (x, y) in K, where u decreases fast enough. An immediate direct
computation shows that the Fourier transform of u satisfies the following bound :

. (1.9)

The usual Paley- Wiener type of argument shows that, indeed, (1.9) characterizes
the space <S(Ap>0(ry) of those entire functions which are Fourier transforms
(defined as in (1.8)) of elements of AptQ(ry. One can now see that the growth
provided by (1.9) coincides, for C=ny, with the growth given in (1.6), identifying
z with (x, y} and (wlf w2} with (771, 7?2). To conclude the proof of the theorem,
it is now sufficient to consider an entire function f<=H(C) satisfying (1.5) (or,
equivalently, (1.6)); by using the standard Hormander's extension result from
algebraic varieties, (see e. g. [8]), we can extend / from C to an entire function

by identifying Cc.C2 with the subvariety {(rj, Q^C2: C="?h and F
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satisfying the bounds (1.9). By applying the inversion theorem we just men-
tioned, F—^u for some u^Ap,Q(Fy, and therefore f=u for the same u, D

Remark 1.1. i) Because of the construction we have followed, one can
easily show that \w\aj$a is a subharmonic function.

ii) (Ap,Q(ry)~ is an algebra under pointwise multiplication.

We now proceed to the study of convolution equations in the spaces
ApiQ(Fy defined before; let fjt^ApiQ(Fy be represented by a measurable function
<p supported in some convex cone K, with vertex at c and satisfying there the
correct growth conditions: for f^Ap^(F} define

In order for x+t to remain in K one needs, as t^F, that x be such that

K-{x}^F,
in other words,

so that fJL*f(x) is defined in c—P.

Note that, since

and since ~- also belongs to Ap,o(F), we can take derivatives under the integral

sign to deduce that ^f^H(c-F). An observation which will be needed in
Section 3 (where we shall deal with Hamburger type theorems) is the following :
if f^Ap>Q(F)r\H(C), then //*/ can be defined as an entire function; indeed, for
a fixed x (or x in some compact set) we can write K=K0\J(K\K0), with K0

bounded and such that the set (K\K0)—x is still contained in F, so that

<p(y)f(y-x)dy ;
K\KQ

this shows that /£*/ is well defined for
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all x<^C, since f(y — x) is bounded on KQ because KQ is a bounded set, while
no problems arise on K\KQ where / satisfies the necessary growth conditions.
Finally, it is easy to show that p*f is an entire function as well.

We now investigate the growth of p*f, for f(=ApiQ(F) and {jt<=Ap,0(Fy.
Let ft be represented by a measurable function <p, supported by some K as
before, and such that, on K,

Iptol^expC-Blzl") (1.10)

for some B>Q (notice that if (1.10) holds for some positive B0, it then holds
for all positive B^Bo). Take now a cone F'mF, where, by (1.2), we have

we then obtain, for x such that K— {x}^=

Since

one deduces that

-B x+t

D

hence, by taking g< l (which is allowed in view of the projective limit

structure of Ap,Q(r», we get, for some D'=D'(e, F', /)>0

\P}t (l.H)

for all x in C such that K— { x } d F f . Note that, in (1.11), the constant B can
be made as small as we wish and that, as Ff exhausts F, the inequality (1.11)
holds in a corresponding sequence of cones exhausting c— F ', we have therefore
shown that, for
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Remark 1.2. If we let /£* act on Ap,^(F}r\H(C}, we will get, as a result,
an entire function whose growth can be controlled (by the weight p(z\ but
with different constants) on each translation (along the real axis) of the cone
c-r.

To complete our preliminary study of convolution equations in ^.oCT), we
need to characterize the dual space of Ap>0(c— F); its elements are, of course,
measurable functions <p, supported in some closed cone K contained in the
interior of c— F, with vertex on the real axis, and whose growth is bounded,
on K by exp(— Bp(z}\ for some positive constant B. The space of their Laplace
transforms is characterized by

Theorem 1.2. Ap,Q(Fy is isomorphic, via the Laplace transform, to the space
of entire functions f^H(C) such that, for some d, J3>0 and some
satisfy an inequality of the form

\f(w}\ ^

This space of entire functions will be denoted by (ApiQ(c— .T)T«

Proof. This result can be obtained as an immediate corollary of Theorem 1.1.
Indeed, if u^Ap,Q(c—F), (we identify the functional and the measurable
function which represents it) then it is immediate to verify that the function
f(z) defined by

v(z)—u(—z—c}

gives an element in Ap>Q(Fy, and therefore (by (1.7), and for some d>Q de-
pending on K},

\v(w}\ ^ const. exp[c(p) ^'J^ -d Re(u;)] .

But, by definition, and with t—— z— c

from this we conclude that

Finally, since arg(— w)= arg(u;)+;r, we apply (1.7) to obtain the desired in-
equality. n

According to the usual approach in the theory of convolution equations
{see e.g., [4], [16]), we consider the transpose of the map
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which is, again, a convolution

t**': Ap.0(c-ry-+A
defined, for v^ApiQ(F) and ueAp>Q(c—ry, by

Let us now take the Laplace transform of this map :

Now notice that, since u belongs to Ap,Q(c— F)', u(—w) has the growth which
one would expect; to be more precise, from Theorems 1.1 and 1.2 one gets

\ft(w)\ ^

Hence, u(—w)- fi(w)=((fji*'uT)(w} belongs to (.Ap.oCOT, and multiplication of
induces a continuous map between

and (Ap>Q(ryr.
We can now deal with the problem of surjectivity of such convolution

operators :

Definition 1.1. Let ^e^Lpi0CF)' have a support m K={z^C :z=c+reie :
—a<,6<.a] for some c<=R+ and «e(0, ^). Then ^ is said to be (p, F}-slowly
decreasing if, for any s>0, there exists a sequence of {rn}n=i> ^n/"+co, with

rn for some ^4>1, and a constant D>0 such that

e|ii; |), (1.12)

on the boundary of each of the following regions:

: O^arg w^(n/2}-a}\j{w^C : (3^/2)+«^arg w^2n}. More sim-
ply, one may ask that Vs>0, 3{rn} as above, such that the components of
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{w: 1 fi(w) | ̂ Z)exp(— e|w; |)} do not cross the boundaries of H%*\

Remark 1.3. A simple class of examples for Definition 1.1 can be built
with the use of infinite products. Let zn be a sequence of complex numbers
such that zni=-§, Hm n/zn=Q, z-n——zn, and such that there exists a strictly

7l-*+oo

positive constant M>0 such that \zn— zm\^M\n— m\ (for any two integers
n, m); it is well known (see e.g., [14] thm. XXXI) that, under these conditions

£2

- is a well defined entire function of exponential type zero,
n=l \ Zn '

i.e., for any s>0 there exists Ce>0 such that

Observe that / is the Laplace transform of an analytic functional p carried by
the origin, so that p* acts on Ap,Q(r) as an infinite order linear differential
operator with constant coefficients (in this case K={0}, so that both c and a
vanish). Now, the theory of infinite products (see e.g., [13]) shows that /(£)
satisfies (1.12) everywhere, except on small neighborhoods (of diameters de-
creasing to zero) of the points zn ; this shows that /* is slowly decreasing
according to our Definition 1.1.

The interest of Definition 1.1 lies in the following:

Theorem 1.3. // p^Ap,0(ry is (p, F)-slowly decreasing, then

i.e., ££* is surjective.

Proof. Standard functional analysis shows that we must prove that
ft'(ApjQ(c—ryr is closed in (Api0(F)T; therefore it suffices to show that
whenever /e(Api0(F)T and f/ft is entire, then f/ft<=(Ap,Q(c-r)T. To do this
we first remark that both / and ft have exponential growth a and finite type,
and so (by a variation of the Lindelof theorem) f/ft is, as well, of exponential
growth a and finite type. We now use the fact that, on #<">,

I f(w) 1 <: const. exp(— c Re(i0)) ~ const. exp(— c \ w \ )

while (for d>Q depending on the support of /i)

| ft(w)\ ̂  const. exp[(cf— c)Re(u;)] ~ const. exp((d — c)\ w | ),

so that, choosing e<c, we get that, outside each H^a\

t. exp(— c ' l ^ l ) , (1.13)

for some c'>0. Applying the maximum modulus theorem, the same estimate
can be obtained inside H^, so that (1.13) actually holds on #ca), with f/ft



DIRICHLET SERIES AND CONVOLUTION EQUATIONS 795

which is (globally) of exponential growth <s and finite type. To prove that
f/ft has the growth prescribed for the elements in (Ap,Q(c— jT)T, we now take
a'>a, so that /i is certainly supported in a cone K' , K'<^F of opening a' and
of vertex c—s (for e sufficiently small). We now see that, on #Ca/:>, f/ft is
bounded by const. exp(— c' \ w |), as we wanted to show. The same estimate
holds in #ca)\#<a'>, and it is certainly smaller than const. exp(c(/tO|u;| */}*).
Finally no problem arises outside #ca) ; this proves the theorem. D

§2. Convolution in Apt0(r): Interpolation

In this second section we deal with the more sophisticated aspects of the
theory of convolution equations in Ap,Q(r\ namely those which are related to
interpolation problems.

In what will follow, we shall assume p^AptQ(ry, and, for D>Q and s>0,
we will denote

\) if

\ fl(w) \ <D exp(— s | w \ a) otherwise} .

All other notations remain unchanged. Our first basic tool is the following
semi-local to global interpolation result:

Theorem 2.1. Let s>0 be sufficiently small, D>0, and let 1 be a function
analytic on S(fi; e, D) such that, for some constants C, B>Q,

on S ( f l ; e , D ) . (2.1)

Then there exists ^(Apt^TyT and 7 holomorphic on S(fl; e', D') such that

t(w}=Z(w)+r(w)fi(w) on S(fl ; e', D1}
and

)) on S(2 ; e', D'\

Proof. Even though the proof follows well known lines, it is worthwhile
repeating it, in view of some differences with other related results. First,
one can choose s'<e, D'>D and XeC°°(C) so that O^X^l, 1=1 on
S(ft ; s', .D/)CS(/5, s, D), I has support in S(ft ; e, D) and

)) , (2.2)
where we denoted

Notice that the possibility of obtaining (2.2) depends on the fact that, separately,
\w \°fi(w)a and \w\ are subharmonic functions, and that C can be divided into
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sectors in which either one dominates. Then, both II and [d(ll)/dz~]/ ft are
both C°° functions (since 5(7,2) vanishes on S(ft ; ef, D')) and (for e' small enough
with respect to 1/B)

By applying the L2-methods of Hormander [8], one finds
A"exp(0B,,(w)) such that df/dz=d(7,l)/dz, and the theorem now follows by taking

snce

while (2.1) implies both that Ae(^4pi0(/ir)')/s and that the estimates on y hold.
(Note that 7 is, in fact, analytic in S(/2, e'f DO). D

Remark 2.1. Theorem 2.1 is weaker than the usual semilocal to global
interpolation theorem. This is due to the fact that, in S(ft ; e, D), we do not
use 9B(w), but only a part of it ; this, however, is of no concern, as for slowly
decreasing convolutors small values only have to controlled on //Cfl), where
— \w\ and 9B(w) essentially agree. The importance of this fact will be clear
in the sequel.

We now recall some basic definitions, which we adapt to our situation: in
the sequel V={(zkt mk)} will be a multiplicity variety in (7, i.e., {zk} is a
discrete set of points which do not accumulate anywhere, and mfc is an integer
bigger than or equal to one. It is clear that, for any entire function f&H(C),
f defines a multiplicity variety V(f), where the zk are the zeros of / and mk

represents the multiplicity of zk as a zero of / : conversely, the most elementary
interpolation theorem (Weierstrass Theorem) shows that for every multiplicity
variety V, there always exists f^H(C) such that V=V(f). If V={(zk, mk)\ is
a multiplicity variety, we can consider the ideal

I=I(V)={FeH(C): F vanishes at zk with multiplicity

bigger than or equal to 7nk},

and clearly two functions h, g(=H(C) can be identified modulo / if and only if

It can be shown, moreover, that given any sequence {ak,L} with k=l, 2, ••• ,
Q^l<mk, there exists F^H(C) such that its l-th Taylor coefficient at zk is
ak,i, so that H(C)/I can be identified to the space of all sequences {ak,i} ; we
will denote (as customary) H(C)/I by H(V), and the natural map

pv=p: H(C)-+H(V)
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which associates to an entire function F, its equivalence class modulo / or,

equivalently, the sequence |——~irr(z*)\ °^ ^ts Taylor coefficients, will be

called restriction map.
It is our purpose to study the image, under the map p, of the space

(Api0(ry)~C.H(C), when Fis the multiplicity variety of ft, for some fi^Ap,0(ry,
and to discuss some related interpolation problems.

Definition 2.1. Let V={(zk, mk}} be a multiplicity variety. The space

is defined to be the space of all functions { a k , t } ^ H ( V ) such that, for some
C, £>0,

mk~l

S |a». ( |£Cexp(eB(z»)), 6 = 1,2, . . - . (2.3)
1 = 0

Remark 2.2. When the multiplicities satisfy good bounds, i.e., when

m*=0(exp(e*(**))), *=l ,2 f -

for some B>Q, then (2.3) is equivalent to the simpler

\ak,l\^C1exp(0Bl(zk))} k=l,2,~- (2.4)

for some Clt #i>0.

Remark 2.3. It is clear, from the definition of 9B(w\ that

Definition 2.2. V will be called an interpolating variety (with respect to

Remark 2.4. Characterizations of interpolating varieties for a wide class
of weights are well known whenever F=C, [4], [12], but this seems to be the
first paper (together with [2]) in which the case of a cone F^C is considered.

Theorem 2.2. Let f^(ApiQ(Fyr be (p, F}-slowly decreasing with multiplicity
variety V={(zk, mk)} and suppose that, for s>0 sufficiently small, and some
J9>0, the components of the set S(f ; s, D) contain at most one point of V. Then
V is interpolating.

Proof. The first step is to recall that, with the notations of Section 1,
f^Aq(C) and that (see [4]) every non-zero function is slowly decreasing in
Aq(C). Therefore, in view of our hypotheses, and of Corollary 2 in [4], V(f) is
interpolating in the sense of Aq(C). Therefore, if {aktl}^(A
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there exists F^Aq(C) such that pv(F)={akt J. Clearly F does not necessarily
belong to (^Ip.oCOT, but we can use it to produce the function we need. For
this purpose, consider the components Uj of S(f ; s, D); notice that since / is
(p, J7)-slowly decreasing, the components Uj do not intersect the boundaries of
the regions H^ associated to e, D. We now define 1 on S(f ; s, D) as follows :
if Ujr\Hw = 0, l=F\u., while if UjC.Hw, we have two possibilities: if there
exists zk^Uj, we set

(by hypothesis, no other points of V are in f/^-), while we set 1=0 if UjC\V=0.
The function I which we have constructed in this way clearly satisfies the
right bounds, and therefore the theorem follows immediately from Theorem 2.1. D

Remark 2.5. As in Remark 1.3, infinite products can be used to provide
concrete examples of interpolating varieties.

The same argument employed in the proof of Theorem 2.2, together with
some geometric results of W. A. Squires ([15]), shows that we can rephrase
differently our result, to provide a more geometric sufficient condition for inter-
polation :

Theorem 2.3. Let f^(ApiQ(Fyr be (p, F)-slowly decreasing with multiplicity
variety V={(zk, m k ) } , and let n(zk, t) be the number of points of V\{zk} whose
distance from zk is less than or equal to t. Suppose that, for some e>0 sufficiently
small and some /)>0, the components of the sets H^ contain at most one point
of V, and that there are constants A, J3>0 such that

A\zt\'+B
k- togk.l '

then V is interpolating.

Proof. As in Theorem 2.2, this follows from Theorem 2.1, after applying
Theorem 3 of [15], instead of Corollary 2 of [4]. D

We can now proceed to the main results of this section which concern
mean-periodic functions in AP^(F\ Given /jt^AptQ(Fy andf^AptQ(F), we shall
say that / is /*-mean periodic (or, simply, mean-periodic if no confusion can
arise) if p*f vanishes identically on c— F; we will now try to follow the lines
of [4], [5] to describe the space of mean-periodic functions. In order to do
this, it is necessary to group the points in V={z^C: ft(z)=Q] which fall in
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the same connected component of S(ft; e, D). Let then {ak,i}^(Apt0(ry)~(V),
and consider a representative <p^H(C) of it. If we denote by {Ua}a the con-
nected components of S(ft ; e, D}, we know by Lindelof 's Theorem and Definition
1.1 they are bounded and with diameters satisfying good bounds. One can
construct analytic functions <pa^H(Ua) by setting (for

It is immediate to verify that, for Va=Vr\Ua,

and that (pa does not depend on the choice of the representative <p of { a k , i }
(all of this follows from the Cauchy formula).

Definition 2.3. ApiQ,gir(V) is the space of those functions

{fli.iJeC^.oCrmV)

such that, for every a

| |flWI| t t:=inf{Wco: <p*=H(Ua), pva(<p)={a^}}<Aex^0B(z)) (2.5)

for some A, B>Q and all z^Ua (observe that the constants A, B do not depend
on a). The norms defined by (2.5) on H(Ua) clearly determine a topological
structure on Ap.Q,gir(V).

Theorem 2.4. (Fundamental Principle). // /£ is (p, F}-slowly decreasing,
the map pv induces a linear topological isomorphism between

and ApiQ>g>r(V).

Proof. First, it is trivial to show that if {ak,i}=pv(<p) for some
*(ryT, then, there exist A, B>Q, such that for s>0 small enough

(2.6)

On the other hand, using the hypothesis that ^ is (p, O-slowly decreasing,
one can show that, given Alf Bi>0, there are A, B such that

on Ua (2.7)

implies (2.6). Conversely, if (2.6) holds, then (2.7) also holds, for suitable values
of Al9 B!>O. A standard application of Theorem 2.1 concludes the proof. D

Remark 2.6. As the reader can see, this theorem is the analogue, in our
slightly more complicated situation, of the well known Fundamental Principle
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of Ehrenpreis [7] and of its many generalizations to' convolution equations [1],
[3], [5], [16].

The reason for the interest in Theorem 2.4 is due to the following crucial
representation theorem for mean periodic functions in AP,Q(F):

Theorem 2.5. (Representation theorem). // f^Ap,Q(F) is ^-mean-periodic
for some {jt^Ap,Q(Fy, and p is (p, F)-slowly decreasing, then f has a Fourier
representation, convergent in the topology of AP^(F}, as follows:

(2.8)

Proof. Since ft is (p, O-slowly decreasing, ft-(ApiQ(c—Fy)^ is closed in
(Ap,»(FyT (Theorem 1.3) and therefore the space

{ f ^ A p , Q ( F ) : fi*f=0}

is the dual space to (Ap,Q(ryT/fi'(Ap,Q(c-ryT which, by Theorem 2.4, is
isomorphic to Ap,0,g,r(V). Now, an element F<^[Ap,0,g,r(V)']f is just a
sequence of functional {Fa}, Fae[//(F«)]' whose norms are such that, for
any <p^Ap,Q,g,r(V\ the series

would converge. Therefore, given a mean periodic function /, we associate to
it a functional F<^[Ap,Q,g,r(V)~]' which is related to / by (see Theorem 2.4)

(2.9)

for any v^Ap,0(Fy. We can now take for any w<^F, v=dw, $(z)=exp(—zw'),
and so, the representation (2.8) follows immediately from (2.9). D

Remark 2.7. The groupings in (2.8) are a consequence of the fact that
each open set Ua might contain more than one zero of ft ; in many interesting
cases, however, this does not happen (see e.g., Theorem 2.2), and whenever
each open set Ua contains at most a single zero of fi, the representation (2.8)
can be simplified, to

(2.10)

where ck is a polynomial of degree less than mk. Whenever a representation
such as (2.10) is possible for the //-mean-periodic functions of AP^(F) (even if
Ua contains more than one zero of ft\ we shall say (in analogy with what
happens in simpler cases [4]) that V is weak interpolating.

We conclude this section with two corollaries of (the proof of) Theorem 2.5 :
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Corollary 2.1. Let /e^4p>0CF) be p-mean periodic for some (p, F}-slowly
decreasing fjt&Ap,Q(ry. Then the constants ck,L^C which appear in the Fourier
representation (2.8) of f satisfy the following estimate:

for any B>Q, as &->oo.

Corollary 2.2. For f as in Corollary 2.1, the coefficients ck,i are uniquely
determined by f itself.

Remark 2.8. Both Corollaries 2.1 and 2.2 are well known if F=C, see e. g.,
[4]. On the other hand, Corollary 2.2 is not generally true when in Cn, n>l
(even in very simple cases) due to the more difficult (and not unique) definition
of multiplicity variety of a system of homogeneous convolution equations.

§ 3. Dirichlet Series

The motivations for the results contained in this chapter come from the
classical book [6] by V. Bernstein on Dirichlet series, as well as from Chapter
XII of L. Ehrenpreis' treatise [7].

Consider, indeed, a Dirichlet series

+ 0°

as it is well known, [6], such a series admits, as a convergence domain, a half
plane of the form [z^C : Rez>0}, with a any real number (or possibly, a = ±oo,
in which case the series is, respectively, nowhere or everywhere convergent).
In its convergence domain, the sum of the series is a holomorphic function /
which may, however, be analytically continued outside this convergence domain.
In this case, a basic problem in the theory of Dirichlet series consists in deter-
mining the existence (and possibly the distribution) of the singular points of /.
It turns out immediately, however, that the study of the existence of singular
points for / is strongly dependent on the "density" of the exponents {Zn} ', let
us recall at this moment that a sequence {Xn} is said to be measurable of density
D if

lim —-=D,
TI-+OO An

and is said to be of maximum density D if it is a subsequence of a measurable,
density D sequence (without being, of course, a subsequence of a smaller density
sequence); in all other cases, one says that {ln} has infinite density. In partic-
ular, whenever the sequence {Xn} has finite density, V. Bernstein obtained quite
general results [6], which did not need any a priori knowledge on the coefficients
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cn ; it is not without interest to remark that the methods employed by Bernstein
strongly rely on the possibility of interpolating the coefficients of the series by
analytic functions (this is somehow reminiscent of our own approach). On the
other hand, no general results could be obtained by V. Bernstein for the case
of infinite density, and very restrictive conditions had to be introduced. This
problem was one of the motivations for our work, as it is clear if one recalls
the relations which link the growth of our entire functions and the density of
the sequence of its zeros. These relations are carefully described in [6] and
[13], but let us just recall that if {An\ is a measurable sequence with density
D, then there exists an entire function /, which vanishes exactly at the points
z=±^n , and such that

If, on the other hand, we look for functions in spaces such as AP>Q(C), then
we see that their zeros form sequences of infinite density. It is therefore clear
that our results establish a first systematic attempt to deal with the problem
of singularities of analytic functions associated with infinite density sequences.
Let us conclude this introductory comment by pointing out that we do not deal
here with all the interesting sequences of infinite density. The main example
of our shortcomings arises if one considers the sequence

Such a sequence has infinite density, and it is of great interest as it gives rise
to the classical Dirichlet series of the kind

+00

S cnn-s,
71=1

i.e., ultimately to the Riemann C-f unction. The reason is that a sequence such
as {— logn} arises from the zeros of faster growing functions than those con-
sidered in this paper. Namely functions whose growth is bounded by eelz] and
the interpolation theory with respect to this growth has not yet been completely
worked out.

We remind the reader that besides the classical Dirichlet series we are
simultaneously considering the case of "generalized" Dirichlet series where the
coefficients can be polynomials.

Definition 3.1. A sequence {An} of complex numbers is said to be strictly
(p, F)-slowly decreasing if there exists p^Ap.0(ry, ft (p, JT)-slowly decreasing,
such that Z(fl)={Zn}.

Definition 3.2. A sequence {Xn} as above is said to be weakly (p, F)-slowly
decreasing if there exists p^Ap,0(ry, p (p, F)-slowly decreasing, such that
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Definition 3.3. Let {(An, mn)} be a multiplicity variety; we say that
{Wn>ttin)} = V is strictly (p, D-slowly decreasing (resp. weakly (p, F}-slowly
decreasing) if there exists p^Ap,Q(ry, p (p, /^-slowly decreasing, such that
V=Z(ft) (resp. V£

Remark 3.1. Definition 3.3 contains Definitions 3.1 and 3.2 as special cases,
when mn=l for all n.

Remark 3.2. Examples of sequences (and multiplicity varieties) which are
strictly and weakly (p, /T)-slowly decreasing can be immediately obtained from
Remarks 1.3 and 2.5.

Theorem 3.1. Let ^e^4p,0(/7+)' be (p, II+}-slowly decreasing. Suppose that,
for some 0e(0, ;r/2), the intersection

Z0(ft}=Z(fi)r\{w(=C: -6<argw<6}

contains finitely many points. Then every /e^4pf0(77+) solution of fjt*f=Q extends
to some f<=Ap,Q(C) which satisfies the same equation.

Proof. We apply a well known argument concerning comparison theorems
for convolution equations as in [2]. Since p is slowly decreasing and //*/=0,
/ can be represented as an element of the dual space

c>0 depending on //, and 17- = {z^C: Rez<0}. In^view of Theorem 2.4, this
last space is isomorphic to the space:

of functions on the multiplicity variety V, V=Z(ft), whose growth is bounded
by $(w)=\w\ap(w)a — cRQ(w) where we can choose j8 so that it vanishes in a
cone around Im(u;)=0, completely contained in { — 0<arg w<6}, as we did in
the proof of Theorem 1.3 ; but since Zo(p) only consists of finitely many points,
and since on Z(ft)\Z0(ft) one has that p and q=\w\* are comparable (i.e., for
some ^4>0, p^q^Ap}, one deduces that, actually / represents an element in
A£V). Since every /jt^Ap,G(II+Y belongs to AP,Q(CY and it is slowly decreasing
in this space, the space Aq(V) is isomorphic to the space of ^-mean-periodic
functions in Ap>0. Therefore / admits an extension /, thereby concluding the
proof of the theorem. D

Remark 3.3. This result has an obvious translation in terms of generalized
Dirichlet series with groupings. Indeed, by Theorem 2.5, every /e^4pl0(/7+)
which is a solution of /**/=0 can be represented by a series, converging in
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Ap,Q(II+\ of the type

2 2cn.,(*)exp(-Jn..,z), (3.1)
71=1 J = l

where Z(/2)={Un, mra)} ; hence Theorem 3.1 says that every generalized Dirichlet
series as in (3.1), convergent in Ap,Q(n+}, does actually converge in AP,Q(C),
provided that {(An, mn}} is a strictly (p, 77+)-slowly decreasing multiplicity
variety which, for some 0e(0, zr/2) intersects {w^C: — 0<arg w<6] in at
most a finite number of points.

Theorem 3.1 can be immediately extended to the case of functions in
, Fg/7+ as follows:

Theorem 3.2. Let [t^ApjQ(r) be (p, F)-slowly decreasing and such that, for

some Q^(-y — ^>> 7T/2J, Z0(ft) contains only finitely many points. Then every p-

mean periodic function f in Ap,Q(r) extends to some f^Ap,Q(C), still p-mean
periodic.

Corollary 3.1. Let {(An, win}} be a strictly (p, F}-slowly decreasing multiplicity
variety, with (except for a finite number of indices n)

for some 5e(0, ?r/2); then any generalized Dirichlet series convergent in F,

B ,

actually converges in C, to an entire function in AP>Q(C).

We now proceed to prove a deeper form of Theorems 3.1 and 3.2, in which
the Xn are allowed to be weakly slowly decreasing and, most important, can be
chosen also in R+.

Theorem 3.3. Let {An} be a weakly (p, U+)-slowly decreasing sequence of
complex numbers, associated to some p<=AptG(n+y such that Z(ft} is a weak inter-
polating variety. Consider the series

2 cne-*»; (3.2)
71 = 1

which we assume to be convergent in /?+, to a holomorphic function f. Suppose,
moreover, that f extends to an entire function f<=Ap,Q(C). Then

(3.3)
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Proof. Since {Xn} is weakly (p, 77+)-slowly decreasing, we can find

Q(n+y which is (p, /7+)-slowly decreasing, and such that Z(ft)^{Xn}.
Since jfe-Ap,0(77+), /**/ is a well defined holomorphic function in some half
plane 77_+ c (c>0 depending on ju). From the representation (3.2) of / in 77+
we deduce that p*f actually vanishes in 77_+ c. Now consider the extension
/e^p.o(C) of /; since p^Ap.Q(II+yciAp,Q(Cy, p*f is a well defined entire
function which, by analytic continuation, is identically zero. We can therefore
use Remark 2.6 to show that / is represented in C by a series

/(*)= S dj exp(-wjz) (3.3)
j=i

(no groupings are necessary, in view of the hypotheses on ft ; besides, we
assume here that all zeros Wj of ft are simple zeros). Now, Theorem 2.6
(actually Remark 2.8) immediately implies the bound

We now see, however, that f=?\n+, and therefore / has two series repre-
sentations in 77+, as a mean-periodic function in ^4P,0(77+). From Theorem 2.7
we conclude that (3.3) holds. H

Remark 3.4. Theorem 3.3 immediately extends to the case in which a cone
F^U+ is used to replace 77+.

Theorems 3.2 and 3.3 yield the following.

Corollary 3.2. Let fjL<=Ap>Q(ry be (p, F}-slowly decreasing, and suppose that
ft has only simple zeros. If Z(ft}—{^n] is weakly (p, F}-interpolating and Zo(fi)

contains finitely many points for some $^(~o — <p, n/2\ then, every series

S *»*-*»',
71 = 1

uniformly convergent on compact subsets of F satisfies the bounds

§4. Several Variables

In Remark 11 of [2], we pointed out that our interpolation methods on
analytic varieties in C can be (at least in principle) extended to discrete analytic
varieties in Cn ; this remark also applies to our approach for Dirichlet series,
but since no detail was given in [2], we have included in this section a more
precise treatment. For the sake of simplicity, we will deal with holomorphic
functions with no growth conditions, as this will save us the effort of develop-
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ing, from scratch, the several variables version of Section 1 ; as a corollary we
will be able to prove a several variables version of the Fabry gap theorem (see
also [2], [7], [10], [11]), which is of remarkable independent interest.

Let then Q^Cn be a convex set; a rather complete theory of convolution
equations in H(Q) is developed in [17]; let therefore p<=Hf(Cn) be an analytic
functional, carried by some compact convex set KdCn, and let Q be a convex
subset of Cn such that Q+K=Q. Then p acts as a convolutor

/£*:

by associating to each f^H(Q) the analytic function

As in Section 1 we define the Laplace transform ft of p by

ft(z)=(p, C -> exp(-z-0> ,

which induces a continuous multiplicator

between the spaces of entire functions (H'(Q}T and (H'(Q)T- The description
of these spaces is well known (see Chapter V of [7]) and, if we denote by
//s(z)=sup Re(z-C), the supporting function of a compact convex set S, we have :

Ces

(H'(Q}T=(F^H(Cn}: there exist A>0 and a convex compact SdQ,

such that for all z^Cn, |F(2)|g4exp(#s(z))},
and

{F^H(Cn): there exist ^4>0 and a convex compact

such that for all z^Cn, |F(z)|

In [17] it is shown that if plf ••• , pr<=H'(Cn), l^r<*n, are carried by the same
compact set K, and if their Fourier-Borel transforms satisfy suitable hypotheses,
then one can prove a representation theorem for all functions f^H(Q) such that
£*i*/— •" =^r*/=0. Such a representation states that each such / can be written
as a convergent series (with suitable groupings, as in Section 3) of integrals of
exponential solutions, and the integration is carried on the analytic variety
V={z^Cn: fli(z)= ••• =fir(z)=Q}. Our interest here is only the case when V
is a discrete variety, which occurs (in view of some natural regularity conditions
on iii, "• , fir) when r=n. This case is simple enough to be completely described
in here.

Definition 4.1. An n-tuple p=(fii, ••• , fin) of analytic functionals in H'(Cn)
carried by K is said to be slowly decreasing with respect to (Q, Q) if there
exists a constant c>0 and m<=N such that, for all
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\fti(z)\^c(3(z, y,)rexp(7?*(z))(l+|z|)-m, for /=!, - , n,

where Vl={z^Cn: fii(z)=Q} and 3(z, V<)=min(l, distance from z to V^},

\ l / 2

( n
S I

and for every s>0 there are constants A, J3>0 such that the set

has relatively compact connected components, and for any zi and zz belonging
to the same component of S(ft ; e, A), we have

for all compact convex sets SdQ.

Remark 4.1. It can be shown, [1], [17], that most ^-tuples of exponential
sums satisfy the hypotheses of Definition 4.1.

The interest of Definition 4.1 lies in the following results [17].

Theorem 4.1. (Fundamental Principle). // fjt=(fjtl9 ••• , pn} is slowly de-
creasing, there is a linear topological isomorphism between

and a suitably defined subspace (H'(Q)T(V) of the restriction pv((H
f(Q)T) to\V.

Theorem 4.2. (Representation Theorem). // ^=(^1, ••• , //„) is slowly [de-
creasing, then every function f^H(Q) solution of the system jcii*/= ••• =^n*/r=:0
can be represented in the form

/2i(z)= ••• =ftn(z)=Q}=\J {ak,3\ /=! ,•-• , /*},

polynomials cktj are such that the functions c k , j ( z ) e x p ( — a k , j ' z ) are solutions of the
given system.

We shall now apply the preceding theory to some particular choicesTpf Q.
Indeed, we shall consider the convex subsets of Cn given by

77;= {*=(*!, ••• , Zn}^Cn: Rez/X) for any /=!, ••• , n}
and

where F \ is the subset of C defined by
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re = {zt=C: -6<argz<6}.

Remark 4.2. In the classical Fabry gap theorem (see also [2]) one considers,
in C, the upper half plane and not, as we are doing, the righth alf plane. We
have, however, preferred this choice for the sake of uniformity with the
previous sections of this paper.

We now give a simple preliminary lemma, in the spirit of Lemma 3 in [2]:

Lemma 4.1. Let fjt=(fjtl9 ••• , pn) be a slowly decreasing n-tuple as above.
Suppose that p satisfies the following condition:

(Co) there exists s>0 such that (with at most a finite number of exceptions} no
z^V belongs to

n, z=(zlf ••• , zn): for some index, j

one has - + 0 — e

Then, for any a=(a, a, ••• , a)e(JB+)n, every solution f^H(Q6—a) of &*/= ••• =
fjtn*f=Q uniquely extends to a solution f^H(TI+— a) of the same system.

Proof. Since p is a slowly decreasing n-tuple and ^e*/=0, one deduces,
with the help of Theorem 4.2, a series representation for / itself, which
converges on Qd—a. Therefore (essentially, this is Theorem 4.1) if on V the
weights which describe the topologies of (H'(Qo—a))~ and of (/T(/7?— S))^ are
comparable, one immediately concludes that the series representation of /
converges in H(II^—a) and the conclusion of the lemma follows. But, in view
of the description of (H'(Q}T which we have provided before, Condition (C0)
actually implies such a result. D

As an almost immediate corollary we get

Theorem 4.3. Let /i— (pl9 ••• , /*„) be slowly decreasing, and suppose it
satisfies (Co). Let f^H(Qo) be a solution of f£i*f= ••• =/Jtn*f=Q- If there exists a
neighborhood <U of the origin to which f extends holomorphically, then we can
find 3>0 such that f extends holomorphically to /e#(77?— d), and such that
there, fr*f= ••• =/fn*/=0.

Proof. The result follows exactly with the same argument we used to
prove Theorem 1 in [2], D

Remark 4.3. Theorem 4.3 immediately reduces, for 72=!, to Theorem 1 in
[2] and, therefore, provides the required extension of the Fabry gap theorem
to several variables.
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Remark 4.4. In [10], a different extension of the Fabry gap theorem is
discussed, and, in [2], we employ it to provide a strengthening of Theorem
4.3, in which infinitely many points of V are allowed in Qf, provided they
give rise to a suitable infinite order differential operator. Since, in [10], Kawai
also gives a several variables version of his result, one might use Theorem 2 in
[10], our Theorem 4.3 and the methods of Theorem 2 in [2], to provide a
similar extension of Theorem 4.3. We leave the straightforward details to the
reader.

Let us finally conclude with some considerations which turn out to be of
some interest. The set Qe which we have employed provides, without any
doubt, the correct generalization of the role played by F0 in C but, for many
purposes, is not a very natural set in Cn. A different approach consists in
taking, e.g., an open convex cone Fd.Rn, with vertex at the origin, and
defining the tube over F as Tr—RnjriF, then 7> is an open convex subset
of C71 to which, therefore, we can apply the theory described in Theorems 4.1
and 4.2.

If now Fi^Fz are two such cones, we can replace Condition (C0) with the
(necessarily less specific) condition

(C/YTg) for any compact set KdF2, there exists a compact set KdFlf

such that (with at most a finite number of exceptions),
all z^V satisfy sup[(Imz)-(ImO]^sup[(Imz)-(ImO].

Ce# Cex

The same arguments used in Lemma 4.1 and Theorem 4.3 are now sufficient
to prove the following variation of Theorem 4.3.

Theorem 4.4. Let /Ji=(fjt1, ••• , fjtn) be slowly decreasing (with respect to
(Trlf TV2)), and suppose it satisfies (Crltr2\ Let f^H(Tr^ be a solution of
A*i*/= "• =t*n*f—§- If there is a neighborhood °U of the origin to which f extends
holomorphically, then there exists a>0 such that f extends holomorphically to
f<=H(Trz-i) in such a way that [*i*f= ••• =fjtn*f=Q.

Actually, it is not difficult to give a hyperfunction version (see [9] for the
standard notations) of this last result, which should justify our new approach:

Theorem 4.5. Let p=(pi, ••• , pn) be slowly decreasing and suppose it satisfies
(Cr l fr2). Let f^H(Tr^) and denote by <p(x)=f(x+iFity the hyperfunction de-
fined on Rn by taking the boundary value of f along /Y // / is a solution of
/*!*/= ••• — fjtn*f=Q then the singularity spectrum of <p, s. s. <p, is contained in
RnjriFi, Fi denoting the dual cone of F2, namely,

: f-^0 for all
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Proof. By the representation p(x)=/(x+/AO), and Theorem 2.3.5 in [9],
one has that s. s. <p, i.e., the support of the microf unction sp(p), spectrum of
<p, is contained in RnjriF\. However, from the slow decrease of p and the
(C/YFg) condition, one deduces that / extends to /e//(7Y2): just apply the
arguments in Lemma 4.1. Since AcA, one has that <p(x)=f(x+iriQ)
and therefore, as before, s. s. <pC.Rn+iri (notice that AcA implies
so that we have an improvement on the microanalyticity of <p). EH

§ 5. Errata

At this point, we wish to take the chance to correct a few misprints which
can cause confusion in the reader of [2] :

a) page 571, third line from the bottom should read:
"•••by those z which lie between the normals- ••"

b) page 573, fourth line from the top should read:
"•••is satisfied except for a countable---"
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