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Fundamental Groups for Ergodic Actions
and Actions with Unit Fundamental Groups

By

Sergey L. GEFTER* and Valentin Ya. GOLODETS**

Abstract

Fundamental groups of ergodic dynamical systems with invariant measure are considered.
For a given countable subgroup yicJR*, an ergodic dynamical system is constructed whose
fundamental group is countable and contains A. G.A. Margulis and D. Sullivan revealed
that the orthogonal group contains a dense countable subgroup with the proprety T. The
fact is applied to construct ergodic actions with a unit fundamental group. The group of
outer automorphisms of these actions has also been completely calculated. The proofs are
based on the results of studies of the properties of action centralizers.

In the Supplement we introduce the concept of a fundamental group for ergodic actions of
continuous groups. It will be shown by means of results of the R. Zimmer's rigidity theory
that any finite measure-preserving action of the lattice of the simple Lie group, whose real
rank is not less 2, has a unit fundamental group.

§ 0. Introduction

The fundamental group introduced by F. Murray and J. von Neumann
[1] is an important algebraic invariant of the type II factor. The recent prog-
ress in the fundamental group studies is connected with consideration of T-

groups [2]. The first work on this problem was made by A. Connes who has
proved that the group factor for the T-group with infinite conjugancy classes
(ICC-groups) has a countable fundamental group [3]. The IIrfactor with a
countable fundamental group containing A was constructed for any given
countable subgroup AczR% in [4]. Thus, it was shown that there existed
factors of type IIX with different countable fundamental groups.

The present paper deals with the fundamental groups of ergodic dynamical
systems with an invariant measure (see Definition 1.1). The properties of a
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dynamical system fundamental group which are similar to those of the factor
fundamental group are discussed in Section 1. It is proved that the dynamical
system generated by the ergodic action of the ICC-group with property T
(TICC-group) which preserves a finite measure has a countable fundamental
group (see 1.8 and a more general Theorem 1.7). Furthermore, for a given
countable group AdR% we construct an ergodic dynamical system whose
fundamental group is countable and contains A (Theorem 1.10).

The important results are considered in Section 3-5 where the left shift-
setted action of a countable dense subgroup of the compact group is discussed
in detail. It is shown that the properties of a centralizer of this action [5] are
determining in this case. By using the dense imbedding of the countable T-
group into the orthogonal one constructed by G.A. Margulis [6] and D. Sul-
livan [7], we may calculate the groups of outer automorphisms and the funda-
mental groups of several dynamical systems [8]. The results obtained (see 4.4,
4.9-4.11 and 5.4) can be formulated as follows:

Let K=SO(n, R), G=SO(n, Q) n^5, «=t=8, p. be a Haar measure on K.
Consider the action of G on (K, JLL) generated by left shifts, and let RG be a

corresponding equivalence relation, F(RG) its fundamental group, AutRG — a
group of automorphisms, and Int RG — a subgroup of inner automorphisms.

Theorem. F(RG)={\},

SO(n,R), if n is odd,

PO(n, R), ifn is even .

As for Corollaries, see 4.5, 4.7 and 5.5-5.7.

Out RG = Aut RG/lnt RG » j

Supplement A presents the construction of a continuum of orbit-nonequiv-
alent ergodic actions for arithmetic groups with the property T. In the capac-
ity of the invariant to distinguish between actions, we shall consider the group
of outer automorphisms of the factor or equivalence relation generated by the
action of the group.

In Supplement B, written together with S.D. Sinelshchikov (see [9]), we in-
troduce the notion of the fundamental group for an ergodic action of a con-
tinuous locally compact group. It is shown that any finite measure-preserving
action of a semisimple Lie group with a finite center, whose real rank is not less
2, has a unit fundamental group (Theorem B.2). Hence follows triviality of the
fundamental group also for actions of lattices of simple Lie groups (Theorem
B.3). Note that the problem of existence of the type IIX factor with a unit
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fundamental group remains unsolved.

§ 1. The Equivalence Relations with Various Fundamental Groups

Let (S, jj) be a Lebesgue space with a probability measure /*, R an ergodic
Borel equivalence relation on (5, #) with countable orbits which preserves the
measure (see [10]). Let us consider a natural equivalence relation R=RxI00 on
space (SxZ, j u x d ) , where d( {n}) = l and let Aut R be its group of automor-
phisms. If 0e Aut R, then there exists 1= mod O^R*, such that jl°6=lil [10].

Definition 1.1. The fundamental group of the equivalence relation R is

the following subgroup in JR$ :

F(R) = {mod6: 0eAut R\ .

Let us denote the subgroup Aut R which consists of automorphisms pre-
serving the measure /JL x S by Aut0 R. Then Aut0 R is a normal subgroup and
F(R)^Aut R/Aut0 R.

Let P c S be a measurable subset of positive measure. Consider the re-
duced equivalence relation R \ P=R fl (P X P). If /«(P) = X0, then R\P^R\Q
[10, Proposition 3.3]. Hence, for each Ae(0, 1] there exists a unique (to within
the isomorphism) equivalence relation R(fy£&R\P where j>i(P)=Z.

As in the case of the factors (see [12]), the properties of the reduced equiv-
alence relation are associated with a fundamental group.

Proposition 1.2. The equivalence relations R(A1) and R(%2}
 are isomorphic

if and only if ^ J1 e F(R).

Proposition 1.3. If n is a natural number, then — ̂ F(R) if and only if

The connection between fundamental group of the equivalence relation and
the corresponding factor can be easily established.

Proposition 1.4. Let M(R) be a H^factor constructed by the equivalence
relation R [11] and F(M(R)) its fundamental group. Then F(R)dF(M(R)).

We can apply Proposition 1.4 to prove the countability of fundamental
groups of the equivalence relations given by the actions of groups which involve
T-groups [2].

Let us introduce the following definition.
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Definition 1.5* Let F and G be countable groups, FdG, Z(G) a center of

the group G. Let G be called AlCC-group with respect to F if for each
g&Z(G) the set {rgT~l'° T^F} is infinite. If this condition is met and Z(G)=
{e}, G can be called a ICC-group with respect to F. And finally, if G=F and

G is a AlCC-group with respect to F, then the group G can be called a AICC-
group.

Below is given an important example of the AlCC-group.

Proposition 1.6. Let H be a connected semisimple Lie group without com-
pact factors, F be a lattice in H and G the countable subgroup H containing F.
Then G, is an AlCC-group with respect to F; besides, assuming Z(H) = {e}, the
G is an ICC-group with respect to F.

Proof. Let us consider g^G such that the set {rgQr~1'- r^F} is finite.
Put F0={r^F: rgDr~l=g0}> We can easily observe that F0 is a subgroup of
the finite index in F and therefore F0 is a lattice in H . Further, if ZH(FQ) is a
centralizer of F0 in H, then gQ^ZH(FQ). By the Borel theorem of density,
however ZH(FQ)=Z(H) (see 5.18 13). Thus, g0eZ(G). Q

Note that the groups with property F are also the AlCC-groups [14,
Lemma 4],

Let a be an free ergodic, preserving the finite measure action of the count-
able group G on the Lebesgue space (S, #). Denote the equivalence relation,
generated by the action G, by RG.

Theorem 1.7. Assume that G is a AlCC-group with respect to the subgroup
of F possessing the property T [2]. If the restriction of a on F is ergodic on
(S, fj) and the center G is finite then the equivalence relation RG has a countable
fundamental group.

Proof. Consider a crossed product M= W*(L°°(S, #), a, G). The algebra
M is generated by operators x(a) and lg (a^L°°(S, #), g^G) the actions of
which in the space L2(S9 ju)®l\G) are given by the following relationships:

*, h) =

In this case there is an equality n(ctg(ay) = Agn(d)Z£9 a^L°°(S, ju), g&G. Let
)={V re/1}", Q=*(r)'nM; we can show that

= |Z(G)|. (1.1)



FUNDAMENTAL GROUPS FOR ERGODIC ACTIONS 825

Indeed, let xeg, x=32 n(ag)Ag. Then ay(a^-ig^=ag9 since *vxtif=x,
Therefore

Hence, ag=Q for g^ZfG) because S||aJ||<oo. Thus, x=
*e<?

Further,

g eZ(G)

and because of the ergodicity of JT, ag^C. We can conclude that

(1-2)

Thus, the proof of equality (1.1) complete. Besides, the algebra M is a factor
since Z(G) acts on (5, #) in a nontrivial way. Let # be a minimum projector
in the algebra g (it will be recalled that |Z(G)| <oo, i.e. dim g<oo). Then
the relative commutant ^(T)q in the reduced factor Mq is trivial. By using this
fact and the T-property of the group JT, the countability of the M?-factor
fundamental group can be proved by the same method as in 1.1 [4]. So, the
factor M too has a countable fundamental group. According to 1.4, the group
F(RG) is also countable. D

Corollary 1.8. The equivalence relation generated by the free ergodic action

of the ICC-group with T-property (TICC-group), which preserves the finite meas-

ure, has a countable fundamental group.

Example 1.9. Let G=SL(n, Q), r=SL(n, Z\ n^3. The group G acts
by the left shifts on the space {0, 1}G. One can easily observe that each of
the assumptions of Theorem 1.7 is fulfilled and therefore, the fundamental
group of the equivalence relation RG is countable.

We can show now that there exist ergodic dynamical systems with non-
trivial countable fundamental groups (the fact has been proved for factors in

[4]).

Let A be a countable subgroup of 22 J and ^-^(0, 1), i=l, 2, ••• its genera-
tors. Define the measures *>,- on a two-point space:

„({()}) = _L_ / = _A
1-M,.

Consider the space (So, #0)=II (5X|., jte^.) where £^.= {0, 1}̂ , #A|. is the measure
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on Sx. constructed as the product of measures yf-. Put (S, ti)= II (S0, #0) for
•yer

the TICC-group P. Then the group ^=®ZJ2Z acts coordinate-wise on each

space S^. Therefore, there appears the action of J on spaces (50, /i0) and (S9 /i)
because ©J«* © {0J}*«J. Consider also the left-shift-generated action of

i yer ,-

the group F on (S, #). Let J^ be the equivalence relation generated by the
action ^, Aut^ Rj a subgroup of Aut R^ consisting of automorphisms preserving

the measure #, and

Ink R4 = Aut^ ̂  n Int ̂  .

Denote by R(A, F) the equivalence relation on (S, /*) generated by the action

of the semidirect product

H =

(evidently, TcAut^ Rj and r n Int,* -R^={id}).

Theorem 1.10. The equivalence relation R(A9 F) has a countable fundamen-

tal group containing the group A.

Proof. Let us introduce a IIrfactor P which is constructed by the equiva-

lence relation generated by the group Int^ Rj (see [11]), and the factor K con-

structed by the action of group A. Since TcAut^^ and TcAut^, the

action of F on (S9 ju) can be extended up to the action through automorphisms

on the factor K and P. The group F then will act ergodically on K and hence

on P. According to the arguments of the proof of Theorem 1.1 [4], the crossed

product M= W*(P, F) has a countable fundamental group. Then we can show

that the factor M is isomorphic to a factor constructed by the equivalence

relation R(A, F). Therefore, the fundamental group of the equivalence relation

R(A9 F) is countable (see 1.4). We can prove that AdF(R(A, F)). If ECS

and ju(E)=A^A then because of the ergodicity of H there exists a Borel iso-

morphism w from S on E such that juow=Aju, and for almost all s^S, (s, (w(sj)

belongs to the equivalence relation Rp@d generated by the action of a semi-
direct product of F by A. Let (sl9 s2)^R(A, F). Then s2=v(s^) for a particular

automorphism v of the group H. Therefore, w(s2) = w(v(s1J) =(wvw~1)(w(s1)).

But (w^), w(j2))=(w(5i
1), (wvw~1)(w(s1}))^:Rr^ and besides wvw"1 preserves

the measure p.. Therefore, (w(s1), w(s2))^R(A, F) and thus (wfo), w(s2))e

R(A, F)\E because w(S)=E. Therefore, w realizes the isomorphism of the
equivalence relations R(A, F) and R(A, F)\E, i.e. A={i(E)<=F(R(A, F)). Q
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Corollary 1.11. There exist dynamical systems with different countable

fundamental groups.

§ 2. Topological Properties of the Group of Outer Automorphisms of the
Equivalence Relation

In this section some topological properties of the groups of automorphisms
of factors and dynamical systems are considered.

Let (S9 fi) be a Lebesgue space with finite or a-finite measure #, A =

L°°(S, /*)> <* be a free ergodic, preserving measure action of the countable group
G on the (5, #), and let RG be a equivalence relation, generated by the action
G, AutRG — a group of all its automorphisms, and Int.RG — a subgroup of
inner automorphisms [10]. Denote the groups of cocycles and coboundaries
of the ation of G with the values in the group T by Z\G, U(A)) and
B\G, U(A)\ respectively.

Consider a crossed product M=W* (A, a, G) and put

Aut (M, A) = {0G Aut M: 0(n(A)) = n(A)} ,

Int (M, A) = Aut (M, A) n Int M ,

Z(M, A) - {0eAut M: 0«a)) - <«

) - Z(Af , ^) 0 Int (M, A) .

Lemma 2.1. (i) Z(M, A)t*Zl(G, U(A))',

(ii) B(M, A)^B\G, U(A)}\

(m) Aut (M, A)Z(M, A)** Aut RG ;

(iv) Int (M, A) Bj(M, ^)wlnt £G .

See the proof in [11].

We can assign the topology on the group Aut M by using the pre-base of
unity neighbourhoods [15]:

: \\iroO— i/r\\<e}, ^^M^, e>0. (2.1)

For this topology, Aut M, its closed subgroups Aut (M, A) and Z(M, ̂ 4) and
the group Aut RG which is identified with Aut (M, A)IZ(M, A) and provided
with a quotient topology are Pollish groups.

Lemma 2.2. Let G be a AlCC-group with respect to the ergodic subgroup
with the property T and the center G be finite. Then the group Int jRG is a closed
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subgroup Aut RG and therefore the group of outer automorphisms

Out RG =Aut RG/lnt RG is a Pollish one.

Proof. According to the arguments adduced when proving Proposition
6(b) in [14], the group G has the property F. Moreover, its action is strongly
ergodic (see [16]). Hence, on the basis of Theorem 13 [14], the factor G is
full [17]. Thus, IntM and therefore, Int(M, ^4) and B(M, A) are closed
subgroups of Aut M. Then the statement of the Lemma follows from 2.1. D

Hence, for the actions which satisfy the conditions of Lemma 2.2 (in par-
ticular, for the ergodic actions os TICC-groups), the problem of studying the
group of outer automorphisms as a topological group is quite natural. Note
that in Section 4 the ergodic actions with compact connected groups of outer
automorphisms will be constructed.

The following statement which generalizes Theorem 2.2 [5] is a basis for
obtaining subsequent results.

Theorem 2.3. Let G be an ICC-group with respect to the ergodic subgroup

r with the property T. Put

Cr = {0eAutM: Ofa) = ̂ , rer}

and let e: AutM— >OutM be a natural projection. Then, e(Cr) is the open
subgroup Out M topologically isomorphic to Cr.

Proof. Since the group P acts ergodically on (S, #), then {
M=C (see the proof of Theorem 1.7). Denote by C? the subgroup AutM

which is algebraically generated by Cr and Int M. Then, Cp is the open sub-
group Aut M [5, Theorem 2.2]. Thus, e(Cf) is the open subgroup Out M.

Besides, Cr fl Int M = {id} . Hence, s(Cr)=e(Cr) is the open subgroup Out M,
algebraically isomorphic to Cr. Now, Out M is a Polish group [18], and
s(Cr) its open, and therefore also close, subgroup. It is also obvious that Cr

is the closed subgroup Aut M. Thus, Cr and e(Cr) are Polish groups and s
performs their topologic isomorphism [17, Lemma 3.4]. Q

§ 3. The Equivalence Relation Generated by of the
Countable Dense Subgroup of the Compact Group

Let K be a compact group, # a Haar measure on K, and G and r count-
able dense subgroups of K, FcG1. Consider the actions of groups G and



FUNDAMENTAL GROUPS FOR ERGODIC ACTIONS 829

K on the algebra A=L°°(K, #) generated by left and right shifts, respectively:

/,(*)(*) = a(g-lk) , rt(a)(k) = a(kt) , a^A, g e G, t <=K .

The automorphisms of space K can be also denoted by lg and rt:

lg(k) = gk , rt(k) = kr1 , t, k^K, g^G .

It is evident that the action of G is free and its restriction on F is ergodic.

Lemma 3.1. Let ft: K-+K be a Borel mapping such that filg=lg/3 for all
g e G. Then B =rtQ for a particular tQ e K.

Proof. Put ^(k)=k~1ft(k)9 k^K. Then 95 is a Borel mapping and by the
condition, <p(gk)=<p(k) for all geG and a.a. k^K. Based on this fact and the
ergodicity of the action of G, one can easily find that <p(k)=tvl for a.a. k^K.
Hence, £=r,0. D

This version of the proof was found by S.D. Sinelshchikov.

Consider the crossed product M=W*(A, I, G). Recall that the algebra
Mis generated by the operators n(d) and Zg(a^A, geG), where

Lemma 3.2. If G is a ICC-group with respect to F, and

then the automorphism 0 maps the algebra A into itself, i.e. 6^ Aut (M, A).

Proof. Let K be a dual space of the group K. For every a^K we can
choose an orthonormalized basis {£?: /=!, --^dima} in the representation
space HQ. and put

Oij(k) = (o(k)£y If D 5 k&K, i, j = 1, •••, dim a . (3.1)

The system {a^: o^K, i, j =!,•••, dim a} forms an orthogonal basis in L\K, fj)
with aij^A=L00(Kf ju).

dim o-
For r^^1 we have oij-(r~1k)= S aip(T~1)^pj(k), k^K, i.e.

dime-

= 2 ^,-(rK,-. (3.2)
#=1

Let fleCr and
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dimp
= 2 2 2 c(g; m, n, P; *,yHO*, . (3.3)

Since the algebra A is generated by matrix elements aii9 it is sufficient to prove
that

, i,j = 1, — , dim a

By using (3.2), the equality

the ICC-property, and the convergence of series (3.3), we can obtain
c(g; m, n, p\ ff/y)=0 for g^e and hence,

Denote by jRg the automorphism of the factor M given by the relationships

Rt(n(d)) = *(rf(a)) , jR,(J,) = V *= AT , £ €= G .

Besides, the automorphism of M generated by the cocycle ceZ*(G, U(AJ) can
be denoted by 6C:

Proposition 3.3 L^/ G be a ICC-group with respect to F. If 6 e Cr =
AutM: ^) = ̂ , r^T}, r/zew 6=0eRt, where ceZJ(G, £/(^f)) a«^ re^

are determined unambiguously. In this case cy=l for r^F.

Proof. In view of Lemma 3.2, 0 determines the automorphism ft of the
algebra A: 7to{j=0on. By the assumption, 6(^)=^ and so, ply=lyp, r^F.
According to 3.1, J3=rt for a particular f GAT. Put 61=6Rj1. Then ^(»:(a))=
<fl), ae^. Therefore there will be ceZ^G, U(A)) such that ^(^)=w(^)^
i.e. 0!=^. Hence, 0=dcRt. D

CoroUary 3.4 If G is a ICC-group, M=W*(A, I, G) then

Theorem 3.5. Let P have the property T and G be a ICC-group with respect
to F. Then

is an open subgroup Out M, topologically isomorphic to the semidirect product
K®Hll(G,

Proof. By 2.6 and 3.3,
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e({Rt: t^K}®Z\G, U(A)})

is an open subgroup of Out M. Since G is the ICC-group with respect to F,
then

({Rt: t ̂ K}®Z\G, U(A))) fl Int M = B\G, U(A)) ,

i.e. the groups K®H1(G, U(A)) and

,: t'^K}®Z\G, U(A))) (3.4)

are algebraically isomorphic. On the other hand, one can easily observe that
Kis topologically isomorphic to {Rt: t^K}. Furthermore, the action of G
is strongly ergodic and H\G, U(A)) is therefore a Pollish group (see 3.2 [16]).
From Lemma 3.4 [17] and the continuity e it follows the group (3.4) is topol-
ogically isomorphic to K®H\G, U(A)). D

Corollary 3.6. If G is a TICC-group, M=W*(A, /, G), then e({Rt: t <=K}
is an open subgroup of Out M which is topologically isomorphic to K.

Consider now in detail a case when the group K is connected First of all,
it should be noted that the AlCC-property of the group G with respect to F
is readily realized (cf. 1.6).

Proposition 3.7. Let K be a connected compact group, P and G be count-
able dense subgroup of K, FdG. Then G is a AlCC-group with respect to F.
But if the center of K is trivial, then G is a ICC-group with respect to JT.

Proof. For gQ^G such that the set {rgoT'1'- T^F} is finite, we can take
FQ={r^r: rgo=gor}-> One can easily show that JT0 is a subgroup of the finite
index in P and so, according to the connectivity of K, FQ is dense in K. Hence,

Lemma 3.8. Let K be a compact group with a finite center, G be a countable

dense subtgoup of K, G=G/Z(G), K = K/Z(G). Condider the equivalence rela-
tions RG and RG, generated by the actions of G on K andG on K, respectively.
Then RG^Rc xln, where n= \ Z(G) \ and therefore,

Out RG « Out RG .

Proof. Let K\ K-*KbQ a canonical projection and s: K-*K be a Borel

section, i.e. Tzros^id. Put E=s(K). It can be easily shown that v,(E)=— and
n

the equivalence relation RG is isomorphic to a reduced equivalence relation
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RG | E, the isomorphism being given by the section s. Hence, RGf**RG xln. D

Theorem 3e9e Let K be a connected compact group with a finite center,

jPcCr be countable dense subgroups of K, and F have the T-property, Denote

the canonical projection from Aut RG onto lniRG by e. Then e({rt: t^K}) is

an open subgroup of Out RG which is topologically isomorphic to K/Z(G).

Proof. Since Z(G)dZ(K), then the imbedding of G=G/Z(G) into Kl=

K/Z(K) is defined, such that the image of G is dense in Kv Therefore, in view

of 3.7, G is an ICC-group. Now, we can easily show that

{rt: tSEK}nintRG = {rt: t^Z(G)} .

Hence, in view of Lemma 3.8, we may believe that Z(G) = {e}9 i.e. G is an

ICC-group with respect to J1. In view of Proposition 3.2 CrcAut (Af, A).

According to 2.3, Cf n Aut (M, A) is an open subgroup of Aut (M, ^4) (see the

proof of Theorem 2.3), and so, a subgroup generated algebraically by Int (M, ^4)
Z(M, A) and {Rt : t^K} is open in Aut (Af, A), Thus, the subgroup generated

by Int RG and {rt: t^K} is an open subgroup of Aut RG (see 2.1). Therefore,

e({rt\ t ^K}) is an open subgroup of Out RG which is topologically isomorphic

to K (the homeomorphism stems from the continuty continuity of the projec-

tion and the jK-group compactness)-

Corollary 3.10, Let the conditions of Theorem 3.9 be fulfilled for

Then the group Out RG is locally connected and its connected component of unity

is topologically isomorphic to KjZ(G).

§ 4. Explicit Description of the Group of Outer Automorphisms

for Certain Equivalence Relations

In this section we proceed with studying the left shift-induced actions of

countable dense subgroups of the connected compact group. By using the state-
ment from 3.10, we can determine the groups of outer automorphisms of some

dynamical systems. In Section 5 this procedure will be applied to determina-
tion of fundamental groups.

Let K be a locally compact group with the Haar measure /*, G its countable

dense subgroup, Aut K a group of automorphisms of the group K (measurable

or continuous, which is the same),

Aut (K, G) = {creAut K: o(G) = G} ,

and NK(G) the normalizer of G in K,
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Theorem 4.1. Let RG be an equivalence relation, generated by left shifts of
the group G, and {rt: t^K} the group of right shifts. Assume that 0eAut RG

and

for a certain aeAut K, where dt^IntRG, t&K. Then, there exist t^K and
we Int RG, such that

tQo(G)t^1 = G and 6 = wrtQa0 , where

a0 = (AdtoT'aeAutCK, G) .

Proof. The map d : K-* Int RG,

dt = drtO-lr^

is the cocycle of the action of the group G on the group Int RG, i.e.

To trivialize this cocycle, let us consider the space (KxK, {JLXJU). Take up
the equivalence relation RG=RGxI, generated by the action of GxK on the
space KxK:

^.o(*i» kj = (gkl9 tk2) , kl9 k2<=K9 g^G, t <=K.

Put 7^=/^xid, 6=6 xid, dt=dtxid,

rt = rtxid, ft = rtxrt , /T = r (Krtxr,, g(=G

It is evident, that

*t = 9rt9-*r;h9 t^K . (4.2)

Let us now define the following automorphisms of the space KxK:

v(kl9 kz} = (c^-ife), kj , z(k19 k2) = (kl9 k2kTl) ,

z<r(kl9 k2) = (kl9 k2a-\k^'1) ,

Bi = v-lB, 02=z(FBlz-i.

Since dt e Int RG, then 5, e Int RG. It is evident, that z, zff e Int RG. Therefore,

Lemma 4.2 (a) S^v/Tv"1

(b) SJi^f'Sil
(c) zftz"1=rt9

(d) S2rt
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Proof. The equality (a) follows from the definition of the automorphisms
v and ft and identity (4.1). In view of (4.2) and (a) v/fv-1/?-^^^1?^),
whence

,) = 5ft $~l .

Then VlSft=f(r
tv~1S, and thus the equality (b) is proved. The statement (c)

can be easily verified, and (d) follows from (b) a and (c). D

Lemma 4.3. Let the Borel map a: K-+K be such that a(kt~1)=a(k)a(t)~1

for almost all (a.a.) k, t^K. Then a(k)=tQo(k) for certain t0^K and for a.a.

Proof. Let us consider the Borel map 9 : K-> K

Then y>(kt~1)=y*(k) for a.a. k, t&K. Based on this fact, one can easily find
that <p(k)=t0 for certain t0^K and for a.a. k^K, i.e. a(k)=tQo(k). D

Proof of Theorem 4.1 (continuation). Let us consider the Borel maps a and
b from KxK to K, such that

Then (ffftykl9 k2)=(a(klr\ k2\ ftfor1, kj),

(TrttBXh, k2) = (a(kl9 k2}o(tY\ b(kl9

Using Lemma 4.2 (d), we have

a(klr\k2)=a(k1,k2)a(tr1,

for all t^K and a.a. kl9 k2^K. Using Lemma 4.3 and the transitivity of the
action r5 we can obtain

a(kl9 k2) = a(kjo(kj , b(kl9 k2) =

for a.a. k2^K at a.a. k^K. It is easy to see that the resulting maps a and
are BorePs. But then, by the Fubini theorem, we have

a(k1,k2)=a(k2)a(k1), b(kl9 k2) =

for a.a. (kl9 ks) e J^r X K2. Hence,

l9 k2) = (a
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for a.a. k19 k2^K. Let us show, that for a.a.

a(k2}a(G)a(k2Y
l = G . (4.4)

Since 02eAut JRG, then

(B£gkl9 k2), 82(kl9 fc2))e J?G = RGxI

for all g e<7 at a.a. kl9 k2^K. Hence, in view of (4.3),

Re9 i.e.

for all geG and a.a. k2^K. Similarly we can verify that (Ada(k2)o)~\g)^G.
Thus, equality (4.4) is proved. Then, 62=ztF6lz-l=z(F61z-1Silv-1d=u6, where
u=ztrS1z-ldT1 V'elnt RG. Now from equality (4.3) we have (a(kja(kj,
=((uS)(kl9 k2))=u(6(k1), k2). But welnt RG and therefore

for a.a. kl9 kz^K. Let us fix the element k2 which belongs to the set of complete
measure, and put

'o = «(^2)~
1 , °J(k) = tola(k)t0 , 6, = r,0a0 .

Because of equality (4.4), 6^ Aut RG. Since

then (^^fc), 6(k))^RG for a.a. fce^T. Hence, w1=^"1^1elnt RG. So,

<9 = ^lW-i = 1V^1 = w^o(70 ,

where 11;=^ wr^F1 ̂  Int RG. The theorem is proved. D

Now we can find all automorphisms of the equivalence relation RG.

Theorem 4.4. Let K be a connected compact group with the trivial center,

and G its countable dense subgroup, which contains the dense subgroup in K, such
that it has the T-property. Let us consider the equivalence relation RG, generated
by left shifts of the group G, and let 0&AutRG. Then there exist

, G) and we Int jRG such that 0=wrko.

Proof. By Theorem 3.9, the group e({rt: t^K}) is a connected compo-
nent of unity and thus a normal subgroup of Out ^G. Then e(6) defines an
automorphism of the group e({rt: t^K}), which is isomorphic to K. Hence,
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for some e^e Aut K and all t ^K. Therefore,

Ort6~lr^(t} = dt<=IntRG, t<=K.

By Theorem 4.1, there exist k&K and welnt RG for which

a = (Ad AT1)*! e Aut (K, (?) and 0 = wrk a . Q

Corollary 4.5* Any automorphism from Aut^G, w/fA J/ie accuracy to the
inner automorphism and the automorphism of G, belongs to the centrahzer of the
action ofG.

To describe the structure of the group Out RG, we shall use the following
statement.

Lemma 4.6. Let K be a connected compact group, G its countable dense
subgroup, k^K and a&Aut(K, G). Then the automorphism rko elnt RG if
and only ifk^Gand a= ~l

Proof, Let us assume that r^aelnt RG. Then, for a certain g^G, the set

has positive measure. Consider the closed subgroup Hg9 which is generated by
the set {s^Sii s19 s2^Eg}. Certainly, ju(Hg)>0; since the group K is con-
nected, Hg=K Next, if s19s2&Eg, then a(s^=gSjk and 0(sJ1) = k~lsJ1g~l.
Then a(s21s1)=a(sJ1)a(sl)=k~1S21s1k. Consequently, a=Ad k~l and (rka)(s) =
k~1s=gs, s^Eg, i.e.

Corollary 487. Let G and K satisfy all the conditions of Theorem 4.4.
Let us identify the group K with its image in Out RG and imbed G as a normal
subgroup into Aut(£, G) (it is possible because Z(G)=Z(K) = {e}}. Then,

Out RG/K& Aut (K, G)/G .

Proof. Let 0 e Aut RG and [6] be its image in the group Out RGJK. Then
let us define map

/: Out RG/K -> Aut (K, G)/G , f([6]) = [a] ,

where 0=wrka (see Theorem 4.4) and [a] is the image of a in Aut(J£, G)/G.
Correctness of the definition follows from Lemma 4.6. Then, it is easy to
verify that /is an isomorphism. D
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Let us consider an important particular case.

Corollary 4.8. Let us assume that NK(G)=G, and the group A.ut(K, G) is
the semidirect product of F and lnt(K, G)*&NK(G). Then any automorphism
0EiAut RG has the unique decomposition 6=wrko, where k£zK and o€=F. Thus,

Proof. By Lemma 4.6,

= {e} .

Besides, orka~l=rff(:k^ k^K. Therefore F®K is imbedded into
Then, since Aut(K, G)=F®NK(G), then by Theorem 4.4, for 0eAut RG we
have 0 = w1 rk lt a, where t e NK(G) and a e F. Since NK(G)=G, then lt e Int RG,
i.e. Q=wrka. n

Theorem 4.9. Let K be a connected compact group with a finite center, G
its countable dense subgroup, containing a dense subgroup in K with the T-property.
Assume that the following conditions are fulfilled:

(a) G is a subgroup with a finite index in NK(G) and Z(G)=Z(K).
(b) The group K/Z(K) has a finite group of outer automorphisms.

Then, Out RG is a locally connected compact group and its connected component
of unity is topologically isomorphic to K\Z(K).

Proof. Put K=K/Z(G)9 G=G/Z(G) and consider the action of the group
G on K. In view of Lemma 3.8, we see that Out RG^Out RG. According to
Corollary 4.7,

Out jRg/£«Aut (££)/<?.

Since Z(G) = {e}9 then it follows from the condition (a) that [Int (AT, G): G] =
[NK(G): G]<oo. Now, on the basis of the condition (b), we may state that the
group Aut (K, G)/G is finite, i.e. K is a subgroup of a finite index in Out RG.

Therefore, Out RG is a compact group. D

Example 4.10. Let K=SO(n, R), G=SO(n, Q), r=SO(n, Z[l/p]), where
p is a prime number such that p=l (mod 4), and Z[l/p] be a subring in Q

generated by Z and l/p,n^5. We can show that K, G and P satisfy the con-
ditions of Theorem 4.9. The group 71 is dense in K and has the T-property in
accordance with [6, Proposition 5]. It is evident that ^is connected and has a
finite center. We can easily prove that NK(G)=G. Then if w=2fe+l, then

) = {1}, but if n=2k, then Z(X)=Z(G)={±l}f A/Z(tf)=PSO(n, R). The
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group K/Z(K) has a finite group of outer automorphisms in accordance with
the results in [19] (see Ch. IV, §§ 4, 5, 7).

Corollary 4.11. Let K=SO(n9 R), G=SO(n, Q), n>s, «=t=8. Then,

R), n = 2k+l
Out RGG PO («,«)> n = 2k.

Proof. If n is odd, then Z(K) = {1} and all automorphisms of the group
Ka.rz inner (see [19, Ch. IV, § 4 and 5]). Since NK(G)=G, then, by Corollary
4.7, Out^G«^. Let now n be even. Then, the group K/Z(K)=PSO(n, R)

has a single outer automorphism resulting from factorization of the automor-

o
1

(see [19, Ch. IV,phism Ad a of the group O(n, R), where a =

§§ 4, 5, 7]). By applying Corollary 4.8, we obtain

Out RG^Z/2Z®PSO (n, R)^PO (n, R).

§ 5. The Equivalence Relations with a Unit Fundamental Group

We can now define the fundamental group of the dynamical system
generated by the dense imbedding of countable group into connected compact
one.

Consider the action / of the group GxZ on the space with measure
(KxZ, JULX £), where <ax£ is the Haar measure on

KxZ: hg.n>(k, m) = (gk, m+ri) .

Put A=L"(KxZ,juixd), M=W*(A, /, GxZ). Then M=M®B, where

B = B(12(Z)), M=W*(A,1,G), A=L~(K,»).

Lemma 5.1. Let K be a connected compact group with a trivial center,
be dense countable subgroups of K. Put

Cr =

, then $=(0cRt)®Ad w, where c^Z\G, U(A)\ t<=K,

Proof. According to 3.7, G is a ICC-group with respect to F and so,

F}' n M=l®B (see the equality (1.2) in the proof of Theorem 1.7).
Then S(l®B) = l®B and S(M®l)=M®l. Hence, # = 0<g)AdM;, where
we U(B) and 0(^)=^ r^F. According to 3.3, 0=OcRt. D
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Proposition 5.2. Let the conditions of Lemma 5.1 be fulfilled for
and the group F have the T-property. Consider the equivalence relation RG=
RcXlco and denote the canonical projection from Aut RG on Out RG by e. Then

(a) Int RG is a closed subgroup of Aut RG, and thus Out RG is a Polish
group.

(b) e({rtxid: t E ^ K } ) is an open subgroup of Out RG which is topologi-
cally isomorphic to K.

Proof. According to [17, 2.11 (b) and 3.6], the factor M is full. There-
fore, Int RG is a closed subgroup of Aut jRG. Denote the subgroup of Aut M,

generated algebraically by IntM and Cr, by Cp (see Lemma 5.1). From the
arguments given when proving Theorem 1.1 [4], C? is an open subgroup of
Aut M. The statement (b) can be proved in the same way as 3.9 (with taking
into account 5.2 (a) and Lemma 5.1). D

Proposition 5.3. Let G be a countable dense subgroup of the compact group
K, RG=RG X/co. Assume that 6<= Aut RG and 0(r, xid)/?'1 =dt(r^t} xid) for a
certain a^AutK, where dt^IntRG, t^K. Then, there exist t0&K and
IntRG, such that tQ1o(G)t0=G and Q=w(rtQa0xid), where a0=(Ad

T, G). Thus, the automorphism 6 preserves the measure

The proof is carried out in the same way as that of Theorem 4.1.

Theorem 5.4. Let K be a connected compact group with a finite center, G

its countable dense subgroup containing a subgroup, which is dense in K and has
the property T. Consider the equivalence relation RG generated by left shifts
of G, and let RG=RGxI00. Then all automorphisms from Aut RG preserve

measure, and thus, the fundamental group of the equivalence relation RG is
trivial, i.e. F(RG} = {\}.

Proof. In view of Lemma 3.8, we may believe that Z(G)=Z(K) = {e}.
Then, by Proposition 5.2 (b), the group

e({rfxid: t&K})

is a connected component of unit, and therefore it is the normal subgroup of
Out jRG. Thus, if 6^ Aut RG, then there exists aeAut K, for which

ff(0Mrf xidXfl)-1 = </<,«) Xid) , t^K .

Hence, ^(r^xid)^~1(r~c
1

oxid)=^elnt RG, and, according to Proposition 5.3,
the automorphism 6 preserves measure. D
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Corollary 5.5. Let P and Q be measurable subsets of K of the positive

measure. The reduced equivalence relations R \ P and R\Q are isomorphic if

and only ifv(P)=v(Q) (see 1.1 and 1.2).

Corollary 5.6. The equivalence relations RG and RG x In are not isomorphic

Corollary 5.7. Let for G C K all the conditions of Theorem 4.9 be fulfilled

and RG=RG x/oo. Then the group Out RG is compact.

Proof. According to Theorem 5.4,

Aut RG = Aut0 RG- Therefore, Out ̂ G^Out RG .

Corollary 5.8. The equivalence relations given in §4 have trivial funda-

mental groups (see Example 4.10).

Supplement A. On Orbit-Non-Equivalent Ergodic Actions
of Arithmetic Groups

In this Supplement the results of § 3 and the methods developed in [5, 20]
are used to construct orbit-non-equivalent ergodic actions. It is shown that
arithmetic groups with the property T have a continuum of stably orbit-non-
equivalent free ergodic actions with a finite invariant measure (Theorem A.8).

Definition A.I. The actions al and a2 of the countable groups F1 and F2

are called stably orbit-non-equivalent, if

where Rr^ is the equivalence relation generated by the action ai (i=l, 2) and I
the transitive equivalence relation generated by translation of a circle.

In view of [10, Theorem 3] and [21, 4.6 and 4.10], the ergodic actions ax

and a2 are stably orbit-equivalent if and only if

Proposition A.2. Let K be a compact group and F its countable dense

subgroup with the property T and a finite center and such that F/Z(F) is an

ICC-group. Consider the factor M constructed by the action of F by means of
left shifts on (K, ju) and put M=M®B, where B is a type 1^ factor. Then the
group Out M contains an open subgroup topologically isomorphic to K/Z(F).
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Proof. In view of Lemma 3.8, M^M^B, where Ml is a factor con-
structed by the action P/Z(P) on the space K/Z(F). Therefore, we may
believe that Z(T)={e} and P is an ICC-group. Now our statement follows
from the arguments used to prove Lemma 5.1 and Proposition 5.2. Q

Proposition A.3. Let P be a group with the property T and a finite center
such that P/Z(P) is an ICC-group. Assume P to be densely imbedded into the
compact groups K^ and K2 and /,- to be its action by left shifts on the space

(Ki3 fji^), i=l, 2. If the actions /x and 12 are stably orbit-equivalent, then the

groups KJZ(P) and K2/Z(P) contain topologically isomorphic open subgroups.

Proof. Let the actions /j and /2 be stably orbit-equivalent,

Mi = W*(L°°(Ki9 JM,.), /,-, r) and M{ = M{®B .

Then, M^fd2. By Proposition A.2, the groups KJZ(P) and K2/Z(P) may
be regarded as open subgroups of Out M^ Hence, (KJZ(F)) fl (K2/Z(PJ) is an
open subgroup in Ki/Z(P), /=!, 2. D

For the case of lattices in semisimple Lie groups we arrive at the following
statement.

Theorem A.4. Let Hbea connected semisimple Lie group with a finite center,
without compact factors and factors of R-rank 1, and P be a lattice in H. IfP

is densely imbedded into the compact groups K± and K2 and its actions by left
shifts are stably orbit-equivalent, then the groups K^Z^P) and K2IZ(P) contain
topologically isomorphic open subgroups.

Theorem A.4 shows that the nonequivalent actions of the group P can
be constructed by merely imbedding it densely into various compact groups.
Such imbeddings may be constructed for a broad class of arithmetic groups.

Let (jCSL(/z, C) be a semisimple algebraic group defined over the field Q

(see [13, 22-24]). Put GQ = G nSL(«, Q) and GZ = G flSL(/i, Z). By an
arithmetic group we shall mean a subgroup P in GQ commensurable with the
group Gz (i.e. Pr\Gz has a finite index both in P and in Gz).

Let us construct now orbit-non-equivalent actions of the arithmetic group
J7, assuming that P=GZ. Consider the field of p-adic numbers Qp for a prime
number p and denote by GQp the group of the Q^-points of the group G (see
[22-24]). The group GQp provided with /?-adic topology is a locally compact
totally disconnected group. Put Gzp^GQpnSL(n, Zp), where Zp is a ring of
p-adic integers. Then, Gzp is an open compact subgroup GQp. Now, for
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the subset / in the set of prime numbers, put K(J)=fi K(p), where K(p)=Gzp.

Since the group Gz is imbedded into Gzp for all p, then there arises the diagonal
imbedding P=GZ into K(J). The following statement is a corollary of the
strong approximation theorem for the algebraic groups [23, § 4].

Proposition A.5. Let G be a connected simply connected semisimple alge-
braic group, defined and almost simple over Q. Assume that the group GR of
its real points is not compact. Then the group Gz is densely imbedded into K(J).

Lemma A.6. If J^J2, then the groups K(J^) and K(J2) do not contain
topologically isomorphic open subgroups. The similar statement is true for the
groups K(Jj)/Fi, where Fj is the finite normal subgroup of K(J^), i=l9 2.

Proof. Any open subgroup of K(J) contains the open subgroup L of the
following form:

= { n Kmp(P)} x { n K(P)} , (A.I)
= p

where S is the finite subset / and Kmp(p) the open subgroup K(p). In the
decomposition (A.I) every multiplier is a closed subgroup SL(n, Zp) for a
certain p and thus a j?-adic Lie group [25], Now the statement of the lemma
is easy to derive from the following results of the theory of /?-adic Lie groups
[25, Ch. Ill]: (a) if <p: K-*N is a homomorphism of the /?-adic group into a
#-adic group (p^pq), then <p(K) is a finite group; (b) in any p-adic Lie group
there exists an open subgroup which does not contain finite subgroups. D

Proposition A.7. Let G satisfy all the conditions of Proposition A. 5 and
besides the group of its real points GR have no compact factors and factors of
the R-rank 1. Let // be a ergodic action of the group F =GZ on the space K(J)
generated by left shifts (see Proposition A. 5). Then, if Jl^J2t then the actions
ljl and l/2 are stably orbit-non-equivalent. Hence, the group F has a continuum
of stably orbit-non-equivalent free ergodic actions preserving finite measure.

Proof. Since G is a simply connected semisimple algebraic group, then
GR is a connected semisimple Lie group with a finite center. According to
[24], F is a lattice in GR. Now our statement follows directly from A.4 and
A.6. n

Theorem A.8. Let F be an arithmetic subgroup of the connected semisimple

algebraic group G, defined and almost simple over Q. Assume that the group
GQ

R has no compact factors and factors of the R-rank 1. Then, F has a con-
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tinuum of stably orbit-non-equivalent free ergodic actions with finite invariant
measure, and the factors of type IIlf constructed by these actions, are pairwise
stably non-isomorphic.

Proof. Assume first G to be simply connected, and let FQ =

Then, [F: r0]<°° an<l \Pz'- ^1o]<°°- Any action of the group ro and the
action of F induced by it are stably orbit-equivalent (see [26]). Therefore, the
statement of the theorem is sufficient to prove for the group F0. Let K0(J)=FQ

be the closure of F0 in the group K(J)=GZ (see Proposition A.5). Then KQ(J)
is the open subgroup K(J). Hence, the actions Gz on K(J) and FQ on KQ(J)
are stably orbit-equivalent, and we may apply Proposition A.7. Let now G be
not simply-connected. Then, there exists the simple-connected almost Q-simple
algebraic Q-group G and the covering 9: G->G defined over Q, where ker <p is
finite. Consider in G the arithmetic subgroup f. According to [13, Theorem
10.20], (p(f) is the arithmetic subgroup in G. For f the statement of the
theorem has been proved. In view of Lemma 3.8 and the commensurability of
the groups F and <p(F), the theorem is true also for the group F. Q

By applying the G.A. Margulis' arithmeticity theorem (see [22, Theorem
9.7.1 and § 10]), we obtain

Corollary A.9. Let F be an irreducible nonuniform lattice in a connected

semisimple Lie group with a finite center, without compact factors and factors of

the R-rank 1. Then, the group F has a continuum of stably orbit-non-equivalent
free ergodic actions with finite invariant measure.

By using this result and the construction of the induced action [26], we
arrive at a similar also for semisimple Lie groups with the property T (see
also [22]).

Corollary A.10. Let H be a connected noncompact semisimple Lie group
with a finite center and without factors of the R-rank 1 . Then, H has a con-

tinuum of orbit-non-equivalent free ergodic actions with finite invariant measure.

Supplement B. The Fundamental Group for Ergodic Actions of
Semisimple Lie Groups and Their Lattices

Let H be a continuous locally compact separable unimodular group, acting
freely and ergodically proper on the Lebesgue space (X, fj) with invariant
(finite or a-finite) measure #. Consider the corresponding ergodic equivalence
relation RH [27]. Let S dX be a complete countable type lloo section for the
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action of H. Then, by [21, Theorem 6.4], RH^RxI, where R is the equiva-
lence relation on S with countable orbits (discrete reduction of type !!«,) and
/ is the transitive equivalence relation generated by translation of the circle.

Let now 0 be an automorphism of the equivalence relation RH. According
to [28, Theorem 2.4], the exist 0eAut R and welnt RH9 such that 0=(8xid)w.
The module of the automorphism 6 is the number mod 0, i.e. mod 0=mod S
(see [28, Definition 2.9 and Remark 2.10]). Clearly, mod 6 does not depend
on the choice of the discrete reduction R and on the representation of 6 as the
product (Sxid)w.

Definition B.I. The subgroup

F(RH) = {mod0: 6&AutRH}

of the group R+ is called the fundamental group of the dynamical system
(H9 Xs v).

Theorem B.2. Let H be a connected semisimple Lie group with a finite
center, and let (X, /JL) be a free ergodic H-space with finite invariant measure &.
Suppose R-rank (H)^2, and that the action H on X is irreducible, i.e. every
simple factor of H acts ergodically. Then, F(RH) = {1}.

Proof. In view of [21, Lemma 6.9], the group H may be thought to con-
tain no compact factors and its center to be trivial.

Let 6 be an outer automorphism RH. Then,

0(gx)=a(g, x)0(x) for all g^H at a.a. x<EX, (B.I)

where a: HxX-*H is a Borel cocycle. The map 6: X-*X represent the
orbit equivalence of the action on X to itself. Hence, the Mackey action of
thecocycle a is isomorphic to the said action [29, Proposition 2.5], which, as
was demonstrated in [30]3 is Zariski dense in H. Thus, in view of [29, Theorem
4.1], there exists the Borel map /: X-»X and the surjective endomorphism
a: H-> H, such that

«(& x) =Agxrl*(g)f(x) (B.2)

where a, by our assumptions on the group H, is an automorphism. Consider
the Borel map

6i:X^X, Ol(x)=f(x)e(x).

From (B.I) and (B.2) it follows that

= o(g)6l(x) for all g e H at a.a. xe X.
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Hence follows

Lemma. The map 6l is an automorphism of the space (X, y) preserving

measure ju.

The proof used [31, Lemma 3.5].
Thus, the group H and automorphism Ol generate the locally compact

group of transformations of the space (X, /*), i-e- the semidirect product
D=ZQvH. Since any automorphism of the semisimple Lie group preserves
its Haar measure, then D is a unimodular group. Because, moreover, the
action of D on X preserves the measure #, the equivalence relation RD is of
type II. On the other hand, OOil&u&RH9 and thus the equivalence relation
RD is isomorphic to the semidirect product Z®BRH (see [28, § 2]), i.e. ZOQRH

is a type II equivalence relation. Let now R be a type II*, discrete reduction
for the equivalence relation RH9 i.e. RH « R x /, and 6 = (3 x id)w be the
corresponding decomposition of the automorphism 0 (S eAutlfc, w
[28, Theorem 2.4]. Then,

Hence, Z®^R is a type !!«, equivalence relation, and this means that
mod 9=1. Therefore, mod 6 = I , i.e. F(RH) = { 1 } . D

Corollary B.3. Let F be a lattice in the connected simple Lie group H
with a finite center. Suppose R-rank (H)^2. Let (S, fj) be a free ergodic F-
space with the finite invariant measure &. Then, F(Rr)={\}.

Proof. Consider the action of H on the space (X, z>), induced by the
action of F on (S, #) [26]. This action is free ergodic and preserves the
measure P. Besides, RHf**RrxI. According to Theorem B.2, F(Ra) = {l}.
Therefore, F(Rr) = {1} . D

Remark B.4. Note that there exist countable ergodic equivalence rela-
tions with a unit fundamental group which do not have the property T [27]
(and therefore are not generated by the actions of lattices of Lie groups, as in
Corollary B.3). Indeed, consider the group SO (n9 Q) and its action by left
shifts on SO(n9R)9 72 > 5. The group SO(/z, Q) can be represented as a
countable union of a increasing chain of subgroups. Since this action is free,
so is the corresponding equivalence relation, in contradiction to the property
T [27, 6.1.4]. However, as was shown in § 5, the fundamental group of this
action is trivial.
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