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On the Distributions of Logarithmic Derivative
of Differentiable Measures on R

By

Hiroaki SHIMOMURA*

In [1], Hora discussed distributions of logarithmic derivative of differentiable
probability measures on R and obtained the following theorem with Yamasaki.

Theorem. Let P be an arbitrary probability distribution with mean 0 which
is not Dirac measure 0, at 0. Then there exists some differentiable probability
measure dp(x)=f(x)dx such that P(E)=p(x|f'(x)/f(x)EE) for all E€B(R),
where dx is the Lebesgue measure on B and B(R) is the usual Borel field on R.

In this note, we will give a simple proof of this theorem and add a few
comments. First we shall supplement some definitions and a few facts. (See,

[1] and [2]).

(@) A probability measure g is said to be differentiable, if p(E—t) is a
differentiable function of ¢ for each E=B(R).

(b) For the differentiability of g, it is necessary and sufficient that (1) g
is absolutely continuous with dx and (2) its density f(x) is differenti-
able almost everywhere on R and f'(x)e L}.(R).

() If d, would coincide with the distribution g, of logarithmic derivative
f'/f of p (du(x)=f(x)dx), then it follows that f’=0 almost every-
where and that f=0. Thus we must exclude the case P=d, for this
problem.

(d) The distribution g, has mean 0. Therefore we must consider only
probability distributions P with mean 0.

Before beginning the proof of the Theorem, we wish to state some idea
which is somewhat formal. For a given P define a function w(¢) on (0, 1) such
that w(t)=sup{x&R|P((—oo, x))<t}. Then w is increasing and by the properties
of supremum,

¢))] P((—o0, o))<t for all t=(0, 1), and
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2 P((—oo, x))>t, if x>w).

Now let A be the Lebesgue measure on [0, 1] and define a measure wi on B(R)
such that wA(E)=A¢|w@)€E) for all E€®B(R). It follows from (2) that
wA((—o0, x))=P((—oo, x)) for all x€R. So we have

3) wi=P.
Consequently,

o) [ loo1daw={" |x1dP(x)<e, and
®) S:w(t)d/?(z‘)———r x dP(x)=0.

Thus the problem is to find f which satisfies So_q Le(f'(x)/ f(x) f(x)dx=
S:XE(co(z‘))dt, where Xy is the indicator function of any Borel set E.

In order to find such f, we rewrite the right hand side using integration
by substitution with a suitable monotone differentiable function 7 on (0, 1).
After some calculations (which is omitted here) we reach to a contradiction in
the case that 7 is strictly increasing. On the other hand if 7 is strictly

decreasing, then putting ltirrll r)=a, Itirglr(t)z,é’, we have S:XE(w(t))dt:
g = -
—S s ()T () dx. So if we take

©) J(x)/ f(x)=o(r~'(x)), and

-1 r__ -1
0 F@= =) =

then the both sides in the above equality have the same form except the lower

limit and upper limit of integration. From (6) and (7) it follows that w(y~'(x))

=—7'(r"'(x))f'(x) and therefore w(t)=—(f-7)'(t). Thus for a function defined
t

by h(t)zSow(r)df, we have f(7(t))=—h(t)+const and this constant must be 0,

because f(x) must satisfy lim f(x)=0. Further it follows from (7) y'()=h@)*

and 7’(t)=5:12 ;;Z) +const. From now on we shall show that this procedure

actually gives the desired function f.

(Proof of Theorem)

It is clear that A()=| w(x)dr is absolutely continuous, and that A(0)=h(1
=0. A{?) is negative on (0, 1). In fact suppose that A() would be 0 for some
t,e(0, 1). Then 0=h(l)—h(to)=S:Ow(1)drga)(z‘o)(l——to), which shows «(,)<0.
Similarly 0=~h(,)—h(0) shows w(t,)=0, hence w(f,)=0. Again from 0=h1)—
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h{ty)=h(t,)—h(0), we have w(r)=0 on (0, 1), which contradicts to P#d,. As
w(r) is negative for sufficiently small z, A(#) is negative on (0, 1). Now we can

define a function 7 on (0, 1) such that T(t)zgzﬂ izl(;) .

creasing continuously differentiable function on (0, 1). Put ltirﬁlr(t)-——a (=2 —o0)

Then 7 is strictly de-

and Izirng(t)':ﬁ (£ ). Lastly we define a function f(x) on R such that f(x)

=—h('(x)), if x=(a, B) and f(x)=0, otherwise. Since f is absolutely con-
tinuous on any closed interval of (a, B) and limf(x)zlin/‘ilf(x)zo, so it is

continuous, differentiable almost everywhere and

® F(x)==o ' @)hF ()= x)f(x)  on (a, f).
Then
oo B 1
) |" rmdz=={"raryds={ norodao=1, and
=) B 1
(10) | 1rids={ 10t fade={ o] dan<e.

Consequently f(x) is an absolutely continuous function on R and a measure
defined by dp(x)=f(x)dx is differentiable. Now we have p(x!|f'(x)/f(x)€E)=

B
— [ ustw ) ha 1 dx = Zaw®)di=P(E) for all Borel sets E.
Q.E.D.
Remark 1. fu(x)=f(x+k) (k: an arbitrary constant) also satisfies p;,=P,

because the translation of f does not change the distribution of logarithmic de-
rivative.

Remark 2. If P is a symmetric distribution i.e., P(E)=P(—E) for all
E=B(R), then f is an even function and f(0)>0.

Proof. Take any t=(0,1/2). Then P{(—oo, w(t+1/2)+¢))>t+1/2 and
P((—e—w(1/2—t), 00))=P({—o0, o(1/2—t)+¢€))>1/2—t. It follows that w(t+1/2)
+e>—e—w(l/2—t) for all &>0 and hence w(-+1/2)+w(l/2—t)=0. Since
0=S:w(t)dl(t)=S:/2{w(z‘—l—l/2)—{—w(l/Z—t)}dl(t), 0 w(t+1/2)+wl/2—)=0 for al-
most all t=(0, 1/2). Consequently it follows from (5) A(t+1/2)=h(1/2—t) and
from this y(t+1/2)=—7(1/2—t) for all t=(0, 1/2). Thus we have f(0)=—~h(r"%(0))
=—h(1/2)>0, and f(rE+1/2)=—h(t+1/2)=—h1/2—t)=fG1/2—))=f(—r(+
1/2)). Q.E.D.

Conversely, it is evident that if f is an even function then g, is symmetric.

Example 1. P=U_,,, (¢>0): Uniform distribution on [—a, a].
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By simple computations, we have o()=a(2t—1), h(f)=at(t—1) and 7()=
a log (t~1(1—1)). Therefore 7 *(x)={l+exp(ax)}-! and f(x)=aexp(ax)
{1+exp(ax)}~2

Example 2. P=N(0, 1): Normal distribution with mean 0 and variance 1.

Put G(x):(Zrc)"/ZSf exp(—x%/2)dx. Then it is easy to see that w(t)=G*(t),

A(t)=—C2r) ?exp(—G~Y(¢)*/2) and y(t)=—G~%(¢). Thus we have 7-(x)=G(—x)
and f(x)=(2x) %exp(—=x%/2).

Remark 3. As we have seen in Remark 1, a function f which satisfies p;=P
for a given P is not unique. By the way we can take f as an even function, if
P is symmnetric. However such an even function is not uniquely determined as it
will be seen in the following example.

Example 3. Put g(x)=1/2|xjexp(—!x]). Then du(x)=g(x)dx is a differ-
entiable measure and after some calculations we have,

1 1
wxlg ) gne B=1/2 { s en( )

e o0 (— = )4

Thus for the measure P defined by the right hand side in the above equality,
g and f obtained in the proof of Theorem are even solutions of y#,=P. How-
ever they does not coincide with each other, because g(0)=0 and f(0)>0.
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