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Transfers in the Group of Multiplicative Units
of the Classical Cohomology Ring and
Stiefel-Whitney Classes

By

Andrzej KozLOWSKI*

Abstract

It is proved that G(X)-the group of multiplicative units of the classical cohomology
ring ]'IOHI(X; Z/2) of a CW-complex X admits a transfer map N%: G(X)—G(Y) defined
1z

for finite coverings = : X—7Y, such that total Stiefel-Whitney class w: KO( )—>G( ) is a
transfer commuting natural transformation. It is also shown that N% possesses all the
properties of transfers in generalized cohomology theories and for double coverings can
be expressed in terms of the Evens transfer (“Evens norm”).

§0. Introduction

The principal purpose of this paper is to answer a question I raised in [9].
Namely, consider the total Stiefel-Whitney class as a homomorphism

w: KO(X)—> G(X; Z/2)

where G(X; Z/2) denotes the group of multiplicative units of the classical
cohomology ring

S(X)= 1L H"(X; Z/2)

of a CW-complex X. In [9] it was shown that the functor G(X ; Z/2) possesses
a “transfer homomorphism” defined for double coverings X—7Y such that the
diagram

KO(X) GX; Z/2)

Lo,

KO(Y) ——> G(Y; Z/2)

where the vertical arrows denote transfers, is commutative. (Actually in [9]
this was proved only for the augmented Stiefel-Whitney class
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D KO(X) —> G(X)

where G(X; Z/2)=HY%X; Z)X G(X; Z/2) and ®=(rank, w), but as will be
shown later, these statements are equivalent). In cases like this we shall say
that the total Stiefel-Whitney class commutes with the transfer, and sometimes,
that the transfer commutes with the total Stiefel-Whitney class. In [9] I asked
if the definition of the above transfer can be extended to arbitrary finite cover-
ings, so that it possess all the “usual properties”. It is in fact easy to see that
the answer is yes, the transfer isin fact in a certain sense induced by the one
in KO-theory. Unfortunately the way the transfer is defined does not appear to
throw much light on the question of whether it is the transfer in some gene-
ralized cohomology theory G*(X; Z/2) for which G'(X; Z/2)=G(X; Z/2).

The definition of the transfer and verification of its properties occupies the
first three sections of the paper. The last section is devoted to pointing out
various relationships between this work (and some of my past work) and the
papers of Fulton & Macpherson [6] and B. Kahn [7].

This paper was written while the author was visiting the Tokyo Institute
of Technology. I would like to thank the members of the Department of Ma-
thematics, and especially professors Y. Sasao, T. Fukuda and K. Yamaguchi
for helping to make my stay both enjoyable and productive.

§1. The Main Theorem

Our main result is the following theorem.

Theorem 1.1. For each finite covering n: X—Y there is a transfer map
N¥: G(X; Z/2)->G(Y; Z/2) such that the diagram

ROX) 2 G(X: Z/2)
. N

=, M

RO(Y) ——> G(Y; Z/2)

is commutative (where m, denotes the transfer in reduced K-theory). This transfer

1S uniquely characterized by the following properties:
1. If

X —X

”'l g j«”

Y — Y
is a homotopy fibre square with f and g finite coverings then

Nz f*=g*N%.
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2. If w=1: X—X then N¥=1: G(X; Z/2)-G(X; Z/2).

3. If X—ZYEZ is a composite covering then NY,,=N¥%-NP.
4. If m: X—>Y is a disjoint union of coverings X=X,UX, and if x<
G(X; Z/2) then
NUx)=N3 @Ex)UNLEx)

where i,: X,—X is the inclusion and m,=x|x, the restriction for k=1, 2.
5. Let w: X—Y be a double covering. Then

NY( 2 50)=No 2 #:)+ Z Nelw) (A48 +D)

where N, denotes the Evens transfer (or rather its analogue for cohomology with
Z /2 coefficients, see [3], [6], [7]1, [11], [16],), and t=w(x,(1x)).

Properties 1-4 imply that N is a homomorphism (consider the covering
XUX—>X—-Y). One can also deduce a “double coset” formula in the manner of
[16] p. 130.

It is clear that properties 1-5 of N% characterize it uniquely because of the
following well known result, which is a special case of Proposition 12.1 of [6].

Proposition 2.1. Let m: X—Y be a covering with Y connected. Then there
is a connected covering Y'—Y of odd degree such that the induced covering
X;( Y'Y’ is a disjoint union of coverings X,—Y’, each of which is either an

isomorphism or factors into a composite of double coverings.

§2. Construction of N?¥

It is well known that H*(BO; Z/2)=Z/2[w,, w,, ---], where BO is the
classifying space for stable orthogonal real vector bundles and the w,’s are the
universal Stiefel-Whitney classes. BO is of course an H-space with respect to
the Whitney sum

6B: BOXBO — BO

and, moreover, an infinite loop space. This implies that there is an E.-operad
{L(n)} »»o Which acts on BO via a family of Dyer-Lashof maps

D%, L(n)zx BO™ — BO

(e.g. [12]). Since each L(n) is a free contractible X ,-space (where X, denotes
the symmetric group on n symbols), we shall often use the notation EX, in
place of L(n). We shall also assume from now until further notice that all
cohomology groups have coefficients in Z/2 and write H*(X), G(X), in place of
HYX; Z/2), G(X; Z/2), etc. We shall also assume that all CW-complexes are
connected, although this assumption is not essential as will become clear later.
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It is clear that there is an isomorphism of sets
(A) G(X)=Hom(H*(BO), H¥(X))

where % on(H*(BO), H*(X)) denotes the set of degree preserving ring homomor-
phisms, given by
I4x 4%+ o f

where f(w,)=x,. We next make the right hand side of (A4) into an abelian
group by defining the sum of two ring homomorphisms f, g: H¥BO)—H*(X)
to be the composite homomorphism

S Qg
H*(BO) —> H¥BOXBO)=H*B0O)QXRH*B0O) — H¥X)QH*X)
A*
2 H*XXX) —> H*X)
where A: X—X XX is the diagonal inclusion. With this abelian group structure
on the right (A) becomes an isomorphism of abelian groups. The homomorphism

f?é(X)z[X, BO] —> Hom(HXBO), H¥(X))=G(X)
f - f* — > 1+f*w1_‘_f*w2+

is, of course, the total Stiefel-Whitney class. (These simple observations, which
nevertheless play a key role in what follows, I learned from [14]. 1 would like
to thank Kenshi Ishiguro for bringing this paper to my attention).

Let now ¢: H*X)—H*(Y) be a ring homomorphism (where X and Y are
locally finite CW-complexes). Let S be a subgroup of the symmetric group 2.
Then ¢ induces a homomorphism of rings 7T s¢: H*(ES%(X ”)—>H*(ES§< Y™.
Moreover, if ¢ is induced by a map of spaces f: Y—X, i.e. ¢=f*, then Tsf*
is induced by the map of spaces 1X f*: ES é(X”—»ES >S< Y™. The correspondence
¢—T s¢ is natural with respect to homomorphisms S’—S” of subgroups of 2.

All of this follows from the work of Nakaoka ([13] Theorem 3.3) as generalized
to spaces in [7]. Namely, there is an isomorphism of rings

H*(ES%(X")%’H*(S; H*(X)®™)

which is natural with respect to maps of spaces and homomorphisms of groups.
From this the above assertions immediately follow, but as it will be later con-
venient to have an explicit construction of the map

Ts: Hom(H¥X), HXY)) —> ﬂ{om(H*(ESigX"), H*(ES?S< Ym™)

by means of cochains, so we briefly describe it below. Let ¢ be as above. Then
¢ can be represented by a map of cochain complexes @: C*X)—C*(Y). Since
the cochain complexes have coefficients in Z/2 any two such maps inducing the
same homomorphism on A* are cochain homotopic.
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Since C*(ES>S<X“)zHoms(C*(ES), C*X)®™), the cochain map @ induces a
cochain map

Homg(1l; @°"): Homg(Cy«(ES), C*X)®") —> Homg(C4«(ES), C*Y)2™).
By a lemma of Steenrod (Lemma 3.2 in [13]), the homomorphism H*(ES §<X )
—H *(ES?Sg Y™ induced by Homg(1; @®") depends only on ¢ and thus defines T s¢.

When S=2, we shall write simply T'¢ for Tsp. We can now define the
transfer N¥ for all finite coverings = : X—Y as follows. Let x=G(X; Z/2) be
represented by a ring homomorphism f: H*(BO)—H*(X). Then N%(x) is re-
presented by the ring homomorphism

Dn % T t*

(D30) fo,
H*BO) —— H*(EZ,LZX BO™) —> H*(EZ',LEX X™) — H*¥Y)

where t: Y—-EXY ,@(X" is a pre-transfer map which is defined as follows. Let

X" denote the subspace of X™ given by X"={(x,, -, xa); x:#x; if i#; and
n(x;)=n(x;) for all 1<7, j<n}. The symmetric group X, acts freely on X~
hence we have a principal X, bundle X"—»X"/3,~Y. Choose a “classifying
map” of principal X, bundles

X»—>EX,

o

Y — BY,.

As a pre-transfer we can now take the map #(y)=[¢(x1, =+, Xn), (X1, ===, X2)],
where the x; are the »n points in z#-%y). It is easy to see that the homotopy
classs of this map is independent of the choices made. (More details about pre-
transfers can be found in [1]).

§3. Proof of the Main Theorem

We will only sketch the proofs of properties 1-4 of the transfer N% since
they are straight forward, and give a more detailed proof of property 5.
1. Let

f

X —X

”’l g ”l

Y —— Y

be a homotopy fibre square with n: X—Y and n’': X'—Y’ finite coverings.
We wish to prove that

N%(f*u)=g*(N'¥u))
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where u€G(X). Represent u by a ring homomorphism u: H*(BO)—H*(X).
Then f*u is represented by the homomorphism
*

u
f*u: H¥BO) — H*X) — H*X’).
N¥(f*u) is represented by

(DBo)* T(f*u) tx,
H¥BO) ——> H*(EZ',,;( BO™) ——— H*(EZ,,;( X™) — HXY").

On the other hand g*N%(u) is represented by

(DBo)* Tu
H*(BO) ——— HXEZX, X BO™ —> H¥EZX, x X
¥ g*
—> H¥Y) = H¥Y").

Since T(f*u)=T/f*-Tu it is only necessary to verify that the diagram

*

S
H¥EY, X X*) ——> H*(EZ,I;< X'
P n
| - |
HXY) ————— H¥Y")

is commutative. Since Tf*=((1X f™)* this follows from the homotopy com-
mutativity of the diagram

zn Sn
te | g e |
Y > Y

2. Obvious.

3. Let X—T>Y—p>Z be a composite covering and let x=G(X). We want to
show that
NG ()=Ny(N¥(x)).

The left hand side is represented by

DzzH* T mnx

HXEZX,. X Bo™™) — """,

nm

H*(BO)

lpor
HHEZn X X*™) 2 HNZ)

where m is the degree of » and n the degree of[/p. The right hand side is
represented by
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(Dgo)* Tm(DgO)*
H*(BO) H*(EZ,,@( BO™) ——— H¥EXY, X (EX, X BO™™)
m Zm Zn
TnTox T nt¥ 3

——> HHEZn X (EZ, X X)™) 7, HHEZ X ¥™) 2 H¥Z).

To show that the left hand side =right hand side we only need to check that
the following diagrams commute

T (Djo)*
H*(EZ',,LZX BO™) H*(E2m§< (EZ,,;( BO™™)
W O3 ey (va2* ]
H*BO) ———— > H*(EX,n X BO™)

TnuTox
H*(EZ',,LSX (EX, §< BOM™) ——> H*(EE,,LZX (EZ,,ZX X™m™)

@ \
(V22" | T (E]
H*(EZ',”,LZX BO™) —— H*(EZ'MZX X™m)

T otk
H*(EZ',,L;( (EX, ;( XmHm) ——> H*(EZ,,LEX Y™
© (VE.y ] _—
H¥EY,, X X"™) ————————> H*Z).
an

In the above diagrams the maps

NZ D EZmEX (EZ',LZX X" —> EX .. X X*™

nm
are defined using the “structure maps”
lum’"’l""'"m: EZmXEZnIX XEan —— E2n1+...+nm
(in our case ny=n,=--=n,=n) of the operad {EX,}..,. Diagram (1) commutes
because the diagram
1X(Dgo)™
EZ'MZX (EZ"ZX BO™»™ —— EE,,LZX BO™
Vi oy Dho)
E¥,. X BO™ ——— > BO

nm

commutes (by definition of an operad). To see that diagram (2) commutes we
consider it at the level of cochains. Ii is then necessary to show that the diagram
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Homs, (CAEZ ), Honz, (CLES), CXBO)™M)™) —>
Homs (CAEZn), Homs, (CLEX ), CHX)™M)™)

T T

oms, (CLEXpn), CHBOY™) ——> Homs, (CHEZn,), CHX)"™)

~“mn

commutes (where the maps denoted by the arrows are the obvious ones). It is
easy to see that this diagram can be identified with the commutative diagram

Soms 55 (Cu(E(Tn[ Z0), CHBOY™) —> Sroms, f3,(CLB(E | Z), CHX)"™))

T T

I on5 (Ce(EZ )y CHBOY™™) > Soms,, (Co(EX na), CHX)™)

mn\

in which the vertical maps are induced by the inclusions 2 ’”SZ 2= 2 mn(S "‘SZ n

denotes the wreath product of symmetric groups). Finally, diagram (3) com-
mutes because the diagram

1Xt,
EY, X(EXY, X X" «—— EZmzx ym
Sn n m

Vi | b o)
Epn X X" e 7

~“nm
is obviously homotopy commutative.

4. The proof is similar to that of 3, and will be omitted.

5. Observe first that both sides of the identity define transfers (for double
coverings) which commute with the total Stiefel-Whitney class. Indeed, for the
left hand side this is what we have just proved. For the right hand side it
can be proved in exactly the same way as was done in [9] in the augmented
(non-reduced) case. In [9] an augmented transfer

Nv: G(X)— G(Y) (GX)=H"X; Z)XG(X))

was defined for double coverings 7 : X—Y by the formula
1\7115(711, i xi>=(2m, N; f‘, xi>+ f} Nﬂ(xf>((l+t)’"“i+l))
=0 =0 =0

(where by convention x,=1). It was also shown that the augmented transfer
has the right properties and that it commutes with the augmented total Stiefel-

Whitney class i
w(&)=(rank(§), w(é)): G(X) —> KO(X).

In fact this entire paper could have been written for the non-reduced case. First,
for a locally finite (not necessarily connected) CW-complex X we can show that
GCX)=H"X; Z)XG(X)=% omeonigenral Hx(Z X BO), Hx(X)). ~The natural map
KO(X)=[X, ZXBO]—=H omeoaigerral H¥(Z X BO), Hy(X)) turns out to be the aug-
mented total Stiefel-Whitney class @(&)=(rank(§), w(£)). Next we can now
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define the augmented transfer Nv analogously to the way N¥* was defined. The
statement of Theorem 1.1 remains valid with N% replaced by ]\7’,‘;, except that
the formula in 5 has to be replaced by the one given in [9]. The expression
in 5 in the reduced case can be deduced from the non-reduced one by making
use of a curious formula discovered by B. Kahn [7]. Let us consider this in
detail.

Restricting N® to the “zero component” G(X)=0XG(X)CG(X) we get the
“transfer” for double coverings given by the right hand side of the formula in
5. Let us show that the total (non-augmented) Stiefel-Whitney class commutes
with this transfer. Since the augmented total Stiefel-Whitney class commutes
with the augmented transfer we have:

(0, w(m(E—1M=(0, w(m @)/ w(m1N=(2k, w(x(E)/ 2k, w(x(14)
= (28, N2 wi®)+ £ N-wi XA+ +1)/(2k, (L+0*)

=(0, Mo £ wi@) 107+ 2 Now@XL+0 -+ 1)L +0)*)
=(0, {N-( B @)1+ + 3 Nalwn@X1+07}

+ 2 N(w @)X(A+09).

By Proposition 1.2.5.b of [7] we have tN,(x+ y)=tN,(x)+iN,(y) and hence

N 2w @)1+ 4+ B Nw @)1+ =N 3 w(8)

+ 2 Newi(8)).
Substituting we finally obtain
O, wlmE-1M=(0, N 2 w&)+ £ Nw @XA++1)

as required.

We have shown that both sides of the formula in property 5 define transfers
for double coverings which commute with the total Stiefel-Whitney class. Let
us denote them by N (as before) and N®., We will show that they coincide.
First observe that both transfers are defined as composites of maps

2, D% : G(X)—> G(EZ, X X?)
2
with the pre-transfer
th: GEZ, X X*) —> G(Y).

Thus it is enough to show that D’,‘}zﬁ’_%. In fact it suffices to show this for
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X=BO0. Indeed, the map D% can be defined in terms of D%, as follows. Let

xEG(X) be represented by a ring homomorphism f: H¥BO)—>H*(X). Letwe

G(BO) be the universal total Stiefel-Whitney class 14+w,-+w,+---(represented by

the homomorphism 1: H¥(BO)—H*(B0)). We have D’go(w)EG(EZZ}?; BO*»=
2

Hom(H¥(BO), H*EZX, §< BO?). Composing with Tf: H*(EZX, z>-< BO? —
2 2
H*EX, ;( X% we obtain the element D%(x)eG(EX, ;( XH=I omn(H*(BO),
2 2

H*EZX, X X*). Similarly we can show that De(x)=TfD%y(w). Indeed, we
have -

Do 5 we)=Dsol & we)+ 5 DaotwX(1+0H+D).

Applying T f and using the cochain construction of Dy (see [7] where it
is denoted by P,) we easily check that

T f+D3o( 3 we)=Dx( 3 :)+ 2 D) (A+0 +1)=D4(x)

as required. Thus it remains to show that D%,=D%,. Consider the covering

TXx
X=~FEXY,xX— BY,XX. As a pre-transfer map for this covering we can take

“the diagonal” A: X—EJX, }>:< X? (e.g. see [11]). Since is well known that the
?
map

* A¥*

(#*, &%)
G(EX, §< X" —— GX*)DG(BY,x X)

is injective (where 7: X?—»EJY, X X? is the inclusion of a fibre for the bundle
Zy

EY, §< X?—BJ,) it suffices to show that
2

L #X(Dgo)w)=i*Dgo)w)
and
2. AX(DEo)w)=A*D8o)w).

It is easy to verify that 1 holds. To prove that 2 is also true we observe that
AX(DBo)w)=N¥ o (w), A¥( Do) w)=N%, (w). Since N¥ and N2 commute with
the total Stiefel-Whitney class we have N%’BO(W(E))=1\7’7‘:’BO(W(E)) for any vector
bundle & on BO. Hence we must have N’:Bo(w)zﬁ’,ﬁm(w) which completes our
proof.

§4. Some Remarks on the Work of Fulton-MacPherson [6]
and B. Kahn [7]

The questions considered in this paper originated with the problem proposed
by Atiyah in [2], of finding a purely algebraic definition of the Chern classes
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of a complex and Stiefel-Whitney classes of a real representation of a finite
group. Atiyah pointed out that for this purpose it is sufficient to obtain a
“purely algebraic” formula for the total Chern or Stiefel-Whitney class of a
representation of a finite group induced from a representation of a subgroup in
terms of Chern or Stiefel-Whitney classes of the given representation (of the
subgroup). Such a formula for the Chern class was first found by Evens [4] in
the case of a normal subgroup of prime index and one dimensional representa-
tion (classical results in representation theory imply that this is sufficient for
the purpose of an “algebraic definition” asked for by Atiyah) and extended by
Evens and D. Kahn to representations of arbitrary degree. An simple proof of
an analogous formula for the total Stiefel-Whitney class of the direct image
(transfer) of a real vector bundle for a double covering map was given in-
dependently by the present author in [9] and by B. Kahn in [7] (the argument
in [7] is credited to J. Lannes). Finally Fulton and MacPherson [6] obtained
a general formula (for arbitrary coverings), which we will describe below. (It
may be worth pointing out that the definition of the transfer N¥ gives the
simplest solution to Atiyah’s original problem in the case of the Stiefel-Whitney
class, since the definition can easily be given a “purely algebraic” form). My
interest in these questions, unlike that of the above mentioned authors, derives
primarily from infinite loop space theory. From this point of view we think
of transfers which satisfy properties 1-4 of Theorem 1.1 as arising from “transfer
spaces” which represent these functors, i.e. spaces admiting a compatible family
of Dyer-Lashof maps. It is well known that infinite loop spaces are transfer
spaces and infinite loop maps between infinite loop spaces commute with the
transfers. The converses to these assertions are of course not true (e.g. see
[8] and [10]) but hold in many naturally arising situations in topology (e.g.
see [1]). This is the main justification for the question originally raised in [9].
Perhaps some light on this question may be thrown by comparing our main
theorem with the main result of [6]. I will restate this result in a form which
appears to be most suggestive in this context. In order to see this more clearly
let us first consider another result of [6].

Let #: X—Y be a finite covering of degree n. Let A denote a monotone
non-increasing sequence of non-negative integers A=(4;, 4z, **+, An), AAZA=-=
4,=0. To each such sequence A and an integer a2 we associate auxiliary

coverings f,: X;—Y and p;,: X;,,—X with a homotopy fibre square of
coverings

P2.a
Xtg —
m’“l S lr:

Xz————%Y

Fulton and MacPherson prove the following formula for the Evens transfer of
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a sum.

Proposition 4.1. Let x,€HYX) for i=1, 2, --- and let = : X—Y be as above.
Then
N x)=2(f 2 2(11 Nx),(,,((o:ﬁ aXa))
i=0 2 acel

where A runs over all sequences as above with 2,21 (The notation is as in [6]
except that we denote the classical transfer with the subscript ! rather than*).

In [6] the above “addition formula” is proved in a general geometric context.
We remark that in the topological case an easy homotopy theoretic proof can
be given, but we shall not bother to do so here.

Now we shall state the main result of [6] in a form which, in our opinion,
suggests a possible inriguing relationship with the above formula. Namely, for
xe H¢X) define the “normalized” Evens transfer Nix)=1/w(x (1%)N(x). In
words this means that the “normalized” transfer of a homogeneous element of
degree d is the Evens transfer of the element divided by the total Stiefel-
Whitney class of the transfer of the trivial d-dimensional bundle. Of course
the “normalized” transfer of a homogeneous element is not longer homogeneous.
Now we define the “normalized” transfer of a sum by the formula in Proposi-
tion 4.1 with N, in place of N,, i.e.

Ny 2 2)=3f)( algﬁ._z,a@r,axa)).

The main result of ([6], Theorem 5.1) can now be easily shown to be
equivalent to

Theorem 4.2. Let w: X—Y be a finite covering. Then the “transfer” N,:
G(X)—=G(Y) commutes with the (reduced) total Stiefel-Whitney class.

It seems virtually certain that the above “transfer” is the same as the one
defined in our main theorem (Theorem 1.1) i.e.

N.=Nv
but this appears to be difficult to prove. Of course it is sufficient to show that
the “transfer” defined by the Fulton-MacPherson formula possesses properties
1-5 in Theorem 1.1. In fact this is easy to show that it possesses properties
1,2,4,5 (see [6] pp. 54-58, 90) but a direct proof of property 3 appears to be
extremely complicated. It is, however, interesting to note that, at least in the
topological case, one can obtain several of the consequences of the main formula
of [6] by using only Theorem 1.1 and well known facts from homotopy theory

and infinite loop space theory. The following results are proved in [6] as
orollaries of the main formula.
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Proposition 4.3. (Corollaries 5.2 and 5.3 of [6]). Let w: X—Y be as above
and let E be a real vector bundle over X of rank e. Then we have the following
formulas:

(@ wimE)=n(w(E)+ewim(lx))
(0)  wym E)=m(wo E))+7m, P (w(E))+ew(m (1 ) (wi(E))+wem (159)

(where =, denotes both the transfer in classical cohomology and the “Atiyah
transfer” for vector bundles, while =, denotes the “second order” Evens trans-
fer, see [3], [6], [7D).

Proof. First observe that we can write (a) in the form
wi(m(E—-1§)=n(w.(E—1%))
which is the same as saying that the first Stiefel-Whitney class
wy: KO(X) —> H{(X; Z/2)
commutes with the transfer. But it is well known that the map
w,: BO— K(Z/2;1)

is in fact an infinite loop map and thus commutes with the transfer. To prove
(b) (and in fact simultaneously re-prove (a)) we generalize the above argument.
Consider the natural homomorphism (truncated total Stiefel-Whitney class)

wis=(w,, we) : KOX) —> Gu(X)=H'(X; Z/2)X H X ; Z/2).

Here the right hand side is an abelian group with the group operation given by
(%1, x2)+(y1, Yo)=(x1+31, Za+y:+x,y1). In fact this group is the zero-th term
of a connective cohomology theory, by [15]. Indeed, in [15] it is shown that
for any (anti-)commutative graded ring A=1{A;}.;», the H-space II...K(A;,7)
representing the group of multiplicative units of the ring Tl:=oH*X, 4;) is an
infinite loop space. If we take A=Z/2[x]—the graded ring of polynomials in
one indeterminate x of degree 1, we obtain the infinite loop space structure on
the representing space of the functor G(X) whose corresponding transfer is the
Evens transfer. If instead we take a truncated polynomial ring A=Z/2[x]/x"
we obtain an infinite loop space structure on the finite product of Eilenberg-

n-1
MacLane spaces I K(Z/2;) and in particular taking n=3 we obtain an infinite
=0

loop space structure on the product K(Z/2;1)X K(Z/2;1) mentioned above. The
transfer corresponding to this cohomology theory is easy to describe. Let
w: X—Y be a finite covering and let 1+x,+x, be an element of G/,(X) (we
now think of G,(X) as the group of multiplicative units in the ring H%(X ; Z/2)
XHYX; Z/2)x H*X ; Z/2)). The transfer N2 in G,(X) is just the transfer N;
in G(X) truncated in degrees=3, thus
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(€) NZ(1+xi+x)=1+m(x:)+m(x2)+7,?(x,)

(this follows from well known properties of the Evens transfer, and can be
easily proved directly from the definition). Now, it is easy to show that
formulas (a) and (b) are together equivalent to the assertion that w,; commutes
with the transfer. Indeed, suppose that

ws(m(E—=1%)=NXw(E—1%)
then
ws(mE—m1%)=N2(1+w(E)+ws(E))
hence

I+ wi(m E)+wo(m E))/(A+wi(m1%) +wo(r15) =N+ wi(E)+wuE)) .

Cross-multiplying and substituting the expression (c) into the right hand side,
we obtain formulas (a) and (b).

One can easily show that w,; commutes with the transfer by making use of
formulas 4, 5 in Theorem 1.1 and Proposition 2.1, from which we see that
N,=N% modulo terms of degree=3. (I proved the corresponding result for the
Chern class in this way some time ago, see the remark on p. 430-431) in [10]).
However, at least in the case of the total Stiefel-Whitney class, a much Stronger
statement is true: w,; is an infinite loop map. A proof of this fact will appear
elsewhere. Note however, that this statement is not true for any w;, with
n>3, indeed, such w,, do not commute with the transfer.

As another example let us prove, by a similar method, another of the
corollaries of the main formula of [6].

Proposition 4.4. (Corollary 5.7 of [6]) Suppose >0 and w,E=0 for 0<:
<k. Then

wi(mE)=mw(E)+w,(71%) .
Proof. Re-write the above equality in the form
we(r(E—1%)=mw (E—1%).

To prove this, consider the map f: X—BO which classifies the virtual bundle
E—1%. The assumption implies that f lifts to a map to (k£—1)-connected
KO theory

BO(k, -, )
f 6, W
X BO KZ/Z; k) .

f W
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Now, it is well known that @,, the lifting of w, to the (k—1)-connected cover
of BO is an infinite loop map, hence it commutes with the transfer, i.e.

z!wk(f>:wk(ﬂ!f)-

(Here we are using the symbol f to denote both the map and the corresponding
element of [ X, BO(k, ---, )]. The transfer on the R.H.S. is, of course, the
one corresponding to (2—1)-connected KO-theory).

Since @,f=f and @, commutes with the transfer (being an infinite loop
map) we have

wk(ﬂ!f)—_—wk(m@k.f)_—'wk(@k(ﬂ'!f))zwk(ﬂ!f»:mwk(f):ﬂ!wk(f)-
This completes the proof. Of course exactly the same argument can be used to

prove the analogous result for Chern classes.

Finally, we observe that many of the results of [6] and [7] about Stiefel-
Whitney classes of “direct image bundles” can be “generalized” as statements of
properties of the transfer N¥, without reference to vector bundles. For ex-
ample the following

Proposition 4.5. (Corollary 5.5 of [7]). Let E be a real vector bundle of
rank e. Let m: X—Y be a covering of degree n. Then

W E)=Nx(w(E))

can be deduced from

Proposition 4.6. Let (¢, 1+x:+ - +x,€G(X). Let N’,‘,’(e, I+x+ - +xe)
=(en, P(e, x,, -+, x¢)). Then the term of degree en in P(e, x1, -+, x¢) 1S N(x¢).

Proof. It is well known and easy to show that the term of degree nme in
N(14+x,+ - +x¢) is Nyx.). Thus for a double covering (n=2) the result
follows from the formula

Ne(e, 3xe)=(2e, N 2 w:)+ SN (xMA+054D)).

It now follows at once from Theorem 1.1 and well known properties of the
Evens transfer N, ([3], [6], [7], [16]) that it is true for a composite covering
and a disjoint union. The general case now follows from Proposition 2.1.

As another example, the same method proves the following formula:

Proposition 4.7. Let d=0 mod 2. Then N2(d, 14xsk+xoks+ )=
(nd, 14+m(xe8)+ -+ +7,(x22+1_,)+ {terms of degree=2%*}).

From this Proposition 1.3.4 of [7] follows immediately.
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