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Uniform Convergence Theorems of Boundary
Solutions for Laplace's Equation

By

Yuusuke Iso*

Abstract

The numerical treatments for two-dimensional Laplace's equation with the Neumann
condition are dealt with. The author gives a new numerical scheme for the boundary
element methods to solve this problem. In this scheme, approximation for the domain is
taken account of The author gives also the uniform convergence theorem for this new
scheme, and proves it rigorously. This new scheme is both mathematical and practical.

§ 1. Introduction

The boundary element method (BEM) is one of the numerical methods to
solve partial differential equations, esp. to solve boundary value problems of
linear partial differential equations. In finite difference methods (FDM), we
directly discretize our aimed differential equations. And in finite element methods
(FEM), we discretize our aimed equations through variational forms. In both
cases, the basic idea to construct numerical solutions is based on approximation
of differential operators. But in BEM, the basic idea is somewhat different.
We first convert the original linear differential equations into integral equations
on the boundary of the domain. Then, we construct our aimed numerical solution
through discretization of such integral equations. From this point of view, BEM
may be classified as a numerical methods for integral equations.

In this paper, we discuss only on the Neumann problem of Laplace's equ-
ation. We show, in §2, reduction of this problem to integral equations on the
boundary, which we call "boundary integral equation" in BEM. And we give
two numerical schemes using the collocation method. The Scheme I shown in
§ 3 is rather mathematical, but the Scheme II shown in § 5 is both mathematical
and practical. The uniform convergence theorems and their proofs are given in
§ 4 and § 6 respectively. And some remarks are given in § 7.

By the way, the uniform convergence theorems for BEM using the colloca-
tion methods were also shown in Arnold-Wendland [1], and Arnold [2]. In their
papers, they discretize the boundary integral equations without taking account
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of approximation for the boundaries. But we, in this paper, take account of such
approximation when constructing the Scheme II.

Here we give some notations which are commonly used in this paper. Let
Q be a bounded domain in R2, and let F be its boundary dQ. And let x be^a
spatial point x=(xif jt8).

CS(Q) the set of s times continuously differentiate functions defined on Q.
CS(F) the set of s times continuously differentiate fnnctions defined on F.
|[|*||[oo a maximum norm introduced into C°(F),

Le. |||/||L:=max|/(z)|, where /eC°(r).
x<ar

I I * I I 2 , 1 1 * I I o o norm of RN defined as follows;
v l / 2

k

nz the unit outer normal vector at

-~— the outer normal derivative on F.
dn

m(l) the Lebesgue measure of a Jordan curve /.
N(K) the null space of an operator K
D(K) the definition domain of an operator K
ZpZq a line segment between two points zp and zq;

i.e. zpzq=-{z\z=Azp-\-(l—Z)zq, O^A^l}

§ 2« Boundary Integral Equation

Let Q be a bounded domain in R2, which satisfies the'following assumptions.

Assumption 2.1.
(i) The boundary F—dQ is of class CB

a

(ii) The curvature of the boundary is positive,

Here we consider the following Neumann problem of Laplace's equation :

Au=Q in Q (2.1
(NP) 3

^-u=q on F, (2.2i
. an

where q is a given function of class C\F) which satisfies

Under above conditions, the problem (NP) has a unique solution in C2(Q}/
{const.}. We, first, reduce this problem into integral equations on Fa

Let g(x, y) be a fundamental solution of two-dimensional Laplace's equation ;
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.e.

If u(x) is the smooth solution which satisfies (2.1), the following integral
formula holds;

f 3
, y}q(y}day x^Q . (2.3)

Suppose the Dirichlet data of (NP) is known, the solution of (NP) can be
expressed by (2.3). In order to calculate the Dirichlet data, we take the follow-
ing limit of (2.3) :

g(x, y)u(y)day+\ g(x, y)q(y)day\Jr yl

where z is a point on F, and x tends to z in the inner normal direction at z.
As g(z, y] and (d/dny}g(z, y} have singularities at y=z, we get the following
formula ;

M(2)=ytt(z)-p.v.^rg^£(z, y)u(y)day+^rg(z, y}q(y}day, z^F .

Here "p.v." means the Cauchy principal value of an integral. Consequently we
have

z, y } q ( y ) d a y , zeT. (2.4)

This formula shows the analytic relation between the Dirichlet data and the
Neumann data of Laplace's equation. We regard (2.4) as an integral equation
for an unknown function u(z), and call it a "boundary integral equation" in
BEM.

Here we remark some properties of the kernel of this integral equation and
give propositions to guarantee its solvability. Let G(x, y) be a vector valued
function defined by

G(x, y}:=Vyg(x, y}. (2.5)

Hence we have (d/dny)g(z, y)=G(z, y ) - n y , y, ze/7.

Proposition 2.1. Suppose Assumption^. 1 holds, and let us regard (d/dny)g(z, y)
as a function with respect to y^F, whenever z is fixed on F. Then, there exist
positive constants C and C' such that

~ , . (2.6)

Proof. As F is a Jordan curve, we can parametrize it as follows ;

r={(yi, yj\yi=yi(s\ y*=yz(s), tfi)2+tf,)'=l, se/},

where we set an interval I={s^R\ —(l/2}m(F}<s<(l/2}m(F)}. Under Assump-
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tion 2.1, 3/1(5) and ^2(s) belong to C3(/). We can set z=(yi(Q), 3>2(0)) in general
Under these preparations, we set a function h(s) as follows ;

where £(s) :=^-z=(^i(s), 3^2(s))r-(ji(0), ;y2(0))r, and n(s) :=(j>,(s), -^i(s))r. By
convexity of Q, we have

p(s)-n(s}>Q for

Hence we have /i(s)eC°(/\{0}) and A(s)<0 for se/. Here we define /i(0) by
/z(0) :=lims_>0^(s). We are sufficient to show that /i(0) is finitely determined.
For we come to regard h(s) as a continuous function defined on a closed in-
terval /. And we can get the conclusion.

By the Taylor expansion near 5=0, we have

where ?(s)=(jyi(s), ^2(s))r and /c(s) denotes the curvature of F. Hence we have

lim/i(s)=—^-. 4-^(0X0. (q.e.d.)s-o 2^- 2

Remark 2.1. jBj f/i/s proposition, the integral kernel of (2.4) can be regarded
as a continuous function and we may write

We define an operator K as follows;

(Kf)(z) :=/(z)+lim \-^-g(x, y ) f ( y ) d a y , (2.7)
x-*2 jr ony

where x^Q, z^F, f^CG(F), and x tends to z in the. inner normal direction at z.

Proposition 202 (see Kellogg [5 ; ch. 11])

N(K)= {const.}.

For the sake of convenience, we define r(z) by

Then, we can set up the problem to solve precisely.

Problem 2.1. Find a function u^C\F] such that
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Ku=r, (2.9)

Q. (2.10)(

Unique solvability of this problem is guaranteed by the next proposition.

Proposition 2.3. (see Kellogg [5; ch. 11]
The system of integral equations (2.9) and (2.10) has a unique solution u^C°(F).

Under the assumption of regularity for the Neumann data q and smoothness of
r, the solution of (2.9) and (2.10) belongs to C\F).

In this paper, our aim is to solve Problem 2.1 numerically and give the
error estimates.

§3. Discretization without Approximation of the Boundary

In this section, we shall give a numerical scheme to solve Problem 2.1
without approximation of the boundary.

Let {z*}jK=i be a set of TV nodal points on F. We choose them so that they
satisfy

m(z7zk+l} = -^-m(F} l^k<N, (3.1)

where zN+l coincides with zl and zkzk+i denotes a minor closed arc segment of
F between zk and zk+1. We call an arc zkzk+i a "boundary element", and denote
it by Fk. Here we define a mesh size h by

h:=-^m(F). (3.2)

Let vh be an Af-dimensional linear subspace of CQ(F). The basis {(pk] of Vh

must be chosen so that they satisfy the following assumptions.

Assumption 3.1.

(i) ^eC°(D, «M*,)=3,.* forl^j.k^N, (3.3)

(i i ) supp(0*)=A-iWA for l^k^N , where FQ=FN, (3.4)

(iii) 0*|r,eC8(r,) forl^j.k^N, (3.5)

(iv) 2^=1, (3.6)

(v) ^kda=^3da for l^j, k<N. (3.7)

In the case that F is an one-dimensional smooth curve, we can easily construct
an example of such base functions. Here Vh is a linear span of {(/}k}kLi
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We define an operator on C°(r) into Fft by

Ph ; C°(D - > Vh

UJ UJ (3.8)

We call this operator P^ a "collocation operator".

Proposition 3.1. Suppose w(^)eC2(/7). Then we have

(3.9)

where C is a positive constant which is independent of h.

Proof, Set v:=Phu—u, then v satisfies

v^C\F}, v\r^C\r,) for l£j£N.

Namely v is a piecewise C2-function on F, By the Taylor expansion we have

where C is a positive constant which is independent of h. Hence we get our
conclusion. (q.e. d.)

Furthermore, we define an operator Kh on Vh into Vh by

This operator corresponds to the discretized operator of the operator K.

Remark 3.1. We can identify the function space Vh with RN '. Let uh belong
to Vh} then we have

Therefore we can identify (alr a2, •- , aN}T^RN with uh. According to this
identification rule, we can regard the operator Kh as an NxN matrix. In this

paper, we use the same notations for elements both of Vh and of RN as far as we
are not in confusion.

Let {aw}i|ij# be a set of the elements of the matrix Kh, then they are

expressed as follows :

) l<i, j<N, (3.10)

Hence we have the following estimates. The next lemma plays an important
role in the following discussion. Its proof is given in §4.

Lemma 3.1. Let a^j (l^i, j^N) be defined by (3.10). Then we have
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(i) -Cih^di.j^-Czh i*j,l£i,j£N, (3.11)

(ii) C3^ai,^C4 l^i^N, (3.12)

(iii) Sfl t .^=0. (3.13)

Here Clf Cz, C3, and C4 are positive constants which are independent of h.

We get the next proposition immediately from this lemma.

Proposition 3.2. Let Kh be the matrix defined above. Then we have

Proof. By (3.13), it is clear that rank(Kh)<N-l. Let K'h be the first minor
matrix of Kh ;

i.e. ^=(fli.

From (3.11), (3.12), and (3.13), this matrix Ki is a diagonally dominant matrix.
Hence we have rank(Kh)=N— 1. Thus we get our conclusion. (q. e. d.)

Let p=(fJii, fa, ••• , HN}T be an element of RN such that

/£**<), Kh
Tt*=Q. (3.14)

Proposition 3.2 enables us to find such an element f j t ^ R N . Using ft, we give
discretization of the function r(z), which is defined by (2.8), as follows :

l, (3.15)

r«:= -- —"llpkrl. (3.16)

Under above preparations, we set up the following problem which corresponds
to the discretized problem of Problem 2.1.

Problem 3.1 (Scheme I). Find a solution uh^RN such that

Khuh=rh, (3.17)

|UI=0, (3.18)

where uh-=(u\, u\y ••• , u%)T, rh=(rl
h, r\, ••• , r^)r.

From Proposition 3.2 and the definitions for fj. and rh, we can get the next
theorem which ensures unique solvability of Problem 3.1.

Theorem 3.1. There exists a unique solution uh^RN of the equations (3.17)
and (3.18).
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§ 40 Covergence Theorem for Scheme I

Let u be the solution of Problem 2.1, and let uh be the solution of Problem
3.1. According to Remark 3.1, we can regard uh as an element of Vh. That
is, uh can be regarded as a continuous function on F. In this section, we
establish the uniform convergence theorem for Scheme I through estimation of
\lPhu — Mf tHU We start from the proof of Lemma 3.1.

Proof of Lemma 3.1. From Proposition 2.1, we have

where Ci and C2 are positive constants which are independent of h. Furthermore
we have

1

Hence we get (3.11) and (3.12). On the other hand, we have, from (3.6),

f 3 ,

Thus we have

-0. (q.e.d.j

In order to estimate \\\Phu — M^HU, we estimate Kh(Phu — uh}. We decompose
it into the following form;

Kh(Phu-uh}=PhK(Phu-u}+(Phr--rh). (4.1)

Let e u be an element of Vh defined by

uh. (4.2)

We are sufficient to estimate Ilk/JIUHk/ilU)- We prepare the next propositions
for our aim. Let Ki be the first minor matrix of the matrix Kh]

i.e.

As is mentioned before, K'h is a regular matrix. It has the next estimate.

Proposition 4,1. For a sufficiently large integer N, we have

, (4.3)

where C is a positive constant which is independent of h.
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Proof. The matrix K'h is diagonally dominant and can be decomposed into
the following form ;

K^-D'^, (4.4)

where the matrix D'h is a diagonal matrix defined by

And obviously the matrix Z^ is a regular matrix. Using the results of Lemma
3.1, we have

fit.*

where C is a positive constant which is independent of h. By the technique of
Neumann's series, we get for a sufficiently large integer N (i. e. for a sufficiently
small positive number h),

'-j. (q.e.d.)

Proposition 4.2. Lgf w 6e f/ie solution of (2.9) ant/ (2.10), then we have

\\\PhK(Phu-u^£Ch*, (4.5)

where C is a positive constant which is independent of h.

Proof. Here we remark that u belongs to C\F). (See Remark 2.2.) By
(2.7), we have

\\\PhK(Phu-u)\L

[ -= — g(x, y}(Phu-u}(y}day\\zi jrony I/

From (4.1), we have

lim i ~
x-*Zi J r d n y~drTg^x*

— M l l U - l i m \ -^—g(x, y}dax-^zi \ j ron y

Hence we have
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On the other hand, from Proposition 3.1, we have

\IPhu-u\L^Ch2. (4.6)
Therefore we are to get

where C is a positive constant which is independent of h. (q. e. d.)

Proposition 4.3, Let u be, the solution of (2.9) and (2.10), then we have

\r(Phu-uh)da\^Ch* , (4.7)

where C is a positive constant which is independent of h.

Proof, From (3.7) and (3.19), we have

Hence we have

From (4.6), we have

where C is a positive constant which is independent of h. (q. e. d.)

Under above preparations, we can prove the next theorem, which guarantees
uniform convergence for "Scheme I".

Theorem 4.L Let eh be an element of Vh defined by (4.2). Then we have

IIWIco^CA, (4.8)

where C is a positive constant which is independent of h.

Proof. Define two matrices 5 and T by

/i i\ /i \
0 »I J. \J *• 1 I J.

1 1
S=

/ 1 0

1

1 °

1 \
1

1 1

1

T=
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where plt ••• /jtN are defined by (3.15). Then we have

s-'=
1 0 -1

and we have

di,i dl,N-l 0

0 0 / -

Operating two matrices S and T to eht we have

TKh$S^eh=TPhK(Phu-u}+T(Phr-rh). (4.9)

Let us set the right hand side of (4.9) in the following form;

then, by (4.3), we have

\t\\^Ch for l^k^N—1. (4.11)

From (4.9), (4.10) and (4.11), we have

el-el^tl for l^k^N-1. (4.12)

Furthermore from Assumption 3.1 and (4.7), we have

Set again

then we have
tS=0(h). (4.13)

From (4.9M4.13), we have

(4.14)

1 -1
1 1

Here t\ satisfies
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\tk
h\^Ch for l^k^N,

where C is a positive constant which is independent of h. Applying the method
of Gauss' elimination to (4.14), we are to get

/ ' - . » \ fel\/ •. o

0 1

\
Hence we have

J

tl

riV *=i

and successively we can get

for l^k^N—1. Then we get the conclusion. (q. e. d.)

This theorem guarantees uniform convergence for the Scheme I. But this
numerical scheme is not ment for practical uses. Constructing numerical solu-
tions by computers, we always approximate the boundary by some polygonal
lines. This approximation yields another kind of discretization errors which are
not taken account of in this section.

§ 5. Construction of Scheme II— Discretization with Approximation
of the Boundary

Let {zZk-i}k=i be a set of N nodal points on F. Let Tj be a closed line
segment between two points zzj-i and z2j+i for l^j^N; i.e. ^=^2^-1^2.7+1. And
let FJ be a closed minor arc segment of F between z2j-i and z2j+i ;

i.e. FJ^ZZJ-I^ZJ+I. And let h be defined by

J
Moreover we denote a polygon \J^j^NTj by f. This set of nodal points must
be chosen so that they satisfy the following assumption.

Assumption 5.1. There exists a positive constant M such that

maxm(r,)
mm m(Yj)

where M is independent of h.
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And let Vj be a unit outer normal vector of F on Yj- Furthermore we
define a vector rj as follows :

- x , - . , f o r l < j/; iim(r>j-i+»i(fr-i)M, — '
where va and ^0 coincide with VN and 7«- respectively.

Proposition 5.1. Under Assumption 2.1, we have

ll^-a.u-J-gC/i', (5.2)

where C is a positive constant which is independent of h.

Proof. It is sufficient to prove for the case of /=!. We parametrize the
boundary F in the same way in the proof of Proposition 2.1. Here we can
assume in general that

*i=(:Vi(0), y,(0))=(0, 0), (5.3)

(ji(0), ^.(0))=(1, 0). (5.4)

In this case, it is clear that

7!,i=(0, -l)r. (5.5)
Furthermore we set

(5.6)

}, (5.7)

where s_<0<s+, and they satisfy max( |s_ | , s+)<Ch, where C is a positive
constant which is independent of h. Under above preparations, we get

where l+=((y1(s+)T+(yz(s+mi/z, and l-=((3'i(s-))2+(3'2(s-))2)1/2

By (5.1), we get

By the Taylor expansion, we have

l, 0)r+0(/i2), (5.9)

l, 0)r+0(/22), (5.10)

where ic(Q) denotes the curvature of F at s=0. From (5.9) and (5.10), we get

. (5.11)
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Thus by (5.5) and (5.11), we are to get

where C is a positive constant which is independent of h. (q. e. d.)

Let zzk be the middle point of the line segment ?k for l<k^N, and let
{z*k}k=i be another set of N nodal points on F. Let us denote a point on f by
z. Here z is chosen so that z^zzjzzj-i in convenience. Let us set A:=m(zzjz).
Then we define a vector m% as follows (see Fig. 1) ;

*$i
\ (Fig. 1)

Roughly speaking, m% is defined as the linearly interpolated vector of the vectors
{?]j} and {i>j}. By this rule, we have defined the vector m~z throughout on f,
and we call it a 'pseudo-normal' vector of F.

Next we choose a set of piecewise-linear functions {$k}k=i on the polygon
F so that they satisfy the following assumptions.

Assumption 5.2,

(i) ^eC°(f) for l^k^2N.

( i i ) $k(zj)=dk.j for Irg;, k^2N.

(iii) $k zs a linear function on the each line segment z^+i for l^/, k<2N.

Using these 'small7 piecewise-linear functions {$k}l=i, we construct another
set of piecewise-linear functions. Let us define 'large' piecewise-linear func-
tions as follows ;

for I<ij<^2N. Let Vk and VI be finite dimensional function spaces on f de-
fined by

FA^linear span of [$l9 ̂ 3, ••• , ^2^-1} , (5.14)

?£=linear span of {^2, ̂ 4, ••• , ^2^} . (5.15)

And let Pk be a collocation operator on C0(.r) into V\ defined by

ID \D
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Under above preparations, we discretize the operator K. As is mentioned in
Remark 3.1, we are sufficient to give the all elements of the matrix which cor-
responds to the discretized operator Kh.

Set

for \<i, j^N. And set
N

bl:=^al>j for l<ii^N. (5.17)

Furthermore set

Cltj~altJ-^Tbi for l^z, j^N. (5.18)

Let us define the matrix Kh by Kh\=(clt]). Then the following estimates can
be goto

Proposition 5.2. Let {bl} be defined by (5.17). Then we have

\bl\^Chz for l^f^TV, (5.20)

where C is a positive constant which is independent of h.

Lemma 5.1. Let N be a sufficiently large integer. Then, for the elements of
the matrix Kh defined by (5.18), we have the following estimates'.

(i ) —C1h^Ci,j^—C2h for l^Jz, j^N and i=£j. (5.21)

(ii) C^Ci,i<Ct for l^i<N, (5.22)
2V

(iii) Sc<^=0.

where Clf C2, C3 and C4, are positive constants which are independent of h.

Their proofs are given in the next section. This lemma plays the same
role with Lemma 3.1. And the next proposition follows immediately from this
lemma.

Proposition 5.3. Let Kh be the above defined matrix, then we have

rank(Kh}=N-l. (5.24)

Next let us define a function f(z} by

y(z, y}Pl
hqda~y. (5.25)

And let /! be an element of RN such that /z^O, Kh
T/l=Q. Using this vector,

we discretize f(z) as follows:
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ffc=f(z2*) for

&N _ •*• 51 r yk
~h — „ 2j JJ- k PH ,

UN k=i

where /z=(/2i, /Jz, ••• , /J^r)r. Hence we set up the next approximating problem
for Problem 2.1.

Problem 5.1 (Scheme II). F/wd a solution uh^RN such that

(K'h)uh=rh, (5.26)

2<MJ=0, (5.27)*=i

{oU} are defined by

2kda for l^k^N. (5.28)

We call it, in this paper, "Scheme II". Considering the basic idea to construct
this scheme, we can easily get the theorem for unique solvability of the above
problem.

Theorem 5.1. There exists a unique solution uh^RN of equations (5.26) and
(5.27).

§ 6e Convergence Theorem for Scheme II

Prior to the main discussion, we define another pseudo-normal vector of f.
Let m'i be a vector defined by replacement of ^- with n z z j _ 1 in (5.12) :

where z ^ z 2 j - t Z Z j and A=m(z^%). Obviously we have

Here the next proposition holds.

Proposition 6910 Lef v(y) be a function which belongs to C\f}. Then, we
have

(6.2)

for l<j, k<N, where C is a positive constant which is independent of h, j and k.

Proof. Set

,y).(m-v-m$ for

Considering (5.12) and (6.1), we can regard a function Hk(y] as a continuous
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function on F. Moreover this function is piecewise-differentiable: Hk(y] is
continuously differentiable on each ?j, and satisfies

tf*(2»,)=0, |#*(^--i)i^C/z2 for l^j,k£N,

where C is a positive constant which is independent of h, / and k.
Hence we have

(q.e.d.)

Considering that m~ (resp. H2) is a continuous (vector valued) function with
respect to z (resp. z), and that Q is a convex domain, we have, by the inter-
mediate value theorem, the following proposition.

Proposition 6.2. For every z^Tj, there exists a unique point z^F '} such that

m~=nz.

Corollary 6.1. There exists a unique point z^^Fj such that

Remark 6.1. Considering smoothness of the boundary, we have by the Taylor
expansion,

(6.3)

where C is a positive constant which is independent of h.

Proposition 6.1 enables us to define a mapping from y^F to y^F. Let us
denote this mapping by T ; F-*F. Obviously this mapping is a bijection. And
it is clear that r is continuous on f and twice continuously differentiable on each
segment z~^zk+i for l^k^*2N—l. Furthermore let /(r) be its Jacobian;

then we have
lll/WIIU^l+CA', (6.4)

where C is a positive constant which is independent of h. Thus we have as
follows.

Proposition 6.3. Let v(y} be a continuous function on F, then we have

\\ v
IJTj

(6.5)
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where C is a positive constant which is independent of h and j.

Proof, Setting y=r(y\ we have

Ij=\ v(y}da^ — \ v-r-\y}d(Ty
Jry J//

ry
By (6.4), we have

|/,!£C7i8. (q.e.d.)

Corollary 6.1 enables us to define a set of nodal points {zzk}%=l on F. Here
we set

<pk'.=$k*r-1 for l^k<2N* (6.6)

These functions possess the following properties.

Proposition 6.4, Let {(pk} be defined by (6.6), then we have

(i) ^eC°(F) for

(ii) <f>k(zj)=dk,j for

where zZj-i coincides with z2j-i for l<j<^N,

(iii) supp^&=ife_2Ife+2 for l^k^2N9

(iv) 0 * l + 1

Let Vk and F| be finite dimensional function spaces on jT defined by

FA.0=linear span of {(]>lt <p3, , (p2N-i},

FI:=linear span of {^2? 9^4, , fan} -

And let us define the following four collocation operators P\, P\, P\ and P'h as
follows:

UJ UJ
N

PI (resp. PI) ; C°(D - > VI (resp,
UJ UJ

^ ; C°(f) - > VI
UJ UJ
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Hence we have the next proposition, which is similar to Proposition 3.1.

Proposition 6.5. Let u be a function which belongs to CZ(F). Then we have

(6.7)

(6.8)

where C is a positive constant which is independent of h.

Its proof is just the same with that of Proposition 3.1. We only apply the
Taylor expansion to estimate them. But here we must pay attention to the
fact that a function <f>Zk I r^- is a piecewise C2-f unction on each F3.

Next we give the proofs of Lemma 5.1 and Proposition 5.2.

Proof of Lemma 5.1. Set

aitj=di.j+ lim I G(x, y ) ' n y ( p 2 j d a y (6.9)
x-+zzi JF

for Irgz, j^N. Then we have, by Lemma 3.1 and Assumption 5.1, the follow-
ing estimates:

Cz/i for l^i, j^N, t*j, (6.10)

for l^i^N, (6.11)

where Ci, C2, C3 and C4 are positive constants which are independent of h.
Hence by (5.16) and (6.9), we have

= \Jrj-i

+ \Jrj-i

~ ~ \ rJ-Ty-i

+ f (g(ziif y)-G(zzl, yV'fiyfaday. (6.12)
J/V-iu^u-0+i

Primarily, by Proposition 6.1,

G(z2i, y)'(m$—m'~)$2jday- 5jC/z3. (6.13)

Secondly, by Proposition 6.3,
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\ G(z2i, y)-ntj$ud(Tj
JTj-iUrjUYj + l

(6.14)

For, by the definition of r, we have

G(z2i, y)-ny$2j(y)=G(z2i, y}'mr
T-i^2j°r-l(y).

Finally, let y be a fixed point on F, then a function G(x, y)°ny is a Lipschitz
continuous function with respect to x^R2 (see Kellogg [5; ch. 6]). Recalling
Remark 6.1, we have

L rr (G(z2iyy)-G(zzi3y}}'ny<p2jday <Ch\ (6.15)
J rj-i\JrjVrj+i

By (6.12), (6.13), (6.14), and (6.15), we get

(6.16)

where C is a positive constant which is independent of h. And by Proposi-
tion 5.2, we have

N — - (6.17)

Thus, by (5.18), (6.10), (6.11), (6.16) and (6.17), we get

—C[h^Ci,j^—C2h for l^Jz, j^N and i*rj,

C'z<Ci,i^C[ for l^i^N

for a sufficiently large integer N. (q. e. d.)

Proof of Proposition 5.2. By (5.17), we have
N

N N

j=l l'J 1>J j=l l'3'

On the other hand, we have
N

aitj=Q. (See Lemma 3.1.)
.7=1

Thus, by (6.16), we have

(q.e.d.)
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Remark 6.2. Let K^ be the minor matrix of the matrix Kh;

From Lemma 5.1, we can get the same results with that of Proposition 4.2.
In other words, K^ is a regular matrix, for a sufficiently large integer N, and
we have

ll^-loo^C—, (6.18)

where C is a positive constant which is independent of h.

Let us now start the error estimation for Scheme II. Let u be the solution
of (2.9) and (2.10), and let uh be the solution of (5.26) and (5.27). And let eh

be defined by
eh:=PJiu-uh. (6.19)

The following theorem holds.

Theorem 6.1. Let eh be defined by (6.19), and let N be a sufficiently large
integer. Then, we have

KJIU^CA, (6.20)

where C is a positive constant which is independent of h.

Proof. We apply the same technique as is used in the proof of Theorem
4.1. We decompose Kheh in the following form:

#ftefc=(J?fcP*M-P2^ (6.21)

Set (the right hand side of (6.21)):=(fA, *£, ,t%-\*)T. If we prove
for l<k^N— 1, and if we prove

then we can immediately get the conclusion. (See the proof of Theorem 4.1.)
Hence we are sufficient to estimate Kheh\-z^Zzk. By (5.18), (5.26) and (6.17), we
have

2 c»..,u(z,»)- 2 ak,

(6.22)

By Proposition 6.5, we have

\PlK(Plu-u}(zzk}\^Ch\ (6.23)

Furthermore we have
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Considering that r(z) is a Lipschitz continuous function with respect to a variable
(see Kellogg [5; ch. 6]), and recalling Remark 6.1, then we have

By Proposition 6.3 and Proposition 6.5, we get

\(Plr-PM(zzk)\^Ch\ (6.25)

Therefore by (6.22), (6.23), (6.24) and (6.25), we get

\tk
h\<Chz for l^k^N-1.

On the other hand, by (2.10) and (5.27), we have

(6.26)

Hence we can get the conclusion. (q.e.d.)

Let us define a interpolation operator Ih from VI into C\F} as follow:

in} vi - >c°(F)
IL' UJ

Theorem 6.1 is equivalent to the next theorem.

Theorem 6.2. Let u be the solution of (2.9) and (2.10), and let uh be the
solution of (5.26) and (5.27). Then we have, for a sufficiently large integer N,

(6.27)

where C is a positive constant which is independent of h.

Proof. Obviously we have

From Proposition 6.5 and Theorem 6.1, we can get the conclusion, (q.e.d.)

§ 7. Conclusion

In this paper, we give two numerical schemes and give the convergence
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theorems for them. (See Theorem 4.1 and Theorem 6.2.) Since the coefficient
matrices are ill-conditioned for both schemes, we only get the low-order error
estimates. In other words, the results of this paper are the convergence theorems
of O(h), though the truncation errors are of 0(/i2). But many numerical datas,
which are done in engineerings, suggest that we may prove the convergence
theorems of O(hz) for our schemes. To this point, details are shown in
Hayakawa-Iso [4].
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