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Endomorphisms of Certain Operator Algebras

By

Geoffrey L. PRICE*

Abstract

In this paper we study C(Z)-endomorphisms of C(X, S3(§)), for X a compact space.
The local structure of these endomorphisms is analyzed. We prove the existence of a
C(X) -shift, not all of whose fibers are shifts on

§ 1. Introduction

In [6] Kadison and Ringrose undertook a penetrating study of automor-
phisms of certain operator algebras. In particular, they showed that if 91 is a
C*-algebra of operators on a Hilbert space $, then the condition \\a—c\\<2 for
an automorphism a implies that a lies in the connected component of the
identity, A(^), in Aut($). Moreover A(2I) is generated as a group by such automor-
phisms, and each element of A($) is permanently weakly inner, or 7r-inner.
This latter property means that a is weakly inner in any (faithful) representa-
tion TT of $. If 21 is the C*-algebra C(X, 33(4>)), where Xis a compact topological
space, this property implies that a(fA}—fa(A\ for any scalar-valued function
/ in 5L Following the terminology of more recent papers, e.g., [8], we shall
call such an automorphism a C(Z)-automorphism.

In the case where £ is finite-dimensional, (i.e., 93(§) = Mn(C), for some ri)
Kadison and Ringrose give an example of a compact space J£[6, Example d]
for which A(^)£InnCCX)($)£AutCCJnW. InnCCJn(9I) is the group ofin ner C(X}-
automorphisms, i.e., a is inner if there is a (uniformly continuous) unitary-
valued function U on X such that a=Ad(U).

Motivated in part by [6], Lance, [7], and M.S.B. Smith, [14], studied the
structure of the quotients of the various automorphism groups on C(X, 83($)),
equipped with the norm topology, where $ is an infinite-dimensional Hilbert
space. In this setting A(2Q and InnCc;n(20 coincide, [7, Theorem 3.6], and the
quotient group AutCcx)($0/A(2l) is shown to be isomorphic to H2(X, Z} [7,
Theorem 4.3]. A key result obtained by Lance to establish the above isomor-
phism is that C(^)-automorphisms of C(X, 33(4>)) are induced locally by norm
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continuous unitary-valued functions, i.e., for x^X there is a neighborhood N
of x and a unitary function U^C(N, 33(£)) such that aicctf.sca^^^dC/y). More
recent papers (viz. [8, 9]) have analyzed the structure of C(Z)-automorphisms
of separable continuous trace algebras ; and, even more generally, of C*-algebras
of sections of bundles having fibres which are C*-algebras.

In this note we introduce the notion of C(Z)-shifts of C(X, 33(£)). (We shall
assume throughout that X is separable.) A *-endomorphism a of C(X, $(§))
which preserves the identity operator / (i.e., I(x}=I, for all x) and satisfies
ff(fA)=fff(A) for f^C(X\ shall be called a C(Z)-endomorphism. Letting A=I
we obtain a(f}=f. If a satisfies the additional range property r\vk(C(X,

=C(X\ we say that it is a CCX")-shift. For x a point, our definition coincides
with that given by Powers [10] for a shift on 93($). In this setting, and under
a technical assumption, Powers has shown that the Jones' index [S3($) : 0"(33(£))]
(cf. [5]) is a complete invariant for the outer conjugacy classes of shifts on
»(£), [10, Theorem 2.4].

Although the general structure of C(Z)-shifts on C(X, S3(£)) is far from
settled, our results here indicate an interesting interplay between the theory of
C(Z)-automorphisms on C(X, S3(£)) and the theory of shifts on 93(£), (cf. [10,
12, 13]). In Section 2, we show that [S3(£) : tf *($(§))] is constant on connected
component of X, where for x^X, ax is the *-endomorphism on S3($) induced by
the equation a(A)(x)=0x(A(x)), A^C(X, $($)). In this section we also give an
analogue of Lance's theorem on locally inner C(J^)-automorphisms.

In Section 3 we present an example which shows that if a is a C(Z)-shift,
then not all of the induced endomorphisms, ax, of S($) need to be shifts them-
selves. On the other hand, if each ax is a shift it follows easily that a must
be as well, Lemma 2.6.

§2. The Structure of C(Jff)-Endomorphisms

Let a be a C(Z)-endomorphism of 91. Then a is an isometry of 31, which
fixes the center, C(X}. By a trivial adaptation of the proof of either [8, Lemma
1.4] or of [6, Example d], we obtain the following local characterization of a,
which is essentially a restatement of [8, Lemma 1.4] for endomorphisms.

Lemma 2.1, Let a be a C(X}-endomorphism on W=C(X9 S3(£)), where X is
a compact space.

( i ) // Al9 ^2e3I and A,(x}=A2(x} for some x^X, then a(Al)(x}=a(A2}(x},
( i i ) For any compact set Y of X} a induces a (unit-preserving} *-endomor-

phism OY of C(Y, $($)) such that aY(A,Y}=a(A)lY for A^%.

We write ax for the unique *-endomorphism of 33(|)) which satisfies a(A)(x)
= ax(A(x}), x^X, A^W. We shall write <r= 0 ax. Observe that the *-endomor-
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phisms ax vary continuously with x in the norm topology. For if
then a(A)^C(X, $($)), where A is the constant function A(y)=A, for all
so that given x^X and s>0, there is a neighborhood N of x such that ||(j
-cj(4)(*)ll<e, for 3>eAT. But H^^X^-^^X^OiNII^^)-^,^)!!, by Lemma
1. Hence we have the following (cf. [8, Lemma 1.6]).

Lemma 2.2. Let a= © ax be a *-endomorphism on C(X, $(£>)). Then the

map x—>ffx is a continuous map of X into the set of *-endomor phisms of 33(£) in
the topology of pointwise norm convergence.

Now suppose a is a *-endomorphism of 33($) which preserves the identity.
Then a(S3(£)) is a subfactor of »(£), isomorphic to S3($). Moreover, «(»(£))' is
a type /„ subfactor N of 23(£), for some w (possibly oo) and 33($) is generated
by N and «(»(£)) [1, 1.8.2, Corollary 3]. Using the identification 8(§)^7V®
a(93(§)), it is clear that if ee33($) is a rank one projection, then a(e) is a pro-
jection in S3(£) of rank n. Another way to characterize the "size" of
in »(£) is to observe that n2=:[$(£): a(83(£))], the Jones index (cf. [5]).

Definition 2.1. Let a be a *-endomorphism of 33($). Then a has index ?i2

if «(S(§))/ is a type /„ factor.

Proposition 2.3. Let G = @GX be a C(X}-endomorphism of 91. T/?g index of
the endoinor phisms ax is constant on connected components of X.

Proof. Let ee33(|)) be a rank one projection, then the mapping x— >o'(£)(^)=
<7a;(e) is uniformly continuous. Given x^X, let N be a neighborhood of x such
that for y^N, \\0y(e)—0x(e)\\<l. Then [3, Lemma 1.8] there is a partial isometry
with support projection ax(e) and range projection ay(e), so the projections ay(e),
ax(e} have the same rank. Hence x— >rank((7a;(e)) is a continuous function from
X to 2VW{°o}, and the result follows, m

In what follows we shall make the assumption that X is connected. Fix
', then for any y^X, ax, ay have the same index. We shall also assume

that this index is finite. We may then construct a unitary operator f/yeS5($)
such that Ad(Uy}°ax—ay. In fact, choosing matrix units { e l j : i, j^N} for
$(£), we set

Uy='Say(ellWv<rx(e^, (1)

as in [10, Theorem 2.4], where VyeS3(£) is a partial isometry from <rx(eu} to
ffy(en). Observe that if U'y is any other unitary such that Ad(U'y)°(Tx=ay, then

Lemma 2.4. Let N be a neighborhood of x^X, where X is connected. Suppose
there is a uniformly continuous mapping y-^Vy from N to partial isometries Vy
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with support projection ax(en) and range projection ay(eu\ Then there is a
strongly continuous mapping y-*U y on N where the Uy are unitary operators
satisfying (1).

Proof. Suppose {fi'.i^N} is an orthonormal basis for <£) such that for
each i, j&N, either ax(ejj)ft=Q, or /t. Let r7yeS3($) be defined as in (1).
Since \\Uy\\ = l, it suffices to show that y-^Uyf is continuous for / a finite
linear combination of elements of the basis ; for the same reason, we may
assume that /=/*, for some i^N. Choose / such that ffx(ejj')f=f; then Uyf
=0y(ejj)Vy<p, where <p=ax(eil)f. But 3/-><7j,(O and y-*Vy are uniformly con-
tinuous for y^N, so the mapping y-»ffy(ejj)Vy<p is also continuous on N. M

Proposition 2.5. Let x^X. There is a neighborhood N of x such that a
uniformly continuous mapping 3;— > Vy exists from N to partial isometries Vy with
support projection ax(e^) and range projection ay(eli).

Proof. For any Y such that 0<7<1, let N be a neighborhood of x such
that \\ffy(en)—ffx(e11)\\<T, for all y^N. Let P (respectively, Q) be the projec-
tion given by P(y)=ax(en) (resp., Q(y)=ffy(ell)) for all y^N. Then \\P-Q\\
<1, so by [3, Lemma 1.8] there exists a unitary £7eC(N, 83(£)) such that Q =
UPU*. Setting V=UP, y-*V(y) gives the desired mapping, m

Corollary. There are, for each x^X, a neighborhood N of x} and unitary
operators Uy^58($} such that the mapping y— >Uy is strongly continuous for y^N.

In what follows we shall show that under some restrictions the preceding
result may be strengthened in the sense that the Uy may be chosen to vary
continuously in norm for y^N, (Theorem 2.8). This result is inspired by a
similar result obtained by Lance, [7], for C(Z)-automorphisms, which was de-
scribed in Section 1. We have also adapted some of the techniques of that proof.

Definition 2.2. Let a=®ax be a C(Z)-endomorphism of C(X, »(£)), and
let p be a state of S3($). We say that p is cr-invariant if p°ffx = p for all

Throughout the remainder of this section we assume the existence of a
pure normal state p on 33(£) which is (T-invariant. We shall also assume that
ax is a shift on 83(|>), for each x^X. In this situation, we have the following
structure theorem of Powers, [10, Theorem 2.3].

Theorem P0 Suppose a is a shift of S3(§). // there is an a-invariant pure
normal state on 83($), then there are mutually commuting, isomorphic type I sub-
factors Bl9 Bz, ••- of 93(£) such that

( i ) 93(£) is the weak closure of
( i i ) a(Bk)=Bk+l for k^N, and
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(iii) p is a symmetric product state with respect to the factorization in ( i ).

Lemma 2.6. Suppose a=®vx is a C(X}-endomorphism such that GX is a
shift of 8(£), for all x^X. Then a is a C(X}-shift.

Proof. Let A&C(X, $(£)) He in the range of ak, for all k^N. For each
k, let Ak satisfy ak(Ak}=A. If x^X, ak

x(Ak(x))=ak(Ak}(x}=A(x\ so A(x)^
r\ ff£(83(l>)) is a scalar multiple of the identity, and therefore A^C(X). Hence

a is a shift. •

Remark. The converse of the lemma is not true, in general. This is the
principal result of the following section.

The following technical lemma will be helpful in proving the main result
of this section, Theorem 2.8, (cf. [7, Lemma 3.2]).

Lemma 2.7. Suppose, for some x^X there are a neighborhood N of x and
unitary operators Uy for each y^N such that Uy-*I strongly, but not uniformly,
as y-+x. Then there are an orthonormal sequence {hm} of vectors of «£), a sequence
{ym} in N, and a d>0 such that

( i ) ym->x
(ii) \\Uynhm-hm\\<b/(n2^\ for m<n,
(iii) \\Uymhm-hm\\>5/2.

Proof. Under the hypotheses, there are a sequence {<pm} of unit vectors
in £, elements xn^N, and <5>0 such that (a) \\U Xntpm-<pm\\<d/(n2n+l}, for m<n,
and (b) \\U Xn<pn— <pn\\>d- Fix n, and suppose orthonormal vectors hl9 h2, • • • , hn

have been chosen in the subspace of $ spanned by the <pm's, and elements yl9

3>2, ••• , yn have been selected from the sequence {xm\ such that

(1) \\UVphn-hn\\<8/(p2*+l), for l£

(2) \\Uyphp-hp\\>d/2, for l^p<n.

Choose an element y^{xm} such that \\Uyhp-hp\\<d/((n+l}2n+l\ for l^p^n.
n

Writing <p'=<py, then \\Uy<p'—<p'\\>d. Let ^>=S(y>', hk)hk, and let <p—ip—<f'.

Then <p\_hk, for k^n, and
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Hence d/2<d-(d/2n+l}<\\Uy<l}-<^\\^\\Uy^-^\\/\\<})\\. Setting yn+1=y, and AB+1=
<p/ \\<p\\, (i) and (ii) hold for k=l, 2, ••• , n+1. The result now follows by in-
duction. 11

Using the preceding results we may now improve Corollary 2.5 as follows.
The main idea of the proof (i.e., the construction of the operator V), is in-
spired by a similar construction in [7, Lemma 3.2].

Theorem 2.8, Let 0= © ax be a C(X}-shift of C(X, £(£)) on a connected
x&X

space X, for which each ax is a shift of finite index on 93($). Suppose there is
a a -invariant pure normal state p on 83($). Then for each x<^X, there is a neigh-
borhood N of x such that

(i) ffy=Ad(Uy}°ffx, for y e N, and
( i i ) the Uy vary continuously in norm for

Proof. From Corollary 2.5 we may choose for each x^X a neighborhood N
of x and unitary operators Vy for y^N, which satisfy (i) and which vary
continuously in the strong topology. For ^4eS3($), ax(A)= Vxvx(A)V^, so Vx<^
ax($8i($))'=BI, where we use the notation of Theorem P. Taking Uy=VyV*,
(i) still holds and UX=I.

From Theorem P we may identify 83(£) as the weak closure of the tensor
product B^Bz®-". By making the identification Bk=Bj} for all k, j each Bk

may be viewed as acting on the same n-dimensional Hilbert space $0 with or-
thonormal basis {/!, • • • , /„}. If Ek is the minimal projection of Bk for which
p(Ek)=l, then Gx(Ek}=Ek+l, and we may assume Ekf1=f1, for all k. We
then view «£) as the Hilbert space tensor product ®$0, having orthonormal basis
the vectors fj^f^®-- for which all but finitely many indices j'k are l(see [4]).

If \\Uy-7||-AO as y-*x in N, there is an orthonormal sequence {hm} in ©
which satisfies the conditions of Lemma 2.7. From the finite-dimensionality of
€>o we may assume that there is a unit vector /e|)0 such that each ht has the
form hl=f®<pi, where the ^'s are orthonormal. Viewing the <pi as elements of
$, let &i be the rank one projections satisfying el(pi=(pi. Define ei+i®ei to be

00

the rank one operator (el+l^el)(p=((p, <pl}(pl+1. Then the sum S ^i+i®^t con-<=i
verges strongly to a partial isometry V in S3(£). Moreover, for a vector of the
form f®<p^$, Gx(V}(f®(p}=f®V<p.

Let £=5/4 (for d as in Lemma 2.7). By the lemma there is an m^N and
a y=ym+i^N such that ||^/zm-/z7n||<£/2 and \\Uyhm+1-hm+1\\>2e. Then
lk,(^)^/y/im-(T,(y)/im | |<£/2, and
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On the other hand, \\Uyax(V)hm—f®<pm+1\\ = \\Uy(f®<pm+1)—f®<pm+1\\>2e, so
by combining we have \\ax(V)Uyhm—Uyax(V)hm\\>e. But

= \\Uyax(V)-ax(V)Uy\\

so that Gy(V}-{*ax(V} in norm for y in the sequence { y m } , a contradiction, since
a(Y)<=C(X, $(£>)), where V(y)=V, for all y. By the contradiction, the Uy vary
continuously in norm in N, and we are done. B

Remark. If X is connected, fix an element x^X, and let {Nl}i^j be a
finite open cover of X with uniformly continuous functions {£/tKeJ implementing
<7 in the sense that for jyeN,, ay=Ui(y)ax( }Ul(y}*. On Nij=Nir^Nj, ay=
Ad(Ul(y^ax=Ad(UJ(y^aXf so Ul(y)U^yr^ffx(K(W=B1. If r denotes the
determinant on Slf then let *tj(y)=r(Ut(y)Uj(yW. Then on Nijk=Nir\Njr^Nk}

*ij*jk=r(UtU*)r(UjUfi=r(UtUf)=]ttk, so the Vs define a one-cocycle of {Nt}
whose values lie in the sheaf of germs of continuous functions from X to 771

(cf. [7, Lemma 4.1]). Arguing as in [8], if {Mp} is another cover, with as-
sociated unitary functions Vp(y) on Mp, then passing to a common refinement
of {Ni} and {Mp} we may assume that the two covers coincide. On Ni} let A*
be the continuous function determined by Y(Vi)=AiY(Ui). If {pa} define the
one-cocycle of {Nz} for {FJ in the sense that pij{y}=7(Vl(y}V](y}*'), then

so that JMI<;-, ^ t<7 differ by a coboundary. Hence they define the same element of
Hl(X, /71). It would be interesting to pursue these results, which are analogous
to the automorphism case, to determine more information about the structure
of the unitaries (Ul\ implementing a.

§ 3. An Example of a Shift

In this section we present a counterexample to the converse of Lemma 2.6.
We verify the existence of a C(Z)-shift a— © ax, where X is a closed interval

x<=X

in R, for which each ax is a *-endomorphism of S3($), of index n2<o°, but not
all ax's are shifts on $(£).

We fix some notation. As above, let Bk, k^N\j{Q}, be copies of Mn(C}
acting on Cn, with orthonormal basis {Qlf ••• , Qn}. Let {e\3\ l<i, j<n} be
matrix units for Bk satisfying e\jQp=d-lpQl. For convenience, write Q—Qi.
^C is the UHF algebra (g) Bk of type n°°. This algebra acts on the Hilbert
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space |) having an orthonormal basis consisting of all vectors of the form
Qj®@ij(8Qiz®'~ , where all but finitely many of the Qik are Q0 Under this
action, B($) is the weak operator closure of 8L Let o) be the vector state (S)Q,
on 81, where Qr-=Q®Q® • • - . Then CD is a pure symmetric product state, (8)0)*,

&§e
on 81, where

( 2 )

Let a be the shift on ( ® B k } f f given by a(ek
ij}=e^1

a Define a *-endomor-

phism aQ=^a on 8(£), i.e., aQ(A)=A for ^4e50, and cr0C4)=aCA) for
(®Bk}"e It is straightforward to verify that n2=[33(£): <r0(33(4>))]. Moreover

<70 is not a shift on 33(£); in fact, it is easy to verify that BQ= C\ tf*(S3(£)).

As in [11] we define an action on 81 of the discrete group S(oo) of permuta-
tions of ^VU{0} fixing all but finitely many elements. We define this action by
setting (rs)ek

pq(rs)=ekpq, if k^=r and k^s, and (rs)er
pq(rs)=e*pq, for transpositions

(rs) in 5(oo)0 It is straightforward to show that (rs) is inner; in fact, we may
take (rs) to be the (self-adjoint) unitary element S 2 ervq?\T> (cf . [11]).

p=l g=l

Definition 3.1. Let T be the transposition (01). For t^R, let Ut be the
unitary operator e~" exp(zYT). More generally for ^eiV, letT*=(0^), and C7 f e , c

Lemma 3.L The following conditions hold for the operators defined as above :

(i) Tk=al(T), for

(i i)
(iii)
(iv)
(v)

Proof, (i) and (ii) are obvious. To show (iii) observe that TkQ
f—Q', so

=e"fl'. Hence o>(tr*. t^C7f i t)=<f/*.^f/?.tfi /, £'>=<&£', Qf>=a)(A')J AEL
To verify (iv) observe that for &eJV, a)((70(eW)=a)(ej;i)=o)(gW, by (2).

Sicne a> is a product state the preceding equation shows that a) is a-0-invarianto
(v) follows from (iii) and (iv). m

Now let x = \_— 7T/4, 7T/4], and define c;'— 0 o"J, where aj=(7o for all t.
t&x

Clearly, a' is a C(Z)-endomorphism of C(Z, S(§)). Define a= 0 cr£, where at —

^J. Since ̂ =0t/£eC(Z, $(£)), a=Ad(U)-ae is also a C(^)-endomorphism.
We shall show that a is in fact a C(JT)-shift. This is achieved through the
series of lemmas below.

Definition 3.2. For k^N\J{Q}, and fe/J, let 7\,£ be the unitary operator
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=UlitU2,t ... Uk+1,t.
It is straightforward to show that since fft=Ad(Ut)°(T0t

, (3)
for A6E

Lemma 3.2. For feX, and for k ^N\J{$], [<r{+1 (»(£))]' = /Y, {B1} ••• ,

. Since (70=<<g>a, and since [a*(® 5,)]YX® £j)={£i, ••• , Bk}
ff, byj ^ i j ^ i

[10, Lemma 2.1], *8O(£))' = {Bl9 ••• , 3*}". Then by (3), W

k*ty=rktt^ ... , B4+1rr&.
Lemma 3.3. For t^X, and for k^N, ak

t
+l(^(^}}={rk,tB,r^ Bk+2,

Proof. Clearly ak
Q

+1(^m={BQ) Bk+z, -}
//. Then (7t

rk,tBk+2r^tt -•}". But rk.t^{BQ, Blf ••• , Bfe+1} / /, so commutes with 5^+J-, for
/>!, so rkttBk+Jrft=Bk+J. m

By (P fe, k^N, we shall denote the conditional expectation of the vector state
k

a) onto ®Bj. We may define 0k as follows (cf. [2, Lemma 2]). Let {Epq}
J=Q k

be matrix units for ®Bj. Each ^4eS3(§) has a unique decomposition of the
j = Q

form S£pgApg, where Apq^{Bk+1, •••} / / . Then Sfl>(^Pa)^fl=^*(>l).

Lemma 3.4. The sequence {0k(A): k^N} converges weakly to A, for all

Proof. Since \\A\\^\\® k(A)\\ for all k^N, it suffices to show <&k(A)£, 77)
converges to <^f, 57) for basis vectors f = ® flp , 79= ® -QQ.. For A^ sufficiently

iso iso

large, QPk-=Qqk—Q, if &>AT. Recalling that co is a product state with respect
to the BJ, and choosing matrix units { E r s } for {B0, Blt ••• , Bk}", where k>N,
we have

and we are done,
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Theorem 3.5. // f =£0 is an element of [— *r/4, jr/4], then ot is a shift of $($).

Proof. Suppose ,4 GE a !($(£)) for all k. Then A^{Fk,tB,F£t, Bk+z, •••}" for
all fe, by Lemma 3.3. Since Fk,tB0Fgt^ {BQ, Bl9 ••• , £*+i}", A*=0*+1(^)e
Fk,tBQFj*t. Hence there is a sequence yk^BQ such that ^4=wk-lim Fk,tykF^t,
by the preceding lemma.

We shall show in the proposition below that for each £e[— ;r/4, rc/4], the
sequence {Fftt} converges strongly to an isometry F* in S3($): moreover, if f=
®fiPi is a basis vector in $, then r*f is a vector of the form Q®At. If also

=^®Qqi and e^- is a matrix unit of BQ, observe that

( 4 )

Let ^*=SflJX^ for scalars <. Then ||̂ || = || A,^.A*£|l-||A,||^mi|, so that
all \a*tj\ are bounded by ||^l||. From (4), lim<A.ta*X^&£, ^y)""0 for ^1 or

i, so

=lim aJ

Hence ^4 is the scalar operator XI, where ^=l
fe

Corollary, a is a C(X)-shift on C(X,

Proof, Let ^encr&(C(Z), »(©)). Then yl(0 is a scalar operator for ^0,
by the theorem above. Hence, by continuity, .4(0) is a scalar operator, so A^
C(X). m

Proposition 3-6. For ?e[— ̂ /4, rc/4], ^/ze operators {Ffit: k^N} converge
strongly to an isometry Ff on S(^). F«9r an3/ vector <p^&, F*<p has the form
Q®<pr.

Proof. Fix if^O in [— rc/4, rc/4]. Since {A,£: ^eJV} is a uniformly
bounded sequence, the strong continuity will follow upon verifying that lim 7\*t?

exists for basis vectors ^Qt^Qi^Qr^® • • - . For ^ej^and y=Q3

note that
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-)] ,

where Qf
Jq=Qjq, if 0^0, or p; Q'Jo=QJP; and Q'Jp=QJQ. For k^N, write 7\*t£

= S £*,j, where f ftii7- is the sum of all tensors in /^f beginning with Q3. Then
n

the t ; k l j are orthogonal, for 1^/^w, and 1= S II?*, Jz-

Now choose N so that QJk=Q, for &>JV. An application of (5) shows that

for such k , t ~ k . j is a linear combination of tensors of the form (£)Qjs, where
Qj=Q for s>k+l. Then, from (5) again,

(6 )

where £k,j=Tk+1gk,j. Each summand of f i f i 7 has ,0 in the first tensorand, and
has Qj in the (jfe+l)st tensorand.

It is now straightforwad to verify that

fa+i.^'cosCOe*,,, K/^n, and (7.1)

£*+i.i=e*.i-isin(02£i.,, (7.2)
J=2

where the n terms in (7.2) are mutually orthogonal (since the summands of each
have QJ in the (& + l)st tensorand). Moreover, for /^l, lim||f fe+r,^||=0, by (7.1),
so that

Urn 11^11=1. (8)

Given e>0, choose k>N sufficiently large so that

Then for

J=l

n
- — l i p £ ||24- y

^llf* + r,l-|*+S,li|2+ S (
3=2

But using (7.2) repeatedly,
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Now using (7.1) repeatedly,

i
j-2 j=2

in(0|{S+Scos(0+ - +S cosr

<(fz-l)|sin(0|(S){l/l-cos(f)}

Combining our estimates, we have | |A+r,jf— A+s,jf ll2<(£/VT)2+£2/2:=£2, so
that {A*t} converges strongly on the basis vectors.

Now, if f, 77 are arbitrary (orthogonal) basis vectors, <-T*£, -T*J7>=
f, r^tTf>=<^9 y>. Using this identity it is easy to show that /7s is

an isometry. Moreover, an application of (8) establishes the last statement of
the proposition, m
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