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On an Unsatisfiability-satisfiability Prover

By

Chiharu Hosono*

§ 1. Introduction

In recent decades the study of automated theorem proving has become to be
accelerated with the progress of the computers. Therefore many proving
methods have been implemented, for example [1], [4], [6] or theoretically in-
vestigated, for example [2], [5]. Among them most provers take their base
from Robinson’s resolution method. By the well known fact that the first order
logic is undecidable, the most effort goes to the improvement of the efficiency
of the successful test of a theorem, but not to widen the decidability of prover.
In this paper we study a new unsatisfiability-satisfiability prover and its basic
properties. Our main results, besides the presentation of our prover, is to show
that our procedure always terminates if a given set of clauses is satisfiable in
some finite domain. The unsatisfiability checking of our procedure is as strong
as the existing complete proof procedures, so we examine the strength of the
satisfiability checking part of our procedure in §5 and §6.

In §2 we define several basic concepts and show a number of propositions
related to them. In §3 we give an unsatisfiability-satisfiability prover, and
show its soundness that is for any unsatisfiable set of clauses the procedure
says that it is unsatisfiable, and if the procedure says that a set of clause is
satisfiable, then it is in fact satisfiable. In §4 we show a number of basic
properties of the procedure. In §5, we show that for a given set of clauses
assumed to be satisfiable in a simple theory of Herbrand universe, the procedure
terminates saying it is satisfiable. In §6 we show that for a given set of
clauses assumed to be satisfiable in some finite domain, the procedure terminates
saying it is satisfiable. In §7 we discuss the results in this paper.

§2. Preliminaries

In this section we define some basic concepts and we show several proposi-
tions related to these. It is well known that any first order formula can be
transformed to a universal formula (or a clausal form) using Skolem’s functions
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not changing unsatisfiability. Hence to test a formula, we first negate it, then
transform it to a clausal form, and test its unsatisfiability. For details of them
refer to [3]. In the sequel we assume that the given formula is in the universal
form and use the term of set of clauses for formula.

Definition 2.1. For a set S of clauses, Lp(S), L¢(S) and Lg(S) denote the
set of all predicate symbols, all constant symbols and all function symbols of S
respectively.

It is noted that Lp(S), L¢(S), L(S) are finite, and we assume these are
non-empty. We use variable symbols x, y, z, ---, xi, -+, etc., and predicate
symbols P, Q, ---, etc. We do not use meta-variables. Hence simple variables
may be considered as meta-variables. Also we may use the term of predicate
for the term of predicate symbol, etc.

We review some terminologies. For a given set S of clauses, terms that
are constructed from symbols of L¢(S) and Lg(S), and height(¢) for a term ¢
are defined by recursion as the following:

Definition 2.2. Any constant c<L¢(S) and any variable are terms, and
each height of them is 1. For an n-ary function symbol f< Lg(S) and terms
ty, =, tny f(ti, -+, ta) is & term where f(#;, -+, t,) is understood to be a sequence
of symbols as they stand, and height(f(#, -+, t,)) is max (height (), -,
height (¢,))+1.

Definition 2.3. For an n-ary predicate symbol P< Lp(S) and terms t,, -+, t,,
P, -+, t,) is a prime formula or an atom simply. The height of P(t, -+, ta)
is max (height (¢,), ---, height(¢,)), and if n=0, i.e. P is a propositional variable,
then height(P) is 0.

Definition 2.4. — is the negation symbol. L is called a [iteral if and only
if L is either an atom or L is a negation of an atom. The height(—A) is
height (4) for an atom A. For a literal L, ~L denotes the negation of it, i.e.
~Lis mAif Lis A, and ~L is A if L is —A where A is an atom.

Definition 2.5. A clause C is a finite set of literals. A set S of clauses
means usually a finite set of clauses. The height of a clause and that of a set
of clauses are the maximum height of those elements.

It is noted that a clause intuitively means the disjunction of literals, free
variables are considered to be universally quantified for each clause, and a set
of clauses means the conjunction of clauses. The satisfiability and the unsatis-
fiability are naturally defined. If a clause C contains both L and ~ L, then C
is said to be a tautology. A clause {L,, ---, L,} is also denoted by L,V -V L,,
and also {~L,,--,~L,, L,,---, L,'} is denoted by LA -+ AL,DL,V -~V L,".
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For clauses C; and C,, C,VC, denotes C,;\UC,.

A substitution # is as usual a simultaneous substitution of terms for varia-
bles. For example {¢/x, f(c, ¢)/y} is a substitution where ¢ and f(c, ¢) are
substituted for x, y respectively. Let C be a clause, then C’ denotes the clause
obtained from C substituted by 6. A ground clause is a clause which has no
occurrence of variables, and a ground instance is a substituted result which is
a ground clause.

Definition 2.6. A contradictory instance of a set S of clauses is a unsatisfi-
able set of ground instances of clauses of S.

For example the contradictory instance of {{P(f(c, o))}, {=P(x)}} is
{{P(f(c, oD}, {—P(f(c, c))}}. The well known Herbrand’s theorem is that if a
set S of clauses is unsatisfiable, then there exists at least one contradictory in-
stance of S.

Definition 2.7. The rank of a contradictory instance is the maximum
height of atoms occurring in the instance, and the rank of S is the minimum
rank of all contradictory instances of S and is denoted by rank(S).

It is noted that rank (S)=0 if and only if S includes an unsatisfiable subset
of propositional clauses. For example rank ({{P(f(c, ¢))}, {—P(x)}})=2, and

rank ({{P}, {=P}, {Q(f(c, e}, {—=Qx)H)=0.

Definition 2.8. For a set S of clauses, if S? is unsatisfiable where 6§ is
{cz/x|x occurs in S} and ¢, is a new distinct constant for x, S is said to be a
nominal contradiction.

For example {{P(x)}, {—P(x)}} is a nominal contradiction, but not
{{P(x)}, {—=P(»)}}. It is noted that a contradictory instance is a nominal con-
tradiction.

Definition 2.9. For a substitution 6, @ is flat if and only if any term to be
substituted in # is a constant or a variable.

For example {c¢/x, u/y, v/z} is a flat substitution.
Definition 2.10. For clauses C and C’, ¢(C’, C) denotes the clause C'—C.
For example ¢({P, Q, 7R}, {P, R}) is {Q, —R}.

Definition 2.11. A clause C is subsumed by C,, ---, C, if and only if there
exist some substitutions @,, -+, @, and {¢(C,%, C), ---, H(Cr%=, C)} is a nominal
contradiction. If all @,, ---, 0, are flat, then a clause C is flatly subsumed by
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C, -+, Cp, and if n=1, then a clause C is simply subsumed by C,. Also for

sets S, S’ of clauses, if any clause C in S is a tautology or subsumed by some
clauses Cy, ---, C, in S’, then S is subsumed by S’. The flat subsumption and
the simple subsumption between S and S’ are defined similarly, and S«S’ or
S’> S denotes that S’ is simply subsumed by S.

It is noted that in the definition 2.11, there may be same clauses in
C,, -+, Cn, so that the definition is somewhat ambiguous but the rigorous defini-
tion leads to a cumbersome notations and reduces the readability, and therefore
we use this definition. If C is subsumed by C,, -+, C, then C is a logical con-
sequence of C,, ---, C,. We restricts the number of use of variants of C’
within the number of occurrences C’ in C,, ---, C,. Therefore the check of
whether C is subsumed by C,, ---, C, or not, is effectively computable. For
example —P(y)VP(f(f(y, v), f(3, »))) is not subsumed by —P(x)VP(f(x, x))
but subsumed by —P(x)V P(f(x, x)) and —P(x)V P(f(x, x)) using the substitu-
tions 6,={y/x} and @,={f(y, y)/x} where the nominal contradiction is

{=P(f(y, y0h {P(f(y, D}

Proposition 2.12. If a set S of clauses 1s simply subsumed by a set S’ of
clauses and S is unsatisfiable, then rank (S")<rank(S).

Proof. For a contradictory instance X of S, there is a set of ground in-
stances X’ of S’ which simply subsumes X. Hence X’ is contradictory. By
the definition of the simple subsumption, we can assume that any atom of X’
occurs in X. Hence, obviously rank(X’)<rank(X).

Definition 2.13. For a clause C, a substitution ¢ is said to be a decomposi-
tion of C if and only if all the variables of C are substituted and the term to
be substituted for each variable x is either a constant c¢€ L¢(S) or a term
S(uy, -+, uy), where <uy, -+, u,> is a sequence of new distinct variables for x
and fe Lg(S). The number of decompositions of a clause is finite except the
choice of <uy, -+, uzp.

Definition 2.14. For an atom P(t, ---, t,) where #; is not a variable for
any ¢, we define a predicate-decomposition operation * of predicate symbol, for
example an atom P(c, f(t,, t2), g(S1, S2)) is rewritten as Pgsy(ty, L5, S1, S2) in-
troducing a new predicate symbol P,;, and removing the top level occurrences
of ¢, f and g. We extend this operation canonically to literals, clauses and
sets of clauses, and the results of decompositions are denoted by L*, C* and S*,
respectively.

This predicate-decomposition operation is only used in combination with de-
composition operations as in the following definition.
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Definition 2.15. For a clause C which has n free variables, we define the
expansion C' of C by C'={C**|1</< N} where the set {e;|1</<N} consists
of all decompositions of C. If C contains no free variable, then C'={C*}.
For a set S of clauses, the expansion is S"=U{C"|C&S}.

For example let S be {{P(f(c, c)}, {—P(x)}}, then ST is {{Ps(c, o)}, {— P},
{—Ps(x, y)}}. It is noted that rank(S")=1, rank(S)=2 and Lp(S) and Lp(S*)
have no common predicate symbol. We use 771 for the repetition of 7-times
expansions.

Proposition 2.16. A set S of clauses is unsatisfiable if and only if S' is
unsatisfiable. Furthermore if rank (S)=0, then rank (S)=rank(S")+1.

Proof. If rank(S)=0, then S includes a propositional contradictory instance.
The operation of expansion does not affect this instance. If rank(S)>0, then
there is a contradictory instance S’ of S. For S’ the operation of expansion
clearly keeps the property of nominal contradiction, and decreases the rank by
one. The converse is also obvious because we can easily recover the con-
tradictory instance of S from the contradictory instance of S°.

Definition 2.17. Let Lp(S)={P, ---, P,}, and x; be a list of new distinct
variables where the length of x; is the arity of P,. Let R be a mapping from
{Pi(xy), -+, Pa(x,)} to the set of all sets of clauses where predicates are taken
from Lp(S’), R is said to be a iransformation from Lp(S) to Lp(S’) if no other
variable except the variables in x; occurs in the set P,(x;)® of clauses which is
obtained from P,(x,) by mapping R. The set of all transformations is denoted
by (Lp(S)—Lp(S")). A transformation Re(Lp(S)— Lp(S’)) is said to be flat if
no other term except the variables in x; occurs in P,(x;)®. The set of all flat
transformations is denoted by [Lp(S)—Lp(S’)]. P,(x:)F is allowed to be taken
either true, i.e. ¢, or false, i.e. {{J}, where [ is the empty clause.

In the sequel Lp(R) denotes the set of all predicates that appears in

{P(x )| P,e Lp(S)}. It is noted that an atom P(¢, -, t,) is rewritten as
P(E)Ltllrl,'",tn/z‘n).

Definition 2.18. Let R be an element of (Lp(S)—Lp(S’)). For an atom
P(t,, - ,t,) where P= Lp(S), we define the transformation by R with P(f,, ---,)F
=P(x,, -, xn)B/7Ltalza} - For the negation of atom, we set (P, -, t)F
=(~P(x,, -+, xn)F)t1/T1 /20l where ~P(x,, -, x,)F is the conjunctive normal
form of —(P(xy, =+, x)B). —P(xy, -+, x)F is {O} if Plxy, -, x.)¥=¢, and
—P{xy, %)% is ¢ if P(xy, -+, x,)f={0}. For a clause C={L,, -+, L,}
where L,F={C, ,|j=1, -, .}, CEis {{_i=1"Ci, ;001 Ci, ;o€ LF}. For a set S of
clauses, S% is U{CE|C&S}.
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Proposition 2.19. The set [ Lp(S)— Lp(S’)] is finite.

Proof. The number of atoms in P(x, -, x,)F is finite by the condition of
flatness, and consequently the possible number of literals, clauses, and sets of
clauses are finite. This means that the range of R is finite.

Proposition 2.20. If a set S of clauses is unsatisfiable, then ST is also
unsatisfiable and rank (S®)<rank(S).

We postpone the proof of this proposition after Lemma 4.2.

§3. An Unsatisfiability-satisfiability Prover

We define an unsatisfiability-satisfiability prover in this section, and show
its soundness.

Definition 3.1. A set S’ of clauses is a quasi-contraction of a set S of
clauses if and only if for any clause C in S there exists a clause C’ in S’ and
C’cC. This relation is denoted by S’/.S.

It is noted that S~S, and this is said to be an identity quasi-contraction.
If S’/.S then S’«S. Therefore the following proposition is obvious from Pro-
position 2.12.

Proposition 3.2. If S’'/S, and S is unsatisfiable, then S’ is also unsatisfiable
and rank (S")<rank(S).

Definition 3.3. A sequence of sets of clauses <S;, -+, Say+1p is said to be a
configuration of S if and only if all the following conditions (1)-(4) are satisfied ;

1) S:=S,

(@) Sa+=Ssi+1", S2i41£ S« for any 0</<N,

(3) S; does not contain a propositional contradictory set of clauses for any
1<2N+1.

(4) and there exists no RE[ Lp(Ssj+1)— Lp(Sz:+1)] such that Sy;,,%> Sy, for
any 7 and j such that ;<<j<N.

Proposition 3.4. Let <S,, -, Sav+1y be a configuration, if S; is satisfiable
then for any i<j, S; is satisfiable.

Proof. This is obvious from Propositions 2.16 and 3.2.

Definition 3.5. Let <S;, ---, Sex+1p be a configuration such that every quasi-
contraction is an identity one, and S,y.; contains a propositional contradictory
set of clauses, then this is said to be the contradictory configuration.



UNSATISFIABILITY-SATISFIABILITY PROVER 85

It is noted that the contradictory configuration of S is unique.
The following proposition is obvious from Proposition 2.16.

Proposition 3.6. For a set S of clauses, rank(S)=N if and only if S has
the contradictory configuration with length 2N+1.

Definitiom 3.7. Let <S,, ---, S;y+:1> be a configuration. For some K<N there
exists an RE[ Lp(Syy+1)— Lp(Szx+1)] such that Sy F>S:x+: then the configura-

tion is said to be a simple satisfactory configuration and S,x+, is said to be a
base]set.

It is noted that if <S,, ---, Sey+1» is a simple satisfactory configuration of
which S;k+, is the base set, then the configuration which have the identity

quasi-contraction from S,,-; to Si, for m>K, is also a simple satisfactory
configuration.

Proposition 3.8. If S has a simple satisfactory configuration, then S is
satisfiable,

Proof. By the definition there is an R&[ Lp(S;n+1)— Lp(S2x+1)] such that
Sen+1%>Ssk+1.  If Sixy: is unsatisfiable then rank(S:x+.)=N—K, and by Pro-
positions 2.16 and 3.2, rank(S.y+;)<rank(S:x+:), and by Proposition 2.20,
rank (Sex+1)<rank(S;y+;). Because this is a contradiction, S,x+, is satisfiable,
and also S is satisfiable by Proposition 3.4.

We give a proof procedure which returns the value SAT or UNSAT for the
input singleton sequence <S) of a set of clauses. It is noted that we treat the
clausal form of negation of a formula, and therefore if the value is UNSAT,
then the original formula is a theorem of the first order logic, and if the value
is SAT, then that is not a theorem.

Function test(Seq: a sequence of sets of clauses): (SAT, UNSAT);

Let Seq be <S;, -+, Sen+1p-

Step 1: If the propositional variable part of S,y., is unsatisfiable then
return (UNSAT);

Step 2: If for some K<N there is some R&E[ Lp(Ssy+1)—Lp(S:x+1)] such
that S,n+:%>S:x+1, then return (SAT);

Let {Say+1"1, -+, Sansi'n} be the set of all quasi-contractions of Syy4,", and
evaluate test (¢Sy, -+, Sew+1, Sever’, Saw1'D), -+, test ({Sy, -+, Senr, Sever ', Sav+1™D)
inYparallel ;

Step 3: If test(<S;, -+, Say+1, Sav+1’, Sava1’y) takes the value UNSAT then
return (UNSAT), else if for some 7 test (Sy, --+, Sen+1, Sow+1’, San+1'i)) takes the
value SAT then return(SAT);

end.
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It is noted that at Step 2 the simple subsumption check is effectively com-
putable, and therefore Step 2 is effectively computable, but not efficient.

Proposition 3.9. During the evaluation of test(XS)), if test(Segq) 7s called
recursively then Seq is a configuration of S.

Proof. We use the induction on the number of recursive calls of test. For
the first call, (S is a configuration of S. If test(<{Sy, -, Sen+1, Sev+1’y Sens1’e))
is called in test(<Sy, --- Sax+1y), then obviously <Si, -+, Sey+1, Sen+1', Sen+1™) i
a configuration of S from the contents of the function test, and by the induc-
tion hypothesis.

Theorem 3.10. The value of test((S)) is UNSAT if and only if S has the
contradictory configuration.

Proof. First we show that if test(<S;, ---, S:x+1)) takes the value UNSAT,
then S,»+; has a contradictory configuration. We use the induction on the
number of recursive calls of test. The procedure returns with the value
UNSAT in two cases. In the first case that S,y.; includes a propositionally
unsatisfiable subsets, S,y+; has obviously a contradictory configuration. In the
second case that test({Sy, -+, Sans1, Senvsr’, Sen+1'y) takes the value UNSAT,
S:n+1' has the contradictory configuration {Ssy+:®, -+, Sex+1p by the induction
hypothesis, and hence <{Siy+1, Sav+1’s Senvr’, ==+, Sex+1» iS oObviously a con-
tradictory configuration of Syy4;.

Next we show the converse. Let <S;, ---, S:y+1»> be the contradictory con-
figuration, we show that test({S;, *--, Sacxy-my+1p) takes the value UNSAT by
the induction on m. If m=0, then S,y., includes a propositionally unsatisfiable
set of clauses, so that the procedure obviously returns the value UNSAT on
the step 1. Let m=/k+1, then test({Sy, -, Secw-r-141, Sacw-r-v+1", Secv-rr+1))
where Sicnv-r-1+1"=Sscx-rr+1, takes the value UNSAT by the induction hy-
pothesis, and therefore test({S;, -+, Say-z-1+1p) Obviously takes the value
UNSAT.

Theorem 3.11. The value of test({S)) is SAT if and only if S has a simple
satisfactory configuration.

Proof. First we show that if S has a simple satisfactory configuration,
then the value of test(<S}) is SAT. Let <S,, -+, Sax+1> be a simple satisfactory
configuration of S. By the assumption S is satisfiable, so that test(<Si, -+, Sg+1)
does not return the value UNSAT for any i<N. We show that test(<S,, -:-,
Sacv-my+1y) takes the value SAT by the induction on m. If m=0, this is ob-
vious from the definition. Let m=Fk-+1, then test(¢Sy, -, Sacv-r-1>41r SeN--D+1 5
Secx-wy+10), Where Socv-ry+1Z Sacw-r-1+1", takes the value SAT by the induction
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hypothesis and obviously test(<{S;, -+, Ssv-z-n+1p) takes the value SAT on the
step 3.

Next we show the converse. The procedure test returns with the value
SAT in Step 2 or 3, but it is obvious that Step 2 is essential. By Proposition
3.9, S has obviously a simple satisfactory configuration.

Theorem 3.10 means the completeness of the procedure test in the sense of
the ordinary theorem proving method.

Definition 3.12. Let <S,, -+, S.x+1» be a configuration. If for some K<N
there exists an RE[ Lp(Sey+1)— Lp(S:x+:)] and there exists a set M of clauses
such that it includes S;x+; and M*'¥-X'E3 M and for any ;<N—K, M'*" does
not include a propositional contradictory instance, then the configuration is said
to be an elementary satisfactory configuration by R and M, and M is said to be
a saturated set for S,x+; and R.

Proposition 3.13. If S has an elementary satisfactory configuration, then S
1s satisfiable.

Proof. By the similar argument to Proposition 3.8, M is satisfiable. Because
M includes S:x+1, S:x+1 is satisfiable. Consequently S is satisfiable from Pro-
position 3.4.

It is noted that a simple satisfactory configuration is an elementary satis-
factory configuration. The following is a modification of a function test to
check the elementary satisfactory configuration of S.

Function test 2(Seq: a sequence of sets of clauses): (SAT, UNSAT);

Let Seq be <Sy, -+, Seysi.

Step 1: 1If the propositional variable part of S,y4; is unsatisfiable then
return (UNSAT);

Evaluate Step 2 and 3 in parallel.

Step 2: For every K<N and every R&[Lp(Siy+1)— Lp(S:x+1)], evaluate
Q1(Ssx+1, Seni:®, R, N—K) in parallel. If one of them takes the value SAT
then return(SAT);

Let {Sanv+1"1, =+, Sen+1"n} be the set of all quasi-contractions of S,y+,", and
evaluate test 2({Sy, -+, Sen+1, Savei’y Saw+1T)), -, test 2({Sy, -+, San+1s Sonat’,
Sen+1Tny) in parallel;

Step 3: If test2(<Sy, -+, Sen+1, San+1’, Sen+o'y) takes the value UNSAT
then return (UNSAT), else if test({S;, -+, San+1, Sans1’, San+1'.y) takes the value
SAT for some 7 then return(SAT);

end;

Function Q.(S, S’: sets of clauses, R: a flat transformation, m : integer): (SAT,
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UNSAT);
If S’>S, then return(SAT);
Let {S’y, ---, S’} be the set of all quasi-contractions of S’, and evaluate

Q(SUS’y, R, m), -+, Qx(S\US’,, R, m) in parallel;
If Q.(SUS’, R, m) takes the value UNSAT then return(UNSAT), else if
Q.(SUS’;, R, m) takes the value SAT for some ; then return(SAT);

end ;

Function Q.(S: a set of clauses, R: a flat transformation, m: integer): (SAT,

UNSAT);
Variable S’: a set of clauses, 7: integer;
S":=S;7:=0;

While i<m do S'=S";

If the propositional variable part of S’ is unsatisfiable then return(UNSAT);
return(Q(S, S’'%, R, m));

end.

Proposition 3.14. The value of test 2({S)) is UNSAT if and only if S has
the contradictory configuration.

We omit the proof of Proposition 3.14 because this is almost the same as the
proof of Theorem 3.10 for the function test.

Proposition 3.15. If the value of test 2({S)) is SAT, then S has an elementary
satisfactory configuration.

Sketch of proof. We show that if the value of Q.(S, S'% R, K) is SAT,
where S’ is a quasi-contraction of S'®" which does not include a propositional
contradictory instance, then there is an elementary satisfactory sequence by R
and some M such that SCM. We show this by the induction on the number
of recursive calls of Q,. The first case is that S’2>S holds. In this case we
can obviously take S for a saturated set for S and R. The other case is that
the value of Q.(SUS”, R, K) is SAT for some quasi-contraction S” of S'2 If
the value of Q,(S\US”, R, K) is SAT, then the value of Q,(S\US”,(SUS")%, R, K)
is SAT where (S\US”)® does not include propositional contradictory instance.
Hence by the induction hypothesis, there is an elementary satisfactory sequence
by R and some M such that SCSUS’C M.

Proposition 3.16. If S has an elementary satisfactory configuration, then the
value of test2({S)) is SAT.

Sketch of proof. Let <Si, ---, S;y+1»> be an elementary satisfactory con-
figuration by R&[Lp(Sen+1)—Lp(S:x+1)] and M which includes Six+;. It is
enough to show that the value of Q:(Sixi1, Sexs:'V X%, R, N—K) is SAT.
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A set S’ of clauses is said to be strictly simply subsumed by M if for any
clause C in S’ which is not a tautology, there exist a clause C’ in M and a
substitution @ such that C=C’? and this relation is denoted by S'’>M. We
show that the value of Q.(S’, S'"V-K'E R, N—K) where SCS’ and S'=M, is
SAT. If S'*¥-KtB% G’ then there is nothing to prove. Otherwise there is a
clause CeS’"Y-K*E which is not simply subsumed by S’. By the assumption
SIMN-KtR— \[TN-KtR% M we can take a quasi-contraction C’ of C such that
C'=C"? for some C”=M. Collecting these and tautologies, we can take S”
such that S” is a quasi-contraction of S’*"¥-X'% and S”M. The evaluation of
Q,(S"US”, R, N—K) leads to the evaluation of Q,(S"US”,S'"US”"V-X'E R N—K)
by the assumption for M. Hence the fact that the height of set of clauses does
not increase after either a expansion or a flat transformation, and {S’|S'~M
and height(S")<L} is finite for any L except the choice of variables and
ignorance of tautologies, implies Proposition 3.16.

§4. Elementary Properties

In this section we show some propositions related to the satisfiability. In
§ 5 we show an application of results in this section.

Proposition 4.1. Let C be a clause, 0 be a substitution for C, and € be a
decomposition of C?, then there exist some decomposition €' of C, and a substitu-
tion 0’ for C* such that CO9*=C%%" holds.

Proof. Let x be any variable occurring in the terms to be substituted by 6.
We consider three cases on x.

(1) If x°=c for a constant ¢, then we set x° =c.

(2) If x°=y for a variable, we consider two cases on y* from the definition
of the decomposition.

(2.1) If y*=c for a constant ¢ then we set x* =c.

(2.2) If y*=f(us,y, -+, Un,,) for a function f and for a new distinct se-

quence <uy,y, ***, Un, y» Of variables, then we set x*'=f{uy, 5, -, Un ), and u, ,°'
=u;,, for any 7.
(3) If x?=f(t;, -, tz) for a function f, then we set x¥=f(us 2, -, Un z),

us, ;9" =t;¢ for any i.

For example, let C be P(x,y)\VVQ(z, f(v,u)) and 8 be {c/x,v/y, w/z, f(c, x,)/u},
and ¢ be {c/v, flw,, we)/w, f(xs, %5)/x:}, then C? is Pl(c, v)VQw, f(v, f(c, x1)))
and C% is P(c, o)V Q(f(ws, ws), flc, flc, f(xa, x5)))). Let &' be {c/x,¢/y, flz1, 25)/ 2,
fluy, up)/u} and @’ be {w,/z, ws/zs, /Uy, f(xs, x3)/uz}, then C¢ is P(c, o)V
Q(f(z1, z2), flc, flu, us))) and C?¢=C=? holds obviously.

It is noted that we can easily see in the proof of Proposition 4.1 that the
height of @’ is less than or equal to the height of 4.
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Lemma 4.2. If a set S of clauses is a nominal contradiction, then S® is a
nominal contradiction.

Proof. By the assumption, S is false under any assignment of truth values
for literal atoms in S. Then if an assignment a of truth values for literal
atoms in S¥ is given, then we can set the assignment S of truth values for
atoms in S by B(P(t,, -+, ta)=V(a, P(t;, -+, t,)%) where V denotes the valuation
of truth values. Under these assignment we can show that V(B3, —A)=
Via, ~A®), and V(B, C)=V(a, CF). Because V(B, S)is false for any B, V(a, S%)
is also false for any a. This implies Lemma 4.2.

For example, let S be {{P(x)}, {—P(x)}} and P(x)* be Q(x)V R(x), then SZ
is {{Q(x), R(x)}, {—Qx)}, {—Rx)}}.

Proposition 4.3. Let 0 be a substitution for a clause C, then COB=CFE?,

Proof. Let m be {t;/xi, -, ti/x:}. For an atom P(¢, -+, t;), we have
P(ty, -, t)'B=P(t,%, -, t,)E=P(xy, ---, x)¥*9=P(t;, -, t»)?’. For a nega-
tion of atom, —P(t,, ---, t,) we have, (—P(t, -, to)?E=(—P(t", -, t,?))F=
(~P(xy, o+, xa)B)* 0 =(—P(t,, -+, t:)??. Hence for a clause C={L,, -, L,}, we
have C/2={U{C;|C;&L,?%}}={U{C;|C;€L;??}}=C"?.

Proof of Proposition 2.20. By the assumption there are clauses C,, ---, C,ES,

and substitutions 4, ---, €, such that {C,’t, ---, C,%»} is a nominal contradic-
tion. Hence by Lemma 4.2, {C.%, ---, C,%7}® is a nominal contradiction. By
Proposition 4.3, this can be rewritten {C,?’t, ---, C,®%2}. Therefore S% is

unsatisfiable, and rank(S®)<rank(S).

Roughly speaking, the relation that a clause C is subsumed by some =
clauses in S is kept through operations of quasi-contractions and expansions but
perhaps not through flat transformations. Therefore we introduce the next
definition of a relation, and Propositions 4.5, 4.6 and Theorem 4.7 show that
the relation is kept through each operation.

Definition 4.4. A clause C is pseudo-subsumed by clauses C,, -+, C, in a
set S of clauses if there exist some n substitutions 4, ---, #,, and some clauses
Dy, -+, D, in S, and substitutions =, ---, , such that there hold three condi-
tions that {¢(D,"1, C}, -+, ¢(Dn"m, C)} is a nominal contradiction, CC\Us=1"Ci%,
and {KC;, 0:>1i=1, -, n}C{{D;, midli=1, ---, m}.

For example P(x)DP(f(f(f(x)))) is pseudo-subsumed by C,=P(x)DP(f(x))
and C,=P(x)DP(f(x)) where 0,=m={x/x}, O=m={f(f(x))/x}, C;=Px)D
P(f(x)) and my={f(x)/x}.
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Proposition 4.5. Let S’/ S, and a clause C be pseudo-subsumed by clauses
Cy, -+, Cn in S, then there exist some C'CC and some clauses C,, ---, C,” in S’
and C' is pseudo-subsumed by clauses C,’, --- C," in S’.

Proof. By the assumption there exist some » substitutions 6,, ---, 6,, and
some clauses D,, ---, D, in S, and substitutions =, ---, 7, and there hold the
three conditions. We take C/, ---, C,’, and D,’, ---, D, as the result of a quasi-
contraction of C,, ---, C,, and D,, ---, D, respectively. Let C’ be CN\J;-,™D,’7%.
The conditions C'C\J;=,"C;’%, and {KC/’, 6:;>|i=1, --- ,n}C{KD’, m.p|i=1, --- ,m}
hold obviously. If Le¢(D,'"t, C’) then obviously L& D;"¢ and L&C’. On the
other hand if L& C’ then L& C or L&\ J;—,™D,’"i. But the formula L\ J,-,™D,’ "%
contradict L& D;"i. Therefore L& C and this implies that if Le¢(D;/~¢, C’)
then Led(D,™:, C). That is {¢(D,'"1, C’), ---, ¢(Dr’*m, C)} is a quasi-contrac-
tion of {¢(D,"1, C), ---, ¢(D»"™, C)}. Hence {PH(D,1, C’), -+, ¢(Dn'™m, C")} is
obviously a nominal contradiction.

Proposition 4.6. If a clause C is pseudo-subsumed by clauses C,, ---, C, in
S, and a clause C’ belongs to C*, then there exist some C,/€C,", -, C,’&C,",
and C’ is pseudo-subsumed by clauses C,’, -+, C,’ in S’.

Proof. By the assumption there exist some n substitutions &, ---, 6,, and
some clauses D,, .-, D, in S, and substitutions =, -+, @, and there hold the
three conditions. From C’&C’, there exists some decomposition ¢ of C, and
C’'=C*. We extend this decomposition for | J;—,™D;"i. Let the extended de-
composition be §. Then {¢H(D;", C), -+, ¢(Dn"m, C)}’ is a nominal contradiction,
C=CCUi,"C%, and {KC,, 0:|i=1, ---, n}’C{<D, m,»|i=1, ---, m}°. By Pro-
position 4.1, there exist some decompositions 8,” and ;" such that C,%4=C,5% %
and D,"®=D* 7  Let C, be C,%', and D,” be D;*¢, then by the substitutions
6., --,8, and =,’, ---, m,’, the required three conditions obviously hold.

For example let P(x)DP(f(f(f(x)))) be pseudo-subsumed by C;=P(x)DP(f(x))
and C,=P(x)DP(f(x)) where 0,=m,={x/x}, O,=rm,={f(f(x)/x}, C;=Px)D
P(f(x)) and m,={f(x)/x}. And let C'=P,(3)DP:(f(f(gy)))=C" where C’ is
the result of a decomposition {g(y)/x}, then C’ is pseudo-subsumed by C.'=
Py (0)DP;(g(y) and C/=Pr(3)DP,(f(y) where 0.=m={y/y}, 0O.=m.=
{F(FN/y}, Co=P(y)DP;(f(») and ms={f(3)/y}.

Theorem 4.7. If a clause C is pseudo-subsumed by clauses C,, ---, C, in S,
and a clause C’ belongs to CE, then there exist some C,/<C%, ---, C,'&C,%, and
C’ is pseudo-subsumned by clauses C,’, -+, C,’ in SE.

Proof. By the assumption there exist some n substitutions 6y, ---, 6., and
some clauses D,, ---, D, in S, and substitutions x,, ---, 7, and there hold the
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three conditions. Let Cbe {L,,--, Ly}, then by some Cy, in L,®, C" is Uit Cy,.
If L= belongs to C for L&(C;, that is, L*i=L; for some j, then L,fF=L"E=LF1
so that there exists some clause X, €L" such that C, =X,". By the definition
if C; is {Li1, =*» Lincr}, then CF is {U8=1n(ijcl.sd(8)lCi,SrJ(S)ELl.SR}- It is
noted that {<C,, 8;>|i=1, ---, n} is included in {<D;, =;>|i=1, ---, m}. In C,F we
choose C;'=\s=1"PC,, 5. js» such that Ci s js» is the above Xiq,s for any s such
that L, ;%¢ belongs to C. It is obvious that C'C\J;-,"C;’% because CC\ J;—,"C;%%.
For D, we use a similar argument but in this case we choose a set D,” of clauses.
By the definition if D;={L;,1, -, Li,nc>}, then DE={{J;=i"PC,.s jcsr| Ci s, ity E
L ®}. Hence we take a set D,/={Us=1"PCi.s. ;00| Cirs iy E Ly, s%, and if L, ™
belongs to C, then Ci g, is the above Xiu,5}. We show that C’ is pseudo-
subsumed by clauses C,/, -+, C,’ using \U;-,™{KD, n,>|DeD;’}. For the first
condition the set of clauses that we have to consider becomes {¢(D~¢, C')| D€ D,’}
U - U{@(Dm, C) 1 DeDy’}. To show that this set is a nominal contradic-
tion, it is enough to show that {\Us=1"®Ci s jsr|Cus, v E Ly, T, and if L, ™t
belongs to C, then Ci s sy is @} U - \U{Us=1" ™ Cri.s. sy | Cm s yey ELm, s, and
if Ln "™ belongs to C, then Cn,s sy iS ¢} is a nominal contradiction. This
set is equal to ¢(D;™¢, O - Ug(D,"m, C)%, and is a nominal contradiction by
Lemma 4.2. The last condition obviously holds.

For example let P(x)DP(f(f(f(x)))) be pseudo-subsumed by C,=P(x)DP(f(x))
and C,=P(x)DP(f(x)) where 0,=m={x/x}, O,=m={f(f(x)/x}, C;=P(x)D
P(f(x)) and my={f(x)/x}. Let P(x)*=Q,(x)\Qx(x), and let C’ be Qi(x)\Q(x)D
Q:(f(f(fx)=CE.  The clause C’ is the union of {—Q,(x), 7Q:(x)} and
{Quf(f(f())} which are elements of —P(x)f={{—Q.(x), 7Q:(x)}} and
P(f(fMNE={{Q: (fFfM}, {@:(f(F(f(x)N)}} respectively. Then C,’ should
be Q) AQx(x)DQ:(f(x)) with 0,=m,={f(f(x))/x}, but C,’ is either Q:(x)AQx(x)
DR.(f(x) with §,=m,={x/x} or Q:(x)AQ:(x)DQ:(f(x)) with 8,=m,={x/x}. We
set Cy"=Q1()N\Q:(x)DQ:(f(x)) with 6,=m,={x/x}, and set C,"=Qi(x)AQxx)D
Q:(f(x) with 8,=m,={x/x}. The set C;¥F={Q.(x)AQ(x)DQ:(f(x)), Q:(x)A\Qx(x)
DQ.(f(x))}. Both clauses should be used in the pseudo-subsumption by the
reason in the proof. Therefore we set Cy'=Q,(x) AQ:(x)DQ,(f(x)) with ==
{f(x)/x}, and C,"=Q,(x) AQ:(x)DQ:(f(x)) with my={f(x)/x}. By these clauses
¢/, G, ¢/, C/, Cy” and substitutions m,, m;, 7, 73, 73, C’ is pseudo subsumed
by C,' and C,’.

It is noted that in the above theorem the substitution does not change.

Definition 4.8. A set S of clauses is regular if and only if S has a simple
satisfactory configuration <S,, .-+, S;y+:> such that its base set is S.

Proposition 4.9. Let S, , be the set of all clauses which is pseudo-subsumed
by some n clauses in S where the height of 6; is less than or equal to m, then
Sn.n IS a finite set.
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Proof. The number of clauses in S is finite and the number of sets of
clauses consisting of n clauses of S is finite. Also if height is limited, then
instantiations of C; are essentially finite, and a pseudo-subsumed clause is con-
structed from those literals occurring in each instantiation of C,. From these
Proposition 4.9 is obvious.

It is noted that SCS,.» and S, nCSpr. « if m<m’ and n<n’.

Proposition 4.10. If S is a regular set of clauses, then for any m and n,
Sm.n 1S vegular.

Proof. By the assumption there exists a simple satisfactory configuration
{8y, -+, Sen+1y such that S;=S and S.y+:%>S. By Proposition 4.5, if S+ isa
quasi-contraction of S,, and S'C(Sy)n, », then there is a quasi-contraction S” of
S’ which is a subset of (Ssi+1)m.n. By Proposition 4.6, if S,y+1y i an expansion
of Szivy and S'C(Ssi1)m, n, then S C(Sei)m. ». By Theorem 4.7, if S'C(Sex+1)m. n,
then S'”2C(Sey+1®)m.». This completes the proof.

For the function test 2 we have following propositions.

Proposition 4.11. If a set S of clauses is regular by a flat transformation
R and S'CS, and Lp(R)C Lp(S"), then the value of test 2(<S’)) is SAT.

Proof. By the assumption there exists a simple satisfactory configuration
¢Sy, =+, Sey+1y such that S;=S and S,y..®>»S. Because <5, S, S’", -+, S'*¥")
makes an elementary satisfactory configuration of S’ by R and S, the value of
test 2(<S’)) is SAT.

Theorem 4.12. If a set S of clauses is regulaa by a flat transformation
R, S” is subsumed by S, and Lp(R)C Lp(S’), then the value of test 2({S’)) is SAT.

Proof. By the assumption it is obvious that there exists some S, . such
that for some quasi-contraction S” of S’, S”CSn. .. Hence S” has an elementary
satisfactory configuration <S”, S”, S”*, ---, S”*¥*% by R and Sn... as the proof
of Proposition 4.11. If we define R'e[Lp(S”'¥+1")—Lp(S”*)] by P(x)!*E'=
P(x)?®*, then <S”, S”, S”*, ..., §”tN* S7tN+1ty is an elementary satisfactory con-
figuration by R" and S.,,,". Hence the value of test2(<S’>) is SAT.

It is noted that in Theorem 4.2, S can be considered an open axiom of a
theory, and therefore Theorem 4.2 means that if S is regular, a set S’ is pro-
vable from S and all predicates of S occur in S’, then the value of test2(S’)
is SAT.
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§5. An Equality Theory of Herbrand Universe

Let S be a set of clauses such that Lp(S)={E}, L¢(S)={c}, Lg(S)={f}
where E and f are binary. We define an interpretation I_ to the Herbrand
universe of S setting that E' is the equality relation of Herbrand terms, ¢’ is
¢ itself, f! is canonmical that is fI(s, {)=f(s, {). We show in this section that if
S is true under the interpretation [I., that is, any clause in S is true for
arbitrary assignment of Herbrand terms for variables, then test 2(<S)) takes
the value SAT.

Proposition 5.1. A set E={E(x, x), E(x, y)DE(, x), E(x, Y AE(y, )2
E(x, 2), E(x, W NE(y, v)DE(f(x, y), f(u, v)), E(f(x, ), f(u, v)) DE(x, )y NE(Y, v),
—E(c, f(x, y))} is regular.

Proof. The set E' is {E.., E; (1, X3, X1, X2), EccDEce, Ecr(V1, ¥2) DE ¢ (¥1, ¥2),
Efc(xl; xz)Dch(Xn X2), Eff(xl, X2, Y1y xz)DEff(yx, Yo, X1, Xa)y _‘ch(f(xl, X2),
(31, ¥2))}. Let R be a flat transformation from Lp(E') to Lp(E) such that E,B
is true, E.s(x, y)F is false, Esx, y)E is false, and E, (x, y, u, v)¥ is E(x, ) A
E(y, v) respectively. By simple computation we can ascertain that E™> K.

The set & of clauses may be considered as a basic theory of the equality
in Herbrand universe, and is true under 7_. We fix the flat transformation R
in this section as one in the proof of Proposition 5.1. Let S be a set of clauses
which has only one predicate E, and is true under Z_. If S is subsumed by E,
then we have the result required in this section by Theorem 4.12 and Propsi-
tion 5.1, but this does not hold. Therefore we consider to extend £ adding
other true clauses so that any true set of clauses is subsumed. For example,
let us comsider EU{—E(x, f(x, ¥))}, then we have E'"2U{—E(x, f(x:, %))V
TE(xz, ¢), T E(xy, f(x1, %))V TE(xs, f(1,92))}. Hence the set EU{—E(x, f(x, y)}
is also regular. Generalizing this we introduce the following definition and
proposition.

Definition 5.2. An atom E(x, f(t, t»)) is said to be self contained if and
only if x has at least one occurrence in f; or t,.

Let E, be the set of clauses such that {—A|A is a self contained atom,
and height (A)<n}, and E. is EU\U;-,"E,. It is noted that —A in E, is true
under I. because for any substitution @, height(x?)<height(f(t;, t,)?) that
means x%=f(t,, t,)°.

Proposition 5.3. The set E\VE, of clauses is regular by R.

Proof. Let —E(x, f(t;, t))EE,. 1f ¢ is a decomposition such that x*=c,
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then (—E(x, f(ty, £2)))° is (TE(c, f(t:5, 1:°) and (—E(c, (15, tO)* is T Eq (45, ).
Hence (—E.;(t:5, t,°)F is true. Otherwise if ¢ is a decomposition such that
2 =f(x1, x2), then (TE(x, f(t,, 1)))° is —E(f(x1, x2), f(£:5, 1:°)). Hence (—E(f(x1, x2),
S5, BE)*E I8 —E(xy, 1:5)V T E(x,, 1,%). By the assumption E(x;,t,°) or E(xs, %)
is self contained and have the height less than or equal to n, and therefore it
is contained in E,.

Propositions 5.4, 5.5 and 5.6 are preparations for Theorem 5.9 which shows
that any clause true under I_ is subsumed by F..

Proposition 5.4. Let 0 be an identity substitution except x°=t, then E(x, t)
NE(s,?, s,9YDE(sy, s») is subsumed by E.

Proof. First we show E(x, {)DE(s?, s) by the induction on the height of
the term s. For height 1, if s=c¢ then E(x, t)DE(c, ¢) is obvious, if s=y and
xZFy, then E(x, t)DE(y, ¥) is obvious, if s=x then E(x, {)DE(, x) is the sym-
metry axiom. For s=f(t,, t,), we can assume E(x, )DE®#, ;) and E(x, 1)D
E(t,%, t,) as the induction hypothesis, and E(t,%, t,) AE(t.?, t.)DE(f(t.%, t.9), f(t1, )
is an instantiation of E(x, u) AE(y, v)DE(f(x, v), f(x, v)), and therefore we have
easily the required formula. Next, because we have shown that E(x, H)DE(s,?, s;)
and E(x, 1)DE(s,?, s;), we have easily E(x, t)AE(s:?, s,2)DE(s,, s,) using the
transitive and the symmetry axioms in E.

Proposition 5.5. Let § be an identity substitution except x’=t, then E(x,t)
ATE(s, Y, $,9)DE(s,, ss) s subsumed by E.

Proof. The given formula is actually —E(x, t)VE(s:?, s:.9)V—E(s, s.) in
the clausal form. The given clause is rewritten as E(x, ) AE(s;, s2) DE(s,9, s,9).
In the proof of Proposition 5.4, we have shown E(x, ) DE(s?, s), so that E(x, t)
DE(s, s?). The given clause is easily subsumed by E.

Proposition 5.6. Let 0 be an identity substitution except x°=t, and C=
L, -+ /Ly, then E(x, )AL,DC is subsumed by E for any i.

Proof. By Propositions 5.3 and 5.4, we have E(x, ) AL, DL, and therefore
Proposition 5.6 is obvious.

Roughly speaking by Propesition 5.6 we have that E(x, )AC?’DC is sub-
sumed by E.

Definition 5.7. An atom A is said to be normal if and only if either (1)
A is of the form E(x, t) such that x does not occur in #, or (2) A is of the form
E(s, t) such that ¢ does not contain any variable, and height(s)<height(#) if
neither s nor ¢ contains variables. A clause C is said to be normal if and only
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if C does not contain the negation symbol and any atom is normal.
Lemma 5.8. Any normal clause C is false under the interpretation I_.

Proof. We use the induction on the number of variables occurring in C.
If C does not contain any variable then any atom is of the form E(s, t) such
that s, ¢t are Herbrand terms. Hence by the definition of the normal clause, C
is obviously false under I_. Let C[z] be a clause which contains a variable z
and let u be a Herbrand term such that height (u)>height(C). We show that
Clu/z] is converted to a normal clause C’ not changing the truth value and the
number of variables. If A=C is of the form E(x, ) such that x is distinct
from z, then E(x, t)[u/z] obviously satisfies the condition of normal atoms. If
E(z, )eC, then E(z, t)[u/z] is E(u, t) and this is converted to E(f, u). This
conversion does not change the truth value and the number of variables, and
height (£)<height (1) by the choice of u. If E(s, t) is an atom of C which satisfies
the last condition of normal atom and contains the variable z, then E(s, t)[u/z]
is E(s[u/z], t). If s[u/z] contains another variable then E(s[u/z], t) is normal,
else E(t, s[u/z]) is normal.

Theorem 5.9. If a clause C which consists of only one predicate symbol E is
true under I, then C is subsumed by E..

Proof. We show by the induction on the number of variables occurring in
C and the sum of heights of terms in C. If C=E(f(sy, t1), f(se, 1))V D is true
under I_, then C'=E(s,, s;)\VD and C"=E(t,, t,)\V D are both true under Z_, and
the sum of heights of terms reduces. If C’ and C” are subsumed by FE. then
C is obviously subsumed by E.. If C=—E(f(s, t1), f(ss, t2))V D is true under
I_, then C"=—E(sy, s2)VV T E(ty, t;)V D is true under I., and the sum of heights
of terms reduces. If C’ is subsumed by E. then C is obviously subsumed by
E.. By the above two facts we can assume that if an atom E(s, t) is con-
tained in C, then height(s) or height(¢) is 1. Furthermore by the similar argu-
ment we can assume that height(s) is 1.

We consider an atom of the form E(c, f(¢, t.)). If C=E(c, f(t, t2))VD is
true under I, then D is true under 7., and the sum of heights of terms reduces.
If D is subsumed by E. then C is obviously subsumed by E.. A clause of the
form —E(c, f(t,, t.))V D is true under I_, and —FE(c, f(¢,, t,)) is subsumed by E,,
so that —E(c, f(t;, t))V D is subsumed by E..

We consider an atom of the form E(x, f(#;, t,)) such that x occurs in #, or
t,. This is a self contained atom, so can be treated by a similar argument as
above. For atoms of the form E(x, x) or E(c, ¢), we can treat similarly.

Hence we can assume that any atom in C is of the form E(x, t) such that
t does not contain x. If C contains a literal —E(x, ¢) such that ¢ does not con-
tain x, then C can be rewritten as E(x, )DD[x]. Therefore D[t/x] is true
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under J_, and subsumed by E. by the induction hypothesis. By Proposition 5.6
and the fact that D[¢/x] subsumed by E., E(x, {)DD[x] is subsumed by FE..
If C does not contain a negation symbol, then C is a normal clause, and false
under I. by Lemma 5.8.

Theorem 5.10. If a set S of clauses such that Lp(S)={E}, Lc(S)={c} and
Lp(S)={f} where E and f are binary is true under the interpretation I, then
test 2({S>) takes the value SAT.

Proof. By Theorem 5.9, S is subsumed by E.. Therefore S is subsumed
by some EUE, by the compactness. The set E\UE, of clauses is regular.
Hence by Theorem 4.12, test 2(<S)) takes the value SAT.

For example we consider a set S of clauses {E(x, x), —E(x, f(y, )V
—E(y, f(x, ¢))} which is true under I_.. We set S,=S.

The set S,=S5,"is {Ecc, E s(%1,%2,%1,%2), T Ecs(c,c)V TEs(c, €), 7 E s (f(31, ¥2), €)
VEr s (91, Yo, €,€), T E (%1, X2, €, )N T Ef(f (%1, %a), €), T E (%1, X2, f(¥1, 32), OV
=E; (31, Y2, fx1, x%2), ¢)}. Then S, becomes S;={E(x,x), =E(x;, f(31, y))V
—E(xs, )V —E(ys, f(x1, %))V T E(y.,¢)}. We take a quasi-contraction S, of S;\US;
such that S,=S,U{—E(x, f(y,v))\V—E(y, f(x,u))}. The set S;=S," is S;U
{_‘ch(C,C)V _‘ch(C,C),—'ch(C, fw,v))V _'ch(C, ), -+ ,_'Eff(xl,xz, F(1, 32), f(v1,02))
VE;r (31, Yo, f(%1, %a), €), TE (%1, %o, f(31, ¥2), )N T E;1(1, Vs, f(%1, %), [(us, us)),
s (%1, %oy f(31, 32), [(01, IATErs(31, 32, f(x1, Xx2), fus, 4))}.  Then Ss® be-
comes S,=S;\U{E(x1, f(y1, y2))V TE(xz, f(v1, v2))V E1, f(x1, %))V TE(Ys, ),
E(xy, f(y1, 32))V T Ee, OV E(, [, %))V —E(e, fU, 4), E(xy, [(31, 32))V
—E(xe, fv1, v2))V E(y:, f(x1, %))V E(y,, f(uy, u2))}. It is obvious that S,<S..
Therefore <S;, S;, S.> is an elementary satisfactory configuration by R and a
saturated set S,.

The conditions L¢(S)={c} and Lg(S)={f} are only for the sake of brevity,
and the case that S has other constants and functions can be treated by the
similar arguments to those in this section.

§6. The Sets of Clauses Satisfiable in Finite Domain

In this section we show that if a set S of clauses is satisfiable under an
interpretation I with finite domain D, then test 2({S)) takes the value SAT.
We consider a property of the occurrence of a variable. Let x° be an occur-
rence of a variable x in a literal, then the level of x° is defined as usual and is
denoted by level (x°).

Definition 6.1. A variable x occurs at level 1 in x itself, and if x occurs
at level n in term ¢, then the occurrence has level n+1 in term f(s, ¢, s,) and
has level n in literal P(s,, t, s;) or —P(sy, t, s2). The level of x° in a clause or
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set of clauses is defined by that for the literal in which x° occurs.

With respect to a configuration the ancestor and descendant relation be-
tween variables is defined as follows.

Definition 6.2. For a variable x and a decomposition operation {f(y)/x, ---},
each variable in y is said to be a child of x. For either of a predicate de-
composition, a quasi-contraction or a flat transformation, the child of x is x
itself if it remains in the result of the operation. The descendants of a variable
is defined as usual.

Preposition 6.3. [f a variable x occurs at level n, any descendant variable
of x also occurs at the same level n after either of a expansion, a quasi-contrac-
tion or a flat transformation.

Proof. For the expansion, the operation is divided in two parts. One is
the decomposition and this operation increases the level by one, the other is the
predicate decomposition and this decreases that by one. The quasi-contraction
and the flat transformation do not change the level of occurrence except that
these may erase the occurrence.

For example let C be P(x, f(»)), and C’ be P, (f(y))=C" where C' is the
result of a decomposition {c/x, f(»:)/y}, the child of x does not occur in C’ and
the child y, of y has the same level 2 as that of y.

Definition 6.4. Let x° and »° be two occurrences of variables in a clause
C, and X=/{height(s)—1|s contains both x° and j° where s is a term in C} then
the distance between x° and y° which is denoted by d¢(x°, y°) is defined by
de(x°, y*)=minimum X if X is not empty and otherwise infinite.

Proposition 6.5. Let x° and y° be occurrences of variables in a clause C such
that level (x°)>1, then the distance between two children of x° in C* is 1, and for
a child x'° of x° and a child y'° of y°, dgo(x’°, ¥'°) is de(x°, YO)+1 if der(x°, 9'°)
s finite.

Proof. Let 0={f(x)/x, ---} be a decomposition operation for x, and if level
(x°)>1, then x°? remains unchanged through predicate decomposition operations.
Let s? be the minimum height term which contains both x’° and y’°, then s is
the term of the minimum height that contains both occurrences x° and »°.

For example let C be P(c, f(f(x,9),¢)), and C’ be P, (f(f(xy, x2), f(¥1,¥2)), €)
C" where C' is the result of a decomposition {f(xi, x.)/x, f(y1, ¥2)/y}, then
dei(x, %) is 1 by f(x, x2), and de(x1, y1) is 2 by f(f(x1, x2), f(y1, ¥2)) where
de(x, ) is 1 by f(x, y).
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Proposition 6.6. Let m=height(S), then after at least m expansions, any
term becomes a substitution instance of sowe variable.

Proof. Any term ¢ of height(#)<: in S™' which contains at least one
variable, is a substitution instance of some variable which is the height (¢)-th
ancestor of that variable because of Proposition 6.5. The originally constant
term goes to a predicate symbol and disappears after  expansions as a term.

Proposition 6.7. Let m be height(S). In each term of S (n=m), the level
of the occurrences of variables are the same. It two terms of S'"' have occur-
rences of the same variable, then one term has the occurrence of the other as its
subterm.

Proof. In the substitution instance for a variable of composition of de-
composition substitutions, any variable occurs at the same level. And if two
terms have occurrences of the same variable, then the two variables correspond-
ing these terms are in the relation of ancestor and descendant. This means
that one term includes the other.

For example let S be {P(x, f(f(x,9), f(y,c))}, and C’' be Pss rers, rerr(Xins, Xi1z,
f(f a1, X112), ©), €, F(F (Y111, Y112), €), )ESTTT where C’ is the result of a repeti-
tion {f(xy, x2)/%, (31, ¥2)/3}, {f (%11, X12)/ %1, €/ %2y (Y11, Y12)/ Y1, €/ Y2} and { f (X111, X112)
/%11, €/ %12, f(Y111, Y112)/ Y11, €/ Y12} Of decompositions, and predicate decompositions.
For Proposition 6.6, it is enough to consider two terms f(f(xi11, X112), ),
S(f(Y111, Y112), €) Which are substitution instances of x, and y, respectively. For
Proposition 6.7, the variable x;;; has two occurrences with different level in C’,
but they are not in the same term.

It is noted that if there is an interpretation I of a set S of clauses, then I
can be canonically extended to any S'**, that is, if Pyy, . sa(xy, -+, Xx,) is the
decomposed predicate for P(fi(x1), -+, fa(xn)), then we set Py, r2'(ds, -+, dn)
=P'(fi"(dv), -, f"(da)).

Definition 6.8. For R=(Lp(S"*")— Lp(S)), and an interpretation I of S, R is
said to be compatible with I if and only if for any atom A=S"™*" it holds that
AI:(AR)I.

Definition 6.9. A transformation Re(Lp(S™*")— Lp(S)), is said to be pseudo
flat if and only if any variable occurs at top level in P(x)® for any Pe Lp(S™*").

Definition 6.10. Let <S,, ---, S;x+1» be a configuration. This is said to be
a pseudo elementary satisfactory configuration if it satisfies the following con-
ditions :

(1) For some K<N, there exists a pseudo flat transformation R&(Lp(Ssy+1)
— Lp(Szx41)),
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(2) There exists a set S,x+. of clauses such that it includes S;x.; and i.
satisfies Syx+i/ "V E'ES Soxay.

Proposition 6.11. If S has a pseudo elementary satisfactory configuration,
then S has an elementary satisfactory configuration.

Proof. Let Sy, -, S;y+1> be a pseudo elementary satisfactory sequence
and Re(S"#'—S) be a pseudo flat transformation such that Sexs1" "V 5" 2> S, k4y/.
We put Sen+2=Sen+3=Sex+:", and define R'&(Lp(San+s)— Lp(S:xs)) by P(x)0%81
=P(x)?%*%, Then obviously R" is a pseudo flat transformation and the height
of constants decreases by one. Further, S,x+)/""V " X"25S,k4'" and S,x.s is
obviously included in S,x+’". Hence Proposition 6.11 is obvious.

Definition 6.12. A pseudo flat transformation R is said to be pseudo monadic
if any atom in P(x)® has at most one occurrence of variable.

Definition 6.13. Two terms in a clause are said to have the property A if
they satisfy the condition that if each has an occurrence of the same variable
then one has an occurrence of the other as its subterm. For the latter case we
say that one includes the other. A clause is said to have the property A if
every pair of terms has the property A.

Proposition 6.14. If S has the property A, then both S' and S® have the
property A where R is a pseudo flat transformation.

Proof. For S', if s’es%* and #'t?* have the occurrences of the same
variable then by the definition of a decomposition s and ¢ have the occurrences
of the same variable, and therefore we can assume that s includes ¢. If s has
an occurrence of ¢ as its proper subterm, then obviously s’ has an occurrence
of ' as its proper subterm, and if s=¢, then obviously s'=#. For the trans-
formation R, the terms in S% also appear in S except constant terms.

Proposition 6.15. For a set S of clauses, if there is an interpretation I of
S which satisfies S, and there is a pseudo flat itransformation Re(Lp(ST*")—
Lp(S)) which is conpatible with I and pseudo monadic, then test 2({S)) takes the
value SAT.

Proof. 1t is enough to show that S has a pseudo elementary satisfactory
configuration. A clause C is said to be elementary true if it is true under the
interpretation I, it has the property A, and each literal in C has at most one
argument with variable occurrences. Let S, be the set of all elementary true
clauses C of L(S) such that height(C)<m and no proper subset of C is true.
It is obvious that S,, is finite, because any variable in C should also occur in a
term by the property A. Let m>max (height(R), height(S)), then obviously
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S,1¥"®> 8, by Proposition 6.14. Let A, and B, be S, A, be A, *'®US and
B,., be B,"#"E, then A,=B,U - UB, is subsumed by A,\US, because if 1<m
then B, is included in A, and B, is subsumed by S, by Proposition 6.7 and
by the fact that R is pseudo monadic. Hence obviously (A»\USn) *"E>(A,\USnh)
and SC(A,USR,). For any 7, (A,USR)"*'® does not contain a propositional
contradictory instance because this set is true under the interpretation Z. This
means that S has a pseudo elementary satisfactory configuration.

Let S be a set of clauses which is satisfiable by some interpretation I with
domain D of a finite number N elements. Any term in Herbrand universe is
interpreted by I as an element of D. If this correspondence is not onto then
we can restrict it to the image of I. I-*(d) denotes a Herbrand term with the
smallest height among the Herbrand terms interpreted by I as deD.

Definition 6.16. Let {d, d’> be a pair of elements of D, and let § designate
either — or empty, then k4,4 ,(x) denotes 6P(¢,, x, t,) where P= Lp(S), t; is a
sequence of inverse images of a sequence d; of elements of D, dP'(d,, d, d.) is
true, dP'(d,, d’, d.) is false, and if there is no such P¥(d,, x, d,) then kg, a'5(x)
denotes true.

Definition 6.17. For deD, 2,(x) denotes A 4 epkia, a>(x).

Proposition 6.18. Any predicate P= Lp(S) is represented by P(xy, -, X,)=
V ¢ty agyert N ajAa, (%), that is, this formula is true under the interpretation I.

Proof. For <d,, -+, d»pEP" if ey, -+, e,> is a sequence such that 24,7(e:)
holds for any 7, then obviously P!(ey, ds, -, d,) is true and so on. Hence
Pley, -, en) is true.

The predicate 2,” is a subset of D which contains d, so that <24,”, -, 24,">
is an element of finite set DY,

Theorem 6.19. If a set S of clauses is satisfiable under an interpretation I
with finite domain D, then test 2({SD) takes the value SAT.

Proof. There is a sequence {44,’, --- 24,,"> for each S'*", and consequently
for some /< these coincide. From S*™" to S'™*" there is a canonical pseudo
flat transformation R such that P'"'(xy, -+, xa)%= Vg, apeprrirt N a;Aa;(%:)
where P= Lp(S'7") and A, is that of S**", This transformation is pseudo monadic
and compatible with I from the construction. Therefore by Proposition 6.15
we have our theorem.

For example we consider a formula [Vx(P(x)D—P(f)NAVX(P(x)D
P(f(f(fCOMNIDYx(—P(x)). This formula is false in a domain® which have at
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least three elements. We fix an interpretation I witha domain D={d,, d,, d.},
and set f(d,)=d, where j=i+1 mod 3, and P/(x) is true if and only if x=d,.
The given formula is false under this interpretation.

The clausal form becomes S;={P(x)D—P(f(x)), P(x)DP(f(f(f(x))), P(c)}.
The interpretation I can be extended to S; setting ¢’=d,. The set S, is ob-
viously true under this interpretation Z. The set S, has only one monadic
predicate P, and it is obvious that 24,(x)=P(x), A4,(x)=—1P(x), and 24,(x)=
—P(x).

The expansion of S, is S,;={P, D P;(c), P;(x)DP;(f(x), P.DPs(f(f(c))),
Pi(x)DP(f(f(f(x))), P.}. We take a quasi-contraction S; of S, such that S;=
{Pe, 7Ps(c), Pr(f(f()), Pr(x)DP;(f(x)), Pr(x)DP(f(f(f)IN}. For S, it is
obvious that A4\(x)=—P;(x), 24,(x)=Ps(x), and 24,(x)=—1P;(x). The meaning of
them under the interpretation differ from those of S,.

The expansion of S; is S,={P., =Py, Prs(f(c)), Psc D Pss(c), Psrs(x)D
=P (f(x)), PreDPrs(f(f(E)), Prs(x)DPss(f(f(f(x)D}. We take a contraction
Ss of S,, such that S;={P; =Py, P;(f(c)), Psr(x)DPss(f(x)), Prs(x)D
Prr(f(F(FOOM}. For Ss it is obvious that A4,(x)=="1Pss(x), A¢,(x)="1P;s(x), and
Aa,(x)=P;s(x). The meaning of them differ from those of S; and S..

The expansion of S; is Sg={P., =Py, Prss(c), Prsc D Psss(f(c), Prss(x)D
=P (F(x)), PrseDPrsr(f(FFEN), Prss()DPsss(F(F(f()))}. We set S;=S.
For S;, it is obvious that 24,(x)=P;;;(x), 2¢,(x)="P;s;(x), and 24,(x)="Ps s s(x).
The meaning of them coincide with those of S,. Therefore we can set a flat
transformation R from Lp(S;) to Lp(S;) such that Pssr(x)*=P(x), P.=true,
P;.=false, Pss.=false. The set S;Fis {P(c), P(x) D P(f(x)), P(x)DP(f(f(fCIN}
and equals to S;.

§7. Discussions

We have presented an unsatisfiability-satisfiability prover for the first order
logic. This procedure terminates for theorems of first order logic by the well
known fact. This property is the completeness in ordinary sense for theorem
provers. Our main purpose in this paper is the treatment of non-theorems, and
we have shown two classes for which the procedure terminates. One is shown
in §6 that is the class of formulas whose clausal form is satisfiable in some
finite domain. Hence for the class of formulas whose decidability is shown by
the reduction to finite domain, for example the class of formulas whose every
predicate is monadic, the procedure works as a decision procedure. That is if
a given formula is a theorem then the procedure detects it by the reason that
it is a theorem, and if given one is not a theorem, this means that the formula
is false in some finite domain. Consequently the procedure detects it by the
result in §6.

The other is shown in §5 that is the class of sets of clauses which is



UNSATISFIABILITY-SATISFIABILITY PROVER 103

satisfiable in a simple Herbrand Universe theory. This class is not so inter-
esting in the current status, but at least it is not included in the class in the
§6, for example the set E of clauses in §5 is not satisfiable in any finite
domain.

For the future investigation for the effort to widen the detection of the
satisfiability, there may be needed more techniques, and the target will be the
extension of the results in §5.

We paid no effort on the optimization of the procedure in this paper. But
of course this is important for the implementations, for example tautologies
should be removed at once, and some propositional calculus of predicate vari-
ables can be permitted in configuration construction. The operations of quasi-
contractions are perhaps necessary, but this necessity is not shown in this
paper. Also the difference between the elementary satisfactory configuration
and the simple satisfactory configuration is not shown in this paper. The
compatibility of the procedure with the resolution is not clear. Therefore
improvement of efficiency in this direction may need some efforts.
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