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Remarks on Functional Integral Representations
of Quantum Evolutions for Systems with

Electromagnetic Fields
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Lech S. PAPIEZ

Abstract

The solutions of Schrodinger equation in the form of the Dyson series are used as
the starting point for functional integral representations of wave functions. Quantum
systems in the presence of the external electromagnetic fields are discussed in this respect.
The results on measure theoretic approach to functional integral representations of quantum
states are proved and related to the appropriate mathematical formulations of Feynman
path integrals.

§ I. Introduction

In this note we obtain the functional integral representations of solutions
of Schrodinger equations describing systems with external electromagnetic fields
and discuss their relations with Feynman paths integrals. The scalar and vector
potentials used in these considerations are given by Fourier transforms of scalar
and vector valued complex measures. To find the solution of Schrodinger equa-
tion in the form which allows the construction of its functional integral repre-
sentation we use the method of Dyson series and allow the mass parameter m
to be any complex number in the upper half-plane, m^C+={m: Imw^O, w=£0}.
Directly related to the Dyson series solutions are Feynman path integrals in the
interpretation of Maslov-Cebotariev [MC], [CM], [CHRS] and Albeverio-H0egh-

Krohn [AHK]. They give the meaning to I exp[z7A{S0(ft>)+S/(a>)}]rfo) through

\exp[(z'/A)50(cw)]fl(^/(a>), where fjtj is the measure on the space of paths con-

structed from the interaction part exp [(z'/#)S/(co)] of the amplitude of probability
exp[z7^{50(a>)+5/(a>)}]. We give the explicit construction of measure px on
the space of absolutely continuous trajectories and prove that it is concentrated
on the set of polygonal paths.
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We restrict our considerations to potentials which are time independent.
All results can be generalized to time dependent scalar and vector fields [OPC],
These generalizations do not carry any conceptual novelites, and are technically
troublesome, so we do not distract our attention to discuss them.

Let x and y denote points in Rd. Then x-y is a scalar product of x and
y, \x\ is the Euclidean norm of x and x2 is the short notation for x-x. We
shall treat the quantum system described by the Lagrangian

L(x, *)=^*a+aOO-*-qp(x) (l-l)

where cv(x) and a(x) denote scalar and vector (electromagnetic) fields, respec-
tively. Thus the Hamiltonian of the investigated quantum system has the form

H(x, V,)=

(1.2)
2m m 2m 2m

as we treat the Planck's constant h to be equal to 1. The functions a and
satisfy the following assumptions:

I. cv\ Rd-+R and at any x^Rd the value of <=(? is given by integral

) (1.3)

where pv is a compactly supported, scalar complex measure on Rd with a reflec-
tion property [OPC]. Let supp ^ucSfe where Sk is the ball of radius k in Rd,

II. a : Rd-+Rd and at any x^Rd the value of a is given by integral

fl(*)= exp [ia - *] dr(a) (1.4)

where J is a compactly supported, Cd valued measure on Rd with a reflection
property [OPC]. Let also the condition supp ^c5fe/2 be satisfied for measure f.

We denote the class of potentials I by v\ and, consequently, the class of
potentials II by vJf/2. For convenience, we shall denote by \\f\\ the total varia-
tion of measure Y (HrlK00) and write /jt'=(l/2m)Y*Y + p* G"'^»4) where * denotes
the convolution of measures 7epf/2. The fact that /*uei4 ^n(i Y^Vk/z implies
that cy and a have bounded derivatives up to any order,,

In all the foregoing considerations the condition of compact support for
measure /*„ may be relaxed when the case without the electromagnetic field,
i.e., a=0, is treated. We write then /*ueiA

Definition L The -£z(Rd) solutions of the Cauchy problem for Schrodinger
equations determined by Hamiltonians of the form (1.2) are called Schrodinger
evolutions and are denoted by SEv(Jl1; J12', Jls) where Jli stands for the class of
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admissible initial conditions and Jiz and JLS denote the families to which potentials
^V and a belong, respectively.

Throughout we put h=l ; assume, if not stated otherwise, that m^C+ and
take time parameter to belong to R-r=(Qf oo). In some circumstances t will be
restricted to interval (0, Tr) where Tr—\m\(2ek\\j'\\)~1

f e being the base of the
natural logarithm. In particular, let us notice that m^C+ allows m to be specified
as a real, positive number, and thus all results valid for me (7+ are also true
for the standard quantum mechanics.

It is known [OPC] that SEv ( j:\Rd) ; v\\ v%/z) exists and is unique if initial
condition <pQ and potentials Q? and a are unambigously specified as elements of
-C\Rd\ v\ and v%/2, respectively. We write then <J)(t ; w)='U(f ; m)^0eSEv(j:2(l?d) ;
v\ ; v$/2) where °U(t ; m) is a family of bounded operators on j:2(Rd). This family
constitutes a semigroup with respect to parameter t, i.e.,

(1.5)

and is called the Schrodinger semigroup.

§ II. The Functional Representation of Wave Function from the
Measure on the Space of Trajectories

We start with the construction of the functional measure in the case of a
system without an electromagnetic field (i.e., when a=0). The main steps are
the same for the situation where an electromagnetic field is present (i.e., when
a^O) and they will be presented in the second part of this section.

Step 1. The Space of Trajectories

Take J£=-C2([_Q, if], Rd\ i.e., a space of measurable, square integral func-
tions /3 : [0, t]-^Rd. It is a separable Hilbert space. Let us denote by S the
set of step functions from [0, f] into Rd. S is a dense subset of Jc. Any
element seS can be written as

s(r)-.|^-^(r), re[0,f] (2.1)

where n^N={0, 1, 2, • • • } — the set of natural numbers; for fixed n, tl satisfy
Q=tQ<ti< ••• <tn<t and al<^Rd, i=Q, 1, ••• , n ; and function gtl(r) is defined as

o if
(2.2)

1 if

Every element ft from M determines through the integral mapping

(2.3)
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the Rd valued, absolutely continuous function o>| on [0, f] which satisfies

o>J(f)=x. (2.4)

In the set Mx, which consists of elements tw|, we introduce a linear struc-
ture isomorphic to the space M (i.e., ai<opj@ a2a):ji2=(t)x

Llp+a2p2', fli, az^R). Let
us equip Mx with a scalar product (•, •) defined as

|t, o>|a)=(a>flf aija)jr*=(j8lf j88)jr

r (2 5)= r
Jo dr dr

where ^(r), &(r), and are all vectors in fld. Then .#* be-

comes also a separable Hilbert space (isometrically isomorphic with Jc). Let us
denote by Sx the (2.3) isomorphy mapping M to ^T^, i.e.

Sx : M — > Mx ; ̂ (^8)=^ (2.6)

and by S* the J* image of S, i.e.

Sx=^x(5). (2.7)

In particular, every element sxeS* can be expressed as the value of map Sx at
some point seS. Thus from (2.1) and (2.3) we have that every s*eSx has the
polygonal form

(2.8)
i=o

where G{l(r)= — r^£ l(r /)dr '=f—TV^ and rV^t=max(r, f»). The subset of Sx

which consists of all polygonal paths (2.8) given by the sum of exactly n+1

terms (i=Q, 1, ••• , n) we denote by S;. Thus SX—\J S£. From the abstract point
n=Q

of view SJ may be identified with

flg=(x, /^, 0) (2.9)
where

A?0it3={0}. (2.10)

As the consequence of the identification of S£ and fl; we have that Qx=

0 Qx
n is identical with S^o
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Step 2. The Measure on Polygonal Paths

The Borel structure on every flj, n<^N, is assumed to be the standard one
for this subset of J2*<2B+» Euclidean space [DSch]. The Borel structure on Sx

is induced from the Borel structure on Qx by the isomorphic mapping Sx. Let
us denote a Borel <r-algebra in Qx by &% and its representation in S£ by £J.
On measurable spaces (£?£, $1} (and (S£, ££)) we define a complex (bounded)
measure ££n by setting

^B(Ai) = A*n(Bn)=(-"^J .BTJ J L \i=o / J

(2.11)

where Bn^$%, An=Jx(Bn)^<Sx
l, i> and p. are (bounded) complex measures on

Rd [DSch, Rud, OPC]. On the space Qx (and thus also on Sx), we define
measure p as follows. As all Qx

n are treated as mutually disjoint in Qx we can

define in Qx— \J Q% a <r-algebra &x as a collection of subsets B of £?* which
71 = 0

satisfy
V BC\QXn^$Xn (2.12)

(where 33% is a Borel cr-algebra in flj). A measure /j. on ^x we then define by

(2.13)

where B^$x and 5n^S e^^. It is rather easy to check that ®x is well
defined ^-algebra, that the series on the RHS of (2.13) is convergent and that
/j, is a well defined measure on (Qx, Bx} [Roy, Ch. 11]. The identical a-

algebra, denoted Sx, and measure p are induced in Sx— \J S% by Sx .
71 = 0

Step 3. The Measure on the Space Mx of Alsolutely Continuous
Trajectories

From the above construction we have a measure space (Sx, Sx, p). Let us
denote by 3X the (Borel) a-algebra in Mx generated by topology induced by
scalar product (2.5) in this space. Let M% be

JC0=JCX\SX (2.14)

and let us consider the following family EF0 of subsets A of M^ : we say that

iff there exists U^3X such that A=U\SX. We can easily check that

(i) ^0e£F0 (2.15a)

(i i ) AC^3Q if A^3Q (Ac is a complement of A in «#„) (2.15b)

(iii) ^^EF0 if V Ak(E3Q (2.15c)
A=0 *=0,1,-

i. e. that EFo is a (7-algebra.
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Let us denote by fjt0 a (trivial) zero measure on a measurable space (JCQ, EFo)
i. e., we have

/fo04)=0 for any A^3Q. (2.16)

Now, we can (trivially) extend measure p from Sx to the whole space Mx (let
us denote the extended measure also by ^) by setting

(2.17)
for any U^3X. As an obvious consequence of (2.17) we have

for any A^3Q (2.18a)
and

. (2.18b)

Thus on the path space Mx we have constructed a unique measure fjt which
is concentrated on the subset Sx of polygonal paths,

Step 40 The Integral with Respect to Measure fi

Let us consider the functional integral I exp[— (i/2m)(o>x, o)x)]<^(a>*) over
JMX

the path space Mx, Thanks to the definition of measure /£ given by (2.11), (2.13)
and (2.17) and properties of function exp [— (i/2m)(<*>x, <^x)] this integral is well
defined for all m^C+. Moreover, we can write

where s£ has a form (2.8) with n fixed. If, moreover, we use the property
(2.8a) in the evaluation of the scalar product (s£, sj), take into account the identity

(t-tn)(an+ - +«o)2+ ••• +(tz-t1Xai+a0}
2+t1a

z
0

= 23 (t-tlvtj}aiaj (2.20)
i, j=o

and substitute the explicit form (2.11) of measure ftn we find from (2.19) that

= 2 (-O'Lexp --7i=o J^^ L

) "• dp(an)dt1 ••• ^nj (2.21)
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Step 5. The Integral on Mx and the Wave Function

Let us assume that the potential <~V and initial condition <pQ for a nonrela-
tivistic quantum system determined by Hamiltonian H(x, ^7x) =—(l/2m)Ax+

c^(x}
both belong to class v1, and let us choose in particular, that

fjt,=p i.e. <VW = ( eia-xd^(a} = \ eia'xdp.(a} (2.22a)
J Rd J Rd

and

(2.22b)

Then we can express the X2 solution, $^j:z(Rd}, of the Cauchy problem for
Schrodinger equation by the Dyson series. In this case, i. e. when ^0 and cy
both belong to vl, (p(t) is given by the series which is convergent not only in
j:z(Rd] sense but also pointwise, namely

<I>(x, 0= S Dn(x, 0= S (-0BL
n=o 71=0 J^co

- S (-0BLexp[— ^-(i]
Tz-o J^j L Zm\i=o

Xexp f^jjaijx dv(a0)d^.(ai) ••• dp9(an)dti'~ dtn,

o) (2.23)

where H0=— (l/2m)Ax (Ax denotes Laplacian in i?d) is a free part of the Hamil-
tonian H=HQ+V (Vis the multiplicative operator in j:z(Rd) induced by /^ei/)-
The identity of expressions (2.21) and (2.23) means that the wave function ^(0,
in its pointwise representation (2.23), and the parameterized by x and t func-

tional integral \ exp[— (i/2in)((ox, a>x}~\d {JL((DX} have equal values for every x ^Rd

and £e(0, oo). In particular it means that 1 exp[— (i/2m}(o)x, a)x}~]d {JL(O)X) is the
J Ji

pointwise ~£z(Rd) solution of the Schrodinger equation with Hamiltonian H on
time interval (0, oo). Let us summarize the above results in the form of

Theorem 1. Let m^C+, £e(0, oo), ^0 and ^^vv and a=0. Then there
exists a measure ft on the Hilbert space Mx, which is concentrated on polygonal
paths Sx, such that the Schrodinger evolution ^eSEv(v1; u1 ; <z=0) is represented
at any point x^Rd and for any <te(0, oo) by the functional integral

\ exp[— (i/2m)((s)x, a>xy]dp(a)x) where a)x(t)=x.
JMX

The above result is crucial for few equivalent formulations of Feynman
path integrals in nonrelativistic quantum mechanics in the absence of electro-
magnetic field [AHK, MC, Tr, CSt]. The real difference between these
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formulations stems from different interpretations of the functional integral

\ exp[— ( i /2m)(( t ) x , <oxy]dfji((ox) as the Feynman path itnegral which we discuss
J Sl'E

below.

The Interpretation

(i) Maslov-Cebotariev interpretation [MC].

First let us observe that every at which appears in polygonal trajectories
of the form (2.8) can be interpreted as a change in momentum (or velocity) at
an instant ti (z=0, 1, 2, • • • ) • This allows us to interpret pn as a measure on
polygonal trajectories representing sequences of velocity alterations. These
velocity changes are caused by instantaneous, independent interactions and are
characterized by complex valued distributions pv (and v at the initial moment).
Between instantaneous interactions, the evolution is free so the action functional
on the s£ polygonal path can be expressed as the sum of free actions over all
straight segments of this trajectory, i. e. it is l/2wi(sj, sj). Thus the momentum
representation of the amplitude of probability on polygonal trajectories may be

written as exp[-(z/2?n)(s£, s*)]. Consequently, j5a:exp[-(//2>n)(sS, sS)]rf^n(sS)

is a weighted (with respect to ^-interaction sequences) sum of free probability
amplitude over S£ (the set of n-vertex polygonal trajectories). Therefore

sg) can be rec-

ognized as "a sum over all trajectories, of the probability amplitude" of the
quantum system under consideration.

This interpretation is in fact better understood in the context of ^-represen-
tation of Schrodinger equation.

For such an equation, with initial condition </>Q and potential ^V given via

measures v and p.0 on the space of velocities a, a^Rd, the term exp hf jb#i) x\

is absent in the Dyson series (2.23). Thus measure (2.11) is also postulated
without this term and the above described interpretation becomes more straight-
forward [MC].

(ii) Albeverio-H0egh-Krohn interpretation [AHK].

Lemma L For the functional fn on S£ defined as

/n(s£)=[ xexp[j(sS, s'n*Kdf*n(s'nx) (2.24)
JS7l

we have

B(sS) (2.25)



FEYNMAN INTEGRALS FOR ELECTROMAGNETIC FIELD 149

where Imw>0 (for we/2\{0} (2.25) holds in the sense of analytic continuation),

d[jtn is defined by (2.11) and \ (-)ds% is understood as normalized integral taken
JS*

over all possible values yk^Rd that trajectories s% assume at moments tk, i.e.,

f . , , — f . \-d/Z
) dsZ.idsZ.t-dsZ., (2.26)m '

where s*,k = s*(tk) = yk^Rd, dsl,k = dyk, k=Q, ••• , n.

Proof. If we substitute (2.11), (2.20), (2.24) and (2.26) into the LHS of (2.25)
and notice that Fubini's Theorem can be applied to the obtained expression we
find

f xexp[-^(s;, sS)]/n(sS)isS
JSn \_ 6 J

[ jvn n / k \Z -|
-^S(Sa,)(^+i-f*)6 k=Q\j=0 / J

(2.27)

where s^ and s'n
z are respectively,

sJ(r)=Sa,-G (,(r); s^= 23a{-G ( l(r). (2.27a)
= * = l1=0

Substituting now identities

and

\7 = 0

to (2.27) and performing Fresnel type integration wrt dyQ ••• dyk in bracket {•
we obtain

(2.27)=(-i)n\ dt, ••• dtndv(
JWyJ

[ f n / k \2 "I f / n
— o- S ( S«0 »*+!-**) -exp «( 2 ai

Z m * = 0 \ i = 0 / J L \ J fe=0

i*n(s'n
x) . (2.28)

For mej?\{0} the equalities (2.27) and (2.28) can be interpreted in the sense of
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analytic continuation. D

Let us notice now that /n(s£) given by (2.24) and (2.11), i.e.

=(-irxdv(a'Jdp.(a'l') • • • d^(a'n}dt, • • • d t n

(2.29)

can be written, thanks to the form (2.22a, b) of </>„ and &S, as

Xexp I

o(Sn(0)). (2.30)

The equality (2.25) suggests that for the functional / on Mx defined as a
natural extension of functions fn on S£, n^N, i.e.

s^ (2.31)
^^ 72-0 ,S

the equality

(2-32)

should be satisfied. However, it is easy to realize that identity (2.32) cannot be
proved. In fact, the LHS of (2.32) is meaningless, as it stands, since we have
not any natural, Lebesgue-like measure dct)x on Mx. Therefore (2.32) must be
seen as the definition of the expression on its LHS for which (2.25) provides
more or less satisfactory justification. Let us notice here that (2.25) is the best
justification of equality (2.32) which is available. Without the explicit construc-
tion of measure p even the version (2.25) of this equality, restricted to the
dense set Sx of Mx, is unknown and (2.32) has to be assumed ad hoc [AHK].
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If we finally combine relations (2.31), (2.30) and (2.32) and recall Theorem 1
we find that the wave function <])(•, f) of the quantum system determined by <pQ

and c(? given by (2.22a, b) can be expressed at any point x^Rd and for any
o ) as

(2.33)

i.e. that it represents the "sum over all trajectories of the probability amplitude

Remark. It is also possible to perform the similar construction in the
circumstance when the family of regular polygonal trajectories is chosen [MC,
Tr] as the dense set in Mx instead of Sx. By regular polygonal trajectories
we understand polygonals with uniformly distributed vertices over the time axis
(i.e. for fixed n we have that tt in (2.1) and (2.8) are simply ti=(i/n + l)t, i—
0, • • - , n+1). For such trajectories the spaces flj (2.9) will collapse to Qn\r —

n + l
(x, X Rd) and, in an obvious way, measures JJLU (2.11) on Qn, measure fjt (2.13),

(2.17) on Mx and functional integral I ^exp [— (i/2m}(a)x, (ox}~]d [j.(a)x} will be

simplified to measures f t n \ r on Q$\ r, measure fjt\ r on Mx and functional integral

\ exp [— (i/2m)((ox, <&x)~]da\ r (a**), respectively. It can be shown that
JMX

\ exp[— (i/2m)((Dx, a)x}~]da\r(o)x} is also equal to the wave function of the
J3CX

quantum system under consideration [MC] and that the Maslov-Cebotariev
[MC] and Albeverio-Hoegh-Krohn [Tr] interpretations are valid also in the
case when as the set sustaining the measure /*/ the collection of regular
trajectories is chosen. Finally, let us mention that it is possible to find other
specific procedures which allow us to approximate the functional integral

\ exp[— (i/2m)(a)x, a)x}~]d fi(a)x) on the set of regular polygonals [Tr, Th. 4] or
J JCX

general polygonals [CSt, Ths. 1 & 2] without in fact constructing measures fjt on
any set of polygonal paths [CSt, Tr].

Let us now generalize our results to the case of quantum systems which
are under the influence of the external electromagnetic field a, aepf /2. The full
Hamiltonian for such a system is given by (1.2) and we have the following
result.

Theorem 2. Let m^C+, $0^C~(RJ\ ^e^, ce<2 and t<Tr. Then there
exists a measure 1 on the Hilbert space Mx ', which is concentrated on polygonal
paths Sx, such that the Schrodinger evolution 0eSEv(C"(jRd) ; vj, Vk/z) is re~
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presented at any point x^Rd and for any fe(0, Tr) by thefunctional integral

[ exp\—£-(wx,a>x)\d*(<»x) where <oz(t)=x. (2.34)
JJCX L Am J

Proof. (For some details check [OPC], Proposition 3.) First, construct a
measure Xn on S£ so that the w-th term in the formal Dyson series expansion
can bewritten as a pointwise function

(2.35)

where V is given by (1.2). The explicit formula for ^n, in analogy to (2.11) is

ln(An)=i(Bn)=\ (-0Bexp[ixJ^Ti L 1=0

-- (a0+ ijaj+
)TZ\ .7=1 Z

dln (2.36)
i a o

where Bn^®x
ni An=Jx(BJ^<S%, Bn\aQ denotes the a0-section of Bn and Pao(Bn)

denotes the projection of the set Bn in Rd(-Zn4-^ Euclidean space on the a0 axis.
The measure X on Sx and Mx is then constructed exactly as in the case a=0

(Steps 2 & 3 of the proof of Theorem 1) but it is a bit more work now to
check that the series on the RHS of equality

= S J»(Bn0S) (2.37)
71 = 1

is convergent. Taking into account that ^0 and 7 both have compact support
we readily find from the definition (2.36) of the measure Xn that its total varia-
tion \\Xn\\ can be bounded as follows

I ml

» > l l + -|^(ft+nfe)||rll]B-^-^||^.||-Vol(suPp^)-^-[ 2"ff ]"=d. (2.38)

for n sufficiently large, where \fjt'\, I T * ] , Un| are total variation measures as-
sociated with complex measures ^', 7 and ^n, respectively, and ^ is the radius
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of the sphere which contains the support of $„. As we have

we can conclude that

fj||;U<o° for t<7^}-r (2.40)

The above property of measures ln guarantees the convergence of the series
(2.37). Thus X is a well defined complex measure on Sx, and after trivial
extension (Step 3), also on Mx. In this way we find that <f>(x, t)=

\ exp[— l/2m((ox, a)x}~]dl(a)x} is pointwise well defined function for any x^Rd

J Jn *

and fe(0, Tr) (weC+) and that it expresses the value of the formal Dyson
series for the Cauchy problem of the Schrodinger equation with Hamiltonian
(1.2). Since V in (1.2) is an unbounded operator we are no longer assured by
the trivial abstract theory that this Dyson series, though pointwise convergent,
satisfies the Cauchy problem for the Schrodinger equation in J?z(Rd\ Never-
theless, it is possible to derive the recurrence relation [OPC, 5.24]

i-frDn(t ; m)(pQ=H0(m)Dn(t ; w)^0+ V(m}Dn^(t ; m)^0 , 00eC?(fld) (2.41)

in j:z(Rd) CD_!=0); show the boundedness of sums f] \\HQ(m}Dn(t; w)c&0|| and
n=Q T

00

S II V(m)Dn(t; m)c£0|| ; and interchangability of d/dt, H0(ni) and V(m) with infinite
n=o

oo oo

sums S [OPC]. This allows us to conclude that d>(x, f)— J}Dn(t ',m)d>0(x)=
n=Q f 71=0

f exp[-z72^(^, <Dx}~\dl(a)x) is in fact the evolution of the kind SEv(C"(/Zd);
Jc^

n

Discussion. Measures p and X on Mx are both constructed from V=H—HQ,
where H denotes the complete Hamiltonian of evoluations SEv(v1; vl ; a=0) and
SEv (C°S(Rd), vl, Uk/z), respectively, and H0 is a free Hamiltonian. This construc-

tion guarantees that functional integrals \ exp[— (i/2m}(c»x, wx)](i^(wx) and
JM%

\ ex.p[—(i/2rn)((ox, a)x}~]dl((Dx) are equal to the Dyson series representations of
J >3C^

solutions of evolution problems SEv(i^; i;1; a=0) and SEv (C™(Rd], v\\ vf /2), re-
spectively. Both these functional integrals express the weighted sum of free
probability amplitudes over all absolutely continuous trajectories. They may be
seen as the realization of Feynman's idea of path integration in the spirit of
Cebotoriev-Maslov. Notice, however, that for SEv(px, vl, a=0) the potential
V(x)=H(x, V*)— HQ from which /* is constructed is at the same time the (nega-
tive) perturbation in the formula for the complete Lagrangian Lcom=Lfref>— V(x)
while for SEv (C™(Rd) ; v\ ; ̂ /2) this is no longer true. The explicit form of
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V(x, Vx)=H(x, Vz)—HQ (1.2) from which A is constructed is inconsistent with
the perturbation to the free Lagrangian Lfree and does not allow us to generalize
the Albeverio-H0egh-Krohn interpretation to the case of quantum system under
the influence of the external electromagnetic field. Though Lemma 1 can still
be proved for the evolution SEv(C"(/Zd); i4, vjj?/2), the (2.30) type equality cannot

as the functional fn given by fn(s%)=\ ^exppCsJ, s^)]^^) is inconsistent

with . rr(-/^-(asg)-ci/(sg))firr]V(sg(Q)). Consequently, the validity of
n ! LJo \ dr / J r

the (2.33) type equality on which the Albeverio-Hdegh-Krohn interpretation is
based is unfounded for the quantum evolution in the presence of an external
electromagnetic field.
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Note added at proof: In fact, when deriving (2.33) we combine with (2.32) rather
the following generalization (2.30a) of the formula (2.30) i. e.

n\

- exp[- [tcV(o>x (r) ) dr~\<pQ (w
x (0) ) (2.30a)

than the formula (2.30) itself. (2.30a) is a result of the substitution of (2.27a) into the
scalar product (a)x, s'£) and the explicit expansion of (a)x, s'%) according to (2.5) which
shows that

«' --.


