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On Normal Extensions of Unbounded Operators. IIL.
Spectral Properties

By

Jan STOCHEL* and Franciszek H. SZAFRANIEC*

Introduction

1. This is the last part of our trilogy devoted to systematic exposition of
the fundamentals of the theory of unbounded subnormal operators. In the previ-
ous papers [17 and 18] we focus our interest on conditions under which normal
extensions exist. The present part concerns spectral properties of subnormal
operators as related to those of their normal extensions.

In our approach we have been trying to unify features of symmetric oper-
ators, the classical object of the theory, from one side, and bounded subnormal
operators, from the other. The most spectacular representative of this fusion
is the creation operator

P
dx *
It is apparently a differential operator but also it has an analytic model. Exist-
ence of such a model is one of the major topics of this paper. On the way to
achieving this goal we consider the following questions: minimality of normal
extensions, their uniqueness and different kinds of spectral relations.

In particular, we discuss two sorts of minimality: of spectral type and of
cyclic type. For unbounded operators these two notions need not coincide (for
bounded they always do). This impacts the uniqueness question.

However, in spite of the lack of uniqueness, basic spectral relations can be
carried over from the bounded case to the unbounded one. In particular, the
spectral inclusion property holds true (we have taken the opportunity to collect
here all possible spectral relations).

Among bounded subnormal operators there are those which have analytic
models in Hardy-like spaces (cf. [3]). Unfortunately, the spectrum of an un-
bounded subnormal operator may have no boundary ; this means that Bargmann-
like models [4] are preferable. Within the class of cyclic unbounded subnormal
operator we are able to work out analytic models of both types, understanding
cyclicity of an operator in the polynomial sense (though some of our results
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are still true for rationally cyclic operators, as in the bounded case [8]).

The paper ends in considering operators which behave like subnormal
weighted shifts.

Some conventions. We use the asterisk * for conjugation of complex numbers
as well as for taking adjoints of operators, while the dash ~ we reserve for
closure operations. As usual, C[z] resp. C[z, z*] stands for the polynomials
(of complex coefficients) in z resp. in z and z* (sometimes we will call members
of C[z] analytic polynomials). All the operators we consider in this paper are
supposed to be densely defined.

Minimality of Spectral Type

2. Let S be a densely defined linear operator in a complex Hilbert space
J. S is said to be subnormal if there exists another Hilbert space X containing®
4 and a densely defined normal operator N in X such that

DS)CON)NE  and Sf=Nf, fENS).

One of the questions we would like to consider here is, in analogy with
the bounded case, minimality of the extension N. Unlike the bounded case we
have several, in general non-equivalent, ways of understanding minimality. In
the bounded case all these notions coincide and minimality always forces unique-
ness of the normal extension up to unitary isomorphism.

The most general definition of minimality seems to be the following one: a
normal extension N of S is said to be minimal of spectral type if the only
closed subspace of X reducing N and containing X is X itself (recall that a
closed subspace # of K reduces an unbounded closed operator, say N, if
PNC NP where P is the orthogonal projection of A onto #).

Two normal extensions N; and N, of S acting in Hilbert spaces X, and
K, respectively, are said to be % -equivalent if there exists a unitary operator
U: H,— XK, such that

Uf=f, fe4 and UN,=N,U.

Dropping the first of these two conditions we get that N, and N, are (unitarily)
equivalent in the usual sense.

Minimal normal extensions of spectral type always exist. To make this
evident we need some notations. Let E be the spectral measure of a normal
operator N acting in a Hilbert space K. If 4 is a closed linear subspace of
X, then we denote by %, N] the closed linear span of {E(g)f: fE K, ¢ a
Borel subset of C'}. The space 4 ,[N] reduces the spectral measure E of N
and consequently 4, N] does N too. Denote by N, the operator acting in

! “Containing” ought to be read as “containing an isometric image of”; this is just what
occurs in mathematical reality.
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I [N] and defined by
ey DIND)=DNINI[LN], Nyf=Nf, fED(Ng).

Proposition 1. Let S be a subnormal operator in K and N its normal

extension in X. Then

(@) Ny is a minimal normal extension of spectral type of S,

(B) N is a minimal normal extension of spectral type of S if and only if X=
I[N,

(r) if N, and N, are two normal extensions of S which are IH-equivalent and
N, is minimal of spectral type, then so is N,

(0) if N is a minimal normal extension of spectral type of S, which acts in X,
then dim X=dim %2. Consequently the spaces two minimal extensions of
spectral type of S act in are unitarily isomorphic.

Proof. The proof of («) and (B) follows easily from the observation that
HsLN] reduces the spectral measure E of the normal extension N and con-
sequently the operator N itself. The part () of the conclusion follows straight-
forwardly.

Now we proceed to the proof of (d). If dim 4 is finite, then S is normal
itself. Suppose dim 4 =X, Let & be an orthonormal basis of 4. Let B be
a countable algebra generating the o¢-algebra of all Borel sets on C. The
classical Carathéodory extension theorem [5, p. 197 permits us to find for each
vector f=.4 and each Borel set ¢ a sequence {o,}CB such that <{E((g\o,)U
(g.\0))f, f>—0 as n—oo, where E is the spectral measure of N. This implies
that E(c,)f—E(g)f. Since X=4 ,[N] we get K=clolin{E(g)e: ec&, c=B}.
This implies that dim X <card{E(c)e: ec&, 0B} and, since B is countable,
card{E(g)e: ec&, c=B}=cardé=dim 4. Thus dim 4 =dim X. |

The equivalence (B) justifies the name we have chosen for this kind of
minimality.

3. Unfortunately, minimality of spectral type need not entail uniqueness.
More precisely, it may happen (cf. Example 1 below) that two minimal normal
extensions of spectral type are not equivalent at all, though the spaces they
act in are, by condition (6) of Proposition 1, isomorphic.

In spite of this diversity the basic spectral inclusion property (i. e. conclusion
9° of Theorem 1 below) holds true. So as to make this paper useful for further
purposes we collect here all possible relations between different parts of the

? By the dimension of a Hilbert space we understand, as usual, the cardinality of an
orthonormal basis. Thus saying “the dimension is equal to co” means only that the
space is not finite dimensional; we say this when we are not interested in what the
cardinality in question is equal to.
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spectra of a subnormal operator and its minimal normal extension.

In the sequel we adopt the conventional notations ¢,(S), d.,(S), 0.(S) and
a.(S) for the point, approximate point, continuous and residual part of the
spectrum ¢(S) of S, respectively.

Theorem 1. Let S be a subnormal operator in 4. If N is a wuninal
normal extension of spectral type of S, then

1° a,(S)CTap(N),

2° 04,(S)CTaap(N)=a(N),

3° 0.(S)Ca(N) and o . (S*)Ta (N¥*),

4° a,(N)To(S)Ua(S),

5°  0,(N)Co,(S*)* and o,(N*)=0,(N)*,

6° 0(N)Ta, (S)Uc(S) and g (N*)=a(N)*,
7° 0 (N)*Co,(S*)Ua(S*),

8 0. (N)=0,(N*=0.(5%=0,

9° a(N)Ca(S),

10°  64p(N*)C0q,(SH)=0(S¥).

Proof. Conclusions 1° and 2° hold trivially.
Now we proceed to the proof of 5°. First we show that

2) ker S*={0} implies ker N={0}.

Indeed, for an arbitrary feX, PE({0})f<kerS*, where P is the orthogonal
projection of X onto 4 and E is the spectral measure of N (to see this take
g<=9(S) and notice that {Sg, PE({0})f>=<g, N*E({0})f>=0). Since ker S¥*={0},
PE({0})f=0 for each fex. Thus PE({0})=0. This implies that P_i E({0})
and consequently £ CE(CN{0})X. Since E(CN{0})X reduces N, minimality of
N forces E(CN{0})X =K. So E({0})=0. This means that 0=CN\ap(N).

Take 2=eC~\g,(S*). This means that ker (A—S*)={0}. Since 1*—N is the
minimal normal extension of A*—S, (2) implies that 2*=C~\g,(N). This com-
pletes the proof of the essential part of 5°.

Pass to the proof of 8°. To prove it notice that

3) a.(A")=@ for a hyponormal A

(recall that A is said to be hyponormal if D(A)CTD(A*) and |A*fIZ|ASI,
fED(A). Indeed, if A1=0.(A*), then ker (A*—A)=((A—A¥)D(A*))*# {0}. Since
A*—A is hyponormal, ker (A—A*)={0}. This contradicts A=0c.(A*). The con-
clusion 8° follows from (3), because N, N* and S are hyponormal.
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Now it is convenient to prove® 9°. Without loss of generality we can
assume S is closed. Then we show, passing to resolvent sets, that p(S)Cp(N).

Suppose 0= p(S). Take >0 such that ¢|S*||<1. Let E denote the spectral
measure of N. Take heE(A,)X and fe 4 (here A, is the open disc centered
at 0 with radius ¢). Since S*"S "f=f for n=0, we get

[<hy 1= 1<k, ST = [Ch, N¥S= £y | =[CN*h, S| SIN* RIS £
={, 1217<E@an, B} ISP AIZEIS D RIS for n20.

Hence <A, f>=0 and, because heE(A.) X is arbitrary, S CE(CNA)X. Since
E(C~NA) KX reduces E, minimality of N implies E(CNA,)X =K, which means
that 0< p(N).

Take an arbitrary A€ p(S). Then, since A—N is a minimal normal extension
of 2—S and 0= p(4—S), we can apply the above procedure to get the conclusion
9°.

Now we pass to the proof of 3°. Take A=0,(S). Since (A—S)D(S) is dense
in 4, ker (A*—S*)={0}. Due to 5°, ker(A—N)={0}. Notice that 1=a(N). If
not, there would be 1€(C\ay,(N))CT(CN\045(S)) (use 2°). This would mean that
A€ (SIN(CNG5(S))=¢ (contradiction). Consequently, due to 8°, A=a(N)\
gp(N)=0(N). Since

(4) g (A*)=a (A)*, for closed A,

we have ¢, (S*)Co (N*). This proves 3°.

The conclusion 4° can be derived from 5°, 8° and (4) as follows ¢ ,(N)C
0 o(S*V*=(a(SN0 (S*V*=a(S)N\a(S)=0,(S)Ua (5).

To prove 6°, notice that, because of 9°, ¢, (N)Ca(S). Using 1° we can
exclude ¢,(S) from the right hand side of this inclusion so as to get the first
part of conclusion 6°. The other is a special case of (4).

Employing 6°, the inclusion ¢,(A)*Coa,(A*) for a closed A, and (4) we get
0 (N*Co . (S)*Ue(S*Ca,(S¥H)Ua(S)*=0,(S*)\Ua(S*). This is precisely 7°.

To prove 10° observe that ¢,,(A*)=0g(A*) for a hyponormal A (use (3)).
This and 9° give us

Gop(N¥)=a(N)¥*Ca(S)*=0(S*)=0,,(S%).
This completes the proof of Theorem 1. B

Notice that none of the inclusions appearing in the conclusion of Theorem
1 can be replaced by equality. The situation considered in Example 1 provides
us with arguments that inclusions 1°, 5°, 6°, 7°, 9° and 10° may be strict. The

3 QOur proof of this inclusion is patterned on that of Halmos for bounded operators [12].
The same inclusion for unbounded operators, settled in a somewhat different way, has
been proved by McDonald and Sundberg in [13]. However, their definition of sub-
normality is more restrictive than ours and also their proof is much longer.



110 JAN SToOCHEL AND FrANCISZEK H. SZAFRANIEC

other cases may be strict too; this is the instance of the creation operator, cf,

Section 16.
Theorem 1 exhausts all essential relations between different parts of the

spectra, which may happen in our circumstances.
Corollary 1. For a subnormal operator S, a(S)#@.
The proof uses Proposition 1 and the conclusion 9° of Theorem 1.

4. To continue our considerations of spectral properties of subnormal
operators we prove here a fact which is well known in the bounded case [6].

Theorem 2. Let S be a subnormal operator in 4 and N be any normal
extension of S acting in K. Suppose w is a connected component of C\o(N).
Then either oNa(S)=@ or wCa(S).

Proof. First we prove the following general fact

5) 00(A)Co.,(A)  for a closable A.

Suppose A is closed. Take 2€0dc(A). Since o(A) is closed, there is a sequence
A,ECNe(A) such that 1,—A. First thing we want to show is that [[(A—2,)7"|
—co as n—oo, If not, we can assume, choosing a subsequence if necessary,
that there is a positive number ¢ such that

(6) [(A=2)"<c, nzl.
This implies that
I(A=2)FIZIA=2) I fllze ML fN, Fe9(A),
and consequently
@ [(A=Dflzc I fll, feD(A).
On the other hand, inequality (6) and the von Neumann formula give us
®) [(A—2)"'—(A=2n) S| 2n—2nl, m, n=1.

Since 2,€C\a(A4), for an arbitrary g4 there exists an f,=9D(A) such that
g=(A—2,)f». This means that

and, due to (8), {f.} converges to some f&4. Since Af,=g+A.fr—g+Af
and since A is closed fe9D(A) and Af=g+Af. Thus g=(A—2A)f, which
proves surjectivity of A—A. This and (7) imply that A=C\g(A4), which, be-
cause o(A) is closed, contradicts our assumption. Consequently, this shows that
[(A—A4,)"![|—c0 as n—oo. The aforesaid enables us to choose g,=4 such that
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lgnl=1 and [[(A—2s)""gn|—c0 as n—co. Setting f.=(A—2,)"'g. We obtain
A=A Sl NS 2l A=) fall + 12— 21 S fal 7+ 20— 21

Since || fa]l—o0, (A=A fz]"*f2)—0. This proves the conclusion for closed S.
If S is not closed, the conclusion follows from the fact that ¢(A)=¢(A~) and
oap(A):Uap(A—)-

Now turn back to the proof of the Theorem. Let w be a connected com-
ponent of C\a(S). Due to 2° of Theorem 1 and (5) we have

80(S)Ca4,(S)CTa(N).

Thus wNe(S)=wN(int ¢(S)), which means that wNe(S) is open. But ¢(S) is
closed, wN\(C~\c(S)) is always open. Connectivity of ® implies that either
wNa(S)=@ or oN(C\a(S)=@. [ |

Corollary 2. Let N be a minimal normal extension of spectral type of S.
Then

1° 80(S)C0.p(S)Ta.,(N)=a(N)Ta(S),

2° if e(N)=C, then a(S)=C,
3° if S is maximal symmetric but not selfadjoint and N is selfadjoint, then
o(N)=R.

The part 3° requires some comment. Since the spectrum of S is precisely
either the upper or the lower closed halfplane, 1° establishes the conclusion of
3°.

5. Our next result bears a resemblance to Theorem 2.3 of [14].

Proposition 2. Let N be a normal operator in X and 4 be closed linear
subspace of K. Then for any complex Borel function @ defined on ¢(N) we have
(according to notation of (1))

o(D(N)s)=0(D(Ny)) .

Proof. First of all notice that since the space [ N] reduces N to Ny,
o(N 4)Cae(N) and the operator @(Ny) is well defined.

Consider now the case N=N,. The inclusion ¢(@(N)4)CTa(D(N)) is
obvious. Now we want to prove the reverse inclusion. If E is the spectral
measure of N, then E;=FE-@'is a spectral measure of @(N) and E,=E,| 40>
is a spectral measure of @(N),. Suppose that there is 2€a(D(N )N (D(N)x).
Choose ¢>0 such that dist(2, 6(@(N)4))>2¢. Let w=a(@(N))NA(Z; ¢), where
A(Z; €) is an open disc of radius ¢ and center . Then @Ne(@(N)4)=@. Thus
E@Y@)f=0 for each fe4 [®(N)]. This implies that HCIH ,[ON)IC
(E(@ Y (@)X)*. Since w is relatively open in ¢(@(N)), E(@ Y @))+0. There-
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fore HCH[PN)]JC(E(@ Y (@)KX) '+~ K. Since (E(P Y @)K)* reduces E, it
reduces N too. All this contradicts N=Ng.
The case of an arbitrary N can be reduced to that just considered by the

equality O(N4)=D(Ng4)g. This completes the proof of Proposition 3. m

6. Now we present the promised example.

Example 1. Take 4=_?[a, b], where ¢ and b are (finite) real numbers.
Consider an operator S with domain 9(S)={f=.L?[a, b]: f absolutely continuous
on [a, b], f'eL?a, b] and f(a)=f(b)=0}, which is defined as

Sf=if", fea(S).

Then S is a closed symmetric operator with defect indices (1, 1). This operator
has a selfadjoint extension in the space 4. However, we are interested* in
having an extension N such that

DS)=DN)NI .

In order to get such an extension take KX =.L%[¢, d] where ¢ and d are (finite)
real numbers. For t<[0, 2r) consider an operator N, with domain D(N;)=
{feL[c, d]: f absolutely continuous on [¢, d], f'€L[¢c, d] and f(c)=e' f(d)}
defined as

N.f=if", f€DN,).
The operator N, is selfadjoint. It is known (cf. [1, p. 160]) that

G(Nt):O-p(Nt)z{'ztk: keZ}

where

Ap=(0—2km)(d—c)".

The eigenvalues ;, of N, are of multiplicity one and the coresponding eigen
vectors f;, are

fu(x)=(d—c)?exp(—idx), x€[c, d].
So the spectral measure E; of N, is

) Et(o')f:“§:0<f; ferdfen

where ¢ is a Borel subset of B and f is in .L*[¢, d]. Fix now the intervals
in such a way that [a, b]C[¢, d] and d—c¢=2(b—a). Then SCN, and

(10) DS)=DNINLK .

We show that, for t=(0, n)\U(x, 2x), N, is a minimal normal extension of S.
To see this it is enough to prove, due to (9), that

* For some discussion concerning this equality see [19].
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{Xta,on [re>#0, for every keZ

where x(q,; stands for the characteristic function of [a, b]. If not, then
{Xta,p3, fery=0 for some % would imply that there existed :=Z such that

t=2krx+2:n(b—a)(d—c) *=Q2k+0)r.

This contradicts t<(0, n)\U(x, 2x).

Summarizing, we have an example of a symmetric (read: subnormal)
operator having a plenty of (after fixing [¢, d]) selfadjoint (read: normal)
extensions N; of S, t=(0, n)U(x, 2x), which

1° are minimal of spectral type,

2° have disjoint spectra,

3° are not equivalent,

4° satisfy equality (10).

All the informations about the spectra of S and its extensions N,, which
can be derived from the above, are collected in the following table. This
permits to make the spectral relations appearing here transparent.

Gp | Gup | O g, g
s ¢ o | c | o cC
N 4|4 |e | o] 4
s« ¢ ¢ @ @ |cC
N A A4 B | B | 4

Here N=N, and A=A,={A,,: k€ Z}.

The operator S just considered has a disadvantage; namely it has a selfad-
joint extension in the initial space 4. If one would like to have a subnormal
operator which has no normal extension in the initial space 4 (which is the case
for bounded subnormals) and, on the other hand, which still has properties 1°, 3°
and 4°, the simplest example would be a subnormal operator of the form SV,
where S is the operator just defined and V is, say, the unilateral shift. |

Minimality of Cyclic Type

7. Recall that a densely defined operator N is said to be formally normal
if
DIN)CON*) and |Nf|=|N*f|| for [feD(N).

A densely defined operator S in 4 is said to be formally subnormal if there
exists another Hilbert space X containing 4 and a densely defined formally
normal operator N in X such that
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DS)CTHDN)NH and Sf=Nf, f€eD(S).

It is known [7] that a formally normal operator need not be subnormal.
From now we assume that the operator S leaves its domain invariant, i.e.

(11) SPS)CD(S).

Within this class of operators, S is formally subnormal if and only if it satisfies
the so called Halmos-Bram condition [18, Prop. 2]. Moreover we can choose
a formally normal extension N of S to satisfy

DN)=lin{N*"f: f€eD(S), n=0}.

This justifies the following definition: a formally normal extension N of S is
said to be minimal of cyclic type if

N=(Njx,m)",
where
H(N)=lLn{N*"f: f€D(S), n=0}.

The following notation will be useful in the sequel

Proposition 3. Every formally subnormal operator satisfying (11) always
has a minimal formally normal extension of cyclic type. Moreover, two formally
normal extensions N, and N, of S, which are minimal of cyclic type, are H-equi-
valent, i.e. there is a unitary operator U : KX,— XK, such that

Uf=f, fe€4 and UN,=NU.

Indeed, the formula UN¥"f=N¥"f uniquely defines the unitary operator
which meets the requirement.

Proposition 4. An operator S (satisfying (11)) is subnormal if and only if
it is formally subnormal and has a minimal formally normal extension of cyclic
type, which is subnormal.

Proof. Let M be a normal extension of S. Then N=(M|4,un) is a
formally normal extension of S, which is minimal of cyclic type, acting in
M7 (cf. (12)). The converse is trivial. ]

Notice that, in general, (M|« )" need not be minimal of spectral type
even if M is minimal of spectral type (Example 1 provides us with the argu-
ment; H(S)=9(S) for a symmetric S). In other words, there are subnormal
operators having no minimal normal extension of cyclic type.
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Theorem 3. Let S be a subnormal operator satisfying (11). Suppose that
it has at least onme minimal normal extension of cyclic type. Then an arbitrary
normal extension of S is minimal of spectral tyfe if and only if it is minimal

of cyclic type.

Proof. Let N be a minimal normal extension of S of cyclic type in X.
What we want to show is X=%,[N]. Take geAXCIHJ[N] and fe(S).
Then, since E(g)f is in 4 ,[NJ, <E(o)f, g>=0 for an arbitrary Borel set o.
This implies

Wrf, =lim| | 2@, =0,

12|

Consequently, gL A [N]=X. So g=0.

On the other hand, suppose M is a minimal normal extension of spectral
type. Then M,=(M|«, )" is a formally normal extension of S, which is
minimal of cyclic type. Since so is N=(N|u, )", Proposition 3 gives us a
unitary operator U : £ ,[M]1—H4 [N] such that M,=U-*NU. Since N is normal,
M, is normal too. This means that £ CH[M] and 4 [M] reduces M.
Spectral minimality of M forces [ M=% [ M]. This completes the proof. m

Corollary 3. If S has at least one minimal normal extension of cyclic type,
then all its minimal normal extensions of spectral type (they always have to exist,
c¢f. Proposition 1 (a)) are H-equivalent.

8. Now we wish to focus our interst on a class of subnormal operators
which always have minimal normal extensions of cyclic type. Recall that a
vector f=D(S) is said to be quasianalytic if

X ISt flmHr=oo.
Denote by Q(S) the collection of all quasianalytic vectors of S.

Theorem 4. Let S be a formally subnormal operator satisfying (11). If
linQ(S)=9D(S), then S has a minimal normal extension of cyclic type.

Sketch of proof.® Consider a formally normal extension N of S, which is
minimal of cyclic type (by Proposition 3 such an extension always exists).
Denote by No=N|g,v>. Notice that Q(S)CQ(N,) and, due to [17, Prop. 2],
N** feQ(N,) for every f=Q(S). This implies that D(N,)=1inO(N,). Then, by
[17, Theorem 1], N=N5 is the wanted normal extension of S. ]

9. A densely defined operator S in 4 is said to be cyclic if there is a

5 All the details can be found in [17, Theorem 8 and Remark 8].
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vector (called a cyclic vector of S) fo€D°(S)=MN3=0P(S™) such that D(S)=
lin{S™f,: n=0}. We have already shown [18, Prop. 3] that such an S is sub-
normal if and only if there exists a non-negative measure m on € (call it a
representing measure of S) such that

(13) §c|z[2nm<dz)<oo for every n=0,

(14) (S™ fo, S"f0>=gczmz*"m(dz) for all m, n=0.

For any minimal normal extension N of spectral type of S, we have a
positive Borel measure my on C defined by

(15) my(0)=<E(a)fo, fop, o a Borel set,

where E is the spectral measure of N.

On the other hand, given a positive Borel measure m on € satisfying (13),
we can define the operator N, of multiplication by the independent variable in
L*m), which is a minimal normal extension of S;,=Ngu|cr,7 of spectral type.
This means that the operator S, acting in 4, the .L*(m)-closure of C{z], is
subnormal.

The following result shows, among other things, that if m is a representing
measure of S, then S is equivalent to S,. So the operator S,, can be viewed
as a functional model of S.

Theorem 5. Let S be a cyclic subnormal operator in I with the cyclic vector

fo. Then

1° for each minimal normal extension N of spectral type of S, m=my is a
representing measure of S,

2° my,=my, if and only if N, and N, are Jl-equivalent,

3° for any representing measure m of S, S is equivalent to Sy,

4°  for any representing measure m of S there is a minimal normal extension N
of spectral type of S such that m=my,

5°  for each minimal normal extension N of spectral type of S, o(IN)=suppmy.

Proof. 1° is obvious. To prove 2° suppose N; and N, are minimal normal
extensions of spectral type of S acting in X, and X,, respectively, such that
my,=my,. Denote by E, and E, their spectral measures. Since E, and E, are
spectral measures, standard argument applied to <E,(a)f., fop=<E:(a)fe, foy
gives us

16) KEW0)fo El(P)fu>:<Ez(0')fo; Ez(P)fo> .

Notice that El(p)S”f‘,:S Z"E(dz)f,=clolin{E,(g)f,: ¢ a Borel set}, for an
0
arbitrary Borel subset p of C. Since X,=4,[N.] and S is cyclic we get
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amn HK,=clolin{E.(¢)f,: ¢ a Borel set}.

Due to (16) and (17), there is precisely one unitary operator U from X, to X,
such that UE.(o)fo=F:0c)f,. This and (17) implies that UE(¢)=E,(a)U.
This, in turn, implies that UN?=N3U, n>=1. Thus, since Uf,=f, we have
US"fo=UN1fo=N2Ufo=N2f,=S"f,. Since f, is cyclic, we get Ul|ys=Ix«
which means that N; and N, are 4 -equivalent.

The proof of the reverse implication of 2° is straightforward.

To prove 3° notice that, due to (14), there is precisely one unitary operator
V from 4 to 4, such that VS"f,=z", n=0 and VS=S,V, which means that
S and S, are equivalent.

The operator N=N,, meets what is required in 4°.

Let E be the spectral measure of a minimal normal extension N (acting in
X) of spectral type of S. Then, for an open set ¢, my(c)=0 if and only if
E(¢)=0. This follows from (15) and from the fact that KX =clolin{E(a)f,: o
a Borel set} using the same kind of argument as in the proof of 2°. This
gives us the conclusion 5°. |

Corollary 4. Under assumptions of Theorem 5 the operator S has as many
non Y-equivalent minimal normal extensions of spectral type as the complex
moment sequence {{S™f,, S™fo>}m.n has representing measures (i.e. measures m

satisfying (14)).

It might be interesting to know when there exists a minimal normal
extension of cyclic type of a given cyclic subnormal operator.

Proposition 5. Under assumptions of Theorem 5 the operator S has at
least one minimal normal extension of cyclic type if and only i there is a positive
Borel ineasure w satisfying (13), (14) and such that C[z, z*] is dense in
LA+ 1z]2)m)e.

-

Due to Theorem 3, the proof of Proposition 5 is based on the observation
that the £%((1+|z*m)-closure of C[z, z*] is equal to L*(1+]|z|*»m) if and
only if Ny=(Nulcr...»1)", where N, is the operator of multiplication by z in
L%m).

Corollary 5. Under the assumptions of Theorem 5 the operator S has at
least one minimal mnormal extension of cyclic type if there is a positive Borel
measure m satisfying (13), (14) and such that C[z, z*] is dense in LP(m) for
some p>2.

This follows from Proposition 5 and [11, Th. 107.

8 This corresponds to Theorem 8 of [11] where so-called ultradeterminancy of the multidi-
mensional moment problem has been considered.



118 JaN STocHEL AND FraNciszek H. SzAFRANIEC

The example discussed in [11, Remark 4, p.59] can provide us with an
indeterminate measure m such that C[z, z*] is not dense in L%((1+]z|*m).
Thus, in virtue of Proposition 5, the operator of multiplication by z defined on
C[z] has no normal extension of cyclic type.

Analytic Models for Cyclic Operators

10. Let S be a cyclic operator in 4 with the cyclic vector f,.

Lemma 1. If S is a cyclic operator in I and dim L =o0, then the set of
its cyclic vectors forms a one dimensional space.

Proof. Let f, be a cyclic vector of S. Since & is infinite dimensional,
then the linear map @: 9(S)—C[z] given by @(p(S)f,)=p is a linear iso-
morphism such that M,@=@S where M, is the operator of multiplication by z
in C[z]. Since the set of cyclic vectors for M, is composed of polynomials of
degree zero, we get the conclusion. ]

Lemma 2. 21€0g,(S*)* if and only if there is ¢;>0 such that
(18 [P Zcall p(S)fol
for any polynomial p=C[z]. If this happens, then dim (ker (2*—S*))=1.

Proof. Suppose that 2= ,(S*)*. This means that there is k;&4 such
that S*k,=2A*k; and | k;||=1. Then we get p(S*)k;=p(A%)k; for peC[z].
Since p(S*)C(p*(S))*, where p*2)=(p(z*))* for z=C, we have p(S)*k;=
P¥A¥)ki=p(A)*k,;. This gives us

19 P fo, k>=pAXfo, k2>, pEC[z].

Since S is cyclic, equality (19) implies <f,, 21>#0. Put ci=1<{f,, ka>|™*. Thus,
using again (19), we get (18).

Asumming (18) and applying the Riesz representation theorem to the
functional p(S)f,—p(2), one can find h;+0 such that p(R)=<p(S)fo, h;>. This
gives us <{Sp(S)fo, hD=2p(A)=<P(S)fo, A*h;)>, p=C[z]. Because S is cyclic,
h,€9D(S*) and S*h;=A4*h;. This means that 1*&g,(5%).

Take non-zero vectors h,eker(4*—S*), 7/=1, 2. Then, using the same kind
of argument as in the proof of the “only if” part, we have <p(S)fo, h.>=
DA fo, b, p=C[z]. This forces that h,=ah,, where a=<hy, fop<{hs, fo>,
completing the proof. i ]

Assume for the moment that 4 is nof finite dimensional and | f,||=1.
Since S is cyclic this is equivalent to the fact that {S™f,} s, is composed of
linearly independent vectors. Now let {e,}.so be an orthonormal basis in 4
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and let {r,}.s0 be a sequence of polynomials from C[z] such that

(20) en:rn(s)fl)y
and
(21) lin{en}nzo=1lin{S™ fo} nzo.

One can get such a sequence {r,},.», applying the Gram-Schmidt ortho-
normalization procedure to {S"f,}.s. The polynomials », can be given ex-
plicitely by »,=1,

f(fo, foo  Kfo, Sfo> - Lfo, S" f> 1
n-1
rn(z):(GnGn_l)‘”zdet {Sfo fo <Sfo; Sfo <Sfo; S fo> z

<Snf0; Fo» 8™ fo, Sfo>--{S™ fo, Sn_lfo> z"
Gn=det({S*fo, S7f))2 =0 for n=1 and G,=1.

Proposition 6. Suppose dim £=c0 and S is a cyclic operator in I with the
cyclic vector fo. If the orthonormal basis {e,}n=e in I and the sequence {r,}zzo
of polynomials in C[z] satisfy (20) and (21), then the following conditions are
equivalent :
1° 2*sg,(S*),
2° there is ¢2>0 such that |p(A) Zcql|p(S)foll for any polynomial p=Clz],
3° there is (precisely one) vector hy= 9 such that p(A)=<p(S)f., h>, p=C[z],

£ 3 @] <o,

If this happens, then

5" hi= 2 ra¥en, [halP= 3 I7a(D|* and S*hy=1%hy,

6° if fo is another cyclic vector of S, then the vector hj corresponding to it (via

3°) is equal to {fo, fod|l fol ?ha.

Proof. 1°©2° due to Lemma 2. 2°<3° by the Riesz representation the-
orem (ci=|ha).
3°=4°. Using (20) and the Parseval equality we get

3 1@ P= [ halP<co.

4°=3°. Since dim 4 is infinite, {S™f,}.so iS composed of linearly independ-
ent vectors. This implies that p(S)f,=0 if and only if p=0, pC[z]. This,
(20) and (21) guarantees that {r,}.., is the Hamel basis for C[z]. Define

h,= io ra(A)*e,. Take an arbitrary polynomial p=C[z]. Then there are complex

n
numbers a,, ---, @, such that p= >} a,r,. Thus
k=0
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HS) o hid= 3 ara(S)fo, hi>= 2 asrsD=p().

The proof of 5° is included implicitly in 4°=3°.
The conclusion 6° follows from Lemma 1, by direct calculation. This
completes the proof. =

Notice that Proposition 6 fails on dropping (21).

Remark 1. 1t is easy to see that if S is a cyclic subnormal operator with
a representing measure m, then dim 4 =¥, is equivalent to the fact that
suppm is at least countable.

Denote by &, the function defined on C as

co if 2 is not in g,(S*)*
k()=
[ha)2 if 2 1s in g,(S*)*

where h; is as in Proposition 6. Then Proposition 6 implies
(22) XOESSRINOIES

(23) 0 (S¥)V¥={1: k() <oo}

and, for any 2,

24 [P’ <clp(S)fol®  for all pellz]erld=c.

The function &, depends on the particular choice of a cyclic vector f, and the

way it does is described in conclusion 6° of Proposition 6.

Corollary 6. For a cyclic operator S, ks is lower semicontinuous. Moreover,
if o is a bounded open set such that k,(A)<c for 20w with some ¢>0, then
ks(D=Zc for Acw™.

Proof. Since
(2eC:rch= () {ZEC: g (r,,u)(zgc},

the function &, is lower semicontinuous.

Condition (24) implies |p(D)|2Zc|[p(S)f,|? for all p=C[z] and A€dw. The
maximum modulus principle for holomorphic functions ensures us that |p(2)|2<
clp(S)foll* for all p=Clz] and A=w-. Using again (24) we get the final
conclusion. B

Corollary 7. For a cyclic operator S, ¢,(S*) is a union of an increasing
sequence of compact sets havring no bounded holes.
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Proof. The case dim 4 <o is trivial. In the other case it follows from
Proposition 6 that

7 p(SH)F= gnam

where o,={2€C : k(A)<m}Ndisc(0; m)-. Suppose some o, has a bounded
hole . Then dwCo, and, consequently, £,(A)<m for A=0w. By Corollary 6,
ks(A)<m for A€w. This means that wCo, which gives us contradiction. ®

11. The next result shows that the converse direction in Proposition 6 is
possible.

Proposition 7. Suppose we are given a sequence of polynomials {vn}nzo,
being a Hamel basis for C[z]. Then there is a cyclic operator S in some Hilbert

space J with the cyclic vector f, such that 01!,(5”‘)*:{2:2}0 "7a(A)|2< o} and the
function kg satisfies (22) and (23).

Proof. Since {r,}.so is a Hamel basis of C[z], there is precisely one scalar
product such that <rn, 7,>=0s. .. Denote by 4 the completion of this inner
product space. Let S be the operator of multiplication by z in C[z]. Then S
is cyclic with the cyclic vector f,=r, and p(S)f,=p for p=C[z]. In particular
72(S)fo=7r,. Thus we are in the starting point (with ¢,=7,) of Proposition 6.

]

One can choose a sequence {r,}.s in Proposition 7 in such a way that

3 [7a(D)|?=0c0 for each 2€C. In this case ,(S*)=0@.
n=0

Corollary 8. For any Hamel basis {rp}nse of C[z] there always exists
another Hamel basis {qn} 0 0f C[2] such that

(i) deg(]n=n, n=0,1, --- and

(ii) the series nﬁ:}l |72(A)]? and go 1g.(D)|? are simultaneously convergent.

Proof. Proposition 7 gives us a cyclic operators S in a suitable %. Apply-
ing the Gram-Schmidt procedure within 4 to the sequence {z"},.., we get a
Hamel basis {ga}n=0 satisfying (i). Using Proposition 6 we check that {g,}.so
satisfies (ii), too. =

Corollary 9. (a) For any pair of disjoint countable subsets t and w of C
there is a cyclic operator S (with the normalized cyclic vector) such that tCa,(S¥*)
and wNo(S*)=Q.

(B) Let w be a subset of C for which there are two sequences {W.}n»: and
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{wr}ns1 of compact set such that

1° none of w, and wy, n=1, 2, ---, has a bounded hole,
2° w.Nwr=9, n=1, 2, -,

3° w=liminfw, and C\w=Ilimsupw;,.

Then there is a cyclic operator S such that ¢,(S*)=w.

Proof. (a). Suppose t*={4;, 4, -~-} and w*={4, 4, -~-}. For each n>0
denote by 7, the n-th Lagrange interpolation polynomial such that 7,(4,)=d;
for =0, -, n. We can always choose the initial data {d,} in such a way

that the degree of r, is precisely equal to 7, Zilﬁdzn+1lz<00 and i;o |dgn|?=00.
Setting r,=1 we get i |72(2)]2<oo for Aez* and io |72(A)|2=0c0 for Acw*.
n=0 n=

The sequence {7,}.s, satisfies all what is required in Proposition 7.

(B) By 2°, there are open sets 7, and 75 such that r,N\t,=0, 0iC7, and
w¥Cty,. Let ¢, be a holomorphic function defined on z,\Uty, by ¢.(2)=02n)™*
for zer, and ¢.(z)=n-+1 for z&7,. The Runge theorem impliesth at there are
polynomials p,&C[z] such that [@.(2)—pa(2)I=<2n)?* for zewiUwr* and
deg pn,-+oo strongly. This, in turn, implies that |p.(2)|<n"!' for z€w} and
|pa(2) | =n for zewF.

If zew*=liminfw}, then there is n(z)eN such that z€w?¥ for n=n(z) and,
consequently, i‘,l [pa(2)|2<+o0. On the other hand, if z€C w*=Ilimsupw;F,
then zew;* for infinitely many n’s. Therefore, i | pa(z)|2=400. Set ru(z)=

n=1

Pm(z) when n=degp, and r,(z)=z"/n! for neN\{degp.;m=1}. Since
degr,=n, the sequence {r,}.so forms a Hamel basis for C[z]. The resulting

sequence {r,}.so has the property that i}o |72(2)|2<+o0 for zew* and
io |7a(2)1’=+o for zeC~w*. A direct application of Proposition 7 completes
the proof. |

12. Let r={r,}.20 be a Hamel basis for C[z]. Denote by K, the complex
function defined on w,Xw, as

K3, )= 3 ra®*ra(),

where w,={1: ni‘,o [7.(A)|2<0}. K, is a positive definite kernel on w,. Denote

by 4%, the reproducing kernel Hilbert space [2] determined by K,. <, stands
for the set of all restrictions of members of C[z] to w,.

Theorem 6. Let 4, S, {rn}nse and h; be as in Proposition 6. Suppose
0,(S*) is non-empty. Then
1° @, is a dense subset of 4,,
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2°  the operator M, of multiplication by z defined on P, is cyclic with the cyclic
vector 1,

3° there is precisely one partial isometry W : H—I, with the initial space
clolin{h, : A= ,(S*)*} and the final space ¥, such that

WS=MW.
4° w,=0,(S¥)F=0,(M¥H*.

Proof. Proposition 6 implies w,=0c,{S*)* and
<h1; h,u>:Kr(/zy #):<Kr(xr '); Kr(ﬂ; ')> for /z; UEW,.

This means that there is precisely one unitary operator U from clolin{%,:
A0 ,(S*)*} to 4, such that Uh;=K.(4, -) for 1€w,. Set W[ )A=LS, h,
fE % and 2€w,. Notice'that Uh,;=Wh,. Thus Uf=W/ for f€lin{h, : €0 ,(S*)*}.
Take feclolin{h;:A€0,(S¥)*}. Then there is a sequence {fa}r20C
lin{h;: 2€a,(S**} such that f,—f. For an arbitrary 2€w, we have

UHQ=lim U f)D=Hm W fo))=lm{fr, hi>={f, R>=W f)A).

This implies that, for fe4, Wf=UPf, where P is the orthogonal projection
of 4 onto clolin{h;: A=a¢,(S*)*}. Thus W: L —J4(, is a partial isometry with
the initial space clolin{k;: A€ a,(S*)*} and the final space 4,. Take p=C[z].
Then

WHS)f ) D=Lp(S)fo, h1>=D(A), €0,

where f, is the cyclic vector of S. Since S is cyclic, this gives us the con-
clusions 1° and 2°. To prove 3° take Acw, and f=p(S)f, with peC[z].
Then

WSID=LSP(S) fo, h2>=2pRQ)=2AW ) A)=(M.W f)(4).

This establishes the conclusion 3°.

The only thing which remains to be proved is that ¢,(S*)*=0,(M*.
Take 2€0d,(S*)*. Then for pe®, we have (K., -), M,py=2*p(A)*=
KR, ), pp=CA*K, (2, -), p>. This means that K,, -)€9M¥) and
M¥K, (2, -)=2*K,(2, -). Consequently Aca,(M¥)*. Conversely, suppose that
Asa,(M¥)*. This means that there is a nonzero f€9(M¥) such that M¥f=2*f.
Since W is bounded, 3° gives us W*M*cCS*W*. Thus W*fcD(S¥) and
SFWHf=W*M%*f=2*W*f. Since WW*f=f, W*f is nonzero. This implies that
A€ 0,(S*)*. This completes the proof. |

Corollary 10. If r={r.}as, is the Hamel basis of C[z], then @, is dense
in ¥, the space I, is composed of Borel measurable functions, M, is a cyclic
operator in I, and w,=a,(M¥)*. In particular, members of 4, belong to the
first Baire class.
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This follows from Proposition 7 and Theorem 6.

Remark 2. Under assumptions of Theorem 6 the operator M, is equivalent
to the operator T in clolin{k;: A€ ,(S*)*} defined as D(T)=lin{PS™f,: n=0}
and TPS™f,=PS"*'f, where P is the orthogonal projection of % onto
clolin{h;: 2A=€0,(S*)*}. This suggests thinking of the operator M, as an
analytic “model” of S. More precisely, we say M, is an analytic model of S
if the partial isometry appearing in Theorem 6 becomes unitary (we have to
assume here tacitly that ¢,(S*) is nonempty). The reproducing kernel Hilbert
space 4, is uniquely determined by the operator S (this follows from the fact
that the set of cyclic vectors is always one dimensional).

The closure M; of M, is contained in the operator MP?* defined by
DPMPN={fc 4, : gEH,, g(z2)=zf(2)} and MPa*f=g, where g(z)=zf(z) (this
is because the operator MP™2* is closed).

Notice finally that dim 4%,=cardw, when o, is finite and dim%,=R,
otherwise.

Corollary 11. Suppose dim £ =oo. A cyclic operator S in I has an analytic
model if and only if the following condition is satisfied: if {@n}n=0E!(* is such that

g} anra()=0, for all ASa,(S¥)*, then an=0 for all n=0.

13. Now it is the right time to enhance analytic features of the space 4,.
The following result will be very useful.

Lerama 3. Suppose dimHL=co and S is a cyclic operator in K. Let
r={rn}nso be as in Proposition 6 and let 0>0. Then the following conditions
are equivalent:
1° 4, is composed of functions which are continuous on disc(4,; ),
2° 4, is composed of functions which are holomorphic on disc(4,; d),
3°  K,.(2*, ) is holomorphic in (4, p)Edisc(2,; 8)*Xdisc (4, ; ),
4° kg is locally bounded on disc(4,; d),
5° the function k, is finite and upper semicontinuous on disc(2,; ),
6° the function k, is finite and continuous on disc(4,; 9),
7° ks is subharmonic on disc(4,; 9),

8 | m(htdedi<os, if d<,

9°  ksE Lio(disc (4 ; 0)).
If any of these conditions holds, then disc(A,; 0)Ca,(S*)*.

Proof. 2°=3°. Because K,(4, -)E4%,, 2° implies that K,(4, -) is holo-
morphic on disc(d,; 8) for each A=w,. Since K.(1, p)=K. (¢, A)*, the function
K,(-, p) is antiholomorphic on disc(4,;d). Hartog’s theorem implies 3°
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immediately.
3°=1°. This follows directly from the inequality

[fO—f =1 FINEAR, )—K g, -l
= FICEAR, D+ K (e, g)—2re K4, ).

1°=4°, Take d<d. Since any fe4, is continuous on disc(4,; ),
sup{[<f, K., - )| : 2&disc (4 ; d)} =sup{| f(D)| : A&disc(Ay; d)} <oo.
An easy application of the Banach-Steinhaus theorem leads us to sup{x,(2); A€
disc (4, ; d)}=sup{l|K.(2, -)|I*: 2edisc(,; d)} <oo.

4°=2°. Take fe4, and d<d. By Corollary 10 there is a sequence
{pr}az0C P, such that || f—p,||—0. Since, for 1=disc(4,; d),

[ F(A—=p2(A) *= | f—Dallsup{es(p) : pEdisc(4o; d)},
pa—f uniformly on disc(4,; d). This implies 2°.

3°=6°. Since £,(A)=K,(4, 1), the conclusion 6° becomes clear.
6°=5°. This follows directly from Corollary 6.

k
6°=7°. Since lcs(l)::lkim 2_0 |7.(A)|%, the function k; is finite and continuous

&

on disc(4,; 8), and, moreover, the functions n2=‘,0 ir2(A)|? are subharmonic, we
get the conclusion.

7°=6°. Since k; is finite and upper semicontinuous, applying again
Corollary 6, we get 6°.

6°=8° and 6°=9° are obvious.

The following can be deduced from the Cauchy integral formula and from
the inequality |p(R)|2<1p]%ks(R), A= C, which holds provided card w,=>R,.

Sublemma 1. Suppose p=C and 0<d,<d. If Szﬁﬁs(#+deit)dt<00 and
Aedisc(u; dy)7, then

2n .
DI S @r(d—d)) &l pla, I wilprt-det)de

for any p=C[z].

8°=2°. Sublemma 1 guarantees that density of %, in %,, which appears
in Corollary 10, can be understood with respect to uniform convergence on
compact subset of disc(4,;0). Since members of ¢, are holomorphic on
disc(4,; 0), we get the conclusion.

Integrating the inequality appearing in Sublemma 1 we get

Sublemma 2. Suppose p=C, 0<d,<d,<d; and A=disc (¢ ; d,)"\disc(u; ds)".
If SAES(C)dm(C)<oo and Acdisc(g; dy)-, then

DD 1P =2a(dy—d1)(ds—d2)) " dsllpl o, IIZSAICS(C)dm(C)
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for any p=C[z]. Here m denotes the (planar) Lebesgue measure.

9°=2°. We can repeat the argument used in the proof of 8°=2° replacing
Sublemma 1 by Sublemma 2. [ |

We are ready to show that 4, is composed of functions which are analytic
neglecting some meager subset of int ¢ ,(S*)*".

Theorem 7. Let S be a cyclic operator in 4 such that into,(S*) is non-
empty. Then

7(S)={2€C: &, is finite and continuous in a neighborhood of A}

1S an open subset of inta,(S*)* such that into,(S*)*\r(S) is a nowhere dense
subset of C (and, consequently, of inta,(S*)*). The set y(S) is the maximal
open subset of w, on which all functions in ¥, are holomorphic.

Proof. 1t is clear that 7(S) is an open subset of int ¢,(S*)*. Due to Lemma
3 (6°=2°), 4, is composed of functions which are holomorphic on 7(S). If all
the functions in 4, are holomorphic on an open set yCw,=0c,(S*)*, then, again
by Lemma 3 (2°=6°), rC7(S).

We show that 7(S) is dense in int¢,(S*)*. If not, inte(S*)*™\r(S)” is a
nonempty open set which can be written as a union of a sequence of closed
subsets 7,={2€int g,(S*)*\7(S)": k(D=<n} of into,(S*)*\r(S)~ (use Corollary
6). The Baire theorem gives us 7, such that int7,, is nonempty. Thus there
is an open discA such that A is disjoint with 7(S) and &, is bounded on it.
Due to Lemma 3 (4°=6°), ACy(S). This implies that 7(S) is dense in
int g ,(S*)*.

Suppose that int (int g,(S*)*\7(S))~ is nonempty. Since (inta,(S*)*\r(S))"
C(int 0,(S*)*)"\r(S), we check that there is an open disc contained in
int 6,(S*)*\r(S)~. This would mean that 7(S) was not dense in into,(S*)*.
This contradicts what we have proved so far. ]

Example 2. In order to illustrate Theorem 7 we propose considering the
closed annulus w=disc(0; 2)"\disc(0; 1). One can construct, using the Runge
theorem, a sequence {r;,}.»0 Of polynomials from C[z] such that

(25) kn,=degr,, strongly increases,

(26) g‘,o l7e. (D[*=00 for 2€C 0,

27) io [7e,()|? is uniformly convergent on compact sets of the form {texp(i):
=

1=t=2, e<0<2x}, >0,

7 For bounded subnormal operators a similar result has been proved in [20, Th. 1.2].
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(28) |rp,(texp[(n+D)'iDlzn for 1=t<2 and all n.

ZTL

n!
{raln2o shares the properties (26) and (27) with the initial {7, }az0. Since
degr,=n (cf. (25)), the sequence {7,}.», forms a Hamel basis for C[z]. Due
to Proposition 7, there exists a cyclic operator S such that ¢,(S*)*=

{JEC: i}o [72(A)|2<oo} and k()= ‘Z‘,G |7.(A)]% It can be deduced directly from

Put r,(z)= for neN\{k,:m=0}. Then the extended sequence

our construction that k; is finite and continuous in intw\(1, 2). Moreover, the
evaluation (28) implies k; is not continuous at any point of the interval (1, 2)
(though its restriction to (1, 2) is finite and continuous). So 7(S)=intw\(1, 2)#
int g ,(S*)*. | |

As Example 2 shows, it may happen that ¢,(S*) has bounded holes. This
is related to the lack of full analyticity of the functional model we have
considered so far. The following result sheds more light on this question.

Theorem 8. Let S be a cyclic operator in 4. Then 7(S) has the following
property: if w is a bounded open set in C such that either kg is bounded on ow
or 0wCy(S), then wCy(S).

Proof. Suppose &, is bounded on dw. Then Corollary 6 implies that &, is
bounded on w. Due to Lemma 3 (4°=6°), we have wC7(S).

Suppose dwC7(S). Then Lemma 3 guarantees that &, is finite and continu-
ous on 7(S). Since dw is compact, k, is bounded on dw. The previous para-
graph yields the conclusion. E

Proposition 8. Suppose dim H=oco and S is a cyclic operator in . If
fe9(S7), S f=Aaf, either A=C~\g,(S*)* or A<7y(S), then f 1is orthogonal to
clolin{h,: p€0o,(S*)*}, where h, is as in Proposition 6.

Proof. Theorem 6 says that WS=M,W, W is a partial isometry. Since W
is bounded, WS-CM;W. Asumme S f=A1f, f€9D(S"). Then Wfecd(M;)
and M;W f=AWf. Take 2 which is not in w,=ag,(S*)*. Since (A—z)(W f)(z)=0,
for zew,, we have Wf=0. Take now A€7(S). Since (A—z) W f)(z)=0, for
z€w,, we get Wf=0 on o,\{2}. Due to Lemma 3, WJ is analytic on 7(S).
Since W f=0 on 7(S)\N{2} and A=7(S), we have (Wf)(A)=0. Because W f=0
on o, \{1}, we get Wf=0. The conclusion follows from W f=W Pf, where P
is the orthogonal projection of 4 onto clolin{h,: p€a,(S*)*}. [ ]

Corollary 12. Suppose dim K=o and S is a cyclic operator in K. If S
has an analytic model (cf. Remark 2), then S is closable and
1° 0,(S7)Ca(S*)\1(S),
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2° 1(S)ca.(S7),

3% a(SNG(S*)*Ca(S),

4° 00(STHOU(E(SING (ST 04,(S7),

5° ¢.(S%=¢,

6°  0(S})=04,(S*)=0,(S*)Ua(S*),

70 G(S)NGep(ST)=int 0(S)Na o p(STICT(S).

Proof. Since S is unitarily equivalent to M, and M, is closable (cf. Remark

2), S is closable, too.
Proposition 8 implies directly 1°. Since always

a(S NG (SF)*Ca,(S)HUa(S7),

the conclusion 3° follows from Proposition 8. Using again Proposition 8 and
0,(SH*Ca,(S)Ua,(S7), we get the conclusion 2°. As ¢,(A)T0cqp(A) for a
closed A, the conclusion 4° follows from 3° and (5). Emptiness of ¢,(S*) can
be easily deduced from 1°. This, in turn, implies 6°.

The conclusion 7° follows from what is in the proof of Theorem 9. m®

14. Now we come back to subnormal operators. Our goal here is to find
relationship between functional and analytic models (cf. Remark 2) for such
operators.

Consider a cyclic subnormal operator S in 4 (dim £ =o0) with the cyclic
vector f,. Let m be a representing measure of S (cf. Section 9). Then there
is a unique unitary operator Vy: H,— 4 such that V,p=p(S)f,, p is an analytic
polynomial in 4. Denote by U, the unitary operator W Vy: 4 ,—9,, provided
a,(S*) is nonempty. More explicitly, (Unp)(A)=p(4), 1€0,(S*)*. In general,
p can not be replaced by other functions. However, we are able to determine
those A’s for which the equality

(29) Un/ )= f(A)
holds for all f in 4.

Proposition 9. For each f& .y, equality (29) holds for m-almost all A in
a,(S¥)*Nsuppm. In particular, Unf is holomorphic on int(y(S)Msuppm).

Proof. If f&J4ly, then there is a sequence {pn}.:oCC[2z] such that
Slf—pnlzdm—»o as n—oo. Since (Unpa)(A)=pa(d) for A€ ,(S*)*Nsuppm, we
get (Unf/)A=1m Unp)(RD)=Ilimp,(2) for A€ ,(S¥)*Nsuppm. Passing to a sub-
sequence if necessary, we can assume that p,—f m-almost everywhere. This

gives us the first part of the conclusion. The other follows from Lemma 3.
]
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It may happen, as the example of the classical shift in the Hardy space of
the unit disc shows, that ¢,(S*)*N\suppm=¢ ; also other cases are possible—
cf. Section 16. In general, the goal would be to make int g,(S*)*N\suppm as
large as possible. The following result goes in this direction.

Proposition 10. Let S be a cyclic subnormal operator in 4 and let N be
its minimal normal extension of spectral (ype. If {wn}ause iS a collection of
bounded holes of a(N) with the following property:

(30) for every n there is a bounded open set T, such that w;Ct, and 0r,C7(S),

then for an arbitrary >0 there exists a cyclic subnormal operator R in ¥ and
a positive operator X in I such that
1° R has a minimal normal extension M of spectral type for which

a(M):knja)nUa(N) ,

2° X establishes similarity between R and S, i.e. R=XSX,
3 NfIPIXFIP=A+lfI® for feL.

Proof. Consider the functional model for S given by m=my. Owing
Theorem 5, ¢(N)=suppm. Set n=m+3>}c,m,, where m, is the restriction of

the planar Lebesque measure to @,

cn=cx(max{l, sup{lz|; z€w,}})"(m(w,) max{l, sup{x,(4); A=0r,}})™

and i_o_‘,o e,=¢ with ¢,>0 (by Lemma 3, sup{k,(1); A=0dr,}<oc). One can check
that such a measure n satisfies (13) and suppn=\Jw,Na(N). Consider the

cyclic subnormal operator S, (cf. Section 8) and its minimal normal extension
N,. Owing conclusion 5° of Theorem 5, o(Ny)=\Uz,\Ja(N).
n

We show that S, is similar to S,. Define Yf=g, where g is the restric-
tion of fe4, to suppm. The operator y establishes similarity between 4,
and 4, To see this check that

@D 1Y flw=11f 1

and, consequently, Y % ,C 4,. Since the polynomials are dense in both 4, and
Huw, Y9, is dense in Iy

(32) Ipli=A+ellypli, peClz].
The maximum modulus principle gives us, for 17,

| B P <sup ey ; pEdrapl2, peClz].
This implies
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IpIE=lplE+ 2 cnmal@n)supies(d); A€z} [plE=(L+e)pll%-

The inequalities (31) and (32) force both ¥ and Y ! to be bounded. It is evident
that S,Y=YS.. The polar decomposition of Y-, Y-'=V|Y |, provides us with
a unitary operator V and a positive similarity X=|Y'| in 4 such that
RX=XS, where R=V"'S,V. The remaining parts of the conclusion follows
from (31) and (32). |

Theorem 9. Let S be a cyclic subnormal operator in ¥, which has an analytic
model. Then 7(S)=0(S™)\g.p(S7)=int a(S™)Nc.,(S7). In particular, if 7(S)=C,
then 6,,(S7)=@.%

Proof. Let m be a representing measure of S. Without loss of generality
we may assume (cf. Theorem 5) that S=S,. First we show that 7(S)Ca(S)\
04p(S7). Take 4,E7(Sm). Since 7(Sw)Co(S¥)*=0(Sw), we have ,€0(Sw). It
is enough to show that A, is not in ¢,,(Sz). Consider e>0 such that
disc(4,; &) C7(Swm). By Lemma 3, c¢=(sup{xs(2); A=disc(4,; &) })*/2< 0. Pick
peClz]. Applying the maximum modulus principle to the holomorphic function
p, we get, by Proposition 6 (2°), that, for Aedisc(4,; &),

(33) [P =ce ™ [(Zo—Sm)Plm -
Using (33) we have (with A=disc(4,; ¢€)7)

pla={_ 1piram={_ |pI"dm=<sup(iphI*; 2<am(a)

+e( 10— Swp|tdm= e m@)+D[Ro—Swlpl -

AVAY

This implies that 4,—S~- is bounded from bellow. Consequently A,=a(S™)N
Gap(S7).

To prove the reverse inclusion® we need the following result (which can
be proved in the same way as in the bounded case; cf., [8, p. 172]):

Suppose we are given a closed operator A in I and 2y c(A)Noo5(A). Then
there is an open neighborhood ® of 2, and a holomorphic function ¢:w—3I such
that ()#0 and ¢p(A)Eker (A—A)* for icw.

Take 20£0(S™)N\04p(S™). Then there is the function ¢ having the proper-
ties just described. Since ¢p()eker (S*—2*) and ¢(2)#0, we have 1€ ,(S*)*
From the proof of the uniqueness part of Lemma 2, we infer that h,=
Khi, fole(), foleD)=<p(A), fo> '¢p(4) for Acw. Since ¢ is holomorphic, |A;]|
is locally bounded on w. Lemma 3, 4° implies that 2,&7(S).

8 For bounded operators a similar result has been proved in [20, Th. 1.1].
9 This inclusion is, as the proof shows, true for an arbitrary cyclic operator.
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An application of (5) gives us
(SNG4 (ST)=int a(S7)NG4,(S7).

This completes the proof. =

Corollary 13. Suppose S is as in Theorem 9. Then S has, in addition to
the properties described in Corollary 12, the following ones:

80(SICaan(SI=a(SINIS) | wn),
0,(SIST,SHNIS) U ),

where {W.}nso 1S the collection of all the holes of a(N), N being a minimal normal
extension of S of spectral type.

This follows from Theorem 9 and Corollary 12 (and the fact that
®,N0ap(ST)=D).

A natural question which appears here is to describe circumstances under
which a hole of ¢(N) is contained in ¢,(S*)*. Some answer to this question
for bounded operators has been given in [21].

The result which follows provides us with additional information about
cyclic subnormal operators having analytic models.

Proposition 11. Let M, acting in 4, be an analytic model of a cyclic sub-
normal operator. If into,(M¥) is nonempty, then P, is a core for MP?* that
is MP*x=Mj;.

Proof. Since int ¢,(M¥) is nonempty, the same is true for 7(M,), due to
Theorem 7. Take A,&7(M,). Then, by Theorem 9, 4, is not in g,,(M7). If
f is in 9(MP2x), then (A,—M™**)f=4,. Thus there is a sequence of poly-
nomials {gn}.>C P, such that g¢,—(A,—MD™2X)f. However ¢.(4,)—0. Con-
sequently, t,=¢,—q(A)EP,, t,—(A—MD2*)f and ¢, vanish at 4,. This implies
that there exist polynomials p,=2, such that ¢,=(A,—M;)p,. Thus
(A—M7) ta=p,. Since (,—M;)™* is continuous, p, approaches some f,E 4.
However, (A—M7)p=t,—A—M™2X)f, Closedness of A,—M; implies
(Ag—MPax)f=(Ae—M7)f,. This, in turn, implies f=j, exept 4,. Since both
these functions are analytic in a neighbourhood of 4, (cf. Lemma 3), they are
equal. Finally, we get p,—f and M;p,=2Apn—RAo—M7)pa—Af —(A—MDP2X)f
=MpP2xf. This completes the proof. |

Remark 3. The functional model we have presented is determined by a
particular measure satisfying (13) and (14) and the reproducing kernel property
(18) can be satisfactorily described by means of the measure in question. This
allows to modify the measure still preserving the crucial property (18). Here



132 JAN STocHEL AND FrANCISZEK H. SzaFRANIEC

is a sample:

Let m be a positive measure on C satisfying (13). If int a,(S¥) is nonempty
then a,(SHCTa,(SE) and 7(Sw)CY(Sy), where n=1+|z|*m.

The inclusion ¢,(S)Co,(S¥) follows from Proposition 6 and the inclusion
7(Sw)C7(S.) follows from Lemma 3.

The inclusion 5° of Theorem 1 can be proved for cyclic S directly using
the property (18). Indeed, if A=a,(N), then for every p=C[z] we have |p(4)|?
<m{{A})|pllZ, where m=my. Lemma 2 completes the argument. ]

All This for Weighted Shifts

15. Consider at the beginning a cyclic operator S with the cyclic vector
fo, which satisfies the following condition (cf. [18, Lemma 17)

(34) <Smf0y Snf0>=am+nbm—-n, m, ngo,

where {a.}zs0 is a Hamburger moment sequence and {b,};> . is a trigonometric
moment sequence.

If b,=0:, the usual “zero-one” sequence supported at zero, then S becomes
a weighted shift operator (the traditional definition will be given later). In this
case the sequence {a,}.», can be always replaced [18, Theorem 4] by the

400
Stieltjes moment sequence {c}.so defined as Ck:SO x*da’(x), k=0, where o
oo
is determined by “”:SO x**da’(x), k=0 (such a measure a’ always exists

because {a@::}rz0 IS a Stieltjes moment sequence!).
Relating the operator S to some weighted shift we localize the set on which
it may have an analytic model.

Theorem 10. Suppose dim H=co, Let S be a cyclic operator satisfying (34)
with {ar}rso being a Hamburgdr moment sequence and with {b}i2 « such that
there is ¢>0 for which
(35) 2 bn-nlnli=c 3 1817

m,nz0 nzo

where Co, -+, Lr 1S an arbitrary finite sequence of complex numbers. If S is
bounded, then
7(S)=disc(0; [[SIDCap(S*)*Cdisc(0; [ISIN,
Otherwise
7(S)=0,(S*)*=C.

Proof. Denote by a and 6 representing measures of the moment sequences
{ar}rzo and {b.}i . respectively. Take ,, -, {,=C. Then, the inequality
(35) can be written by means of b as
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271.] k ) 9 2r | e ' .
[ 35 g asnzem ("} 35 goemsar.

=

k . . .
Since trigonometric polynomials ZkCne'"‘ are dense in .L%b), the above ine-
s
quality implies

(36) S:zfd(ﬁ—c(%r)"m)go for all nonnegative f in £1(b)

and, consequently, the measure b—c(2x) 'm is nonnegative. Define the measure
m on C as

n@)={"{"1, e datrdsw)  for Borel o

(here X, stands for the characteristic (indicator) function of ¢). It easy to see
that m is a representing measure of S (use (34)). Moreover, its support is
contained in disc(0; a)-, a=lim(a,,)""?", (with convention: disc(0; +o0)=C).
Indeed, it is known that

(37 a=sup{|t| ; tesuppa}.

Pick a complex number A with |2]>a. Then there is an open neighbourhood
o of 2 such that reR, [0, 2x) and re*cw imply |r|>a and consequently
X,(rei)=0. This and (37) force

S+mx,,(rei‘)da(r)=0 for all £.

This, in turn, means m(w)=0. Thus 2 is not in suppm.

Since {as.}rs0 is a Stieltjes moment sequence, there is a positive measure
a’ on [0, +o0) such that

(38) an=| #**da'(), k0.
There is a weighted shift Sg- in 4 such that
(39) <smfosafo>=S:°°xm+nda'<x)5m_n, m, n=0.

Take p=C[z]. Then, by (36), (38) and (39), we have
@) 1eSflr={lprrdm={"{"1pre) 25 datr)
x| |71 p0e Patdatr=c@a) | oo pdedar)

=c|lp(Ser) foll®.
Notice!® that

10 Such a situation appears in [9] and [10] where, unfortunately, the case when the re-
presenting measure of the Stieljes moment sequence {as,} (in our notation) has zero as
its atom is excluded. This is an unnecessary restricton which comes from Theorem 8
of [9]. However this theorem does not tell the whole truth; it may happen that zero
is an atom of a representing measure of a subnormal weighted shift (consider the
moment sequence ay=1, a;p,=(2n+2)"! for n>0)
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(41) disc(0; a)C7{Sa).

To prove this consider first the case acsuppa’. Then, applying the Cauchy
integral formula to the circle(0; a) and the Schwarz inequality we get «;, ()<
a*(a—12])"%’({a})"* for each 2 with [A]<a. The case a is not in suppa’ can
be treated as follows. Take 2 with |1|<a. Since sup{x; xEsuppa’'}=a,
there are real numbers x, y such that |1!<x<y<a and a’((x, ¥))>0. Apply-
ing again the Cauchy integral formula, the Schwarz inequality and integrating
over the interval (x, y) with respect to a’, we have &, ()=y*(x—|[2])®

a’((x, y)~'. All this proves (41).
Conditions (40) and (41) imply disc(0; a)c7(S). Since support of m is
contained in disc(0; a)~, applying [6, Lemma 2], we get

o p(S*)*Co(S7)Cdisc(0; ||S))~=disc(0; [|N.I)-Cdisc(0; a)".
(with convetion: for an unbounded operator its norm is understood as -oo).

This completes the proof. H

Example 3. We show that, in general, the sequences {a}rso and {0:}iZ o
representing via (34) a subnormal S could not be chosen in such a way that
{ar}rso was a Stieltjes moment sequence.

Put a,=1—(=1)*Yn+1)"*, for n=0 and b,=1+in)"* for n=Z. Since

+
anzS ix”dx, {@s}as0 18 a Hamburger moment sequence. Notice that b,=
2z .

& e'"%e*(e** —1)"*dx. Thus da(x)=dx and db(x)=e*(e**—1)"'dx. It is a matter

of direct calculation that {b,}}=. satisfies (35) with ¢=2x(e*"—1)"".

Suppose there are two sequences {d@:}n.o and {b,}i= ., the first of which
is a Stieltjes moment sequence while the other is still a trigonometric one (with
b,=1), satisfying the following condition

(42) am+nbm—n:dm+n5m—n-
Notice that necessarily &,=2(n+1)"!. Indeed, it follows from (42) that
dzn=a2n=gzx2"d(2x). Since a Hausdorff moment sequence is determined by its

even terms, it must be @,=2(n+1)7".
Knowing &, we are able to find out §,. Namely

(43) bo=[(—Dre*—1][1+e"+(e*—1)(—1)*I[2(e?*—1)(1+in)]"".
To prove this observe that the representing measure m of S is given by
m(U)=Szng+ixo(re“)et(e“—1)‘1dtdr.

Consider the Borel set o,={rei’; 1/2<r<1, 0<t<s}, for 0<s<2zx. The above
integral formula leads us directly to
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(e*—=D[2(e"—1)]? for s<=x
[e*(l4e ™)+ —e™—2][2(e?"—1)]* for nm<s>2m.

Denote by b the representing measure of {f,}7=.. Since the operator S is
bounded, it has only one representing measure m. By (42), m can be described
by the following formula

(44) y(ds)={

221 . ~
m(o):So Soxa(re“)d(Zr)db(t).

This gives us m(as)zﬁ([O, s)). Formula (44) implies ~b([O, s)) is absolutely con-

tinuous in s and, consequently, b is absolutely continuous with respect to the
Lebesgue measure on [0, 2z). Moreover

E("):SU%E([O’ Nds.

So as to get (43) it is enough to apply (44) to the above formula.

Formula (43) implies that 6,#0 for n=Z. Since also &,+0, the right hand
side of (42) is always different from zero. However, the left hand side vanishes
for all m, n such that m+n is odd. This leads us to contradiction. |

16. In general, it would be difficult to decide, in terms of the sequences
{@r}trso and {b,}}> ., whether the operator S has an analytic model. In
practice, having concrete forms of these sequences one can use Corollary 11 to
do this. In the case of weighted shifts all this becomes simple.

Recall that S is said to be a weighted shift operator (with respect to a
given orthonormal basis {e,}.s0 if D(S)=lin{e,}ssc and Se,=(C\{0})e,4+, for
n=0. Such an operator is cyclic with the cyclic vector f,=e¢,. The Gram-
Schmidt procedure described in Section 10 gives us here

ra(2)=|S"e, 2"
Thus, by (22) and (23), we have
oS ={2€C; 3 ISme0] #1417 < +oo}.
Denoting by (S)=liminf |S™¢,|*/"*, by Lemma 3, we get

7(S)=disc(0; «(S)CTa,(S*)*Cdisc(0; +(S))~.
Moreover, ¢ ,(S*)=disc(0; :(S))~ when 20 IS™eo|| 72| (S)|2*<+o0.  Otherwise
0 ,(S*)=disc(0; +(5)).

If +(S)>0, then, due to Corollary 11, S has an analytic model. In particular,
the conclusion 5° of Proposition 6 gives us

b= n%o [S™eo||~ 2% e, .
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Consenquetly, the reproducing kernel K, of %, is given by
K4, )= 3 ISmedl 225"

All what we have said above as well as Corollary 12 enables us to decribe
some parts of the spectra of S and S*!.

Suppose now S is subnormal. One can show (use the fact that the sequence
{IIS™eol|¥} nso is increasing) that «(S)=|S|| if S is bounded and (S)=+o°
otherwise.

Consider a normal extension N, of S (cf. Theorem 5) with the measure m

given by
(45) m(o):(2;:)-15:“S:°°x,,<re“>da(r>dt,

where a is given by

I foll={, "z datx), n20.
Since the bounded case has been completely described (cf. [16]) we focus our
interest on an unbounded weighted shift S. In this case Corollaries 12 and 13
allows us to identify the spectra and their parts as follows.

a,,‘aap g, o, O‘l
s|le|o|c | o |C|
N2 M| g | M2 M|
S*C[C %) @ C;,
Nl Q| M| g | M2 M

where N=N,, M =suppm and 2={0} if m({0})=a({0})>0, 2=@ otherwise.
In [19] we considered the following problem: Suppose that S is a closed
subnormal operator. Does there exists a normal extension N of S acting in X

such that
DS)=IHND(N)?

As a consequence of the fact that subnormal weighted shifts always have
analytic models we have solved this question in the affirmative for such oper-
ators (cf. [19]).

The creation operator

e )

* For more detailed disscusion of the bounded case consult [167.
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acts in L*(R) as a weighted shift with respect to the orthonormal basis of the
Hermite functions [17 and 18]. In this case |S™e¢,||*=n!, m(dz)=n"'exp(—|z|®dz,
Q=@ and M=C.

17. Having described subnormal weighted shifts we turn our interest back
to the case of an arbitrary cyclic operator, trying to compare it in some way
with a weighted shift.

Proposition 12. Let S, be a cyclic operator in 9, (dim K ,=o0) with the cyclic
vector fi (1=1, 2). Suppose that there exists a bounded linear operator T : 4 ,—
Iy such that T f,,0=fs0 and TS,CS,T. Then .

@) 0p(SNCH(SD), hi2=T*hs.z, 7(S)CT(S)) and hiz= 3 12 (D*T*es 0.

(b) If S; has an analytic model and ker T={0}, then S, has an analytic model, too.
(c) If S, is subnormal, then o(S,)Ca(S,).

Proof. First notice that the operator T has the property 7p(S:1)f1..=
p(S2)fao. Thus

PSDfr0, THha, :>=CP(S2) f2.0, ha. >=DA), p=C[z], A=0a,(SH*.

This means ¢,(S¥)C0a,(S%) and h,, ;=T*h,, ; (cf. Proposition 6). Consequently
the conclusion (a) follows directly.

Since S, has a model, clolin{h,, ;; A€d,(SH*}=44.. Thus, by (a),
clolin{h,, ; ; A€ 0 ,(S¥)*} =T*(4,)~. Since kerT is trivial, the conclusion (b)
follows.

Since T(4,) is dense in 4, and TS7CS;T, the conclusion (c) follows
directly from [15, Th. 3.3] ]

Corollary 14. Suppose that dim S =oco. Let S be a cyclic operator satisfying
(34) with {ar}rso being a Hamburger moment sequence and {b}iZ« such that
(i) there is ¢>0 such that the inequality (35) holds for any finite sequence of

complex numbers C,, -+, L,

(ii) the representing measure of the trigonometric moment problem {b,}iZ « is
absolutely continuous with respect to the Lebesque measure on [0, 2x).
Then S has an analytic model.

Proof. Let m, a and b be as in the proof of Theorem 10. In particular,
27 (" +oo .
m(G)ZSO Si X (rei)da(r)db(t)  for Borel o.

Let S, be a subnormal weighted shift in 4 satisfying (34) with b,=0,. Then
its representing measure m, is given by

ma(a)z(Zﬁ)‘lg "Sf:x,,wf‘)da(r)dt

2
0
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Since 6 is absolutely continuous with respect to the Lebesque measure on [0, 27),
the measure m is absolutely continucus with respect to mi,.

Set Tp=p, for pC[z]. Then, by (40), T extends to a bounded operator
from 4w to Hu,. Since the range of T is dense, the only thing we have to
show is, as required in Proposition 12, that ker T is trivial. Take f&J(, such
that Tf=0. Then there exists a sequence of polynomials p,=C[z] such that
{pn}n=e converges to f in L£*m) and to zero in L%m,). Passing to an almost
everywhere convergent subsequence we infer that p,—f m-almost everywhere
and p,—0 m.-almost everywhere. Therefore f=0 m-almost everywhere, which
proves ker T'=1{0}.

It is easy to check that 7S,CS,,7 and T1l,=1.,. Since Sm, has an
analytic model, an application of Proposition 12(b), yields S has an analytic
model, too. =

Remark 4. The assumptions concerning {6,};>. we have made in The-
orem 10 can be rephrased as follows: the condition (35) is equivalent to the
fact that there is a positive measure n on [0, 2z) such that db(#)=c(2x) *dt+dn(z).
The assumption (ii) of Corollary 14 and (35) says that db(t)=~h(t)dt, where h=c
almost everywhere. If h were bounded from above, then the operator T of
Corollary 14 would be a similarity.
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