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On Normal Extensions of Unbounded Operators. III.
Spectral Properties

By

Jan STOCHEL* and Franciszek H. SZAFRANIEC*

Introduction

1. This is the last part of our trilogy devoted to systematic exposition of
the fundamentals of the theory of unbounded subnormal operators. In the previ-
ous papers [17 and 18] we focus our interest on conditions under which normal
extensions exist. The present part concerns spectral properties of subnormal
operators as related to those of their normal extensions.

In our approach we have been trying to unify features of symmetric oper-
ators, the classical object of the theory, from one side, and bounded subnormal
operators, from the other. The most spectacular representative of this fusion
is the creation operator

d
x —

dx

It is apparently a differential operator but also it has an analytic model. Exist-
ence of such a model is one of the major topics of this paper. On the way to
achieving this goal we consider the following questions: minimality of normal
extensions, their uniqueness and different kinds of spectral relations.

In particular, we discuss two sorts of minimality: of spectral type and of
cyclic type. For unbounded operators these two notions need not coincide (for
bounded they always do). This impacts the uniqueness question.

However, in spite of the lack of uniqueness, basic spectral relations can be
carried over from the bounded case to the unbounded one. In particular, the
spectral inclusion property holds true (we have taken the opportunity to collect
here all possible spectral relations).

Among bounded subnormal operators there are those which have analytic
models in Hardy-like spaces (cf. [3]). Unfortunately, the spectrum of an un-
bounded subnormal operator may have no boundary; this means that Bargmann-
like models [4] are preferable. Within the class of cyclic unbounded subnormal
operator we are able to work out analytic models of both types, understanding
cyclicity of an operator in the polynomial sense (though some of our results
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are still true for rationally cyclic operators, as in the bounded case [8]).
The paper ends in considering operators which behave like subnormal

weighted shifts.
Some conventions. We use the asterisk * for conjugation of complex numbers

as well as for taking adjoints of operators, while the dash " we reserve for
closure operations. As usual, C[z] resp. C[>, z*] stands for the polynomials
(of complex coefficients) in z resp. in z and z* (sometimes we will call members
of C[z] analytic polynomials}. All the operators we consider in this paper are
supposed to be densely defined.

Minimality of Spectral Type

2. Let S be a densely defined linear operator in a complex Hilbert space
M. S is said to be subnormal if there exists another Hilbert space JC containing1

M and a densely defined normal operator AT in JC such that

3?(S)C3>C/V)nc# and Sf=Nf, fs=3)(S).

One of the questions we would like to consider here is, in analogy with
the bounded case, minimality of the extension N. Unlike the bounded case we
have several, in general non-equivalent, ways of understanding minimality. In
the bounded case all these notions coincide and minimality always forces unique-
ness of the normal extension up to unitary isomorphism.

The most general definition of minimality seems to be the following one: a
normal extension AT of S is said to be minimal of spectral type if the only
closed subspace of JC reducing N and containing JC is JC itself (recall that a
closed subspace M of JC reduces an unbounded closed operator, say N, if
PNdNP where P is the orthogonal projection of JC onto 3£).

Two normal extensions N\ and N2 of S acting in Hilbert spaces JCi and
JC2 respectively, are said to be 3C-equivalent if there exists a unitary operator
U: JCr-^JCa such that

[//=/,/€=<# and UNl=NJJ.

Dropping the first of these two conditions we get that NI and Nz are (unitarily)
equivalent in the usual sense.

Minimal normal extensions of spectral type always exist. To make this
evident we need some notations. Let E be the spectral measure of a normal
operator N acting in a Hilbert space JC. If M is a closed linear subspace of
JC, then we denote by M^N~\ the closed linear span of { E ( a ) f : /e JC, a a
Borel subset of C}. The space <#,[#] reduces the spectral measure E of N
and consequently MS\_N~] does N too. Denote by NM the operator acting in

1 "Containing" ought to be read as "containing an isometric image of"; this is just what
occurs in mathematical reality.
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and defined by

(1) ^(A«=£)(AOn^s[An, NMf=Nf, /

Proposition 1. Let S be a subnormal operator in M and N its normal
extension in JC. Then
(a) NJC is a minimal normal extension of spectral type of S,
(j8) N is a minimal normal extension of spectral type of S if and only if JC =

(p) if N! and N2 are two normal extensions of S which are ^-equivalent and
NI is minimal of spectral type, then so is N2,

(<5) if N is a minimal normal extension of spectral type of S, which acts in JC,
then dimcX=dim^2. Consequently the spaces two minimal extensions of
spectral type of S act in are unitarily isomorphic.

Proof. The proof of (a) and (/3) follows easily from the observation that
c#s[./V] reduces the spectral measure E of the normal extension N and con-
sequently the operator N itself. The part (j) of the conclusion follows straight-
forwardly.

Now we proceed to the proof of (5). If dim^T is finite, then S is normal
itself. Suppose dimj^^o. Let 6 be an orthonormal basis of M. Let $ be
a countable algebra generating the tf-algebra of all Borel sets on C. The
classical Caratheodory extension theorem [5, p. 19] permits us to find for each
vector /e^T and each Borel set a a sequence {an}c38 such that (E((0\an){J
(tfnV))/, />-»0 as n->oo, where E is the spectral measure of N. This implies
that E(an}f-*E(a}f. Since <K=3CS[_N~] we get cX=clolin{£((7)e : e<=e, <re$}.
This implies that dim JC^card{£O)e : e^e, 0-e33} and, since 23 is countable,
card{£O)e: e<=e, <Te23}=card£=dim^. Thus dim^^dim JC. •

The equivalence (/3) justifies the name we have chosen for this kind of
minimality.

3. Unfortunately, minimality of spectral type need not entail uniqueness.
More precisely, it may happen (cf. Example 1 below) that two minimal normal
extensions of spectral type are not equivalent at all, though the spaces they
act in are, by condition (S} of Proposition 1, isomorphic.

In spite of this diversity the basic spectral inclusion property (i. e. conclusion
9° of Theorem 1 below) holds true. So as to make this paper useful for further
purposes we collect here all possible relations between different parts of the

2 By the dimension of a Hilbert space we understand, as usual, the cardinality of an
orthonormal basis. Thus saying "the dimension is equal to co" means only that the
space is not finite dimensional; we say this when we are not interested in what ihe
cardinality in question is equal to.
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spectra of a subnormal operator and its minimal normal extension.
In the sequel we adopt the conventional notations </p(S), <Tap(S\ tfc(S) and

ar(S) for the point, approximate point, continuous and residual part of the
spectrum a(S) of S, respectively.

Theorem 1. Let S be a subnormal operator in M. If N is a minimal
normal extension of spectral type of S, then

r
2°

3° tfc(S)C(7c(AO and ac(S*}C.ac(N*),

4° <rp(N)c:ap(S)\Jffr(S),

5° (7p(AOc<rp(S*)* and ap(N*)=ap(N)*,

6° <7c(AOC(7r(S)U<7cCS) and ffe(N*)=ae(N)*,

T

8°

9°

10°

Proof. Conclusions 1° and 2° hold trivially.
Now we proceed to the proof of 5°. First we show that

(2) kerS*={0} implies kerJV={0}.

Indeed, for an arbitrary /eJC, P£({0})/ekerS*, where P is the orthogonal
projection of J< onto M and E is the spectral measure of N (to see this take

and notice that <%, P£({0 })/>=<£, N*£({0})/>=0). Since kerS*={0},
=0 for each /eJC. Thus PE({Q\)=Q. This implies that P±E({0})

and consequently MdE(C\{Q})J<:. Since E(C\{0})cX reduces N, minimality of
N forces E(C\{Q})<X = J{. So £({0})=0. This means that OeC\e7p(AO.

Take ^eC\(7p(S*). This means that kertf— S*)={0}. Since Z* -N is the
minimal normal extension of /I*— S, (2) implies that 2.*^C\(TP(N). This com-
pletes the proof of the essential part of 5°»

Pass to the proof of 8°. To prove it notice that

(3) ar(A*) = 0 for a hyponormal A

(recall that A is said to be hyponormal if 3)(A)C.3)(A*) and | |A*/ll^il^/li,
f^3)(A)). Indeed, if l<=ar(A*}, then ker(A*-3)=(W-A*)^U*))J-^ {0}. Since
^*-J4 is hyponormal, ker^— ^4*)^{0}. This contradicts ^et7r(A*). The con-
clusion 8° follows from (3), because N, N* and S are hyponormal.
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Now it is convenient to prove3 9°. Without loss of generality we can
assume S is closed. Then we show, passing to resolvent sets, that p(S)dp(N).

Suppose Oe/o(S). Take e>0 such that ellS'^Kl. Let E denote the spectral
measure of N. Take h^E(A£)JC and f^.M (here A£ is the open disc centered
at 0 with radius e). Since SnS-nf=f for n^O, we get

K/j, />| = |</i, SnS-nf>\ = \<.h, N*nS-nfy\ = \<.Nnh, S-B/>l^ll./V*nfc|ll|S-1||n||/||

= {( \W<E(dX)h, ^PlIS-Tll/ll^llS-iriWIII/II for n>Q.
ljA£ J

Hence </i, />=0 and, because /ie£(Ae)JC is arbitrary, ^c£(C\A£)JC. Since
£(C\AS)J{ reduces E, minimality of TV implies £(C\A£)JC = J{:, which means
that Oe/o(AT).

Take an arbitrary A^p(S\ Then, since ^—AT is a minimal normal extension
of X—S and Oe^(/l—S), we can apply the above procedure to get the conclusion
9°.

Now we pass to the proof of 3°. Take ^e<7c(5). Since (/I—S).0(S) is dense
in <#, kerU*-S*)={0}. Due to 5°, kerU-7V)={0}. Notice that te<r(N). If
not, there would be ^e(C\(7ap(AO)c:(C\<7ap(S)) (use 2°). This would mean that
^e(7c(5)n(C\(7ap(S))=0 (contradiction). Consequently, due to 8°,
<rp(N)=ae(N). Since

(4) <Tc(A*)=ae(A)*, for closed A,

we have (Tc(S*)C(Tc(A
r*). This proves 3°.

The conclusion 4° can be derived from 5°, 8° and (4) as follows 02

To prove 6°, notice that, because of 9°, ac(N)c:a(S). Using 1° we can
exclude ap(S) from the right hand side of this inclusion so as to get the first
part of conclusion 6°. The other is a special case of (4).

Employing 6°, the inclusion 0r(A)*dap(A*) for a closed A, and (4) we get

<rc(^)*C(Tr(S)*U(Tc(S)*C<yp(S*)W<Jc(S)*=c7p(S*)U(7c(S*). This is precisely 7°.
To prove 10° observe that 0ap(A*) = a(A*) for a hyponormal A (use (3)).

This and 9° give us

This completes the proof of Theorem 1. m

Notice that none of the inclusions appearing in the conclusion of Theorem
1 can be replaced by equality. The situation considered in Example 1 provides
us with arguments that inclusions 1°, 5°, 6°, 7°, 9° and 10° may be strict. The

3 Our proof of this inclusion is patterned on that of Halmos for bounded operators [12].
The same inclusion for unbounded operators, settled in a somewhat different way, has
been proved by McDonald and Sundberg in [13]. However, their definition of sub-
normality is more restrictive than ours and also their proof is much longer.
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other cases may be strict too ; this is the instance of the creation operator, cf ,
Section 16.

Theorem 1 exhausts all essential relations between different parts of the
spectra, which may happen in our circumstances.

Corollary 1. For a subnormal operator S, 0(

The proof uses Proposition 1 and the conclusion 9° of Theorem 1.

48 To continue our considerations of spectral properties of subnormal
operators we prove here a fact which is well known in the bounded case [6],

Theorem 2, Let S be a subnormal operator in M and N be any normal
extension of S acting in JC. Suppose o) is a connected component of C\0(N).
Then either (or\a(S) = 0 or a)CLa(S}.

Proof. First we prove the following general fact

(5) da(A)c:0ap(A) for a dosable A,

Suppose A is closed. Take l^.da(A). Since a (A) is closed, there is a sequence
2.n^C\0(A) such that 2n— >/l First thing we want to show is that \\(A— An)'1]]
— »oo as ft->oo. If not, we can assume, choosing a subsequence if necessary,
that there is a positive number c such that

(6) \\(A-lnr
l\\£c, n^

This implies that

and consequently

(7) \\(A

On the other hand, inequality (6) and the von Neumann formula give us

Since An^C\0(A), for an arbitrary g^4C there exists an fn^3)(A} such that
g=(A— 2n}fn. This means that

\\fn~f m\\ = K(A-Xn)-l-(A-*n

and, due to (8), { f n \ converges to some f^M. Since Afn—g-\-Xnfn-*g+l>f
and since A is closed f^3)(A) and Af=g+2f. Thus g=(A—X)f, which
proves surjectivity of A—L This and (7) imply that teC\0(A), which, be-
cause 0(A) is closed, contradicts our assumption. Consequently, this shows that
1104— /U)"1!!-*00 as n~>oo. The aforesaid enables us to choose gn^<& such that
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| |£nll=l and HCA—^n)"1^!!-*00 as n-»co. Setting fn=(A— ZnY
lgn we obtain

| |(^-J)(||/n||-Y»)ll^ll/J^^

Since ||/n||->oo, (A— /Ddl/nll"1/*)^). This proves the conclusion for closed S.
If S is not closed, the conclusion follows from the fact that 0(A)=0(A~) and
aap(A)=aap(A-\

Now turn back to the proof of the Theorem. Let a) be a connected com-
ponent of C\tf(S). Due to 2° of Theorem 1 and (5) we have

Thus ft>n<;(S)=ft>n(int<7(S)), which means that a)r^a(S) is open. But a(S) is
closed, o;n(C\<7(S)) is always open. Connectivity of a) implies that either

) = 0 or a>n(Cr\cr(S))=0. •

Corollary 2. Let N be a minimal normal extension of spectral type of S.
Then

2° */ a(N)=C, then a(S}=C ,
3° // S is maximal symmetric but not self adjoint and N is self adjoint, then

a(N}=R.

The part 3° requires some comment. Since the spectrum of S is precisely
either the upper or the lower closed half plane, 1° establishes the conclusion of
3°.

5. Our next result bears a resemblance to Theorem 2.3 of [14].

Proposition 2. Let N be a normal operator in J< and M be closed linear
subspace of JC. Then for any complex Borel function 0 defined on 0(N) we have
(according to notation of (1))

Proof. First of all notice that since the space 3CS[_N~\ reduces N to N#,
N) and the operator 0(N#) is well defined.

Consider now the case N=N^. The inclusion a(@(N)M)C.a(@(N)) is
obvious. Now we want to prove the reverse inclusion. If E is the spectral
measure of N, then E1=E°0~1 is a spectral measure of 0(N) and E^—
is a spectral measure of 0(N)#. Suppose that there is
Choose £>0 such that disttf, tf(0(AO^))>2£. Let <H=<r(<P(AO)nAU ; e), where
AW; s) is an open disc of radius e and center L Then cdr\a(0(N)^) = 0. Thus
E(0-\c$))f=Q for each /e^s[0(AO]. This implies that ^CJTS[0(A^)]C
(E($-l(a))}J{.Y. Since a) is relatively open in a(0(N)), E(0-l(S))*Q. There-
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fore M^Ms[$(N)^C.(E(®-\ti)}J(.y^<K. Since (E(Q-\Sfi<KY reduces E, it
reduces N too. All this contradicts N=N^,

The case of an arbitrary N can be reduced to that just considered by the
equality 0(N^)=0(N^^. This completes the proof of Proposition 3. H

6. Now we present the promised example.

Example 1. Take <#— J?2[<2, b], where a and b are (finite) real numbers.
Consider an operator S with domain .0(S)={/e.£2[a, b~] : f absolutely continuous
on [a, fc], /'ej:2[a, b~\ and /(fl)=/(&)=0}, which is defined as

Sf=if, /e<z?(S).

Then S is a closed symmetric operator with defect indices (1, 1). This operator
has a selfadjoint extension in the space M. However, we are interested4 in
having an extension N such that

In order to get such an extension take J{=J?2[c, d] where c and d are (finite)
real numbers. For £e[0, 27r) consider an operator Nt with domain £)(Nt}—
{/GE J72[>, d] : / absolutely continuous on [c, d], /'GE J72[c, d] and f(c)=e{tf(d)}
defined as

Ntf=if, /

The operator JVC is selfadjoint. It is known (cf. [1, p. 160]) that

a(Nt)=<rp(Nt)={itk:keZ}
where

The eigenvalues 2tk of Nt are of multiplicity one and the coresponding eigen
vectors f tk are

/t*U)=(d— c)"1/2exp(— Wt f c A:) , j^e[c, d].

So the spectral measure Et of M is

(9) £i(<0/= S </, /«*>/«*^ j ^ ^ ^

where a is a Borel subset of R and / is in J72[c, d]. Fix now the intervals
in such a way that [a, 6]C[c, d] and d—c=2(b—a). Then ScM and

(10) 4?(S)=<z>(M)nc#.
We show that, for ?e(0, ?r)U(^, 2^), JVt is a minimal normal extension of S.
To see this it is enough to prove, due to (9), that

4 For some discussion concerning this equality see [19].
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<xta.n, /£*>^0, for every k^Z

where xia,n stands for the characteristic function of [a, b~]. If not, then
<*ca,&3, /«*>=0 for some k would imply that there existed c^Z such that

This contradicts £e(0, 7r)U(7r, 2?r).
Summarizing, we have an example of a symmetric (read: subnormal)

operator having a plenty of (after fixing [c, d~\) selfad joint (read: normal)
extensions JV£ of S, £e(0, TT)U(^, 2?r), which

1° are minimal of spectral type,
2° have disjoint spectra,
3° are not equivalent,
4° satisfy equality (10).
All the informations about the spectra of S and its extensions Nt, which

can be derived from the above, are collected in the following table. This
permits to make the spectral relations appearing here transparent.

5

N

S*

TV*

<rp
0

A

C

A

ffap

0

A

C

A

ar

C

0

0

0

ffc

0

0

0

0

a

C

A

C

A

Here N=Nt and A=At = {*tk

The operator S just considered has a disadvantage ; namely it has a self ad-
joint extension in the initial space JC. If one would like to have a subnormal
operator which has no normal extension in the initial space M (which is the case
for bounded subnormals) and, on the other hand, which still has properties 1°, 3°
and 4°, the simplest example would be a subnormal operator of the form 5®F,
where S is the operator just defined and V is, say, the unilateral shift. B

Minimality of Cyclic Type

7. Recall that a densely defined operator N is said to be formally normal
if

and \\Nf\\ = \\N*f\\ for

A densely defined operator S in M is said to be formally subnormal if there
exists another Hilbert space JC containing M and a densely defined formally
normal operator N in JC such that
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and Sf=Nf,f

It is known [7] that a formally normal operator need not be subnormal
From now we assume that the operator S leaves its domain invariant, i. e.

(11) S3?(S)C4?(S).

Within this class of operators, S is formally subnormal if and only if it satisfies
the so called Halmos-Bram condition [18, Prop. 2]. Moreover we can choose
a formally normal extension TV of S to satisfy

<£(N)=lm{N*nf: /e^)(S), n^O}.

This justifies the following definition: a formally normal extension N of S is
said to be minimal of cyclic type if

where
JCe(N)=lin{N*nf:

The following notation will be useful in the sequel

(12)

Proposition 3. Every formally subnormal operator satisfying (11) always
has a minimal formally normal extension of cyclic type. Moreover, two formally
normal extensions Nl and N2 of S, which are minimal of cyclic type, are M-equi-
valent, i. e, there is a unitary operator U : JCi— > JC2 such that

Uf=f, fs=JC and UNi=NJU.

Indeed, the formula UN*nf=N*nf uniquely defines the unitary operator
which meets the requirement.

Proposition 4, An operator S (satisfying (11)) is subnormal if and only if
it is formally subnormal and has a minimal formally normal extension of cyclic
type, which is subnormal.

Proof. Let M be a normal extension of S. Then N=(M\^C^M^~ is a
formally normal extension of S, which is minimal of cyclic type, acting in
c#c[M] (cf. (12)). The converse is trivial. H

Notice that, in general, (M|^c C jf))~ need not be minimal of spectral type
even if M is minimal of spectral type (Example 1 provides us with the argu-
ment; ^TC(S)— <D(S) for a symmetric S). In other words, there are subnormal
operators having no minimal normal extension of cyclic type.
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Theorem 3. Let S be a subnormal operator satisfying (11). Suppose that
it has at least one minimal normal extension of cyclic type. Then an arbitrary
normal extension of S is minimal of spectral type if and only if it is minimal
of cyclic type.

Proof. Let A^ be a minimal normal extension of S of cyclic type in JC.
What we want to show is JC = JCS[N]. Take ge JCQJC8[N] and /e£?(S).
Then, since E(a)f is in 3Cg[_N~\, <£(#)/, g>=0 for an arbitrary Borel set a.
This implies

<N*nfy g^ = lim \
m-*ooj ||z|<m

Consequently, £j_c#c[AT] = JC. So g=Q.
On the other hand, suppose M is a minimal normal extension of spectral

type. Then Mc=(M\^caM^~ is a formally normal extension of S, which is
minimal of cyclic type. Since so is N=(N\Mc<iN^~, Proposition 3 gives us a
unitary operator U : 3Cc[_M~\-^Mc(_N~] such that MC=U~1NU. Since N is normal,
Mc is normal too. This means that ^TC^rc[M] and ^TC[M] reduces M.
Spectral minimality of M forces ^rc[M] = ^Ts[M]. This completes the proof . •

Corollary 3. // S has at least one minimal normal extension of cyclic type,
then all its minimal normal extensions of spectral type (they always have to exist,
cf. Proposition 1 (a)) are ^-equivalent.

8. Now we wish to focus our interst on a class of subnormal operators
which always have minimal normal extensions of cyclic type. Recall that a
vector /e^)(S) is said to be quasianalytic if

S ||Sn/l|-1/B = c x > .
71 = 1

Denote by Q(S) the collection of all quasianalytic vectors of S.

Theorem 4. Let S be a formally subnormal operator satisfying (11). //
\mQ(S)—3)(S\ then S has a minimal normal extension of cyclic type.

Sketch of proof.5 Consider a formally normal extension N of S, which is
minimal of cyclic type (by Proposition 3 such an extension always exists).
Denote by N0=N\jceUn. Notice that Q(S)dQ(NQ) and, due to [17, Prop. 2],
N*nf(EQ(NQ) for every f^Q(S). This implies that ^)(NQ)=lmQ(NQ). Then, by
[17, Theorem 1], N=N^ is the wanted normal extension of S. m

9. A densely defined operator S in M is said to be cyclic if there is a

All the details can be found in [17, Theorem 8 and Remark 8_|.
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vector (called a cyclic vector of S) fQ^^°°(S)=r}n=Q^(Sn) such that
Ym{SnfQ: ft^O}. We have already shown [18, Prop. 3] that such an S is sub-
normal if and only if there exists a non-negative measure m on C (call it a
representing measure of S) such that

(13) f \z\znm(dz)<oo for every 72 ^0,
Jc

(14) <SmfQ, SnfQy = ̂ cz
mz*nm(dz) for all m, n ^0.

For any minimal normal extension N of spectral type of 5, we have a
positive Borel measure m^ on C defined by

(15) ttttf(a)=<E(<r)/0, /o>, # a Borel set,

where E is the spectral measure of N.
On the other hand, given a positive Borel measure m on C satisfying (13),

we can define the operator 7Vm of multiplication by the independent variable in
=T2(m), which is a minimal normal extension of Sm=Nm\Cizi of spectral type.
This means that the operator Sm acting in «#m, the «T2(m)-closure of C[z~], is
subnormal.

The following result shows, among other things, that if m is a representing
measure of S, then S is equivalent to 5m. So the operator 5m can be viewed
as a functional model of 5.

Theorem 5« Let S be a cyclic subnormal operator in M with the cyclic vector
/0. Then
1° for each minimal normal extension N of spectral type of S, m = ntjv is a

representing measure of S,
2° m^^m^g if and only if Ni and N2 are M -equivalent,
3° for any representing measure m of S, S is equivalent to 5m,
4° for any representing measure m of S there is a minimal normal extension N

of spectral type of S such that m^m^,
5° for each minimal normal extension N of spectral type of 5,

Proof. 1° is obvious. To prove 2° suppose N! and N2 are minimal normal
extensions of spectral type of S acting in JCi and JC2, respectively, such that
mNl=n\N2" Denote by El and E2 their spectral measures. Since E1! and E2 are
spectral measures, standard argument applied to <£i(<7)/0, /o)^^^)/^ /o>
gives us

(16) <£i(*)/o,

Notice that El(p)SnfQ={ znEl(dz)fQ^o,lolm{El(a)fQ: a a Borel set}, for an
JP

arbitrary Borel subset p of C. Since JCl=Jfs[J/Vt] and S is cyclic we get
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(17) J{l=clolm{El(a)fQ: a a Borel set}.

Due to (16) and (17), there is precisely one unitary operator U from JCi to JC2

such that UEMf0=E2(a)f0. This and (17) implies that UE^a^E^U.
This, in turn, implies that UN^=N^Ut n^l. Thus, since £//0=/0, we have
USnfQ=UNn

1f0=Nn
zUfQ=Nn

2fQ=Snf0. Since /„ is cyclic, we get U\x=I*
which means that Nt and N2 are ^-equivalent.

The proof of the reverse implication of 2° is straightforward.
To prove 3° notice that, due to (14), there is precisely one unitary operator

V from M to JCm such that VSnfQ=zn, n^O and VS=SmV, which means that
5 and Sm are equivalent.

The operator N=Nm meets what is required in 4°.
Let E be the spectral measure of a minimal normal extension TV (acting in

JO of spectral type of S. Then, for an open set a, mN(ff)=Q if and only if
E(a)=Q. This follows from (15) and from the fact that JC=clolin{£(tf)/o : a
a Borel set} using the same kind of argument as in the proof of 2°. This
gives us the conclusion 5°. H

Corollary 4. Under assumptions of Theorem 5 the operator S has as many
non & -equivalent minimal normal extensions of spectral type as the complex
moment sequence {<Sm/0, S n f Q y } m , n has representing measures (i.e. measures m
satisfying (14)).

It might be interesting to know when there exists a minimal normal
extension of cyclic type of a given cyclic subnormal operator.

Proposition 5. Under assumptions of Theorem 5 the operator S has at
least one minimal normal extension of cyclic type if and only if there is a positive
Borel measure m satisfying (13), (14) and such that C[z, z*] is dense in

Due to Theorem 3, the proof of Proposition 5 is based on the observation
that the J72((l+!zi2)m)-closure of C[z, z*] is equal to «r2(( l+]z]2)m) if and
only if Nm=(Nm\ciz,z*i)~, where 7Vm is the operator of multiplication by z in

Corollary 5. Under the assumptions of Theorem 5 the operator S has at
least one minimal normal extension of cyclic type if there is a positive Borel
measure m satisfying (13), (14) and such that C[_z, z*] is dense in *£p(m) for
some p>2.

This follows from Proposition 5 and [11, Th. 10].
6 This corresponds to Theorem 8 of [11] where so-called ultradeterminancy of the multidi-

mensional moment problem has been considered.
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The example discussed in [11, Remark 4, p. 59] can provide us with an
indeterminate measure m such that C\_z, z*] is not dense in J72((l+Ui2)m).
Thus, in virtue of Proposition 5, the operator of multiplication by z defined on
C[z] has no normal extension of cyclic type.

Analytic Models for Cyclic Operators

10. Let S be a cyclic operator in M with the cyclic vector /„.

Lemma 1. // S is a cyclic operator in M and dlmJC=oof then the set of
its cyclic vectors forms a one dimensional space.

Proof. Let /0 be a cyclic vector of S. Since M is infinite dimensional,
then the linear map 0 : 5)(S)->C[z] given by 0(p(S)fQ)=p is a linear iso-
morphism such that MZ0 = 0S where Mz is the operator of multiplication by z
in C\_z~\. Since the set of cyclic vectors for Mz is composed of polynomials of
degree zero, we get the conclusion. M

Lemma 2. /le<7p(S*)* if and only if there is c*>Q such that

(18) \PW\<ci\\p(S)fQ\\

for any polynomial £eC[z]. // this happens, then dim(ker(/l*— 5*))=1.

Proof. Suppose that te0p(S*)*. This means that there is k^JC such
that S*ki=H*kz and 11^11=1. Then we get p(S*)ki=p(Wki for />eC[*].
Since />(S*)C(/>*(S))*, where />*(*)=(/>(**))* for zeC, we have p(S)*k* =
p*(2*)ki=p(Z)*ki. This gives us

(19) <P(S)f»k£=p(X)<f*,ki>, />e=C[z].

Since S is cyclic, equality (19) implies </„, k^^Q. Put c j= |</o, k^\~1. Thus,
using again (19), we get (18).

Asumming (18) and applying the Riesz representation theorem to the
functional p(S)fQ-*p(Z), one can find /u=£0 such that p(X)=<p(S)f0, hi>. This
gives us <Sp(S)f0,hi'>=}ip(Z)=<p(S)f0,}t*hi>,peC[_z']. Because S is cyclic,
/zj€=£?(S*) and S*hi=X*hi. This means that X*^<rp(S*).

Take non-zero vectors /z teker(/l*— S*), z=l, 2. Then, using the same kind
of argument as in the proof of the "only if" part, we have (p(S)fQ, hzy=
P(%Kfo, hi), p^C[_z~]. This forces that h1=ahz, where a=(hi, /0><^2, /o)'1,
completing the proof. m

Assume for the moment that M is not finite dimensional and ||/0||=1.
Since S is cyclic this is equivalent to the fact that {Snf0}n^Q is composed of
linearly independent vectors. Now let {en}n^ be an orthonormal basis in M
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and let {rn}n^Q be a sequence of polynomials from C[z] such that

(20) *B=rB(S)/0,

and

(21) lin{*B}Bi0

One can get such a sequence {rn}n^Q applying the Gram-Schmidt ortho-
normalization procedure to {SnfQ}n^Q. The polynomials rn can be given ex-
plicitely by r0 = l,

f< /o , /o> </0, S/o> - </0, SB-Yo> 1
<S/0, /o> <S/0, S/o>-<S/0, SB-Yo> *

1<SB/0, /0> <SB/o, S/0>-<SB/o, Sn-

Gn=det«Si/o, SYo»tn.^o for w^l and G0=l.

Proposition 6. Suppose dimJV = °o and S zs a cyclic operator in M with the
cyclic vector /0. // the orthonormal basis {en}n^ in M and, the sequence {rn}n^
of polynomials in C[z] satisfy (20) and (21), then the following conditions are
equivalent :

2° there is ^>0 such that \p(l}\ <ct\\p(S)f0\\ for any polynomial

3° there is (precisely one) vector hi^M such that p(Z)=<p(S)f0, hi>,

4° S |rBW)|2<oo.
n=0

If this happens, then

BW)*eB, ||/i.||2- f] |rBW)|8 and

6° z'/ /o fs another cyclic vector of S, then the vector hi corresponding to it (via
3°) is equal to </0, /0>ll/ol |-2/U.

Proof. 1°^2° due to Lemma 2. 2°<^3° by the Riesz representation the-

orem (cjHlM).
3° =}4°. Using (20) and the Parseval equality we get

4°=y3°. Since dim^ is infinite, {SnfQ}n^Q is composed of linearly independ-
ent vectors. This implies that p(S)f0=Q if and only if p=Q, p^C\_z~]. This,
(20) and (21) guarantees that {rn}n^ is the Hamel basis for C[z]. Define

hi— 21 rn(X)*en. Take an arbitrary polynomial fieCTz]. Then there are complex
71 = 0

7Z

numbers a0, ••• , an such that /?= S akrk. Thus
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hi>= 2 or»<r»(S)/0, hi>= 2 a,,rk(X)=p(X).
k=0 k=0

The proof of 5° is included implicitly in 4°=}3°.
The conclusion 6° follows from Lemma 1, by direct calculation. This

completes the proof. •

Notice that Proposition 6 fails on dropping (21).

Remark 1. It is easy to see that if S is a cyclic subnormal operator with
a representing measure m, then dim^=^0 is equivalent to the fact that
suppm is at least countable.

Denote by KS the function defined on C as

{ oo if 2 is not in (7P(S*)*

II/L ||2 if ;, is in ap(S*r

where h\ is as in Proposition 6. Then Proposition 6 implies

(22) K,(X)= £ rB t f) |2 ,
71 = 0

(23) <7p(S*)*={J:

and, for any 1,

(24) IX*)r^c||/>(S)/oir for

The function KS depends on the particular choice of a cyclic vector /0 and the
way it does is described in conclusion 6° of Proposition 6.

Corollary 60 For a cyclic operator S, KS is lower semi continuous. Moreover,
if o) is a bounded open set such that Ks(X)^c for A^da) with some c>0, then

)<c for

Proof. Since

the function KS is lower semicontinuous.
Condition (24) implies \p(Z)\*^c\\p(S)f0\\* for all p<=C\_z] and teda. The

maximum modulus principle for holomorphic functions ensures us that \p(X)\2^

c\\P(S)f0\\
2 for all /)eC[z] and ^eor. Using again (24) we get the final

conclusion. H

Corollary 7. For a cyclic operator S, ffp(S*) is a union of an increasing
sequence of compact sets having no bounded holes.
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Proof. The case dim^"<oo is trivial. In the other case it follows from
Proposition 6 that

<?p(S*}*= 0 * m
m=o

where am={^C : £s(/0^7?2}ndisc(0; m)~. Suppose some am has a bounded
hole CD. Then da)dam and, consequently, icg(X)^m for /Ie3<w. By Corollary 6,
Ks(Z)^m for ^ecy. This means that a)dam which gives us contradiction. •

11. The next result shows that the converse direction in Proposition 6 is
possible.

Proposition 7. Suppose we are given a sequence of polynomials { r n } n ^ Q ,
being a Hamel basis for C[_z~\. Then there is a cyclic operator S in some Hilbert

00

space M with the cyclic vector /„ such that ap(S*)*={A:J2 l,rn(Z)\z<oo} and the
n=0

function KS satisfies (22) and (23).

Proof. Since {rn}n>o is a Hamel basis of C[>], there is precisely one scalar
product such that <rm, rn>=5mi7l. Denote by M the completion of this inner
product space. Let S be the operator of multiplication by z in C[z], Then 5
is cyclic with the cyclic vector fQ=r0 and p(S)fQ=p for £eC[z]. In particular
rn(S)fQ=rn. Thus we are in the starting point (with en=rn) of Proposition 6.

One can choose a sequence {rn}n^ in Proposition 7 in such a way that

f; \rn(X)\2=oo for each ^eC. In this case <rp(S*)=0.
71 = 0

Corollary 8. For any Hamel basis {rn}n^Q of C[z] there always exists
another Hamel basis {qn}n^ of C\_z~\ such that

(i) deg^—TZ, n=0, 1, ••• and
00 00

(ii) the series S kn(/Qi 2 and S | < ? n W ) l 2 are simultaneously convergent.
71 = 1 71 = 0

Proof. Proposition 7 gives us a cyclic operators S in a suitable JC. Apply-
ing the Gram-Schmidt procedure within M to the sequence {zn\n^ we get a
Hamel basis {qn}n^ satisfying (i). Using Proposition 6 we check that {qn}n^
satisfies (ii), too. I

Corollary 9. (a) For any pair of disjoint countable subsets T and o) of C
there is a cyclic operator S (with the normalized cyclic vector] such that rd<7p(S*)
and a)r\ap(S*)=0.

(/3) Let a) be a subset of C for which there are two sequences {(Wn}n^! and
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{(*>n}n^i of compact set such that

1° none of o)n and a)r
n, n=l, 2, ••• , has a bounded hole,

2° Q)nr\(D'n=0, n=l, 2, ...,

3° o)=liminfa)n and C\(o=limsupQ)f
n.

Then there is a cyclic operator S such that ap(S*)=<o.

Proof, (a}. Suppose r*={/d, ylg, • • • } and a)*={AQ, Az, •••}• For each n>0
denote by rn the n-th Lagrange interpolation polynomial such that rn(Xk)=dk

for k=Q, • • - , n. We can always choose the initial data {dk} in such a way

that the degree of rn is precisely equal to n, S I ^ 2 n + i l 2 < ° ° and S \d2n\z=00>
71 = 0 71 = 0

Setting r0=l we get |j \rn(Z)\2<oo for I^T* and fj \rn(X)\*=°° for ^ecy*.
71 = 0 71 = 0

The sequence [rn}nzo satisfies all what is required in Proposition 7.
(/S) By 2°, there are open sets rn and r'n such that Tnr\Tn=0, o)^C.rn and

(o'rfdr'n. Let 9re be a holomorphic function defined on rn\Jrr
n by ^n(z)=(2n)~1

for z^Tn and ^^(z)^?!^! for z^r^. The Runge theorem impliesth at there are
polynomials pn^C[_z~] such that \<pn(z)— pn(z)\ <(2n)~l for zeo>JUo>i* and
deg^?ra^+oo strongly. This, in turn, implies that \pn(z)\<n~l for ze<y* and
l ^ n W I ^ n for z^<*>'*.

If zeo>*=liminf<y*, then there is n(z}^N such that zetyj for n^n(z) and,

consequently, S |£n(20|2<-f-°o. On the other hand, if zeC\a>*=limsupa>Jl*,
71 = 1

then zecy^* for infinitely many n's. Therefore, 2 l?7i(^)l2= + °°. Set r^^^
72=1

£m(z) when n^deg^Ojn and rn(z)=zn/n\ for neJV\{deg^m ; 7?^^!}. Since
degr^^n, the sequence {rn}n^o forms a Hamel basis for C[z]. The resulting

00

sequence {rn}n>Q has the property that S k7i(-?)|2< + °° for zeo>* and
71 = 0

S kn(2r)!2= + oo for z^C\<w*. A direct application of Proposition 7 completes
71 = 0

the proof. ®

12. Let r={rn}n^o be a Hamel basis for C[z]. Denote by 7Tr the complex
function defined on 6>rXcwr as

= S
71 = 0

where o> r={^: S I^n(^) l 2<°°}. ^C- is a positive definite kernel on cyr. Denote
71 = 0

by c^r the reproducing kernel Hilbert space [2] determined by Kr. ^r stands
for the set of all restrictions of members of C[z] to o>r.

Theorem 6. Let M, S, { r n j ^ ^ o Q^^ hx be as in Proposition 6. Suppose
<7P(S*) /s non-empty. Then
1° £Pr zs a dense subset of Mri
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2° the operator Mz of multiplication by z defined on ^r is cyclic with the cyclic
vector 1,

3° there is precisely one partial isometry W : M— >JCr with the initial space
clolin{/u : ^eo-p(S*)*} and the final space MT such that

WS=MZW.

4° o> r=tf(S*)* = c

Proof. Proposition 6 implies a)r=ap(S*)* and

This means that there is precisely one unitary operator U from
;i€E<jp(S*)*} to JTr such that Ufa=Kr(Jt, •) for ^etor. Set (Wfi(fi=<f,
/ej?fand;ie<yr. Notice"that C7A; = ̂ ^. Thus Uf=Wffor /elin^ :
Take /eclolin{/u : 2e<7p(S*)*}. Then there is a sequence {/n}nsod

: yte<rp(S*)*} such that /n-*/. For an arbitrary 2ecyr we have

This implies that, for f^3C,Wf=UPf, where Pis the orthogonal projection
of M onto doling : A^(TP(S*}*}. Thus W: M-^Mr is a partial isometry with
the initial space doling : ;icE<7p(S*)*} and the final space Mr. Take />eC[z].
Then

where /0 is the cyclic vector of 5. Since S is cyclic, this gives us the con-
clusions 1° and 2°. To prove 3° take l^a)r and /=/>(S)/0 with
Then

This establishes the conclusion 3°.
The only thing which remains to be proved is that tfp(S*)*=

Take ^ap(S*)*. Then for p^gr we have <Kr(}(, -), M2py=t*p(Z)*=
**<Kr(Z, •), p>=<**Kr(Z, •), #>- This means that /jCrW, -)e^(Mf) and
M*Kr(}(, 0=^*XrW, •)• Consequently ;ie<7p(M*)*. Conversely, suppose that
^et7p(M?)*. This means that there is a nonzero /e^)(M*) such that M?f=A*f.
Since PF is bounded, 3° gives us W*M*CSW*. Thus W*fe=3)(S*) and

^*T7*/. Since WrPF*/=/, W*/ is nonzero. This implies that
This completes the proof. •

Corollary 10. // r={rn}ni0 *'s ^ /ffl77ze/ ^aszs o/ CM, then 3?r is dense
in Mr the space Mr is composed of Borel measurable functions, Mz is a cyclic
operator in Mr and a)r=ap(M*)*. In particular, members of Mr belong to the
first Baire class.
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This follows from Proposition 7 and Theorem 6.

Remark 2. Under assumptions of Theorem 6 the operator Mz is equivalent
to the operator T in doling : Z<=ap(S*)*} defined as £>(T)=l'm{PSnf0: n^O}
and TPSnfQ=PSn+1f0, where P is the orthogonal projection of M onto
clolin{/u :/leerp(S*)*}. This suggests thinking of the operator Mz as an
analytic "model" of S, More precisely, we say Mz is an analytic model of S
if the partial isometry appearing in Theorem 6 becomes unitary (we have to
assume here tacitly that ap(S*} is nonempty). The reproducing kernel Hilbert
space Mr is uniquely determined by the operator S (this follows from the fact
that the set of cyclic vectors is always one dimensional).

The closure M~ of Mz is contained in the operator Mfax defined by
3)(M?**)={f^JCr: g^MTJ g(z)=zf(z)} and M?axf=g, where g(z)=zf(z) (this
is because the operator Mfax is closed).

Notice finally that dim Mr—cardcor when cor is finite and dim^r r=^0

otherwise.

Corollary 11. Suppose dimJC=oo. A cyclic operator Sin M has an analytic
model if and only if the following condition is satisfied: if {an}n^^iz is such that

S anrn(X)=Q, for all ^e<7p(S*)*, then an=0 for all n^O.

13. Now it is the right time to enhance analytic features of the space Mr.
The following result will be very useful.

Lemma 3. Suppose dim M=00 and S is a cyclic operator in M, Let
r={rn}nzo be as in Proposition 6 and let <5>0. Then the following conditions
are equivalent'-
1° Mr is composed of functions which are continuous on disc(^0; 5),
2° Mr is composed of functions which are holomorphic on disc(^0; d),
3° Kr(l*, p) is holomorphic in (A, jw)edisc(/lo; <5)*XdiscC?0; 5),
4° KS is locally bounded on discUoJ 5),
5° the function KS is finite and upper semi continuous on disc(^0; 5),
6° the function KS is finite and continuous on disc(^0; 5),
7° KS is subharmonic on disc(/t0; 5),

>, if d<d,
J u

// any of these conditions holds, then disc(^0; d)dap(S*}*.

Proof. 2°^3°. Because Kr(X, -)<=Mr, 2° implies that Kr(l, •) is holo-
morphic on disc(20;<5) for each 2ecyr. Since Kr(A, fJL)=Kr(p, Z)*, the function
Kr(-, fjL) is antiholomorphic on disc(^0;^). Hartog's theorem implies 3°
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immediately.
3°=4l°. This follows directly from the inequality

-)-/C(^ Oil

= 11/11 (TO X)+Kr(p, ;f)-2reTO ^)

°. Take d<d. Since any f^Mr is continuous on
sup{|</, tf ra • )> | : ^ed i scWo;d)}=sup{ | /W) | :^ed i scMo;d)}<<» .
An easy application of the Banach-Steinhaus theorem leads us to sup{£s(/l); yle
disc W0; d)}=sup{||XrU> OII 2 :^discW 0 ; d)K~.

4°=}2°. Take /e^fr and d<3. By Corollary 10 there is a sequence
{AiKsodSV such that ||/— jM|->0. Since, for ^edisc(^0; d),

\fW-pnW\z^\\f-pn\\$up{tes(tf: ^e disc y0 ; d)},

£TZ->/ uniformly on discUoJ ^)- This implies 2°.
°. Since A:s(^)=A"r(^ ^), the conclusion 6° becomes clear.
°. This follows directly from Corollary 6.

6°=}7°. Since Ks(X)=\\m S \rn(Z)\2, the function KS is finite and continuous
k-*°o n=o

on disc (^0; 5), and, moreover, the functions S i ^ n ( ^ ) l 2 are subharmonic, we
71 = 0

get the conclusion.
7°=$6°. Since KS is finite and upper semicontinuous, applying again

Corollary 6, we get 6°.
6°^ 8° and 6°=) 9° are obvious.
The following can be deduced from the Cauchy integral formula and from

the inequality \p(X)\*^\\p\\*K,(X), teC, which holds provided cardft)r^^0.

52?T
Ks(u+deH)dt<co and

0
; dO", then

for any p^C\_z],

8°=) 2°. Sublemma 1 guarantees that density of £Pr in Mr, which appears
in Corollary 10, can be understood with respect to uniform convergence on
compact subset of disc (^0 ; 5). Since members of 3?r are holomorphic on

5), we get the conclusion.
Integrating the inequality appearing in Sublemma 1 we get

Sublemma 2. Suppose ^e(7, Q<d1<dz<d3 and A=disc(/* ; 6?3)~\disc(^ ; dz)~.

If \ Ks(Qdm(Q<ao and 2edisc(/£; dj", then
J A



126 JAN STOCHEL AND FRANCISZEK H. SZAFRANIEC

for any p^C[_z], Here m denotes the (planar) Lebesgue measure.

9°=^ 2°. We can repeat the argument used in the proof of 8°^ 2° replacing
Sublemma 1 by Sublemma 2. •

We are ready to show that 4Cr is composed of functions which are analytic
neglecting some meager subset of int<7p(5*)*7.

Theorem 7. Let S be a cyclic operator in M such that int<7p(S*) is non-
empty. Then

7(5)= {AeC: KS is finite and continuous in a neighborhood of 1}

is an open subset of int crp(5*)* such that int <7P(5*)*\7(5) is a nowhere dense
subset of C (and, consequently, of int <7P(5*)*). The set 7(5) is the maximal
open subset of <wr on which all functions in Mr are holomorphic.

Proof. It is clear that 7(5) is an open subset of int ap(S*)*. Due to Lemma
3 (6°^ 2°), Mr is composed of functions which are holomorphic on 7(5). If all
the functions in MT are holomorphic on an open set 7C(yr— <TP(5*)*, then, again
by Lemma 3 (2°^6°), 7C7(5).

We show that r(5) is dense in int (TP(S*)*. If not, int ap(5*)*\7(S)- is a
nonempty open set which can be written as a union of a sequence of closed
subsets rn={^eint(7p(5:ic)*\r(5)-:/cs(^)^n} of int <yp(5*)*\7(5)- (use Corollary
6). The Baire theorem gives us nQ such that int 7^ is nonempty. Thus there
is an open disc A such that A is disjoint with 7(5) and ics is bounded on it.
Due to Lemma 3 (4°=^6°), AC7(5). This implies that 7(5) is dense in

Suppose that int(int<7p(S*)*\7(S))" is nonempty. Since (int(Tp(5*)*\7(5))-
C(int<rp(5*)*)~\7(5), we check that there is an open disc contained in
int<7p(5*)*\7(5)-. This would mean that 7(5) was not dense in intcrp(5*)*.
This contradicts what we have proved so far. H

Example 2. In order to illustrate Theorem 7 we propose considering the
closed annulus <y=disc(0; 2)~\disc(0; 1). One can construct, using the Runge
theorem, a sequence (rkn}n^ of polynomials from C\_z] such that

(25) ^n^degr^ strongly increases,

(26) S |ri7!U)|2 = oo for
71 = 0

CO

(27) S I r k n ( m } 12 2S uniformly convergent on compact sets of the form

7 For bounded subnormal operators a similar result has been proved in [20, Th. 1.2].
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(28) Ir^CfexpKH+l)-1!])!^ for l<t^2 and all n.

zn

Put rn(z)= — r- for n^N\{km: ??z^0}. Then the extended sequence
n !

{rn}nzo shares the properties (26) and (27) with the initial {rkn}n^- Since
degr re=n (cf. (25)), the sequence {rn}n^Q forms a Hamel basis for C[z]. Due
to Proposition 7, there exists a cyclic operator S such that ap(S*)*=

: fj rnW)|2<oo} and *,(;t)= S knW)l a . It can be deduced directly from
71 = 0 71 = 0

our construction that KS is finite and continuous in into>\(l, 2). Moreover, the
evaluation (28) implies KS is not continuous at any point of the interval (1, 2)
(though its restriction to (1, 2) is finite and continuous). So f(S)=into>\(l, 2)^
int<7p(S*)*. •

As Example 2 shows, it may happen that <rp(S*) has bounded holes. This
is related to the lack of full analyticity of the functional model we have
considered so far. The following result sheds more light on this question.

Theorem 8. Let S be a cyclic operator in M. Then f(S) has the following
property: if CD is a bounded open set in C such that either KS is bounded on dco
or 3o>cr(S), then

Proof. Suppose KS is bounded on da). Then Corollary 6 implies that KS is
bounded on a). Due to Lemma 3 (4°^6°), we have a)dT(S).

Suppose da)dY(S). Then Lemma 3 guarantees that KS is finite and continu-
ous on 7"(S). Since do) is compact, KS is bounded on da). The previous para-
graph yields the conclusion. •

Proposition 8. Suppose dim ̂  = 00 and S is a cyclic operator in M. If
, S-f=lf, either A€EC\<rp(S*)* or Jer(S), then f is orthogonal to
: /*e<7p(S*)*}, where h^ is as in Proposition 6.

Proof. Theorem 6 says that WS=MZW, W is a partial isometry. Since W
is bounded, WS'dM-W. Asumme S~/=^/, f^£D(S~). Then
and M'~Wf=Wf. Take X which is not in a)r=ap(S*)*. Since (A-
for zewr, we have Wf=Q. Take now *s=r(S). Since W-z)(PT/)(z)=0, for
ze^r, we get Wf=0 on cyr\{^}. Due to Lemma 3, Wf is analytic on
Since Wf=Q on 7(S)\{^} and ^er(S), we have (Wr/)W)=0. Because
on G>r\{^}, we get TF/=0. The conclusion follows from Wf=WPf, where P
is the orthogonal projection of M onto

Corollary 12. Suppose dim M — ̂  and S is a cyclic operator in M. // S
/zas an analytic model (cf. Remark 2), then S is closable and
r *(
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2°
3° <7
4°
5° <yr(S*)=0,
6° c7(S*)=<7ap(
7° <7(S-)\<7OP(S-)=in

Proof. Since 5 is unitarily equivalent to Mz and M2 is closable (cf . Remark
2), S is closable, too.

Proposition 8 implies directly 1°. Since always

the conclusion 3° follows from Proposition 8. Using again Proposition 8 and
0>(S*)*C0v(S-)U<7r(S-), we get the conclusion 2°. As a c(A}CLa ap(A) for a
closed ^4, the conclusion 4° follows from 3° and (5). Emptiness of <7r(S*) can
be easily deduced from 1°. This, in turn, implies 6°.

The conclusion 7° follows from what is in the proof of Theorem 9. •

14. Now we come back to subnormal operators. Our goal here is to find
relationship between functional and analytic models (cf. Remark 2) for such
operators.

Consider a cyclic subnormal operator S in M (dim^^oo) with the cyclic
vector /0. Let m be a representing measure of S (cf. Section 9). Then there
is a unique unitary operator Vm : M^-^M such that Vmp=p(S)fQ, p is an analytic
polynomial in Mm. Denote by Um the unitary operator WVm: 3tm-*3Cr, provided
<7p(S*) is nonempty. More explicitly, (UmpXX)=P(X), ^e(7p(S*)*0 In general,
p can not be replaced by other functions. However, we are able to determine
those /Ts for which the equality

(29) (tf«/)tf)=/W)

holds for all / in &m.

Proposition 9e For each /e^m, equality (29) holds for m-almost all X in
(7p(S*)*r\suppmo In particular, Umf is holomorphic on int(^(5)Hsuppm).

Proof. If /eJTm, then there is a sequence {pn} n=>0c:C[>] such that

(\f-pn\2dm-*Q as n->°o. Since (Umpn)(}l}=pn(2) for ^ecrp(S*)*nsuppm, we

get (£7m/)W)=l™(t7m^Jl)(^)=lim^ny) for /letfp(S*)*nsuppm. Passing to a sub-
sequence if necessary, we can assume that pn-»f m-almost everywhere. This
gives us the first part of the conclusion. The other follows from Lemma 3.
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It may happen, as the example of the classical shift in the Hardy space of
the unit disc shows, that <7p(S*)*nsuppm=0 ; also other cases are possible—
cf. Section 16. In general, the goal would be to make int (7p(S*)*nsupp m as
large as possible. The following result goes in this direction.

Proposition 10. Let S be a cyclic subnormal operator in M and let N be
its minimal normal extension of spectral type. If {a)n}n^Q is a collection of
bounded holes of a(N) with the following property :

(30) for every n there is a bounded open set rn such that a)ndrn and Si^CT^S),

then for an arbitrary s>0 there exists a cyclic subnormal operator R in M and
a positive, operator X in M such that
1° R has a minimal normal extension M of spectral type for which

2° X establishes similarity between R and S, i.e. R=XSX~l,

3° II/I |2^II^/H2^(1 + £ ) I I / I | 2 for

Proof. Consider the functional model for S given by m = m#. Owing
Theorem 5, (r(JV)=suppm. Set n=m+Sc7iWi7l, where mn is the restriction of

n
the planar Lebesque measure to a)n,

cn=en(max{l, sup{|z| ; zea)n}})~n(mn(a)B)max{l, sup{/cs(/Q ;
CO

and S £n=£ with £71>0 (by Lemma 3, sup{£s(/0 ; 2e3rn}<oo). One can check
71 = 0

that such a measure n satisfies (13) and suppn=^Ja)n^<f(N). Consider the
n

cyclic subnormal operator Sn (cf. Section 8) and its minimal normal extension
./Vn. Owing conclusion 5° of Theorem 5, 0(N'n)=^j

We show that Sn is similar to Sm. Define Yf=g, where g is the restric-
tion of /e^fn to suppm. The operator y establishes similarity between Mn

and &mm To see this check that

(3D IUYII»^ll/lln

and, consequently, YMnCLMn,. Since the polynomials are dense in both ^fn and

n is dense in ^V.

(32)

The maximum modulus principle gives us, for

This implies
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The inequalities (31) and (32) force both Y and Y~l to be bounded. It is evident
that SmY=YSn. The polar decomposition of Y~\ Y~l=V\ Y~l \ , provides us with
a unitary operator V and a positive similarity X=\Y~l\ in ^Tm such that
RX=XSm where R=V~1SnV. The remaining parts of the conclusion follows
from (31) and (32). if

Theorem 90 Let S be a cyclic subnormal operator in M, which has an analytic
model. Then r(S)=ff(S')\aaP(S')=mta(S-)\aap(S-). In particular, if 7"(S)=C,
then aap(S~)=0.8

Proof. Let m be a representing measure of S. Without loss of generality
we may assume (cf. Theorem 5) that S=Sm. First we show that 7*(S)Ccr(S")\
ffapCS-). Take ^0er(Sm). Since r(Sm)C<7(5$)*=(7(5»), we have ^ecr(Sm). It
is enough to show that ^0 is not in <7op(Sm). Consider s>0 such that
disc Wo ; e)~Cr(Sm). By Lemma 3, c=(sup{jc,W) ; ^edisc(^0; s)-})1/2<oo. Pick
£eC[z]. Applying the maximum modulus principle to the holomorphic function
p, we get, by Proposition 6 (2°), that, for ^edisc(^0; e)~,

(33)

Using (33) we have (with A=disc(/lo; e)~)

= f !
JC\A

This implies that yl0— S" is bounded from bellow. Consequently

^ap(S-).
To prove the reverse inclusion9 we need the following result (which can

be proved in the same way as in the bounded case; cf., [8, p. 172]):

Suppose we are given a closed operator A in M and AQGa(A)\Gap(A). Then
there is an open neighborhood co of A0 and a holomorphic function (p : <$-*M such
that pW)^0 and ^)eker(^[-^)* for

Take XQ^a(S~)\aap(S~). Then there is the function <p having the proper-
ties just described. Since p(JOeker(S*— ̂ *) and £>W)^0, we have ^e<rp(5*)*0

From the proof of the uniqueness part of Lemma 2, we infer that hi —

<A;i, /oXpW), /o>"1pW)=<PW)» /o>"VW for ^a)- Since 9 is holomorphic,
is locally bounded on CD. Lemma 3, 4° implies that

8 For bounded operators a similar result has been proved in [20, Th. 1.1].
9 This inclusion is, as the proof shows, true for an arbitrary cyclic operator.
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An application of (5) gives us

<r(S-)\(rf lp(S-)=int <j(S-)\aap(S-) .

This completes the proof. B

Corollary 13. Suppose S is as in Theorem 9. Then S has, in addition to
the properties described in Corollary 12, the following ones :

u a>»),
nso

where {o)n}ra*o is the collection of all the holes of a(N), N being a minimal normal
extension of S of spectral type.

This follows from Theorem 9 and Corollary 12 (and the fact that
o)nr\aap(S-}=-0}.

A natural question which appears here is to describe circumstances under
which a hole of a(N) is contained in <rp(S*)*. Some answer to this question
for bounded operators has been given in [21].

The result which follows provides us with additional information about
cyclic subnormal operators having analytic models.

Proposition 11. Let Mz acting in Mr be an analytic model of a cyclic sub-
normal operator. If int ap(M?) is nonempty, then £Pr is a core for Mfax that
is M?a*=M~.

Proof. Since int <rp(Mf) is nonempty, the same is true for 7(M2), due to
Theorem 7. Take ^^(MJ. Then, by Theorem 9, AQ is not in aap(M~}. If
/ is in ^)(Mfax), then y0— Mf ax)/e^r. Thus there is a sequence of poly-
nomials {tfnUfcod^r such that 0n-*Wo— Mfax)/. However 0nWo)->0. Con-
sequently, tn=qn—qn(AQ)^&r, tn-*(ZQ— Mf ax)/ and tn vanish at ^0. This implies
that there exist polynomials pn^&r such that tn=(^—M~}pn. Thus
(ZQ—M~)-1tn=pn. Since (1Q—M~Y1 is continuous, pn approaches some f^Mr.
However, (XQ—M~)pn=tn-^(^Q—Mfax)f. Closedness of XQ—M~ implies
Wo— M?ax)f=(2Q— Mr)/i. This, in turn, implies /=/i exept XQ. Since both
these functions are analytic in a neighbourhood of 20 (cf. Lemma 3), they are
equal. Finally, we get pn-+f and M-pn=^pn-(^-M-}pn-^l,f-(lQ-Mf™}f
=M?aKf. This completes the proof. •

Remark 3. The functional model we have presented is determined by a
particular measure satisfying (13) and (14) and the reproducing kernel property
(18) can be satisfactorily described by means of the measure in question. This
allows to modify the measure still preserving the crucial property (18). Here
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is a sample :

Let m be a positive measure on C satisfying (13). // int <7P(SS) is nonempty
then (7P(S*)C(7P(S*) and r(Sm)cr(5n), where n=(l+|z 2)m.

The inclusion (Tp(5S)CcTp(SJ) follows from Proposition 6 and the inclusion
r(5m)cr(5n) follows from Lemma 3.

The inclusion 5° of Theorem 1 can be proved for cyclic 5 directly using
z

<^m({A})~l\\p\\m, where m = mN. Lemma 2 completes the argument. m
the property (18). Indeed, if 2^ap(N), then for every £eC[z] we have \p(Z)\

All This for Weighted Shifts

15. Consider at the beginning a cyclic operator S with the cyclic vector
/o, which satisfies the following condition (cf. [18, Lemma 1])

(34) <SmfQ,SnfQy = am+nbm-n, m,n^0,

where [ak}k>Q is a Hamburger moment sequence and (bk }Jf-oo is a trigonometric
moment sequence,,

If bk=dk, the usual "zero-one" sequence supported at zero, then 5 becomes
a weighted shift operator (the traditional definition will be given later). In this
case the sequence {an}n^0 can be always replaced [18, Theorem 4] by the

Stieltjes moment sequence (ck}n^ defined as ck = \ xkda'(x), &^0, where a'
Jo

r+oo
is determined by a2* = \ xzkda'(x\ &^0 (such a measure a' always exists

Jo

because {aZk}k^o is a Stieltjes moment sequence!).
Relating the operator S to some weighted shift we localize the set on which

it may have an analytic model.

Theorem 10. Suppose dim^f — ooo Let S be a cyclic operator satisfying (34)
with {ak}k>Q being a Hamburgdr moment sequence and with {bk}k=-°° such that
there is c>0 for which

(35) S &m-nCm«^ S I C n l 2

m, TISO 7i>o

where Co, • • - , £ * is an arbitrary finite sequence of complex numbers. If S is
bounded, then

r(S)=disc(0; ||S||)C<7p(S*)*Cdisc(0; ||S||)-,
Otherwise

T(S)=ap(S*)*=C.

Proof. Denote by a and b representing measures of the moment sequences
{ak}k>0 and {&*}£r_co respectively. Take Co, • • • , C * ^ C f . Then, the inequality
(35) can be written by means of B as
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S Zn\ k

S Cne1"
0 I 71 = 0 O I 71 = 0

k
aintC»ei

Since trigonometric polynomials 23 Cn2 i7U are dense in J?2(b), the above ine-
n = - k

quality implies

(36) \ fd($ — c(27r)~17?i)^0 for all nonnegative / in J?1^)
Jo

and, consequently, the measure ^—c(2^)~1m is nonnegative. Define the measure
m on C as

tn(<r)=\ \ Eff(re i £)<ia(r)d&(0 for Borel a

(here Ia stands for the characteristic (indicator] function of a}. It easy to see
that m is a representing measure of 5 (use (34)). Moreover, its support is
contained in disc(0;a)~, a=lim(aZnY/2n, (with convention: disc(0; -foo)=C).
Indeed, it is known that

(37) a=sup{U| ;£esuppa}.

Pick a complex number 1 with \A\>a. Then there is an open neighbourhood
0) of 1 such that r^R, ?e[0, 2:r) and reu^co imply \r\>a and consequently
Iw(relt}=0. This and (37) force

0 for all t.

This, in turn, means m(ft))=0. Thus 1 is not in suppm.
Since {a2k}k>o is a Stieltjes moment sequence, there is a positive measure

a' on [0, +00) such that

(38)

There is a weighted shift Stt' in M such that

(39) <S?/oS5/o>=(+0°jcm-*- | lda /W«m-n f 772 , ?z^0.
Jo

Take /oeCM. Then, by (36), (38) and (39), we have

(40)

elt) \ 2dtda'(r)

Notice10 that
10 Such a situation appears in [9] and [10] where, unfortunately, the case when the re-

presenting measure of the Stieljes moment sequence {azn} (in our notation) has zero as
its atom is excluded. This is an unnecessary restricton which comes from Theorem 8
of [9]. However this theorem does not tell the whole truth ; it may happen that zero
is an atom of a representing measure of a subnormal weighted shift (consider the
moment sequence a0=l, a2n=(2n-i-2)~1 for n>0)
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(41) disc(0;a)cr(S f lO-

To prove this consider first the case flesuppct'. Then, applying the Cauchy
integral formula to the circle (0; a) and the Schwarz inequality we get A:SQ, (A)^S

a z ( a — \ X \ ) ' 2 a r ( { a } ) ~ 1 for each 2. with \A\<a. The case a is not in suppa' can
be treated as follows. Take 1 with \X\<a. Since sup!* ; *esuppa'} = a,
there are real numbers x, y such that \A\<x<y<a and a'((xy ^))>0. Apply-
ing again the Cauchy integral formula, the Schwarz inequality and integrating
over the interval (x, y) with respect to a7, we have £v (%)<yz(x— U ] )~ 2

&'((*, 30)"1. All this proves (41).
Conditions (40) and (41) imply disc(0 ; a)C7*(S). Since support of nt is

contained in disc(0; a)~, applying [6, Lemma 2], we get

tfp(S*)*C(7(S-)cdisc(0; ||S||)-=disc(0; ||AfJ)-Cdisc(0; a)-.

(with convetion: for an unbounded operator its norm is understood as +00).
This completes the proof. •

Example 3. We show that, in general, the sequences { a k } k ^ o and {bk}k=-«>
representing via (34) a subnormal 5 could not be chosen in such a way that
{0*}*so was a Stieltjes moment sequence.

Put fln=(l-(-l)n+1)(n+l)-1, for n^O and ^(1+in)-1 for neZ. Since

J+i
xndx, {an}n>Q is a Hamburger moment sequence. Notice that bn~

\27leinxex(ez*-lYldx. Thus da(x)=dx and dbU)=ex(02ff-l)-1dx. It is a matter
Jo

of direct calculation that {bk}t=-°o satisfies (35) with c=2^(e2f f— I)"1.
Suppose there are two sequences {ak}n^ and {Bk}k=-°o, the first of which

is a Stieltjes moment sequence while the other is still a trigonometric one (with
50=1), satisfying the following condition

Notice that necessarily an=2(n+l)~l. Indeed, it follows from (42) that

51
x2nd(2x). Since a Hausdorff moment sequence is determined by its0

even terms, it must be an=2(n+T)~1.
Knowing dn we are able to find out bn. Namely

(43) 5B=[(-l)n^~l][l+e*+(e*-l)(-l)n][2(^-l)(l+in)]-1.

To prove this observe that the representing measure m of S is given by

S27rf + l
l^re^e^-l

0 J-l

Consider the Borel set as^{relt ; l/2^r^l, 0^^<s}, for 0^s<27r. The above
integral formula leads us directly to
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!)]-1 for
(44)

for

Denote by 6 the representing measure of {ft k] %=-*>. Since the operator S is
bounded, it has only one representing measure m. By (42), m can be described
by the following formula

This gives us m(0"s)=b([0, s)). Formula (44) implies b([0, s)) is absolutely con-

tinuous in s and, consequently, 6 is absolutely continuous with respect to the
Lebesgue measure on [0, 2;r). Moreover

d

So as to get (43) it is enough to apply (44) to the above formula.
Formula (43) implies that bn^Q for neZ. Since also an^Q, the right hand

side of (42) is always different from zero. However, the left hand side vanishes
for all m, n such that m-\-n is odd. This leads us to contradiction. H

16. In general, it would be difficult to decide, in terms of the sequences
{ a k } k ^ Q and {6fe}£Loo, whether the operator S has an analytic model. In
practice, having concrete forms of these sequences one can use Corollary 11 to
do this. In the case of weighted shifts all this becomes simple.

Recall that S is said to be a weighted shift operator (with respect to a
given orthonormal basis {en}n>Q if £)(S}—\m{en}n^ and Sen^(C\{0})en+1 for
n^O. Such an operator is cyclic with the cyclic vector f0=eQ. The Gram-
Schmidt procedure described in Section 10 gives us here

Thus, by (22) and (23), we have

Denoting by i(S)=liminf | |Sn£0H1/n, by Lemma 3, we get

7(S)=disc(0; t(S))C(7p(S*)*Cdisc(0;

Moreover, <7p(S*)=disc(0; *(S))- when S ||S^0||-2U(S)|2w< + oo. Otherwise

(7J,(S*)=disc(0;*(S)).
If %(S)>0, then, due to Corollary 11, 5 has an analytic model. In particular,

the conclusion 5° of Proposition 6 gives us

hi= 2 \\SneQ\\-lz*nen.
n = 0
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Consenquetly, the reproducing kernel Kr of Mr is given by

*)= S ||S^o||-2^>".

All what we have said above as well as Corollary 12 enables us to decribe
some parts of the spectra of S and S*11.

Suppose now S is subnormal. One can show (use the fact that the sequence
{\\SneQ\\1/n}n^ is increasing) that i(S)=||S|| if S is bounded and %(S)= + oo
otherwise.

Consider a normal extension Nm of S (cf. Theorem 5) with the measure m
given by

(45)

where a is given by

Since the bounded case has been completely described (cf. [16]) we focus our
interest on an unbounded weighted shift S. In this case Corollaries 12 and 13
allows us to identify the spectra and their parts as follows.

S

N

S*

AT*

*P

0

0

c
0

Gap

0

M

C

M

Gr

C

0

0

0

<7c

0

M\fl

0

M\fl

a

C

M

C

M

where N=Nm, M^suppm and £={0} if m({0})=a({0})>0, Q=0 otherwise.
In [19] we considered the following problem: Suppose that S is a closed

subnormal operator. Does there exists a normal extension N of S acting in JC
such that

As a consequence of the fact that subnormal weighted shifts always have
analytic models we have solved this question in the affirmative for such oper-
ators (cf. [19]).

The creation operator

d

11 For more detailed disscusion of the bounded case consult [161
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acts in £Z(R) as a weighted shift with respect to the orthonormal basis of the
Hermite functions [17 and 18]. In this case \\SneQ\\z=n !, m(dz)=:r-1exp(— |z|2)dz,
Q=0 and M=C.

17. Having described subnormal weighted shifts we turn our interest back
to the case of an arbitrary cyclic operator, trying to compare it in some way
with a weighted shift.

Proposition 12. Let Sz be a cyclic operator in Ml (dim ̂ =00) with the cyclic
vector fio (i=l, 2). Suppose that there exists a bounded linear operator T : Mv-+
Mi such that T/1.0=/B.o and TS^SzT. Then
(a) *p(SJ)Cffp(ST), Ai^=T*A8 l;, r(S,)cr(Si) and hlt,= S r2l»W)*T*g l lB.

71 = 0

(b) // Sz has an analytic model and kerT = {0}, then Sl has an analytic model, too.
(c) // S2 is subnormal, then ff(Sz}da(Si).

Proof. First notice that the operator T has the property Tp(Si)fi,0=

XS2)/2,o. Thus

This means (Tp(S?)C(Tp(Sf) and hn=T*hz.i (cf. Proposition 6). Consequently
the conclusion (a) follows directly.

Since S2 has a model, clolin{/z2, ; ; ^e(7p(S?)*}=^T2. Thus, by (a),
clolinl^!,^ ; ^e(rp(S?)*}=T*(^2)-. Since kerT is trivial, the conclusion (b)
follows.

Since T(^fi) is dense in JC2 and TSlcS^T, the conclusion (c) follows
directly from [15, Th. 3.3] •

Corollary 14. Suppose that dim & = oo. Let S be a cyclic operator satisfying
(34) with {ak}k>o being a Hamburger moment sequence and {bk}k=-°° such that
(i) there is c>0 such that the inequality (35) holds for any finite sequence of

complex numbers Co, ••• , C*>
(ii) the representing measure of the trigonometric moment problem {bk}^=-^ is

absolutely continuous with respect to the Lebesque measure on [0, 2;r).
Then S has an analytic model.

Proof. Let m, a and B be as in the proof of Theorem 10. In particular,

for Borel a.
JO J-oo

Let Sa be a subnormal weighted shift in M satisfying (34) with bm—dm. Then
its representing measure nta is given by
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Since b is absolutely continuous with respect to the Lebesque measure on [0, 2?r),
the measure m is absolutely continuous with respect to ma.

Set Tp=p, for £eC[z]. Then, by (40), T extends to a bounded operator
from Mm to <4Cma. Since the range of T is dense, the only thing we have to
show is, as required in Proposition 12, that kerT is trivial. Take /eJfm such
that T/=0. Then there exists a sequence of polynomials pn^C[_z~] such that
\Pn}n*o converges to / in ,T2(m) and to zero in J72(mJ. Passing to an almost
everywhere convergent subsequence we infer that pn-*f m-almost everywhere
and pn-^Q ma-almost everywhere. Therefore f=Q m-almost everywhere, which
proves kerT={0}.

It is easy to check that TSmdSmaT and Tlm=lma. Since Sma has an
analytic model, an application of Proposition 12(b), yields S has an analytic
model, too. H

Remark 4. The assumptions concerning {bk}k=-«> we have made in The-
orem 10 can be rephrased as follows: the condition (35) is equivalent to the
fact that there is a positive measure n on [0, 2?r) such that d%(t)=c(2n)-1dt+dn(t\
The assumption (ii) of Corollary 14 and (35) says that d%(t)=h(t)dt, where h^c
almost everywhere. If h were bounded from above, then the operator T of
Corollary 14 would be a similarity.
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