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High Energy Resolvent Estimates for Generalized
Many-Body Schrodinger Operators

By

Arne JENSEN*

Abstract

We prove high energy resolvent estimates for a class of generalized many-body
Schrodinger operators. The proofs are based on an extension of Mourre's commutator
method.

§ 1. Introduction

Let X=^Rm and let HQ=-A on &(HQ)=H*(X), the usual Sobolev space of
order 2. Let TCJ} j=l, 2, • • • , N, be orthogonal projections in X. Let XJ=TJ:J(X}
be the range of KJ. We consider potentials which are real-valued functions
defined on Xjf Let Xj be the coordinates on XJ9 and let V,- denote the cor-
responding gradient. For an integer n^l we introduce the following

Assumption 1.1. Let V^Cn(X3\ j=l, •••, N, such that

sup SKUr^WOOKco. (1.1)

We will introduce coupling constants gj>Q, /=!, • • • , N, and define for g=
(git "' > §N}^R+

N
•̂ -̂  -rr / / \\ f\ O\

Let H=H0+V(g). If we impose the additional condition VJ(XJ)->Q as \Xj\
->oo, then H is a generalized many-body Schrodinger operator of the type con-
sidered in [2, 4]. Under this additional condition the structure of the spectrum
is investigated by these authors. We do not need the decay condition here.

Let #(z; V(g)) = (H-z)~1 denote the resolvent. Let <^>=(1+%2)1/2 and let
for s^R the weighted L2-space be given by

The bounded operators from LS(X) to Ls> (X) are denoted by ^(s, s'). Let V3
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satisfy Assumption 1.1, n^l, and introduce

sup (7/x,) + ̂ *,-7,7/x,). (1.3)

A special case of the main results can be stated as follows. We note that it
is only the high energy estimate (1.4) which is new. The other results have
been obtained in [10, 7].

Theorem 1.2. Let Vj satisfy Assumption 1.1 for some n^2. There exists
>lo>0 such that for all /t^0 and all g^R+ satisfying ^cQmax{gj} and A^d
''Zij^igj^Vj) for some c0>0 and d>l the following results hold:

(i) Let s>l/2. Then the boundary values

± « « ; v(g»
£ 4- U

exist in <B(s, — s) m operator norm.
(ii) For £=0, 1, • • • , n—2, s>fe+(l/2) the map 1b-*R(l±iQ; V(g}} is k times

continuously differentiate from (20, oo) to <B(s, — s). The following estimate holds:

d \k

.dT*' ~ ' .®(s,-s)

The result (1.4) was obtained for k=Q with a large coupling constant g in
[19] under Assumption 1.1 with n=2. High energy estimates for various k
with fixed coupling constant was obtained for two-body Schrodinger operators
in [16, 1, 9, 6], and for general elliptic operators in [12, 13]. In [3] high energy
resolvent estimates for two-body Schrodinger operators were obtained using a
variant of Mourre's technique with a modified conjugate operator.

In this paper we combine the technique developed in [7] with the scaling
argument from [19]. The main idea is the observation that the Mourre method
for proving a priori resolvent estimates is constructive in the sense that con-
stants in the estimates can be controlled explicitly, or parameter dependence
can be followed precisely. See [5, 8, 15, 19] for other results using this observa-
tion.

The contents of the paper can briefly be described as follows: In Section 2
we state the precise resolvent estimates obtained using localizations based on
the generator of dilations. In Section 3 we give the proofs. In Section 4 we
prove Theorem 1.2 and related results. In Section 5 we give some semi-
classical resolvent estimates, which are easy consequences of our other results.
Section 6 contains a different approach to constructive resolvent estimates for
Schrodinger operators with potentials that are homogeneous functions. Section 7
contains some remarks.

§ 20 Statement of Results

Let A = l/2i(x'VJ
ry-x) denote the generator of dilations in L2(X}. We use
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the following localizing operators :

(2.1)

P\ the spectral projection for (0, oo) (2.2)

P~A the spectral projection for (—00, 0). (2.3)

Let Vj satisfy Assumption 1.1 for some n^l. Throughout this paper we
use the following condition for all 2>Q and

(2.4)
=l, ••- , N] ,

The constants d and CQ are assumed fixed throughout the paper. The dependence
of various constants in estimates on d and CQ will not be mentioned explicitly.

For two-body Schrodinger operators (i.e. N=l and X1=X) the condition
(2.4) implies the non-trapping condition on the corresponding classical system,
see e.g. the comments in [15].

Theorem 2.1. Let Vj satisfy Assumption 1.1, n^2. Then there exists A0>Q
such that for all ^AQ and all g^R+ satisfying (2.4) the following results hold:

(i) For 1=1, • • - , 72—1 let slf sz satisfy s±>l— 1/2, s2>l— 1/2. There exists
cn=Cn(slf s2)>0 such that for all a^l and all s>0

*t\\£cn2-lal-i-*. (2.5)

(ii) The boundary value

exists in operator norm. It is l—l times continuously differentiate with a Holder
continuous I— Ist derivative which satisfies the estimate

cn(l-l}\l-lal-s^. (2.6)

Theorem 2.2. Let Vj satisfy Assumption 1.1, n>2. Then there exists A0>Q
such that for all 2^2Q and all g^R+ satisfying (2.4) the following results hold:

(i) For 1=1, ••• , 72—1 and s with l—l/2<s<n—l there exists cn=cn(s}, such
that for all a>l and all s>0

(bt) \\ps
aR(X+ie'fV(g)YP^pl

a-
s\\^cnX-1 (2.7)

(bT) \\pl
a-

sP-AR(^+is;V(g)Yps
a\\^cnX-1 (2.8)

(ii) For )?>0, /— l /2<s<n— 1, the boundary values

ps
a^R(Z+iQ; V(g)}P+

Apl
a-

s

and
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exist in operator norm, are I—I times continuously differentiate with Holder con-
tinuous I—1st derivative which satisfies the estimates

(2.10)

We use the notation (s)_=max{ — s, 0},

Theorem 2.3. Let Vj satisfy Assumption 1.1 for n^3. Then there exists
^0>0 such that for all 1^1Q and all g^R% satisfying (2.4) the following results
hold.

(i) For 1=1, ••- , n—2 let sly s2 satisfy (Si)_+(s2)-<w— /. There exists cn—
cn(si, s2)>0 such that for a^l, and all s>0

(C|) H^P^U+fs; y^'PipSII^Cn^'fl-1— (2.11)

(ii) The boundary value

exists in operator norm, is l—l times continuously differentiate with an I— 1st

Holder continuous derivative which satisfies the estimate

cn(/-l) ! ̂ -'fl-i-'". (2.12)

§ 3. Proofs

We prove the results of Section 2. The first step is the following result.

Proposition 3.1. The general results (at), (6f), (ct) follow from these results
for 1=1.

Proof, This follows from a slightly modified version of [7, Lemma 2.1], D

The next step consists in reducing the estimates to energy ^=1 by a scal-
ing argument. The dilation group (scaling) on LZ(X) is given by

Proposition 3.2. The results (a^, (&f), (ci) follow from the estimates below.
Let Vj satisfy Assumption 1.1 for some n^2. Let
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Then for g£ER% with S£=ig^(10)<l/3, max{g,}^c0, with CQ and d>l from (2.4),
we have the estimates below with c independent of

(Si) For Si>l/2, s2>l/2 and a// s>0, a^l,

a// £>0, a^l,

i) For Si, sz u;zY/z (Si)_ + (s2)-<w— 1 flwd a// e>0, fl^l,

Proof. This result follows from the relation

with ^o^^172, z=A+zV, W riW"1g)(-) = /oaV r(5r)(|0-), and the fact that t/(p) com-
mutes with A. H

To prove the estimates in Proposition 3.2 we verify the Mourre estimate.
We have as quadratic forms on <S(Rm)XS(Rm), where S(Rm) denotes the Schwartz
space :

HH, A]=2H*+i[Wi(g), A-} (3.1)

j=i

We have used that p(Vj) defined in (1.3) satisfies p(Vj(p-))=tJt(V,(>)). Under
the condition

we get (see (2.4), remember that here /i=l after scaling)

-/. (3.2)

Fix 0eC^(fi), 0^0, ^(0=1 for 3/4+1/48^^4/3, supp 0g [1/2+1/28, 3/2].
Let ¥=<p(H). It follows from (3.1) that the quadratic form /[//, ^4] is closable.
Let /J3i denote the associated self-adjoint operator. We have 9)(B^3)(H^.
From (3.2) we conclude:

Lemma 3.3. We have

WiB.W^l-j^W2 (3.3)

for all ^>0 and all
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To prove the estimates (50, (5f) and (Cj) in Proposition 3.2 we use the fact
that the Mourre technique is constructive in the sense that constants in the
estimates can be controlled explicitly, and parameter-dependence can be followed.
In particular, since the constant l—l/d in the estimate (3.3) is uniform in ^>0
and g^R^ satisfying 'SjLigj^V^^l/d, we get the required uniformity in the
estimates in Proposition 3.2. This follows from a careful examination of the
proofs in [11, 14, 10, 7]. For the estimate (5i), see also the computations in
Section 6 and the paper [19], where closely related computations can be found.
In the paper [8] similar computations are given for Stark effect Hamiltonians.
For the estimates (5f) and (ci) in Proposition 3.2 one has to go through the
details of the proof in [7], These detailed computations are long, but straight-
forward, and will not be given here. We only note that in the proof of (5f)
the first step is to establish the estimate

for s>l with c uniform in 1 and g as above. D

§ 4. Microlocal Resolvent Estimates

In this section we prove resolvent estimates using localizations given by
pseudodifferential operators. These results extend those obtained in [7] for the
two-body case, and include high energy estimates. We shall give the proof of
the first result in detail, and then sketch the proofs of the remaining results.

Let Wi)=(x2+bz)~1/2 for b^l. This weight function was used in the proofs
in [1], but the dependence on b was not made explicit, as in (4.3). The con-
stant dependence for the estimate (4.3) was obtained in [19] in the case 1=1.

The operator //is bounded below. Choose dQ>0 such that for d^d0 we
have H+d-I^L

Lemma 4.1. Let Vj satisfy Assumption 1.1 for n=l. Let 1^1 be an integer,
Let b^l, i^l, a=vb, d^d0 and O^s^l. Then the operator pas(H+dYlws

b is
bounded and satisfies

s (4.1)

where the constant c is uniform in 1 and g^R+ satisfying (2.4).

Proof. It suffices to prove the result for s=0 and s=l, and then use com-
plex interpolation. For s=Q the estimate is obvious. For s=l the result
follows by commuting x and (H+d)'1. Due to the assumption on the coupling
constant we have

<* (4.2)

for all /I and all g satisfying the conditions in the lemma. The rest now follows
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easily. D

Theorem 4.2. Let Vj satisfy Assumption 1.1 for n^ 2. Let ^1 and
satisfy (2A\ For 1=1, • • • , n— 1 the following result holds: Let Si>/— 1/2, s2>
/— 1/2. T/zen £/zere g^zs?s cn=cre(si, s2) such that for all s>0 and b^l

l|u##M+ie; y(£))X^^-^-si-s*. (4.3)

Proof. Let z=>H-£e. Write the resolvent as 7?(z) to simplify the notation.
Iterating the first resolvent equation

R(z)=(z+d)R(-d)R(z)+R(-d)

we obtain for any integer k^l

lR(--dy. (4.4)

Let us first prove (4.3) for 1=1. It suffices to consider 51=52=5,
and prove the estimate for A^dQ. We write, using (4.4) for &=2, d^d0

wlR(z}wl=(wl(H+dylp-a
s)(ps

aR(z}ps^^^^

+ wl(R(-d) + (z+d)R(-d}z}ws
b.

The first and third factor in the first summand are estimated using Lemma 4.1.
The second factor is estimated using Theorem 2.1. We get

||M/!/?(z)M/S||^d-2^

Note a=ub. Choose p=VT and d=X to get the required estimate. The general
result is proved inductively, using the Ith power of (4.4), and estimating as
above. D

Corollary 4.3. Under the assumptions stated in Theorem 4.2 the boundary
value

exists in operator norm, and is l—l times continuously differentiate with a Holder
continuous I— 1st derivative which satisfies the estimate

bl-si-s*. (4.5)

Remark 4.4. Theorem 1.2 follows from Theorem 4.2 and Corollary 4.3.

Let <?±eC%R2m) satisfy

for all multi-indices a and /3, and furthermore
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for some o1, 0<0-<1, and v>0. Let f^S(Rm). Then <?± define pseudodifferential
operators Q* by

where / denotes the Fourier transform. The operators Q± are bounded on
L2(Z). We obtain the following results :

Theorem 4.5. Let Vj satisfy Assumption 1.1, n>fl. Let A^l and
satisfy (2.4). For 1=1, ••• , 72— 1 and s satisfying I— l/2<s<n— 1, fr^l, s>0

SMC/I

/?M±is; FteW^u/i-'ll^n*-''*. (4.6)

Theorem 4.6. Le£ F, safe's/)* Assumption 1.1, n^3. Le
(2.4). For /=!, ••• , n-2, slf s2 wzY/i (Si)_ + (sa)-<n— /, 6^1, s>0

cn=c«(Si, s2)>0 such that

+wl*\\£cnJt-l/*b-i-*. (4.7)

The proofs of Theorems 4.5 and 4.6 follow the line of those in [7], if one
keeps track of the parameter dependence of the constants in the estimates. The
details are omitted.

We conclude this section with an extension of Theorem 4.2 in the two-body
case. Let H= Ho+gV+icU, g>0, £>0, where V satisfies Assumption 1.1 for
some n0^2 on Xi=X, and U satisfies for some /3>0

d»0(£7)=sup (( \x | +l)»o-i+* | £/(*) | )< oo . (4.8)

Theorem 4.7. Let H satisfy the conditions above. There exists ^0>0 such
that for 2^o, A>(Kdn0(U)cnQ)z (the constant cno comes from Theorem 4.2), 1^
cQg, A*zdgp(V), d>l, the following results hold. For /=!, ••• , nQ— 1 let Si>l
—1/2, s2>/— 1/2. Then there exists a constant cnQ=cnQ(Si, s2)>0 such that for
all e>0

Proof. We have from Theorem 4.2 that

\\w{(
Thus we get

for /— l/2<s<n0+jS— 3/2. The conditions in the theorem on 1 ensure that the
operator
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is invertible in the weighted L2-space LZ'S(X) with an inverse whose operator
norm on that space is uniformly bounded in /I satisfying the conditions above.
We can now repeat the arguments in [9, Section 9] to get the theorem. D

§ 5. Semi-Classical Resolvent Estimates

This section contains the semi-classical resolvent estimates that are easy
consequences of our results in Section 2. We introduce H(h)=h2H'Q+V(g\ A(h)
=fiA for 0<fc^l. Note that Pl^=Pl.

Theorem 5.1. Replacing H by H(h) and A by A(fi) in Theorems 2.1, 2.2, 2.3
introduces a factor fi~l on the right hand side of the estimates (2.5), (2.6), (2.7),
(2.8), (2.9), (2.10). The constants on the right hand side of estimates (2.11) and
(2.12) are independent of fi.

Proof. Using (2.5) we find for H(h) and A(h)

The other estimates are obtained in the same manner. D

Theorem 5.2. Replacing H by H(fi) in Theorem 4.2, introduces a factor fi~l

on the right hand side of the estimates (4.3), and (4.5).

Proof. This follows from Theorem 4.2 and Corollary 4.3 as in the proof of
Theorem 5.1. D

Remark 5.3. Semi-classical resolvent estimates similar to those in Theorem
5.2 have been obtained for two-body Schrodinger operators for the energy in a
non-trapping energy interval in [20, 15, 5]. In [20] results on powers of the
resolvent have also been obtained. Note that our estimate (2.11) is stronger
than the result obtained in [20] because we use the sharp localizations PA-

% 6. Homogeneous Potentials

In this section we give a result on the a priori resolvent estimate for
—A+c\x\-v on Lz(Rm) where c^R and 0<y<min{77i/2, 2} with an explicit
estimate for all constants. This result is given to show that such results are
obtainable without too much additional effort, and to explain the method of
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proof in Section 3 by an example.
We use Mourre's differential inequality technique in the proof, but with a

choice of auxiliary operators which is different from the one made by Mourre
and in Section 3.

Theorem 6.1. Let H=-A+c\x ~v, c^R, OO<min{m/2, 2}. The following
estimate holds for all

Proof, The proof will be given in some detail. Let HQ=— A and V=c\x\~"
on L2(/Zm). As above, 4=l/2*(;c-V+7-;r:). With the restriction on v in the
theorem V is a relatively compact operator perturbation of HQ, and thus H=
HQ+V is self-adjoint with 2)(H}—3)(H^. We have as quadratic forms on the
Schwartz space :

HH, A]=2HQ+vV (6.1)

=(2-^H0+vH. (6.2)
Fix A>0 and define

(6.3)

i. e. we replace H by X in (6.2). Using [11, Proposition II. 5] we find that the
operator

exists as a bounded operator for /*£>0. We consider only /OO and s>0 below.
It satisfies

and thus

||G(e)||^-^-. (6.5)

Let w=(l+xz)~1JZ to simplify the notation from section 4, and define F(e)-
wG(e)w. We now derive the differential inequality. We use the relation

and find
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Mourre's quadratic estimate [11, Proposition II. 5] yields

Write A=x-(—iV)—im/2 and use (2—v)H0<^B*B together with Mourre's quad-
ratic estimate to get

Finally we get the differential inequality

d „,
£ — 1>V £

(6.6)
rf£ ^

||F(e)||^-^-. (6.7)

This inequality is integrated in two iterations over the interval (0, V/i) , if 0<
2<:i, and over (0, 1/VT), if !<^<oo to obtain the existence of F(0) and the
bound in the theorem. We have also used the rough estimate

V(«-l), K<5<2,

and optimized the value of d in the inequality. D

The behavior in A for large and small 1 is optimal. Notice in particular
that one obtains a decay rate OU~1/2) as ^-^oo, even though the potential has
a local singularity at zero.

The result above can be extended in several ways. We can obtain estimates
for powers of the resolvent, and we can add a bounded potential with a decay
rate O ( \ x \ ~ 2 ) as |*|-»oo and obtain the same resolvent estimates and decay in
energy at infinity as above although getting explicit constants requires somewhat
lengthy computations.

If one replaces the weight function w with (l+;t2)~s/2, s>l/2, one has to
use a number of iterations depending on the size of s—1/2. Thus one cannot
obtain explicit constants in that case. One can however investigate the 1-
dependence, and one finds analogous results.

The above result answers some questions in the paper [18]. Further results
will be given elsewhere.

§ 7. Remarks

Remark 7.1. The technique developed here can also be applied to higher
order operators. To compare with the results in [1, 13] we shall briefly com-
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ment on such results. Let HQ=p(—N), where the symbol
satisfies £(?)^c|f lm for all fe!2m. We then have f[#i, A]=mH0, and we can
repeat the arguments from the previous sections for operators H=HQ-}-V, where
V satisfies Assumption 1.1, or more generally, one can allow lower order terms
in the perturbation. Under condition (2.4) the results in Theorems 2.1, 2.2 and
2.3 remain valid for this new operator. The estimates in Theorem 4.2 are
changed, however. Lemma 4.1 requires a modification. The estimate (4.1) be-
comes

This comes from the changed estimate (4.2), which now reads

We therefore get resolvent estimates

\\wilR(A+ie°, V(g)ywl°\\^cn}(~l<im~^/mbl~Sl~S2. (7.1)

This follows as in the proof of Theorem 4.2, where we now take v=A1/m. The
power of 1 for 1=1 is the same as was found in [1, 13].

Remark 7.2. The results obtained in this paper can also be applied to some
of the potentials considered in [17], for instance the potential

V(*)=^T,

which satisfies the Assumption 1.1 for any n. Here we obtain the high energy
estimates of Theorem 4.2 and the smoothness of the boundary values of the
resolvent. In [17] a different method of proof based on a modified radiation
condition is used for the case 1=1.
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