Infinite Loop G-Spaces Associated to Monoidal G-Graded Categories

Dedicated to Professor Akio Hattori on his sixtieth birthday

By

Kazuhisa SHIMAKAWA*

Abstract

We construct a functor K_G which takes each pair of monoidal G -graded categories (D, D') to an infinite loop G-space $K_G(D, D')$. When $D' = D$, its homotopy groups $\pi_n^G K_G(D, D)$ coincide with the equivariant K-groups $K_n \text{Rep} D$ of D. Applications include the simple construction of equivariant infinite deloopings of the maps $BO(G) \rightarrow BPL(G)$ *BTop(G}* between equivariant classifying spaces.

§ 0. Introduction

Let *G* be a finite group. By a (simplicial) *G-graded category* we shall mean a (simplicial) category *D* equipped with a (simplicial) functor γ from D to G which is regarded as a category with only one object. We often identify a simplicial G-graded category *D* with its *realization rD*; a topological G-graded category such that $ob(rD)$ and mor (rD) are the geometric realizations of the simplicial sets $[k] \mapsto$ obD_k and $[k] \mapsto morD_k$ respectively.

A G-graded category *D* is said to be *monoidal* if there exist a functor (over G) $\bigoplus_D: D\times_G D \to D$, a section 0: $G \to D$, and natural isomorphisms $a \bigoplus_D (b \bigoplus_{D} c) \cong (a \bigoplus_{D} b) \bigoplus_{D} c$, $a \bigoplus_{D} b \cong b \bigoplus_{D} a$, $0 \bigoplus_{D} a \cong a$ (all simplicial in the case *D* is a simplicial G-graded category) subject to the coherence conditions similar to those for symmetric monoidal categories (cf. $[5, 22]$). Given a pair (D, D') of a monoidal G-graded category D and its G-graded subcategory D' closed under \bigoplus_D , we define a G-category *B(D,D'}* as follows:

Received May 20, 1988.

Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan.

Let *EG* be the translation category of *G* considered as a G-graded category via the projection $EG \rightarrow EG/G = G$. Take the category Hom_G(EG, D) whose objects are functors $EG \rightarrow D$ over G and whose morphisms are natural transformations. We endow $\text{Hom}_G(EG, D)$ with a G-action

$$
(g, f) \mapsto (gf: x \mapsto f(xg))
$$

for every $g \in G$ and $f \in Hom_G(EG, D)$. Then $B(D, D')$ denotes the G-stable full subcategory of $Hom_G(EG, D)$ consisting of those functors $EG \rightarrow D$ which factors through D'. Observe that if (D, D') is a pair of simplicial G-graded categories then *B(rD,rD'}* is naturally isomorphic to the realization of the simplicial G-category $\left[k \right] \mapsto B(D_k, D'_k)$. Throughout the paper we write $B(D, D') = B(rD, rD')$ for any pair of simplicial G-graded categories (D, D') .

Clearly *B(D,D')* has a structure of a symmetric monoidal Gcategory given by the G-equivariant multiplication $\bigoplus: B(D, D') \times$ $B(D, D') \rightarrow B(D, D'),$

$$
(f, f') \mapsto (f \bigoplus f' : x \mapsto f(x) \bigoplus_{D} f'(x))
$$

for every $f, f' \in B(D, D')$; hence its classifying space $|B(D, D')|$ becomes a Hopf G-space. The purpose of this paper is to construct a functor *KG* which assigns to each pair of simplicial monoidal Ggraded categories (D, D') an infinite loop G-space $K_G(D, D')$ having the same G-homotopy type as $\vert B(D, D')\vert$ when (and only when) $\vert B(D, D') \vert$ is grouplike, i.e., $\pi_0 \vert B(D, D') \vert^H$ is a group for every subgroup *H* of G. To state the results more precisely, we need further definitions.

We use the term *almost Q-G-spectrum* to mean a system *E* consisting of based G-spaces *Ev* indexed on finite dimensional real G-modules V , and basepoint preserving G -maps $e_{V,W}: S^V \diagup E_W \rightarrow E_{V \oplus W}$ satisfying the following conditions:

(a) $e_{V,V'\oplus W}(1/\langle e_{V',W}\rangle) = e_{V\oplus V',W}$ holds for all G-modules V, V' and *W,* and

(b) the adjoint $\varepsilon_{V,W}: E_W \to \Omega^V E_{V\oplus W}$ of $e_{V,W}$ is a *G*-homotopy equivalence if $W^c \neq 0$.

Note that any such *E* gives rise to a *G*-prespectrum $E_{\mathscr{A}} = \{E_{V} | V$ $\in \mathcal{A}$ indexed on any indexing set \mathcal{A} in a G-universe *U* (cf. [9]). (See also the remark at the end of Section 1.)

By the definition *QER* becomes an infinite loop G-space where *R* denotes the trivial G-module of dimension 1. Moreover, we have fixed point prespectra $E^H = \{E^H_V\}$ indexed on finite dimensional real vector spaces (with trivial *H*-action). Clearly E^H is an almost Ω spectrum in the sense that $E^H_W \simeq Q^V E^H_{V \oplus W}$ if $W \neq 0$.

Let *K* denote the functor which takes each simplicial monoidal category *C* to the prespectrum

$$
KG = S | C^* | = S(n \mapsto | C^*(n) |)
$$

where C^* is the special Γ -category constructed from C (cf. [11], [19]) and S is the Segal-Woolfson machine [17, 23] which takes each special Γ -space *A* to the almost *Q*-spectrum $SA = \{A'(S^V)/A'(\infty)\}\$ (cf. Section 1). Then the main result of the paper can be stated as follows :

Theorem A. *There is a functor KG from the pairs of simplicial monoidal G- graded categories to almost Q-G- spectra equipped with*

(a) a natural G-homotopy equivalence $K_G(D, D')_0 \rightarrow |B(D, D')|$; and

(b) natural equivalences of prespectra $K(B(D, D')^H) \to K_G(D, D')^H$ *for all subgroups H of* G.

Put $K_G(D, D') = QK_G(D, D')_R$. Then there are natural G-maps $\vert B(D, D') \vert \stackrel{i}{\longleftarrow} K_G(D, D')_0 \stackrel{\varepsilon}{\longrightarrow} K_G(D, D')$

in which *i* is a G-homotopy equivalence, and we have

Corollary. $K_G(D, D')$ is an infinite loop G-space, and $\vert B(D, D') \vert$ has the same G-homotopy type as $K_G(D, D')$ if and only if $\vert B(D, D') \vert$ is grouplike.

Let us consider the particular case $D' = D$ (so that $B(D, D') =$ Hom_G(EG, D)). Suppose D is stable, i.e., given $M \in D$ and $g \in G$, there exists an isomorphism $f: M \to N$ of grade $\gamma(f)=g$. Then, for every subgroup *H* of G, we have an equivalence of categories

 $\text{Hom}_G(EG, D)^H = \text{Hom}_G(EG/H, D) \to \text{Hom}_H(H, D \times_G H) = \text{Rep}(H, D)$

induced by the inclusion $H = EH/H \rightarrow EG/H$. Here Rep(H, D) is the category of representations of *H* by automorphisms (of the right grades) of objects of *D* (cf. [5]). Thus

Proposition. The coefficient groups $\pi_n^H K_G(D, D)$ coincide with the *equivariant K-groups* $K_nRep(H, D)$ *in the sense of* [5,22].

(More precisely we can prove that there is a natural isomorphism of Mackey functors $\pi_n^H K_G(D, D) \cong K_n \text{Rep}(H, D)$.)

As we shall see in Section 2, every symmetric monoidal G -category C is accompanied with a monoidal G-graded category $G \cap G$ such that $\text{Hom}_G (EG, GfC)$ is naturally isomorphic to the functor category **Cat** (*EG*, *C*) having the *G*-action $(g, F) \mapsto (gF: x \mapsto gF(xg))$. Most of interesting examples of monoidal G-graded categories are obtained in this way, and we shall write $K_G(C, C') = K_G(G \cap G)$ for every pair of symmetric monoidal categories (C, C') . Among the examples, we have

(1) Let $\Sigma = \bigsqcup_{n\geq 0} \Sigma_n$ be the skeletal category of finite sets and isomorphisms with symmetric monoidal structure given by disjoint union. Then K_0 **Cat**(*EG*, Σ)^{*H*} $\cong K_0$ Rep₍*H*, Σ) is the Burnside ring $A(H)$. In fact, each $| \text{Cat}(EG, \Sigma_n) |$ is a classifying space for *n*-fold G-coverings (cf. Theorem 3.1), and hence $K_G(\Sigma, \Sigma)$ is equivalent to the sphere G-spectrum.

(2) For any ring *A* we have a symmetric monoidal category $GLA=\perp\!\!\!\perp_{n\geq0} GL_nA$ equipped with the trivial *G*-action. Since $BGL_nA(G)$ $=$ $|$ Cat(*EG, GL_nA*) $|$ is a classifying space for *G-GL_nA* bundles, K_G (*GLA*, *GLA*) gives an infinite G-delooping of the G-space $K(A, G) = QB(\bigsqcup_{n\geq 0} I_n)$ $BGL_nA(G)$ defining the equivariant K-theory of A in the sense of Fiedorowicz, Hauschild and May [4].

(3) Let *k/k0* be a Galois extension of fields with finite Galois group $G = Gal(k/k_0)$. Let $V(k)$ be the category of finite dimensional vector spaces over k and isomorphisms. G acts on $V(k)$ via its action on *k*. Then there is an equivalence of categories $V(k^H) \to \mathbf{Cat}(EH,$ $W(k))^H \simeq$ **Cat**(*EG*, $V(k))^H$ (cf. [21. §5]). Thus $K_G(V(k))$, $V(k)$) contains the $non-equivation$ algebraic K -theory of each intermediate field k^H as the H -fixed point subspectrum.

As another application of the theorem, we will construct, in Section 3, a classifying space *BCATn(G}* for locally linear *G-CAT* bundles with fibre R^n for $CAT=0$, PL and Top, and show that the G-monoid $\perp_{n\geq 0} BCAT_n(G)$ can be converted into an infinite loop

G-space $BCAT(G)$ through the group completion map $||_{n\geq0} BCAT_n(G)$ $\rightarrow BCAT(G)$ (determined up to G-homotopy). By the naturality of the constructions, we can also prove that the G-maps $BO(G) \rightarrow$ $BPL(G) \rightarrow BTop(G)$ can be taken to be maps of infinite loop Gspaces. (In [16] we shall show that $BTob(G) \rightarrow BF(G)$ =group completion of $\perp_{n\geq 0} BF_n(G)$ also becomes an infinite loop G-map, where $BF_n(G)$ is a classifying space for *n*-dimensional spherical G-fibrations.)

The author wishes to thank M. Murayama for useful discussion about the subject of this work.

§ 1. rc-Spaces

In this section we introduce the notion of a special Γ_{G} -space and describe the passage from special Γ_{σ} -spaces to G-prespectra following the idea of Segal [18].

Let \mathscr{W}_G denote the category with objects all nondegenerately based G-spaces having the G-homotopy type of a based *G-CW* complex and morphisms all basepoint preserving maps (not necessarily G-equivariant). Because every element *g* of *G* acts on the morphisms of \mathscr{W}_G by conjugation, \mathscr{W}_G can be regarded as a *G*-category. Denote by Γ_G the full subcategory of all based finite G-sets having the underlying set of the form $\mathbf{n} = \{0, 1, \dots, n\}$ based at 0. Then every G-equivarint functor from Γ_G to \mathscr{W}_G is called a Γ_G -space. (Notice that our $\Gamma = \Gamma_1$ is the opposite of the original Γ of Segal [17].)

As in [23], we associate to every Γ_{G} -space *A* and based *G*-space X a topological G-category simp (X, Γ_{G}, A) defined as follows:

ob(
$$
simp(X, \Gamma_G, A)
$$
) = $\bigsqcup_{S \in \Gamma_G}$ Map₀(S, X) × A(S)
mor($simp(X, \Gamma_G, A)$) = $\bigsqcup_{S, T \in \Gamma_G}$ Map₀(T, X) × Map₀(S, T) × A(S).

Here each $(x, \xi, a) \in \text{Map}_0(T, X) \times \text{Map}_0(S, T) \times A(S)$ is regarded as a morphism from $(x\xi, a) \in \text{Map}_0(S, X) \times A(S)$ to $(x, A(\xi)a) \in \text{Map}_0(T, X)$ $\times A(T)$; the composition is given by $(y, \eta, A(\xi)a) \circ (y\eta, \xi, a) = (y, \eta\xi, a)$ a); and every element g of G acts on $\text{simp}(X, \Gamma_{\mathcal{G}}, A)$ by $g(x, \xi, a) =$ $(gxg^{-1}, g\xi g^{-1}, ga)$. Evidently the nerve of simp (X, Γ_{G}, A) coincides with the two-sided bar construction $B_*(X, \Gamma_G, A)$ in which X is regarded as a contravariant G-functor $S \mapsto \text{Map}_0(S, X)$ from Γ_G to \mathscr{W}_G . We shall write $B(X, \Gamma_G, A)$ for the classifying space of simp $(X,$ Γ_G , A). (Woolfson [23] writes $A'(X) = B(X, \Gamma, A)$ when G is the trivial group.)

Because $B_*(X, \Gamma_{\mathcal{G}}, A)$ is a proper simplicial G-space, we can apply the arguments of [10, Appendix] and get

Proposition 1.1. (a) $B(X, \Gamma_G, A)$ belongs to \mathscr{W}_G if $X \in \mathscr{W}_G$.

(b) Let $f: X \rightarrow X'$ be a G-homotopy equivalence and let $F: A \rightarrow A'$ *be a transformation of* Γ_{G} -spaces such that $F_{S}: A(S) \rightarrow A'(S)$ is a G*homotopy equivalence for every object S of TG. Then the induced map* $B(f, \Gamma_{\mathcal{G}}, F): B(X, \Gamma_{\mathcal{G}}, A) \to B(X', \Gamma_{\mathcal{G}}, A')$ is a G-homotopy equivalence.

Given a Γ_{G} -space A, we have a new Γ_{G} -space $\sigma A: S \mapsto B(S, \Gamma_{G}, A)$. Then there is a transformation of Γ_{G} -spaces $\sigma A \rightarrow A$ such that, for each $S \in \Gamma_G$, $\sigma A(S) \to A(S)$ is a G-homotopy equivalence induced by the equivalence of G-categories simp $(S, \Gamma_{G}, A) \rightarrow A(S)$ which takes each object (x, a) of simp(S, $\Gamma_{\mathcal{G}}$, A) to $A(x)a \in A(S)$ and each arrow $(x, \xi, a): (x\xi, a) \rightarrow (x, A(\xi)a)$ to the identity of $A(x\xi)a$. Following [17] let us denote by $X \otimes \sigma A$ the Γ_{G} -space

$$
S \mapsto X \otimes \sigma A(S) = \mathop{\mathop{\sqcup}\limits_{T \in \Gamma_G}} \text{Map}_0(T, X) \times \sigma A(S \wedge T) / (x \xi, a) \sim (x, \sigma A(1 \wedge \xi) a).
$$

Then there is a natural G-homeomorphism $B(X, \Gamma_{G}, A) \to X \otimes \sigma A(1)$ (cf. the proof of $[23,$ Theorem $1.5]$).

Proposition 1.2. (a) There are natural G -homotopy equivalences

$$
B(X, \Gamma_{G}, B(\cdot \wedge Y, \Gamma_{G}, A)) \xrightarrow{\quad \ \ \, } B(X \wedge Y, \Gamma_{G}, A) \\
\xleftarrow{\quad \ \ \, \cdot \, } B(Y, \Gamma_{G}, B(X \wedge \cdot, \Gamma_{G}, A))
$$

where $B(\cdot \wedge Y, \Gamma_{\mathsf{G}}, A)$ (resp. $B(X \wedge \cdot, \Gamma_{\mathsf{G}}, A)$) denotes the Γ_{G} -space $S \mapsto$ $B(S \wedge Y, \Gamma_{\mathcal{G}}, A)$ (resp. $S \mapsto B(X \wedge S, \Gamma_{\mathcal{G}}, A)$).

(b) If X and $A(0)$ are G-connected (i.e., $\pi_0 X^H = \pi_0 A(0)^H = 0$ for every subgroup *H* of G), so is $B(X, \Gamma_G, A)$.

(c) If X has the trivial G-action, then the natural map i: $B(X, \Gamma, A)$ \rightarrow B(X, Γ _G, A), induced by the evident inclusion $\Gamma \subset \Gamma$ _G, is a G-homotopy *equivalence*; that is, i^H : $B(X, \Gamma, A^H) \rightarrow B(X, \Gamma_G, A)^H$ is a homotopy

equivalence for every subgroup H of G.

Proof. Because $B(\cdot \wedge Y, \Gamma_{G}, A) = Y \otimes \sigma A$, we can define *j* to be the canonical G -map $X \otimes \sigma(Y \otimes \sigma A)$ (1) $\rightarrow X \otimes (Y \otimes \sigma A)$ (1) = $(X \wedge Y) \otimes$ $\sigma(A(1)$ (cf. [17, Lemma 3.7]). To see that *j* is a G-homotopy equivalence, let us consider the diagram

$$
B(X, \Gamma_{G}, B(\cdot \wedge Y, \Gamma_{G}, A)) \xrightarrow{j} B(X \wedge Y, \Gamma_{G}, A)
$$
\n
$$
\downarrow d
$$
\n
$$
B(X, \Gamma_{G}, S \mapsto B(Y, \Gamma_{G}, A(S \wedge \cdot))) = B((X \wedge Y) \circ \wedge, \Gamma_{G} \times \Gamma_{G}, A \circ \wedge)
$$

in which $f = B(1, \Gamma_{\rm G}$, $|F|)$ is induced by the map of $\Gamma_{\rm G}$ -spaces $|F|: |\operatorname{simp}(S/\N, \Gamma_{\mathcal{G}},A)| \to |\operatorname{simp}(Y, \Gamma_{\mathcal{G}},A(S/\mathcal{N}))|$ ($S \in \Gamma_{\mathcal{G}}$);

$$
F(S \wedge Y \xleftarrow{(s,y)} T, a \in A(T)) = (Y \xleftarrow{y} T, A((s, 1)) a \in A(S \wedge T))
$$

and $d = |A|$: $|\operatorname{simp}(X \wedge Y, \Gamma_G, A)| \rightarrow |\operatorname{simp}((X \wedge Y) \circ \wedge, \Gamma_G \times \Gamma_G, A \circ \wedge) |$ is given by

$$
\Delta(X/\hspace{-0.06cm}\wedge Y\hspace{-0.06cm}\longleftarrow^{(x,y)}T, a\hspace{-0.06cm}\in A(T)) = (X/\hspace{-0.06cm}\wedge Y\hspace{-0.06cm}\longleftarrow^{x\wedge y}T/\hspace{-0.06cm}\wedge T, A((1,1))a\hspace{-0.06cm}\in A(T/\hspace{-0.06cm}\wedge T)).
$$

Then it is easy to see that f and d are G -homotopy equivalences, and that there is a G-homotopy $dj \simeq_G f$. Therefore j becomes a G homotopy equivalence. The second arrow *k* in (a) can be constructed similarly.

(b) follows from the fact that $\text{Map}_0(S, X)$ is G-connected for all $S \in \Gamma_G$ provided X is G-connected.

We now prove (c). The G-map i: $B(X, \Gamma, A) \to B(X, \Gamma_{\mathcal{G}}, A)$ is induced by the inclusion ι : $\operatorname{simp}(X, \Gamma, A) \to \operatorname{simp}(X, \Gamma_G, A)$. Hence we have only to prove that c^H : simp $(X, \Gamma, A)^H$ = simp (X, Γ, A^H) \rightarrow $\operatorname{simp}(X,\Gamma_{\mathcal{G}},A)^H$ is an equivalence of categories for every subgroup *H* of *G*. Because *X* has the trivial *G*-action, every *H*-map $x \in Map_0$ $(S, X)^H$ can be written as a composite

$$
S \xrightarrow{q_s} H \backslash S \xrightarrow{x'} X
$$

with x' in Γ . We now define a functor $\rho : \text{simp}(X, \Gamma_G, A)^H \to \text{simp}$ (X,Γ,A^H) by

$$
\rho(x, a) = (x', A(q_S) a) \in \mathrm{Map}_0(H \backslash S, X) \times A(H \backslash S)^H
$$

for each object $(x, a) \in \text{Map}_0(S, X)$ ^{*H*} \times *A*(S)^{*H*}, and

$$
\rho(x,\xi,a) = (x',H\backslash \xi, A(q_S)a)
$$

for every arrow $(x, \xi, a) : (x\xi, a) \to (x, A(\xi)a)$ in simp $(X, \Gamma_{G}, A)^{n}$. Note that there is a commutative diagram

Clearly ρt^H = Id and there is a natural transformation Id \rightarrow $t^H \rho$ given by $(x', q_S, a) : (x, a) \mapsto (x', A(q_S)a)$ for each $(x, a) \in \text{simp } (X, \Gamma_G, A)^{\perp}.$ This proves that t^H is an equivalence of categories, and completes the proof of the proposition.

Definition 1.3. A Γ_{G} -space *A* is said to be *special* if

(a) $A(0)$ is G-contractible; and

(b) for every object *S* of Γ_{G} , the adjoint $P_{S}: A(S) \rightarrow \text{Map}_{0}(S, A(1))$ of the based G-map $S \wedge A(S) \rightarrow A(1)$, $(s, a) \mapsto A(p_s)a$ is a G-homotopy equivalence. Here $p_s \colon S \to \mathbf{1}$ denotes the based map such that $p_s(s)$ $= 1$ and $p_s(S - \{s\}) = 0$.

Given a Γ_{G} -space A and a finite dimensional real G-module V, we put

$$
S_{\mathcal{G}}A_{V} = B(S^{V}, \Gamma_{\mathcal{G}}, A) / B(\infty, \Gamma_{\mathcal{G}}, A) = S^{V} \otimes \sigma A(1) / \sigma A(0)
$$

where S^{v} denotes the onepoint compactification of V based at ∞ . Because $\sigma A(0)$ is G-contractible and the inclusion $B(\infty, \Gamma_G, A) \rightarrow$ $B(S^V, \Gamma_G, A)$ is a *G*-cofibration, the projection $B(S^V, \Gamma_G, A) \to S_G A_V$ is a G-homotopy equivalence. Furthermore it is easily checked that the $\text{inclusion} \quad S^V \times (S^W \otimes \sigma A)(1) \to S^V \times (S^W \otimes \sigma A)$ $S^{\nu \oplus \mathbb{W}} \otimes \sigma A(1)$ (cf. Proposition 1.2 (a)) induces a based G-map

$$
e_{V,W}\colon S^V\backslash S_G A_W\to S_G A_{V\oplus W}
$$

such that the equality $e_{V,V'\oplus W}(1/\langle e_{V',W}\rangle) = e_{V\oplus V',W}$ holds. Thus we have a G-prespectrum $S_G A = \{S_G A_V\}$ such that

$$
S_G A_0 = \sigma A(1) / \sigma A(0) \simeq {}_G A(1).
$$

Moreover by Proposition 1.2 (c), there are natural equivalences of prespectra

$$
f_H\colon\thinspace\mathbf S(A^H)\to (\mathbf S_GA)^H
$$

where $S(A^H)$ denotes the prespectrum $\{B(S^V, \Gamma, A^H)/B(\infty, \Gamma, A^H)\}$ constructed from the special Γ -space A^H : $\mathbf{n} \mapsto A(\mathbf{n})^H$ by the method of Woolfson [23]. (Compare the remark at the end of this section.)

The following theorem is essentially due to Segal [18].

Theorem B. Let A be a special Γ_{G} -space. Then $S_G A$ is an almost Ω -G-spectrum, that is, the maps $\varepsilon_{V.W}$: $S_G A_W \rightarrow \Omega^V S_G A_{V\oplus W}$ are G-homotopy *equivalences whenever* $W^G \neq 0$. Moreover ε : $S_G A_0 \rightarrow \Omega S_G A_R$ is a G-homotopy *equivalence if and only if* ^4(1) *is grouplike.*

We now sketch a proof of this theorem and explain why the condition (b) of Definition 1. 3 is required. (The situation was not clear in the original proof of [18, Theorem A].)

For simplicity of notation, we shall write

$$
EA(X) = B(X, \Gamma_G, A) / B(*, \Gamma_G, A)
$$

for every $X \in \mathscr{W}_G$; in particular $S_G A_V = E A(S^V)$. Because the inclusion $B(*,\Gamma_{\mathcal{G}},A) \to B(X,\Gamma_{\mathcal{G}},A)$ is a G-cofibration, $EA(X)$ has the same G-homotopy type as $B(X, \Gamma_{G}, A)$. Let us regard $EA: X \mapsto EA(X)$ as a G-equivariant functor from \mathscr{FW}_G to \mathscr{W}_G where \mathscr{FW}_G denotes the G-stable full subcategory of \mathscr{W}_G consisting of all compact $G-ANR's$. (Compare [14, Theorem 1].)

Lemma 1.4. Let A be a special Γ_{G} -space. Then EA enjoys the *following properties:*

P1. For every $X \in \mathcal{FW}_G$ and $S \in \Gamma_G$, the G-map $P_{S,X}: E\mathcal{A}(S/\X)$ \rightarrow Map₀ (S, EA (X)), induced by $S \wedge EA(S \wedge X) \rightarrow EA(X)$, (s, x) \mapsto $EA(p_s \wedge 1)x$, is a G-homotopy equivalence.

P2. If $Y \rightarrow X$ is a G-cofibration and $EA(Y)$ is grouplike under the *G*-equivariant multiplication $EA(Y) \times EA(Y) \simeq_{G} EA(Y \wedge 2) \rightarrow EA(Y)$, then $EA(Y) \to EA(X) \to EA(X/Y)$ is a G-fibration sequence.

Notice that **P1** implies the speciality of the Γ_c -space $S \mapsto EA(S \wedge X)$ for every $X \in \mathscr{FW}_G$.

Proof. By Proposition 1.2 (a) and the definition of *EA,* we have a commutative square

$$
EA(S \wedge X) \simeq_G E(T \mapsto \sigma A(S \wedge T))(X) \to E(T \mapsto A(S \wedge T))(X)
$$

\n
$$
\begin{array}{c} P_{S,X} \downarrow \downarrow \pi \\ \text{Map}_0(S, EA(X)) \simeq_G E(T \mapsto \sigma A(T)^S)(X) \to E(T \mapsto A(T)^S)(X) \end{array}
$$

in which the horizontal arrows are induced by the natural transformation $\sigma A \rightarrow A$ and π is induced by the G-homotopy equivalences $P_{S,T}$: $A(S \setminus T) \rightarrow A(T)^s = \text{Map}_0(S, A(T))$, $T \in \Gamma_G$ (cf. Definition 1.3(b)). By Proposition 1.1 (b), all the arrows except for $P_{S,X}$ are G-homotopy equivalences. Hence $P_{S,X}$ becomes a G-homotopy equivalence. This shows that PI holds.

Next, by the arguments quite similar to [23, Theorem 1.7], we see that

$$
B(Y, \Gamma_G, A) \to B(X, \Gamma_G, A) \to B(X \cup CY, \Gamma_G, A)
$$

is a G-fibration sequence if $B(Y, \Gamma_G, A)$ is grouplike. This implies that **P2** holds. (Observe that in the proof of Theorem 1. 7 of [23] the connectivity of Y is only used to ensure that $A'(Y) \to \Omega A'(SY)$ is a homotopy equivalence. Of course this follows from the weaker condition that *A' (Y}* is grouplike. See also [17, p. 296].)

Now suppose we are given a based G-map

 $\mu: X \to \text{Map}_{0}(Y, Z)$.

Then, by fuctoriality, we get a G-map

$$
\mu': X \to \text{Map}_0(EA(Y), EA(Z)).
$$

Because EA (point) = point, μ' preserves basepoints; and so defines, by adjunction, a based G-map

$$
D_{\mu}: E A(Y) \to \mathrm{Map}_0(X, E A(Z)).
$$

For example, if *S* is a based finite G-set and μ is a based G-map $S \to \text{Map}_0(S/\langle X, X\rangle, s \mapsto (p, \langle \rangle \& : S/\langle X \to 1 \rangle, X=X)$, then D_μ coincides with $P_{S,X}$: $EA(S \wedge X) \to \text{Map}_0(S, EA(X))$; and if $\mu: S^V \to \text{Map}_0(S^W,$ $S^{\nu \oplus \nu}$ is the adjoint of the identity map $S^{\nu} \wedge S^{\nu} \rightarrow S^{\nu \oplus \nu}$, then $D_{\mu} =$ $\varepsilon_{V,W}\colon\thinspace S_G A_W\to \varOmega^V S_G A_{V\oplus W}$.

Let M be a compact G -stable subset of a real G -module V , and let M_{ε} be the ε -neighborhood of M in V. Then there is a G-map

 $M \to \text{Map}(O_{\epsilon}, M_{\epsilon})$ which takes each element *m* of *M* to the map $x \mapsto m + x$ from the ε -neighborhood of the origin to M_{ε} . By the Pontryagin-Thom construction we get a based G-map

$$
\mu\colon M_{+}\to\operatorname{Map}_0(M^\mathcal{c}_\varepsilon,\mathit{O}^\mathcal{c}_\varepsilon)\cong\operatorname{Map}_0(M^\mathcal{c}_\varepsilon,\mathit{S}^V).
$$

Here, for every open subset *X* of *V, X^c* denotes the onepoint compactification of *X* based at ∞ ; i.e., $X^c = V/V - X$. Consequently we get a based G-map

$$
D_M = D_\mu: EA(M_{\varepsilon}^c) \to \mathrm{Map}_0(M_+, EA(S^V)).
$$

Lemma 1.5. ([18, Proposition (2.2)]). *Let M be the unit sphere* of V. Suppose $\Gamma^G \neq 0$ or $EA(X)$ is G-connected for every $X \in \mathscr{FW}_G$ (e.g., $A = Z \otimes \sigma A'$ for some special Γ_G -space A' and a G-connected space $Z \in \mathcal{FW}_G$. *Then DM is a G-homotopy equivalence.*

Proof. Choose an equivariant triangulation of *M* (cf. [6]), and let $\{C_{\lambda}\}_{{\lambda \in \Lambda}}$ be the covering by the open stars of open simplexes. We identify the indexing set *A* with the G-set of the barycenters of open simplexes. Moreover, by taking a refinement of the triangulation if necessary, we may assume that each C_{λ} either coincides with or is disjoint from its translate by elements of G.

Suppose ε is small compared with the minimum of the radii of the simplexes of positive dimension. Let π : $M_{\epsilon} \rightarrow M$ be the radial projection, and let $X=\bigcup_{\lambda\in T}C_{\lambda}$ be a *G*-stable union of some of the C_{λ} . Let us denote $\hat{X} = \pi^{-1}(X)$ and $\check{X} = X - (M - X)_{\varepsilon}$. Then the *G*-map $M \to \text{Map}(O_{\varepsilon}, M_{\varepsilon})$ restricts to $\check{X} \to \text{Map}(O_{\varepsilon}, \hat{X})$, so that we have a based G-map

$$
D_{X}: EA(\hat{X}^{c}) \rightarrow \mathrm{Map}_{0}(\check{X}_{+}, EA(S^{V})).
$$

We will show, by induction on the cardinal of the orbits contained in *T,* that this is a G-homotopy equivalence.

If T, is a single orbit, then the closed embedding $T=U_{\lambda\in T}$ (barycenter of λ) \rightarrow $\bigcup_{\lambda \in T} C_{\lambda}$ induces G-homotopy equivalences T_{+} \simeq α \check{X}_+ and $T_+ \wedge S^{\mathsf{V}} \simeq_{\alpha} \hat{X}^{\mathsf{c}}$. Therefore D_{X} is identified with $P_{T_+ \circ Y}$ $EA(T_+ \wedge S^V) \to \text{Map}_0(T_+, EA(S^V))$ which is a *G*-homotopy equivalence by PI.

Next let X_1 and X_2 be two G-stable unions of C_λ 's, and let $X=$

$$
X_1 \cup X_2, \ X_{12} = X_1 \cap X_2. \quad \text{Then we have a diagram}
$$
\n
$$
EA((\hat{X} - \hat{X}_1)^c) \longrightarrow EA(\hat{X}^c) \longrightarrow EA(\hat{X}^c_1)
$$
\n
$$
\parallel \qquad \qquad \downarrow \qquad \qquad \downarrow
$$
\n
$$
EA((\hat{X}_2 - \hat{X}_{12})^c) \longrightarrow EA(\hat{X}^c) \longrightarrow EA(\hat{X}^c_{12})
$$

 i nduced by the cofibration sequences $(\hat{X} - \hat{X_1})^c \rightarrow \hat{X^c} \rightarrow \hat{X_1^c} = 0$ $\hat{X}^c/(\hat{X}-\hat{X}_1)^c$ and $(\hat{X}_2-\hat{X}_{12})^c \rightarrow \hat{X}_2^c \rightarrow \hat{X}_{12}^c$. (Notice that $\hat{X}-\hat{X}_1 \rightarrow \hat{X}$ and $\hat{X}_2 - \hat{X}_{12} \rightarrow \hat{X}_2$ are closed *G*-embeddings.) Because $EA\ (\hat{X} - \hat{X}_1)^c)$ is G-connected by the assumption, the horizontal sequences in the above diagram are G-fibration sequences by P2. Therefore the square

$$
EA(\hat{X}^c) \longrightarrow EA(\hat{X}^c_1)
$$

\n
$$
\downarrow \qquad \qquad \downarrow
$$

\n
$$
EA(\hat{X}^c_2) \longrightarrow EA(\hat{X}^c_{12})
$$

is G-homotopy cartesian. Moreover the corresponding square

$$
\operatorname{Map}_0(\check{X}_+, EA(S^V)) \longrightarrow \operatorname{Map}_0(\check{X}_1+, EA(S^V))
$$

\n
$$
\downarrow \qquad \qquad \downarrow
$$

\n
$$
\operatorname{Map}_0(\check{X}_2+, EA(S^V)) \longrightarrow \operatorname{Map}_0(\check{X}_{12+}, EA(S^V))
$$

is also G-homotopy cartesian. Hence we can prove inductively that D_x , and consequently D_M , too, is a G-homotopy equivalence.

Proof of Theorem B. We will show that $EA(S^0) \to Q^VEA(S^V)$ is a G-homotopy equivalence if $A(1)$ is grouplike and $V^G \neq 0$, or if $EA(X)$ is G-connected for every $X \in \mathscr{FW}_G$. When $W^G \neq 0$, $EA(\cdot \wedge S^W) =$ $E(S^W \otimes \sigma A)$ (·) satisfies the latter condition; and so $\varepsilon_{V,W}$: $EA(S^W)$ \rightarrow $\Omega^{\nu}EA(S^{\nu\oplus W})$ is a G-homotopy equivalence for any V_a

Let *B^r* denote the closed disk of radius r in *V* and *S^r* its boundary sphere. Because $EA(S^0) \simeq_G A(1)$ is grouplike, the horizontal sequences in the diagram

$$
EA(B_{1-\epsilon} \cup S_{1+\epsilon}/S_{1+\epsilon}) \to EA(B_{1+\epsilon}/S_{1+\epsilon}) \to EA(B_{1+\epsilon}/B_{1-\epsilon} \cup S_{1+\epsilon})
$$

\n
$$
\downarrow p_{B_1} \qquad \qquad \downarrow p_{S_1}
$$

\n
$$
\text{Map}_0(B_1/S_1, EA(S^V)) \to \text{Map}_0(B_{1+\epsilon}, EA(S^V)) \to \text{Map}_0(S_{1+\epsilon}, EA(S^V))
$$

are G-fibration sequences. By Lemma 1. 5, *D^s* is a G-homotopy equivalence and D_{B_1} is trivially a G-homotopy equivalence. Therefore

the induced map $EA(S^0) \simeq_G EA(B_{1-\varepsilon} \cup S_{1+\varepsilon}/S_{1+\varepsilon}) \to Q^VEA(S^V)$ is a G homotopy equivalence. This completes the proof of Theorem *B.*

Remark. (Cf. [9, Chapters I and II].) Let $G\mathcal{P}\mathcal{A}$ (resp. $G\mathcal{P}\mathcal{A}$) denote the category of G-prespectra (resp. G-spectra) indexed on a indexing set $\mathscr A$ in some G-universe U. Then our $S_G A$ canonically defines a G-prespectrum $S_G A_{\mathscr{A}} = \{ EA(S^V) \mid V \in \mathscr{A} \} \in G\mathscr{S}\mathscr{A}$ with the structure maps $S^{W-V}EA(S^V) \to EA(S^{(W-V)\oplus V}) \cong EA(S^W)$, and also the associated G-spectrum $LS_CA \in G\mathscr{S}\mathscr{A}$. By [9, Chapter II] any Glinear isometry $f: U \rightarrow U'$ between G-universes induces an equivalence $f^*: G\mathscr{S}U' \to G\mathscr{S}U$ and hence $G\mathscr{S}A \cong G\mathscr{S}U$ is equivalent to $G\mathscr{S}A'$ for another indexing set \mathscr{A}' in U' . In particular we see that the $prespectrum (S_GA)^H_{st} = S(A^H)_{st}$ indexed on any $\mathscr A$ in a *H*-trivial universe *U^H* becomes equivalent, upon passage to stable category, to the usual prespectrum $\{E(A^H)(S^n)\}$ indexed on the standard *n*-spaces $R^n\subset R^{\infty}$.

§2. Proof of Theorem A

We now prove Theorem A. Thanks to Theorem B, it suffices to construct a functor which assigns to every (D, D') a special Γ_{G} -space such that the associated H -fixed point Γ -space coincides with the T-space arising from $B(D, D')^H$.

First recall the passage from symmetric monoidal categories to special F-categories (cf. [11], [19]). Given a monoidal category C, we have a Γ -category C^* such that, for each $\mathbf{n} \in \Gamma$, the objects of $C^{\wedge}(\mathbf{n})$ are of the form $\langle a_{U}, a_{U,V} \rangle$ in which a_{U} is an object of C for every based subset U of **n**, and $\alpha_{U,V}$ is an isomorphism $a_{U\vee V} \rightarrow a_U$ $\bigoplus a_v$ for every pair of subsets U, $V \subset \mathbf{n}$ with $U \cap V = \{0\}$. Here $a_{(0)} = 0 \in C$ and the evident coherence conditions between $\alpha_{U,V}$'s (i.e., associativity, commutativity, and unit axioms) must be satisfied. When C is a symmetric monoidal G-category, the above construction of C^* can be extended to give a Γ ^{*G*}-category, i.e., a *G*-equivariant functor from Γ_G to the category Cat_G of based G-categories and basepoint preserving functors: For every finite G-set *S* with underlying set n, $C^*(S)$ is defined to be the category $C^*(\mathbf{n})$ equipped with a G-action

252 KAZUHISA SHIMAKAWA

$$
g\langle a_{\mathbf{U}}; \ \alpha_{\mathbf{U},\mathbf{V}}\rangle = \langle g a_{\mathbf{g}}^{-1} \mathbf{U}; \ g \alpha_{\mathbf{g}}^{-1} \mathbf{U}, \mathbf{g}^{-1} \mathbf{V}\rangle.
$$

Then, for every $f: S \to T$ in Γ_{G} , we have $A(gfg^{-1}) = gA(f)g^{-1}$ where $A(f)$ denotes the functor $C^*(S) \to C^*(T)$, $\langle a_{U,V} \rangle \mapsto \langle a_{f^*U}, a_{f^*U,f^*V} \rangle$ $(f^*U = \{0\} \cup f^{-1}(U - \{0\}))$ induced by f.

Note that, if C is the realization of a simplicial monoidal G category, then $|C^*(S)| \in \mathscr{W}_G$ because $C^*(S)$ is obtained as the realization of the simplicial G-category $[k] \mapsto C_k^*(S)$. Thus we have a Γ_{G} -space $S \mapsto |G^{\sim}(S)|$ such that the associated $|\Gamma$ -spaces $\mathbf{n} \mapsto |G^{\sim}(\mathbf{n})|^{H}$ $= |C^{\wedge}(\mathbf{n})^H|$ coincide with the Γ -spaces $|(C^H)^{\wedge}|$ arising from the (simplicial) monoidal categories *C^H .* However we do not know, in general, whether this $|C^*|$ is special or not.

Definition 2.1. A Γ_{G} -category $F: \Gamma_{G} \rightarrow \textbf{Cat}_{G}$ is said to be *special* if *F* is obtained as the realization of a simplicial Γ_c -category, and satisfies the following conditions

(a) $F(0) = \text{point}$; and

(b) for every $S \in \Gamma_G$, the *G*-functor $P_S : F(S) \to F(1)^S = \text{Cat}_G(S)$, $F(1)$) induced by $S \wedge F(S) \mapsto F(1)$, $(s, x) \mapsto F(p_s) x$ is an equivalence of G-categories. (Compare Definition 1.3.)

If F is a special Γ_{G} -category, then $|F|: S \mapsto |F(S)|$ is a special Γ_{G} -space; and so we have an almost Ω -G-spectrum $S_G|F|$.

Proposition 2.2. Let (D, D') be a pair of simplicial monoidal G*graded categories.* Then $B(D, D')$ is a special Γ_c -category.

Of course Theorem A follows from this proposition: We define $K_G(D, D') = S_G |B(D, D')|$. Then there are a natural *G*-homotopy equivalence

$$
K_G(D, D')_0 \to |B(D, D') \wedge (1)| = |B(D, D')|
$$

and natural equivalences of prespectra

$$
\begin{aligned} K(B(D, D')^H) &= S \, \vert \, (B(D, D')^H) \, \uparrow \vert \\ &\rightarrow \, (S_G \, \vert B(D, D') \, \uparrow \, \vert)^H = K_G(D, D')^H \end{aligned}
$$

for all subgroups *H* of *G.*

Proof of Proposition 2.2. For simplicity, write *C = B(D,D'}* and

 $\bigoplus = \bigoplus_D$. We define an adjoint $T_s: C^s = C^{\wedge}(1)^s \to C^{\wedge}(S)$ of P_s as follows.

Let $a = (a_s)$ be an object of C^s . Each a_s is a functor $EG \to D'$ over G and particularly $a_0: EG \to G \to D'$ has value $0 \in D'$. For each $x \in G$ and every based ordered subset $U = \{0, u_1, \ldots, u_r\} \subset S$, $0 \le u_1$ $\langle \cdots \langle u_r, w \rangle$ we write

$$
a'_{U}(x) = 0 \oplus a_{x^{-1}v_{1}}(x) \oplus \cdots \oplus a_{x^{-1}v_{r-1}}(x) \oplus a_{x^{-1}v_{r}}(x)
$$

\n
$$
= 0 \oplus (a_{x^{-1}v_{1}}(x) \oplus (\cdots \oplus (a_{x^{-1}v_{r-1}}(x) \oplus a_{x^{-1}v_{r}}(x)) \cdots))
$$

where $\{0, v_1, \ldots, v_r\} = xU \subset S$, $0 \le v_1 \le \cdots \le v_r$. Since *D* is a monoidal G-graded category, there is an isomorphism (of grade 1)

$$
\rho_U = \rho_U(x): a'_U(x) \to 0 \oplus a_{u_1}(x) \oplus \cdots \oplus a_{u_r}(x).
$$

uniquely determined by the permutation of $U - \{0\}$, $u_j \mapsto x^{-1}v_j$ ($1 \leq j$ $\leq r$). Then, for every U, $V \subset \mathbf{n}$ with $U \cap V = \{0\}$, we have an isomorphism

$$
\alpha'_{U,V}(x): a'_{U\vee V}(x) \to a'_{U}(x) \bigoplus a'_{V}(x)
$$

such that $(\rho_U \bigoplus \rho_V) \alpha'_{U,V}(x) \rho_{U \vee V}^{-1}$ coincides with the uniquely determined isomorphism

$$
0 \oplus a_{w_1}(x) \oplus \cdots \oplus a_{w_{r+s}}(x) \to (0 \oplus a_{u_1}(x) \oplus \cdots \oplus a_{u_r}(x)) \oplus (0 \oplus a_{v_1}(x) \oplus \cdots \oplus a_{v_s}(x))
$$

where $U = \{0, u_1, \ldots, u_r\}$, $V = \{0, v_1, \ldots, v_s\}$ and $U \setminus V = \{0, w_1, \ldots, w_{r+s}\}$ $(0 \lt u_1 \lt \cdots \lt u_r, 0 \lt v_1 \lt \cdots \lt v_s, 0 \lt w_1 \lt \cdots \lt w_{r+s}).$

Similarly for every arrow $f: x \rightarrow y$ in EG, $a'_U(f): a'_U(x)$ of the same grade as f , is uniquely determined by the commutativity of the diagram

$$
a'_{U}(x) \xrightarrow{\rho_{U}} 0 \oplus a_{u_{1}}(x) \oplus \cdots \oplus a_{u_{r}}(x)
$$

\n
$$
a'_{U}(f) \qquad \qquad \downarrow 0 \oplus a_{u_{1}}(f) \oplus \cdots \oplus a_{u_{r}}(f)
$$

\n
$$
a'_{U}(y) \xrightarrow{\rho_{U}} 0 \oplus a_{u_{1}}(y) \oplus \cdots \oplus a_{u_{r}}(y).
$$

It is a routine exercise to show that $a'_U: x \mapsto a'_U(x)$ is an object of C and $\alpha'_{U,V}(x): a'_{UV}(x) \to a'_{U}(x) \oplus a'_{V}(x)$ is natural in x. Thus we have an object

$$
T_S a = \langle a'_U; \ \alpha'_{U,V} \rangle \in C^{\wedge}(S).
$$

Clearly the construction of $T_S a$ is natural in a , and we get a fuctor T_s : $C^s \rightarrow C^{\wedge}(S)$.

We will show that *T^s* is G-equivariant. Let *g* be an element of $G.$ Then

$$
g(T_S a) = \langle g a'_{g^{-1}U}; g \alpha'_{g^{-1}U,g^{-1}V} \rangle,
$$

and we have

$$
g a'_{g^{-1}U}(x) = a'_{g^{-1}U}(xg)
$$

= 0 $\bigoplus a_{g^{-1}x^{-1}v_1}(xg) \bigoplus \cdots \bigoplus a_{g^{-1}x^{-1}v_r}(xg)$
= 0 $\bigoplus (ga)_x^{-1}v_1(x) \bigoplus \cdots \bigoplus (ga)_x^{-1}v_r(x)$
= $(ga)'_U(x)$

because (xg) $(g^{-1}U) = xU = \{0, v_1, \ldots, v_r\}$. Moreover it is easily checked that $g\alpha'_{g^{-1}U,g^{-1}V}$ coincides with $(ga)'_{U\vee V} \rightarrow (ga)'_{U} \oplus (ga)'_{V}$. Therefore the functor T_s is G -equivariant.

Evidently *PSTS* is the identity of *C^s .* On the other hand, the natural transformation $\langle t_U \rangle$: $\langle a_U; a_{U,V} \rangle$ \rightarrow $T_sP_s \langle a_U; a_{U,V} \rangle$ given by the composite isomorphisms

$$
t_{U}(x): a_{U}(x) \xrightarrow{\alpha} 0 \oplus a_{u_{1}}(x) \oplus \cdots \oplus a_{u_{r}}(x)
$$

$$
\xrightarrow{\rho_{U}^{-1}} 0 \oplus a_{x^{-1}\nu_{1}}(x) \oplus \cdots \oplus a_{x^{-1}\nu_{r}}(x),
$$

where a_{μ} denotes $a_{(0,\mu)}$ for every $u \in U$, is compatible with the G-action on $C^*(S)$. It follows that P_S is an equivalence of G-categories.

We now state, in view of future applications, an immediate consequence of Theorem A.

Recall that the Grothendieck construction (cf. [20]) converts a (simplicial) monoidal G -category C into a (simplicial) monoidal G graded category G/C which has

(a) the same objects as C_i ;

(b) the pairs $\langle g, f \rangle$ with $f: ga \rightarrow b$ in C as morphisms $a \rightarrow b$ of grade *g',* and

(c) the unique multiplication $\bigoplus_{G} f_C : G \mathcal{J} C \times_G G \mathcal{J} C \to G \mathcal{J} C$ such that, for every pair of morphisms $\langle g, f \rangle: a \to b$ and $\langle g, f' \rangle: a' \to b'$ of the same grade g , the following holds:

$$
\langle g, f \rangle \oplus_{\mathsf{G} f} \langle g, f' \rangle = \langle g, f \oplus_{\mathsf{C}} f' \rangle: a \oplus_{\mathsf{G} f} \mathsf{C} a' \to b \oplus_{\mathsf{G}} \mathsf{C} b'.
$$

Observe that $G \cap C$ becomes the product G-graded category $G \times C$ if C has the trivial G-action.

Given a pair of monoidal G-categories (C, C') , let us denote by $B_G(C, C')$ the full subcategory of the functor category $Cat(EG, C)$ consisting of the objects $EG \rightarrow C$ which factors through C'. Then $B_G(C, C')$ equipped with the G-action

$$
(g, f) \mapsto (gf: x \mapsto gf(xg)), \quad g \in G
$$

and the G-equivariant multiplication

$$
(f, f') \mapsto (f \oplus f' \colon x \mapsto f(x) \oplus f'(x))
$$

is naturally isomorphic to $B(G \cap G \cap G')$ under the monoidal G-functor Φ : Cat(EG, C) \rightarrow Hom_G(EG, GfC) which takes each $f: EG \rightarrow C$ to Φf : $EG \rightarrow G \int G$;

$$
\Phi f(x) = xf(x) \qquad (x \in \text{ob}EG = G),
$$

$$
\Phi f(x \to gx) = \langle g, \, gxf(x \to gx) \rangle: \Phi f(x) \to \Phi f(gx).
$$

Hence we have

Theorem A'. *KG restricts, via the Grothendieck construction, to a functor from the pairs of simplicial monoidal G-categories to almost Q-Gspectra equipped with*

(a) a natural G-homotopy equivalence $K_G(C, C')_0 \rightarrow |B_G(C, C')|$, and

(b) natural equivalences of prespectra $K(B_G(C, C')^H) \to K_G(C, C')^H$ *for all subgroups H of G.*

 $|B_G(C, C')|$ has the same G-homotopy type as the infinite loop G-space $K_G(C, C') = QK_G(C, C')_R$ *if and only if* $|B_G(C, C')|$ *is grouplike.*

Remark. Our approach to Theorem A was based on Γ_{G} -spaces. There is another approach based on *E^* G-operads [9],

Let $\tilde{\mathcal{D}}_j = \text{Hom}_G(EG, G \times E\Sigma_j) = \text{Cat}(EG, E\Sigma_j)$ and let \mathcal{D}_j be the Gspace $\lvert \tilde{\mathscr{D}}_1 \rvert$. By Theorem 3.1 (see also [15])

$$
\mathcal{D}_j \to \mathcal{D}_j/\Sigma_j = |\text{Cat}(EG, \Sigma_j)|
$$

is a universal $G-\Sigma_j$ bundle, and there are G-maps

$$
\gamma\colon \mathscr{D}_k\times\mathscr{D}_{j_1}\times\cdots\times\mathscr{D}_{j_k}\to\mathscr{D}_j, \quad j=j_1+\cdots+j_k
$$

256 KAZUHISA SHIMAKAWA

induced by the functors $\tilde{\tau}$: $E\Sigma_k \times E\Sigma_{j_1} \times \cdots \times E\Sigma_{j_k} \to E\Sigma_j$;

 $\tilde{\mathcal{J}}(\sigma;\tau_1,\ldots,\tau_k)=\tau_{\sigma^{-1}(1)}\bigoplus\cdots\bigoplus\tau_{\sigma^{-1}(k)}.$

(Compare [10, Lemma 4.4].) Thus we have an E_{∞} G-operad \mathscr{D} .

If *D* is a monoidal G-graded category (with strictly associative multiplication $\bigoplus = \bigoplus_D$), there is a Σ_j -equivariant functor over G

$$
(G \times E\Sigma_j) \times_{G} D^{[j]} \to D \qquad (D^{[j]} = D \times_{G^{\circ}} \cdots \times_{G} D)
$$

which takes each object $(\tau; x_1,\ldots,x_j)$ of $(G \times E\Sigma_j) \times_G D^{[j]}$ to $x_{\tau^{-1}(1)} \oplus$ $\cdots \bigoplus x_{\tau^{-1}(i)} \in D$ (cf. [10, Lemma 4.3]). This induces a Σ_i -equivariant G-functor $\tilde{\mathscr{D}}_i \times B(D, D')^i \to B(D, D')$ for every pair of monoidal Ggraded categories (D, D') , and hence we have a natural action

 $\mathscr{D}_i \times |B(D, D')|^i \rightarrow |B(D, D')|$

of the E_{∞} G-operad $\mathscr D$ on $|B(D, D')|$.

§3. Equivariant Classifying Spaces

We now apply our theorems to deloop the maps $BO(G) \rightarrow BPL(G)$ $\rightarrow BTop(G)$ equivariantly and infinitely.

To begin with, we shall describe a functorial construction of the classifying space for equivariant bundles. Let *A* be a topological group, and let $\eta = \eta_A : UA \rightarrow BA$ be a universal principal A-bundle. We assume here that $(A,1)$ is a strong NDR (e.g., the realization of a simplicial group) and take $\vert EA \vert \rightarrow \vert A \vert$ as our universal bundle unless otherwise stated. Then there is a new bundle $\langle \eta, \eta \rangle$: $\langle UA, UA \rangle$ $\rightarrow BA \times BA$ whose fibre $\langle \eta, \eta \rangle^{-1}(x, y)$ over $(x, y) \in BA \times BA$ consists of all admissible maps $\eta^{-1}(x) \to \eta^{-1}(y)$; so that $\langle \eta, \eta \rangle^{-1}(x, y) \cong A$. (Compare [2] as well as [13].) It is easy to see that the maps

$$
s = pr_1 \circ \langle \eta, \eta \rangle
$$
, $t = pr_2 \circ \langle \eta, \eta \rangle : \langle UA, UA \rangle \rightarrow BA$

and

 $i: BA \rightarrow \langle UA, UA \rangle$, $i(x) = id \in \langle \eta, \eta \rangle^{-1}(x, x)$

together with the evident composition

 \circ : $\langle UA, UA \rangle \times_{BA} \langle UA, UA \rangle \rightarrow \langle UA, UA \rangle$

define a topological category (with trivial G -action) $\mathscr{G}A$ such that $ob\mathscr{G} A = BA$ and mor $\mathscr{G} A = \langle UA, UA \rangle$.

Theorem 3.1. Let A be the realization of a simplicial group and A' *a subgroup of A. Then, for any compact Lie group* G, $\vert B_G(\mathcal{G} A, \mathcal{G} A') \vert$ is a classifying space for $G-(A, A')$ bundles in the sense of $\lceil 8 \rceil$. If G *is a finite group,* $|B_G(A, A')|=|B_G(EA/A, EA'/A')|$ *is also a classifying space for G-(A,A') bundles.*

(For a generalization of this theorem, see [15].)

Proof. There is a category $\mathscr{S}A$ with

$$
ob\mathscr{S}A=UA, \; mor\mathscr{S}A = \langle UA, \; UA \rangle \times_{BA} UA = \{(\phi, \; a) \; | \; s(\phi) = \eta(a)\},
$$

and with structure maps $s(\phi, a) = a$, $t(\phi, a) = \phi(a)$, $i(a) = (id_{\eta(a)}, a)$, $(\phi, \psi(a)) \circ (\psi, a) = (\phi \psi, a)$. Let $\pi: \mathbf{Cat}(EG, \mathcal{S} A) \to \mathbf{Cat}(EG, \mathcal{S} A)$ denote the G-functor induced by the projection $\mathscr{S} A \rightarrow \mathscr{G} A = \mathscr{S} A/A$, (ψ, a) $\mapsto \phi$. We will show that $|\pi^{-1}B_G(\mathscr{G} A, \mathscr{G} A')| \to |B_G(\mathscr{G} A, \mathscr{G} A')|$ is a universal $G-(A, A')$ bundle. Observe that $\pi^{-1}B_G(\mathscr{G} A, \mathscr{G} A')$ coincides with $B_G(\mathscr{S}A, \mathscr{S}A' \times_{A'} A)$. For simplicity of notation, write $E = \pi^{-1}$ $B_G(\mathscr{G}A, \mathscr{G}A')$ and $B=B_G(\mathscr{G}A, \mathscr{G}A')$. Then, for every element $f=$ $(f_n \leftarrow \cdots \leftarrow f_1 \leftarrow f_0)$ of $N_n B$, we have a representation $\alpha(f) : H \rightarrow A$ $(H = G_f)$ defined by

$$
\alpha(f)(h) = (f_0(1 \to h) : f_0(1) \to f_0(h) = f_0(1))
$$

\n
$$
\in \langle \eta_A, \eta_{A'} \rangle^{-1} (f_0(1), f_0(1)) = A',
$$

and $\pi^{-1}Gf \to Gf = G/H$ is $G-A$ equivalent to the trivial $G-A$ bundle $G \times_H A_{\alpha(f)} \rightarrow G/H$. Clearly this extends to a local trivialization of $N_nE \to N_nB$, and in fact we can prove that $|E| \to |B|$ is a numerable $G-(A, A')$ bundle. (For details see [15].)

We now prove that $|E| \rightarrow |B|$ satisfies the condition (1) and (2) of [8, Theorem 6] for every representation $\rho: H \to A'$. Let us consider $|E|$ as an *H*-space under the action $a \mapsto ha\rho(h)^{-1}$. Since $UA \rightarrow BA$ is a universal A-bundle, there exists a bundle map (\tilde{f} , f): $(G \times_H A_\rho, G/H) \rightarrow (UA, BA)$ and the *G*-action on $G \times_H A_\rho$ determines a functor $F: EG \to \mathscr{G}A$; $F(x) = f(xH)$, $F(x \to gx) = (g: \eta^{-1}(f(xH))$ $\rightarrow \eta^{-1}(f(gxH))\in \langle UA, UA \rangle$. Evidently *F* belongs to $B_G(\mathscr{G}A, \mathscr{G}A')$ and the lift \tilde{F} : $EG \rightarrow \mathscr{S} A$ of *F* given by $\tilde{F}(x) = \tilde{f}[x, 1]$ and $\tilde{F}(x \rightarrow$ $gx = (F(x \rightarrow gx), \tilde{f}[x, 1]) \in \langle UA, UA \rangle \times_{BA}UA$ is invariant under the *H*-action on *E*. Hence $|E|^H \neq \emptyset$. Moreover, since $\mathscr{S}A$ has a unique

morphism between each pair of its objects, $|E|$ is *H*-contractible to any vertex of $\vert E\vert^H$. Hence, by [8, Theorem 6], $\vert E\vert\to\vert B\vert$ becomes a universal *G-(A,A')* bundle.

When G is finite, every trivial G-A bundle $G \times_H A_\rho \to G/H$ is in fact a trivial A -bundle, and so classified by the constant map $G/H \to *$. It follows that $|\pi^{-1}B_G(A, A')|\to |B_G(A, A')|$ is also a universal $G-(A, A')$ bundle. Here π denotes the G-functor Cat(EG, EA) \rightarrow **Cat** (*EG, A*) induced by the projection $EA \rightarrow EA/A = A$ and $\pi^{-1}B_G(A, A')$ is identical with $B_G(EA, EA' \times_{A'} A)$.

In particular, take the simplicial group $CAT_n = O_n$ or PL_n or Top_n as *Ay* and the discrete group *GLn* as *A'.* (Compare [7]. Note that *GL*_n is the 0-skeleton of O_n , and in fact $GL_n = O_n \cap PL_n$ in Top_n ; cf. [1, p. 216].) Then we have a classifying space

$$
BCAT_n(G) = |B_G(\mathcal{G} \, CAT_n, \mathcal{G} \, GL_n)|
$$

for locally linear *G-CAT* bundles with fibre *Rⁿ .* However, from the viewpoint of smoothing theory, there is a need to construct a G fibration $BO_n(G) \to BPL_n(G)$, and $|B_G(\mathcal{G}O_n, \mathcal{G}GL_n)|$ is not adequate for this purpose. Therefore we replace $\left|B_G(\mathscr{G}O_n, \mathscr{G}GL_n) \right|$ by an equivalent G-space defined as follows: (Compare [7, §3].)

Let PD_n be the simplicial set whose k -simplexes are fibre preserving *p. d.* homeomorphisms $A_k \times (R^n, 0) \to A_k \times (R^n, 0)$. Then PD_n admits a left free PL_n -action $(h, f) \mapsto fh^{-1}, (h, f) \in PL_n \times PD_n$, and a right free O_n -action $(f, k) \mapsto k^{-1}f, (f, k) \in PD_n \times O_n$. Now consider the G-map $UPL_n(G) \times_{PL_n} PD_n \to UPL_n(G) \times_{PL_n} PD_n/O_n$ induced by the projection $PD_n \to PD_n/O_n$ where $UPL_n(G) = |B_G(\mathcal{S}PL_n, \mathcal{S}GL_n \times_{GL_n} PL_n)|$ is the total space of the universal $G-(PL_n, GL_n)$ bundle we have constructed in the proof of Theorem 1. Because the inclusion $PL_n \rightarrow$ *PD_n* is a homotopy equivalence, $UPL_n(G) \times_{PL_n} PD_n \cong {_G}UPL_n(G)$ becomes a total space of a universal $G-(O_n, GL_n)$ bundle over $UPL_n(G) \times_{PL_n}$ PD_n/O_n . From now on we write $BO_n(G) = UPL_n(G) \times_{PL_n} PD_n/O_n =$ $\vert B_G(g' O_n, \mathcal{G}'GL_n)\vert$ where

 $\mathscr{L}'O_n = \mathscr{L}PL_n \times_{PL} PD_n/O_n$ and $\mathscr{L}'GL_n = \mathscr{L}GL_n \times_{GL_n} PD_n/O_n$.

Then there are G-fibrations $BO_n(G) \to BPL_n(G)$ induced by the projection $(\mathscr{S}PL_n\times_{PL_n}PD_n/O_n, \mathscr{S}GL_n\times_{GL_n}PD_n/O_n) \to (\mathscr{S}PL_n, \mathscr{G}GL_n)$ and

 $BPL_n(G) \rightarrow BTop_n(G)$ induced by the evident inclusion ($\mathscr{G}PL_n$, $\mathscr{G}GL_n$) \rightarrow (G Top_n, G GL_n).

Remark. Since *G* is a finite group, we can take much smaller *G*space $\vert B_G(CAT_n, GL_n) \vert$ (or $\vert B_G(EPL_n \times_{PL} PD_n/O_n, EGL_n \times_{GL_n} PD_n/O_n) \vert$ when $CAT_n = O_n$ as our $BCAT_n(G)$ (cf. Theorem 3.1). All the arguments below are valid for this choice of $BCAT_n(G)$ with $\mathscr{S}CAT_n$ and *&CATn* replaced by *ECATn* and *CATn* respectively.

Let us denote by *(CAT, GL)* the pair of simplicial categories

$$
\langle \bigsqcup_{n\geq 0} \mathcal{G}'O_n, \bigsqcup_{n\geq 0} \mathcal{G}'GL_n \rangle \quad \text{if } CAT=O,
$$

$$
\langle \bigsqcup_{n\geq 0} \mathcal{G} CAT_n, \bigsqcup_{n\geq 0} \mathcal{G}GL_n \rangle \quad \text{if } CAT=PL \text{ or } Top.
$$

We make *(CAT, GL)* into a pair of symmetric monoidal categories by defining the multiplication $CAT \times CAT \rightarrow CAT$ as follows:

For every pair of integers *m* and *n,* there is a simplicial map \bigoplus : $Top_m \times Top_n \rightarrow Top_{m+n}$ which assigns to every $(x, y) \in Top_m \times Top_n$ the Whitney sum $x \oplus y \in Top_{m+n}$. Here we use the standard identification $R^m \times R^n = R^{m+n}$. Clearly \bigoplus restricts to $PD_m \times PD_n \to PD_{m+n}$, $PL_m \times PL_n \rightarrow PL_{m+n}$, $O_m \times O_n \rightarrow O_{m+n}$, $GL_m \times GL_n \rightarrow GL_{m+n}$, and also induces $PD_m/O_m \times PD_n/O_n \rightarrow PD_{m+n}/O_{m+n}$ (cf. [7, §4]). Since $\mathscr S$ (and hence $\mathscr G$) is compatible with the product of bundles, we get the functors

$$
\mathcal{G}^{\prime}O_{m}\times\mathcal{G}^{\prime}O_{n}\rightarrow\mathcal{G}^{\prime}O_{m+n} \text{ and } \mathcal{G}CAT_{m}\times\mathcal{G}CAT_{n}\rightarrow\mathcal{G}CAT_{m+n}
$$

(*CAT*=*PL* or *Top*) which restrics to $\mathscr{G}'GL_m \times \mathscr{G}'GL_n \to \mathscr{G}'GL_{m+n}$ and $\mathscr{G}GL_n\times \mathscr{G}GL_n\to \mathscr{G}GL_{m+n}$ respectively. Therefore we have a multiplication $CAT \times CAT \rightarrow CAT$ with respect to which (CAT, GL) can be regarded as a pair of symmetric monoidal categories (with strictly associative multiplication) .

Now apply Theorem A⁷ to *(CAT, GL)* and we get an infinite loop G-space

$$
BCAT(G) = K_G(CAT, GL) \quad (CAT=O, PL \text{ or } Top).
$$

Moreover the functors $(0, GL) \rightarrow (PL, GL)$ and $(PL, GL) \rightarrow (Top, GL)$, given by the projections $(\mathscr{S}PL_n\times_{PL_n}PD_n/O_n, \mathscr{S}GL_n\times_{GL_n}PD_n/O_n)$ -> ($\mathscr{G}PL_n$, $\mathscr{G}GL_n$) and inclusions ($\mathscr{G}PL_n$, $\mathscr{G}GL_n$) -> ($\mathscr{G}Top_n$, $\mathscr{G}GL_n$) respectively, are compatible with the multiplications. Thus we have

Proposition 3.2. There exist maps of infinite loop G -spaces $BO(G) \rightarrow BPL(G) \rightarrow BTop(G)$.

We finally show that the G-map

$$
\varepsilon i^{-1}: \underset{n\geq 0}{\sqcup} BCAT_n(G) \to BCAT(G)
$$

is in fact an equivariant group completion, where *i~^l* is a G-homotopy inverse of *i*: $K_G(CAT, GL)_0 \rightarrow |B_G(CAT, GL)| = \bigsqcup_{n \geq 0} BCAT_n(G)$. Let *M* denote the G-monoid $\vert \vert_{n\geq 0}$ *BCAT_n*(*G*) and identify *BCAT*(*G*) with ΩBM . If ξ : $EG \rightarrow \mathscr{G}GL_1$ is the constant functor with value $* \in BGL_n$, $\xi \in BCAT_1(G)^G$ and we get G-maps $\bigoplus \xi : BCAT_n(G) \rightarrow$ *BCAT*_{n^{+1}</sub>(G). (Equivalently \bigoplus f is the G-map induced by the inclusion</sub>} $BCAT_n(G) \subset BCAT_{n+1}(G).$ Let M_{∞} be the telescope formed from the sequence

$$
M \xrightarrow{\oplus \xi} M \xrightarrow{\oplus \xi} M \xrightarrow{\oplus \xi} \cdots.
$$

Then *M* acts on M_{∞} and we get a *G*-map $p: X=EM\times_{M}M_{\infty} \rightarrow BM$ with fibre M_{∞} at the basepoint b. Because $(M_{\infty})^H = (M^H)_{\infty}$ for every subgroup H of G, p restricts to a homology fibration $X^H \to B M^H$ with X^H contractible and with fibre $(M_\infty)^H$ at the basepoint. (Compare [12, Proposition 2].) Therefore the natural map $(M_{\infty})^H \to F(p, b)^H$ \simeq ΩBM^H is a homology equivalence, and $H_*(\Omega BM^H) \cong H_*(M^H)[\pi^{-1}]$ $(\pi = \pi_0(M^H))$. This implies that

Proposition 3.3. εi^{-1} : $\prod_{n\geq 0} BCAT_n(G) \to BCAT(G)$ is an equivariant group completion map.

Remark. In [16] we shall show that a classifying space $BF_n(G)$ for n -dimensional (locally linear) spherical G-fibrations can be constructed as follows:

Let B'_G ($\mathscr{G}F_n$, $\mathscr{G}GL_n$) be an O_G -subcategory of B_G ($\mathscr{G}F_n$, $\mathscr{G}GL_n$) (which is considered as an O_G -category $G/H \mapsto B_G(\mathcal{G} F_n, \mathcal{G} GL_n)^H$) such that, for every G-orbit $G/H \in O_G$, B'_G ($\mathscr{G}F_n$, $\mathscr{G}GL_n$) (G/H) has the same objects as $B_G(\mathscr{G}F_n, \mathscr{G}GL_n)^H$ and morphisms all natural transformations $f \to f'$ in $B_G(\mathscr{G} F_n, \mathscr{G} GL_n)^H$ which induces an H homotopy equivalence $S_{\alpha(f)}^* \to S_{\alpha(f')}^*$. Here $\alpha(f)$ denotes the representation $H \to GL_n$ associated to $f \in \text{Funct}(EG, \mathcal{G}GL_n)^H \cong \text{Funct}(EG/H,$

&GLn}. (Compare the proof of Theorem 3. 1.) Let *C* be the Elmendorf's functor [3] which converts O_G -spaces to G-spaces. Then we can show that the G-space

$$
BF_n(G) = C | B_G'(\mathcal{G} F_n, \mathcal{G} GL_n) |
$$

classifies n -dimensional spherical G-fibrations. Moreover, with minor modifications of the arguments of Sections 2 and 3, we can prove that there exist an equivariant group completion map $\perp_{n\geq 0}BF_n(G)$ $\rightarrow BF(G)$ and also an infinite loop G-map $BTop(G) \rightarrow BF(G)$. Thus we get a sequence of infinite loop G -maps $BO(G) \rightarrow BPL(G) \rightarrow BTop(G)$ $\rightarrow BF(G)$. Details will appear in [16].

References

- [1] Boardman, J. M. and Vogt, R. M., Homotopy invariant algebraic structures on topological spaces, *Lecture Notes in Math.,* 347, Springer, 1972.
- [2] Bold, A., Partitions of unity in the theory of fibrations, *Ann. of Math.,* 78 (1963), 223- 255.
- [3] Elmendorf, A.D., Systems of fixed point sets, *Trans. Amer. Math. Sac.,* 277 (1983), 275-284.
- [4] Fiedorowicz, Z., Hauschild, H. and May, J. P., Equivariant algebraic K-theory, in Algebraic K-theory, *Lecture Notes in Math.,* 967, Springer, 1982, pp. 23-80.
- [5] Fröhlich, A. and Wall, C. T. C., Foundations of equivariant algebraic K-theory, in Algebraic K-Theory and its Geometric Applications, *Lecture Notes in Math.,* 108, Springer, 1969, pp. 12-27.
- [6] Illman, S., Smooth equivariant Triangulations of G-manifolds for G a finite group, *Math. Ann.,* 233 (1978), 199-220.
- [7] Lashof, R. and Rothenberg, M., Microbundles and smoothing, *Topology,* 3 (1965), 357 -388.
- [8] \longrightarrow , G-smoothing theory, in Proc. Symp. Pure Math., 32, American Mathematical Society, 1978, pp. 211-266.
- [9] Lewis, L. G., May, J. P. and Steinberger, M., Equivariant Stable Homotopy Theory, *Lecture Notes in Math.,* 1213, Springer, 1986.
- [10] May, J. P., E_{∞} -Spaces, group completions, and permutative categories, in New Developments in Topology, *London Math. Soc. Lecture Note Series,* 11, Cambridge University Press, 1974, pp. 61-93.
- [11] , The spectra associated to permutative categories, *Topology,* 17 (1979), 225- 228.
- [12] Mcduff, D. and Segal, G. B., Homology fibrations and the "group-completion" theorem, *Invent. Math.,* 31 (1976), 279-284.
- [13] Morgan, C. and Piccinini, R., Fibrations, *Expo. Math.,* 4 (1986), 217-242.
- [14] Murayama, M., On the G-homotopy types of G-ANR's, *Publ. RIMS, Kyoto Univ.,* 18 (1982), 183-189.
- [15] Murayama, M. and Shimakawa, K., A construction of equivariant classifying bundles, in preparation.

262 KAZUHISA SHIMAKAWA

- [16] -- , Equivariant fibrations, in preparation.
- [17] Segal, G. B., Categories and cohomology theories, Topology, 13 (1974), 293-312.
- [18] \longrightarrow , Some results in equivariant homotopy theory, preprint.
- [19] Shimada, N. and Shimakawa, K., Delooping symmetric monoidal categories, *Hiroshima Math.J.,* 9 (1979), 627-645.
- [20] Thomason, R. W., Homotopy colimits in the category of small categories, *Math. Proc. Camb. Phil. Soc.,* 85 (1979), 91-109.
- [21] , The homotopy limit problem, *Contemp. Math.*, 19 (1983), 407-419.
- [22] Wall, C. T. C., Equivariant algebraic K-theory, in New Developments in Topology, *London Math. Soc. Lecture Note Series,* **11,** Cambridge University Press, 1974, pp. 111-118.
- [23] Woolfson, R., Hyper f-spaces and hyperspectra, *Quart. J. Math. Oxford,* **30** (1979), 229-255.