Infinite Loop G-Spaces Associated to Monoidal G-Graded Categories

Dedicated to Professor Akio Hattori on his sixtieth birthday

By

Kazuhisa SHIMAKAWA*

Abstract

We construct a functor K_G which takes each pair of monoidal *G*-graded categories (D, D') to an infinite loop *G*-space $K_G(D, D')$. When D'=D, its homotopy groups $\pi_n^{\alpha}K_G(D, D)$ coincide with the equivariant *K*-groups $K_n \operatorname{Rep} D$ of *D*. Applications include the simple construction of equivariant infinite deloopings of the maps $BO(G) \rightarrow BPL(G) \rightarrow BTop(G)$ between equivariant classifying spaces.

§0. Introduction

Let G be a finite group. By a (simplicial) G-graded category we shall mean a (simplicial) category D equipped with a (simplicial) functor γ from D to G which is regarded as a category with only one object. We often identify a simplicial G-graded category D with its realization rD; a topological G-graded category such that ob(rD) and mor(rD) are the geometric realizations of the simplicial sets $[k] \mapsto obD_k$ and $[k] \mapsto morD_k$ respectively.

A G-graded category D is said to be monoidal if there exist a functor (over G) $\bigoplus_D : D \times_G D \to D$, a section $0: G \to D$, and natural isomorphisms $a \bigoplus_D (b \bigoplus_D c) \cong (a \bigoplus_D b) \bigoplus_D c$, $a \bigoplus_D b \cong b \bigoplus_D a$, $0 \bigoplus_D a \cong a$ (all simplicial in the case D is a simplicial G-graded category) subject to the coherence conditions similar to those for symmetric monoidal categories (cf. [5, 22]). Given a pair (D, D') of a monoidal G-graded category D and its G-graded subcategory D' closed under \bigoplus_D , we define a G-category B(D, D') as follows:

Received May 20, 1988.

^{*} Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan.

Let EG be the translation category of G considered as a G-graded category via the projection $EG \rightarrow EG/G=G$. Take the category Hom_G(EG, D) whose objects are functors $EG \rightarrow D$ over G and whose morphisms are natural transformations. We endow Hom_G(EG, D) with a G-action

$$(g, f) \mapsto (gf: x \mapsto f(xg))$$

for every $g \in G$ and $f \in \operatorname{Hom}_G(EG, D)$. Then B(D, D') denotes the *G*-stable full subcategory of $\operatorname{Hom}_G(EG, D)$ consisting of those functors $EG \to D$ which factors through D'. Observe that if (D, D') is a pair of simplicial *G*-graded categories then B(rD, rD') is naturally isomorphic to the realization of the simplicial *G*-category $[k] \mapsto B(D_k, D'_k)$. Throughout the paper we write B(D, D') = B(rD, rD') for any pair of simplicial *G*-graded categories (D, D').

Clearly B(D, D') has a structure of a symmetric monoidal Gcategory given by the G-equivariant multiplication $\oplus : B(D, D') \times B(D, D') \to B(D, D')$,

$$(f, f') \mapsto (f \oplus f': x \mapsto f(x) \oplus_D f'(x))$$

for every $f, f' \in B(D, D')$; hence its classifying space |B(D, D')|becomes a Hopf G-space. The purpose of this paper is to construct a functor K_G which assigns to each pair of simplicial monoidal Ggraded categories (D, D') an infinite loop G-space $K_G(D, D')$ having the same G-homotopy type as |B(D, D')| when (and only when) |B(D, D')| is grouplike, i. e., $\pi_0 |B(D, D')|^H$ is a group for every subgroup H of G. To state the results more precisely, we need further definitions.

We use the term almost Ω -G-spectrum to mean a system E consisting of based G-spaces E_v indexed on finite dimensional real G-modules V, and basepoint preserving G-maps $e_{v,w}: S^v \wedge E_w \to E_{v \oplus w}$ satisfying the following conditions:

(a) $e_{V,V'\oplus W}(1 \wedge e_{V',W}) = e_{V\oplus V',W}$ holds for all G-modules V, V' and W, and

(b) the adjoint $\varepsilon_{v,w}: E_w \to \Omega^v E_{v \oplus w}$ of $e_{v,w}$ is a *G*-homotopy equivalence if $W^G \neq 0$.

Note that any such E gives rise to a G-prespectrum $E_{\mathscr{A}} = \{E_{V} | V \in \mathscr{A}\}$ indexed on any indexing set \mathscr{A} in a G-universe U (cf. [9]). (See also the remark at the end of Section 1.)

By the definition ΩE_R becomes an infinite loop *G*-space where **R** denotes the trivial *G*-module of dimension 1. Moreover, we have fixed point prespectra $E^H = \{E_V^H\}$ indexed on finite dimensional real vector spaces (with trivial *H*-action). Clearly E^H is an almost Ω -spectrum in the sense that $E_W^H \simeq \Omega^V E_{V \oplus W}^H$ if $W \neq 0$.

Let K denote the functor which takes each simplicial monoidal category C to the prespectrum

$$KC = S | C^{\uparrow} | = S(\mathbf{n} \mapsto | C^{\uparrow}(\mathbf{n}) |)$$

where C° is the special Γ -category constructed from C (cf. [11], [19]) and S is the Segal-Woolfson machine [17, 23] which takes each special Γ -space A to the almost Ω -spectrum $SA = \{A'(S^{\vee})/A'(\infty)\}$ (cf. Section 1). Then the main result of the paper can be stated as follows:

Theorem A. There is a functor K_G from the pairs of simplicial monoidal G-graded categories to almost Ω -G-spectra equipped with

(a) a natural G-homotopy equivalence $K_G(D, D')_0 \rightarrow |B(D, D')|$; and

(b) natural equivalences of prespectra $\mathbf{K}(B(D, D')^{H}) \rightarrow \mathbf{K}_{G}(D, D')^{H}$ for all subgroups H of G.

Put $K_G(D, D') = \Omega K_G(D, D')_R$. Then there are natural G-maps $|B(D, D')| \xleftarrow{i} K_G(D, D')_0 \xrightarrow{\varepsilon} K_G(D, D')$

in which i is a G-homotopy equivalence, and we have

Corollary. $K_G(D, D')$ is an infinite loop G-space, and |B(D, D')| has the same G-homotopy type as $K_G(D, D')$ if and only if |B(D, D')| is grouplike.

Let us consider the particular case D'=D (so that $B(D, D') = Hom_G(EG, D)$). Suppose D is stable, i.e., given $M \in D$ and $g \in G$, there exists an isomorphism $f: M \to N$ of grade $\gamma(f) = g$. Then, for every subgroup H of G, we have an equivalence of categories

 $\operatorname{Hom}_{G}(EG, D)^{H} = \operatorname{Hom}_{G}(EG/H, D) \to \operatorname{Hom}_{H}(H, D \times_{G} H) = \operatorname{Rep}(H, D)$

induced by the inclusion $H=EH/H \rightarrow EG/H$. Here $\operatorname{Rep}(H, D)$ is the category of representations of H by automorphisms (of the right

grades) of objects of D (cf. [5]). Thus

Proposition. The coefficient groups $\pi_n^H K_G(D, D)$ coincide with the equivariant K-groups $K_n \operatorname{Rep}(H, D)$ in the sense of [5, 22].

(More precisely we can prove that there is a natural isomorphism of Mackey functors $\pi_n^H K_G(D, D) \cong K_n \operatorname{Rep}(H, D)$.)

As we shall see in Section 2, every symmetric monoidal G-category C is accompanied with a monoidal G-graded category G
ightarrow G
ightarrow

(1) Let $\Sigma = \coprod_{n\geq 0} \Sigma_n$ be the skeletal category of finite sets and isomorphisms with symmetric monoidal structure given by disjoint union. Then $K_0 \operatorname{Cat}(EG, \Sigma)^H \cong K_0 \operatorname{Rep}(H, \Sigma)$ is the Burnside ring A(H). In fact, each $|\operatorname{Cat}(EG, \Sigma_n)|$ is a classifying space for *n*-fold *G*-coverings (cf. Theorem 3.1), and hence $K_G(\Sigma, \Sigma)$ is equivalent to the sphere *G*-spectrum.

(2) For any ring A we have a symmetric monoidal category $GLA = \coprod_{n\geq 0} GL_n A$ equipped with the trivial G-action. Since $BGL_n A(G)$ = $|\operatorname{Cat}(EG, GL_n A)|$ is a classifying space for G- $GL_n A$ bundles, $K_G(GLA, GLA)$ gives an infinite G-delooping of the G-space $K(A, G) = \mathcal{Q}B(\coprod_{n\geq 0} BGL_n A(G))$ defining the equivariant K-theory of A in the sense of Fiedorowicz, Hauschild and May [4].

(3) Let k/k_0 be a Galois extension of fields with finite Galois group $G = \text{Gal}(k/k_0)$. Let V(k) be the category of finite dimensional vector spaces over k and isomorphisms. G acts on V(k) via its action on k. Then there is an equivalence of categories $V(k^H) \rightarrow \mathbb{C}\text{at}(EH,$ $V(k))^H \simeq \mathbb{C}\text{at}(EG, V(k))^H$ (cf. [21.§5]). Thus $K_G(V(k), V(k))$ contains the (non-equivariant) algebraic K-theory of each intermediate field k^H as the H-fixed point subspectrum.

As another application of the theorem, we will construct, in Section 3, a classifying space $BCAT_n(G)$ for locally linear G-CATbundles with fibre \mathbb{R}^n for CAT=O, PL and Top, and show that the G-monoid $\coprod_{n\geq 0} BCAT_n(G)$ can be converted into an infinite loop

G-space BCAT(G) through the group completion map $\coprod_{n\geq 0} BCAT_n(G)$ $\rightarrow BCAT(G)$ (determined up to G-homotopy). By the naturality of the constructions, we can also prove that the G-maps $BO(G) \rightarrow$ $BPL(G) \rightarrow BTop(G)$ can be taken to be maps of infinite loop Gspaces. (In [16] we shall show that $BTop(G) \rightarrow BF(G) =$ group completion of $\coprod_{n\geq 0} BF_n(G)$ also becomes an infinite loop G-map, where $BF_n(G)$ is a classifying space for *n*-dimensional spherical G-fibrations.)

The author wishes to thank M. Murayama for useful discussion about the subject of this work.

§1. Γ_{g} -Spaces

In this section we introduce the notion of a special Γ_{G} -space and describe the passage from special Γ_{G} -spaces to G-prespectra following the idea of Segal [18].

Let \mathscr{W}_G denote the category with objects all nondegenerately based G-spaces having the G-homotopy type of a based G-CW complex and morphisms all basepoint preserving maps (not necessarily G-equivariant). Because every element g of G acts on the morphisms of \mathscr{W}_G by conjugation, \mathscr{W}_G can be regarded as a G-category. Denote by Γ_G the full subcategory of all based finite G-sets having the underlying set of the form $\mathbf{n} = \{0, 1, \ldots, n\}$ based at 0. Then every G-equivarint functor from Γ_G to \mathscr{W}_G is called a Γ_G -space. (Notice that our $\Gamma = \Gamma_1$ is the opposite of the original Γ of Segal [17].)

As in [23], we associate to every Γ_G -space A and based G-space X a topological G-category simp (X, Γ_G, A) defined as follows:

$$ob(simp(X, \Gamma_G, A)) = \coprod_{S \in \Gamma_G} Map_0(S, X) \times A(S)$$

mor(simp(X, Γ_G, A)) = $\coprod_{S, T \in \Gamma_G} Map_0(T, X) \times Map_0(S, T) \times A(S).$

Here each $(x, \xi, a) \in \operatorname{Map}_0(T, X) \times \operatorname{Map}_0(S, T) \times A(S)$ is regarded as a morphism from $(x\xi, a) \in \operatorname{Map}_0(S, X) \times A(S)$ to $(x, A(\xi)a) \in \operatorname{Map}_0(T, X) \times A(T)$; the composition is given by $(y, \eta, A(\xi)a) \circ (y\eta, \xi, a) = (y, \eta\xi, a)$; and every element g of G acts on $\operatorname{simp}(X, \Gamma_G, A)$ by $g(x, \xi, a) = (gxg^{-1}, g\xi g^{-1}, ga)$. Evidently the nerve of $\operatorname{simp}(X, \Gamma_G, A)$ in which X is regarded as a contravariant G-functor $S \mapsto \operatorname{Map}_0(S, X)$ from Γ_G to \mathscr{W}_G . We shall write $B(X, \Gamma_G, A)$ for the classifying space of simp (X, Γ_G, A) . (Woolfson [23] writes $A'(X) = B(X, \Gamma, A)$ when G is the trivial group.)

Because $B_*(X, \Gamma_G, A)$ is a proper simplicial G-space, we can apply the arguments of [10, Appendix] and get

Proposition 1.1. (a) $B(X, \Gamma_G, A)$ belongs to \mathscr{W}_G if $X \in \mathscr{W}_G$.

(b) Let $f: X \to X'$ be a G-homotopy equivalence and let $F: A \to A'$ be a transformation of Γ_G -spaces such that $F_S: A(S) \to A'(S)$ is a Ghomotopy equivalence for every object S of Γ_G . Then the induced map $B(f, \Gamma_G, F): B(X, \Gamma_G, A) \to B(X', \Gamma_G, A')$ is a G-homotopy equivalence.

Given a Γ_G -space A, we have a new Γ_G -space $\sigma A: S \mapsto B(S, \Gamma_G, A)$. Then there is a transformation of Γ_G -spaces $\sigma A \to A$ such that, for each $S \in \Gamma_G$, $\sigma A(S) \to A(S)$ is a G-homotopy equivalence induced by the equivalence of G-categories simp $(S, \Gamma_G, A) \to A(S)$ which takes each object (x, a) of simp (S, Γ_G, A) to $A(x)a \in A(S)$ and each arrow $(x, \xi, a): (x\xi, a) \to (x, A(\xi)a)$ to the identity of $A(x\xi)a$. Following [17] let us denote by $X \otimes \sigma A$ the Γ_G -space

$$S \mapsto X \otimes \sigma A(S) = \coprod_{T \in \Gamma_G} \operatorname{Map}_0(T, X) \times \sigma A(S \wedge T) / (x\xi, a) \sim (x, \sigma A(1 \wedge \xi)a).$$

Then there is a natural G-homeomorphism $B(X, \Gamma_G, A) \to X \otimes \sigma A(1)$ (cf. the proof of [23, Theorem 1.5]).

Proposition 1.2. (a) There are natural G-homotopy equivalences

$$B(X, \Gamma_G, B(\cdot \land Y, \Gamma_G, A)) \xrightarrow{i} B(X \land Y, \Gamma_G, A)$$
$$\xleftarrow{k} B(Y, \Gamma_G, B(X \land \cdot, \Gamma_G, A))$$

where $B(\cdot \wedge Y, \Gamma_G, A)$ (resp. $B(X \wedge \cdot, \Gamma_G, A)$) denotes the Γ_G -space $S \mapsto B(S \wedge Y, \Gamma_G, A)$ (resp. $S \mapsto B(X \wedge S, \Gamma_G, A)$).

(b) If X and $A(\mathbf{0})$ are G-connected (i.e., $\pi_0 X^H = \pi_0 A(\mathbf{0})^H = \mathbf{0}$ for every subgroup H of G), so is $B(X, \Gamma_G, A)$.

(c) If X has the trivial G-action, then the natural map i: $B(X, \Gamma, A)$ $\rightarrow B(X, \Gamma_G, A)$, induced by the evident inclusion $\Gamma \subset \Gamma_G$, is a G-homotopy equivalence; that is, i^H : $B(X, \Gamma, A^H) \rightarrow B(X, \Gamma_G, A)^H$ is a homotopy

equivalence for every subgroup H of G.

Proof. Because $B(\cdot \wedge Y, \Gamma_G, A) = Y \otimes \sigma A$, we can define j to be the canonical G-map $X \otimes \sigma(Y \otimes \sigma A)$ (1) $\rightarrow X \otimes (Y \otimes \sigma A)$ (1) $= (X \wedge Y) \otimes \sigma A(1)$ (cf. [17, Lemma 3.7]). To see that j is a G-homotopy equivalence, let us consider the diagram

in which $f = B(1, \Gamma_G, |F|)$ is induced by the map of Γ_G -spaces $|F|: |simp(S \land Y, \Gamma_G, A)| \rightarrow |simp(Y, \Gamma_G, A(S \land \cdot))|$ $(S \in \Gamma_G);$

$$F(S \land Y \xleftarrow{(s,y)} T, a \in A(T)) = (Y \xleftarrow{y} T, A((s,1))a \in A(S \land T))$$

and $d = |\mathcal{A}| : |\operatorname{simp} (X \land Y, \Gamma_G, A)| \to |\operatorname{simp} ((X \land Y) \circ \land, \Gamma_G \times \Gamma_G, A \circ \land)|$ is given by

$$\Delta(X \wedge Y \xleftarrow{(x,y)} T, a \in A(T)) = (X \wedge Y \xleftarrow{(x,y)} T \wedge T, A((1,1))a \in A(T \wedge T)).$$

Then it is easy to see that f and d are G-homotopy equivalences, and that there is a G-homotopy $dj \simeq_G f$. Therefore j becomes a Ghomotopy equivalence. The second arrow k in (a) can be constructed similarly.

(b) follows from the fact that $Map_0(S, X)$ is G-connected for all $S \in \Gamma_G$ provided X is G-connected.

We now prove (c). The G-map $i: B(X, \Gamma, A) \to B(X, \Gamma_G, A)$ is induced by the inclusion $\iota: simp(X, \Gamma, A) \to simp(X, \Gamma_G, A)$. Hence we have only to prove that $\iota^H: simp(X, \Gamma, A)^H = simp(X, \Gamma, A^H) \to$ $simp(X, \Gamma_G, A)^H$ is an equivalence of categories for every subgroup H of G. Because X has the trivial G-action, every H-map $x \in Map_0$ $(S, X)^H$ can be written as a composite

$$S \xrightarrow{q_s} H \backslash S \xrightarrow{x'} X$$

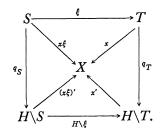
with x' in Γ . We now define a functor ρ : simp $(X, \Gamma_G, A)^H \rightarrow \text{simp}(X, \Gamma, A^H)$ by

$$\rho(x, a) = (x', A(q_S)a) \in \operatorname{Map}_0(H \setminus S, X) \times A(H \setminus S)^H$$

for each object $(x, a) \in \operatorname{Map}_0(S, X)^H \times A(S)^H$, and

$$\rho(x, \xi, a) = (x', H \setminus \xi, A(q_S)a)$$

for every arrow $(x, \xi, a) : (x\xi, a) \to (x, A(\xi)a)$ in simp $(X, \Gamma_G, A)^H$. Note that there is a commutative diagram



Clearly $\rho \iota^{H} = \text{Id}$ and there is a natural transformation $\text{Id} \to \iota^{H} \rho$ given by $(x', q_{s}, a) : (x, a) \mapsto (x', A(q_{s})a)$ for each $(x, a) \in \text{simp}(X, \Gamma_{G}, A)^{H}$. This proves that ι^{H} is an equivalence of categories, and completes the proof of the proposition.

Definition 1.3. A Γ_{G} -space A is said to be special if

(a) $A(\mathbf{0})$ is G-contractible; and

(b) for every object S of Γ_G , the adjoint $P_S: A(S) \to \operatorname{Map}_0(S, A(1))$ of the based G-map $S \land A(S) \to A(1)$, $(s, a) \mapsto A(p_s)a$ is a G-homotopy equivalence. Here $p_s: S \to 1$ denotes the based map such that $p_s(s)$ =1 and $p_s(S - \{s\}) = 0$.

Given a Γ_G -space A and a finite dimensional real G-module V, we put

$$\boldsymbol{S}_{G}\boldsymbol{A}_{V} = B(S^{V}, \Gamma_{G}, A) / B(\infty, \Gamma_{G}, A) = S^{V} \bigotimes \sigma A(1) / \sigma A(0)$$

where S^{v} denotes the onepoint compactification of V based at ∞ . Because $\sigma A(\mathbf{0})$ is *G*-contractible and the inclusion $B(\infty, \Gamma_{G}, A) \rightarrow B(S^{v}, \Gamma_{G}, A)$ is a *G*-cofibration, the projection $B(S^{v}, \Gamma_{G}, A) \rightarrow S_{G}A_{v}$ is a *G*-homotopy equivalence. Furthermore it is easily checked that the inclusion $S^{v} \times (S^{w} \otimes \sigma A)(1) \rightarrow S^{v} \times (S^{w} \otimes \sigma A)(1) = (S^{v} \wedge S^{w}) \otimes \sigma A(1) = S^{v \oplus w} \otimes \sigma A(1)$ (cf. Proposition 1.2 (a)) induces a based *G*-map

$$e_{V,W}: S^V \wedge S_G A_W \to S_G A_{V \oplus W}$$

such that the equality $e_{V,V'\oplus W}(1 \wedge e_{V',W}) = e_{V\oplus V',W}$ holds. Thus we have a *G*-prespectrum $S_{G}A = \{S_{G}A_{V}\}$ such that

$$\mathbf{S}_{G}A_{0} = \sigma A(\mathbf{1}) / \sigma A(\mathbf{0}) \simeq_{G} A(\mathbf{1})$$

Moreover by Proposition 1.2 (c), there are natural equivalences of prespectra

$$f_H: \boldsymbol{S}(A^H) \to (\boldsymbol{S}_G A)^H$$

where $S(A^H)$ denotes the prespectrum $\{B(S^v, \Gamma, A^H)/B(\infty, \Gamma, A^H)\}$ constructed from the special Γ -space A^H : $\mathbf{n} \mapsto A(\mathbf{n})^H$ by the method of Woolfson [23]. (Compare the remark at the end of this section.)

The following theorem is essentially due to Segal [18].

Theorem B. Let A be a special Γ_G -space. Then S_GA is an almost Ω -G-spectrum, that is, the maps $\varepsilon_{V,W} \colon S_GA_W \to \Omega^{\gamma}S_GA_{V\oplus W}$ are G-homotopy equivalences whenever $W^G \neq 0$. Moreover $\varepsilon \colon S_GA_0 \to \Omega S_GA_R$ is a G-homotopy equivalence if and only if A(1) is grouplike.

We now sketch a proof of this theorem and explain why the condition (b) of Definition 1.3 is required. (The situation was not clear in the original proof of [18, Theorem A].)

For simplicity of notation, we shall write

$$EA(X) = B(X, \Gamma_G, A) / B(*, \Gamma_G, A)$$

for every $X \in \mathscr{W}_G$; in particular $S_G A_V = EA(S^V)$. Because the inclusion $B(*, \Gamma_G, A) \to B(X, \Gamma_G, A)$ is a G-cofibration, EA(X) has the same G-homotopy type as $B(X, \Gamma_G, A)$. Let us regard $EA: X \mapsto EA(X)$ as a G-equivariant functor from \mathscr{FW}_G to \mathscr{W}_G where \mathscr{FW}_G denotes the G-stable full subcategory of \mathscr{W}_G consisting of all compact G-ANR's. (Compare [14, Theorem 1].)

Lemma 1.4. Let A be a special Γ_G -space. Then EA enjoys the following properties:

P1. For every $X \in \mathscr{FW}_G$ and $S \in \Gamma_G$, the G-map $P_{S,X}$: $EA(S \land X) \rightarrow \operatorname{Map}_0(S, EA(X))$, induced by $S \land EA(S \land X) \rightarrow EA(X), (s, x) \mapsto EA(p_S \land 1)x$, is a G-homotopy equivalence.

P2. If $Y \to X$ is a G-cofibration and EA(Y) is grouplike under the G-equivariant multiplication $EA(Y) \times EA(Y) \simeq_G EA(Y \land 2) \to EA(Y)$, then $EA(Y) \to EA(X) \to EA(X/Y)$ is a G-fibration sequence.

Notice that **P1** implies the speciality of the Γ_G -space $S \mapsto EA(S \wedge X)$ for every $X \in \mathcal{FW}_G$.

Proof. By Proposition 1.2 (a) and the definition of EA, we have a commutative square

in which the horizontal arrows are induced by the natural transformation $\sigma A \to A$ and π is induced by the *G*-homotopy equivalences $P_{S,T}: A(S \land T) \to A(T)^S = \operatorname{Map}_0(S, A(T)), T \in \Gamma_G$ (cf. Definition 1.3(b)). By Proposition 1.1 (b), all the arrows except for $P_{S,X}$ are *G*-homotopy equivalences. Hence $P_{S,X}$ becomes a *G*-homotopy equivalence. This shows that **P1** holds.

Next, by the arguments quite similar to [23, Theorem 1.7], we see that

$$B(Y, \Gamma_{G}, A) \to B(X, \Gamma_{G}, A) \to B(X \cup CY, \Gamma_{G}, A)$$

is a *G*-fibration sequence if $B(Y, \Gamma_G, A)$ is grouplike. This implies that **P2** holds. (Observe that in the proof of Theorem 1.7 of [23] the connectivity of Y is only used to ensure that $A'(Y) \rightarrow \mathcal{Q}A'(SY)$ is a homotopy equivalence. Of course this follows from the weaker condition that A'(Y) is grouplike. See also [17, p. 296].)

Now suppose we are given a based G-map

 $\mu: X \to \operatorname{Map}_{0}(Y, Z).$

Then, by fuctoriality, we get a G-map

$$\mu': X \to \operatorname{Map}_{0}(EA(Y), EA(Z)).$$

Because EA(point) = point, μ' preserves basepoints; and so defines, by adjunction, a based G-map

$$D_{\mu}$$
: $EA(Y) \rightarrow Map_0(X, EA(Z))$.

For example, if S is a based finite G-set and μ is a based G-map $S \to \operatorname{Map}_0(S \land X, X)$, $s \mapsto (p_s \land 1: S \land X \to 1 \land X=X)$, then D_{μ} coincides with $P_{S,X}: EA(S \land X) \to \operatorname{Map}_0(S, EA(X))$; and if $\mu: S^{\vee} \to \operatorname{Map}_0(S^{\vee}, S^{\vee \oplus \vee})$ is the adjoint of the identity map $S^{\vee} \land S^{\vee} \to S^{\vee \oplus \vee}$, then $D_{\mu} = \varepsilon_{\nu, W}: S_G A_W \to \Omega^{\vee} S_G A_{\nu \oplus W}$.

Let M be a compact G-stable subset of a real G-module V, and let M_{ε} be the ε -neighborhood of M in V. Then there is a G-map

 $M \to \operatorname{Map}(O_{\varepsilon}, M_{\varepsilon})$ which takes each element m of M to the map $x \mapsto m+x$ from the ε -neighborhood of the origin to M_{ε} . By the Pontryagin-Thom construction we get a based G-map

$$\mu: M_+ \to \operatorname{Map}_0(M^c_{\varepsilon}, O^c_{\varepsilon}) \cong \operatorname{Map}_0(M^c_{\varepsilon}, S^{\mathsf{V}}).$$

Here, for every open subset X of V, X^{e} denotes the onepoint compactification of X based at ∞ ; i. e., $X^{e} = V/V - X$. Consequently we get a based G-map

$$D_M = D_\mu$$
: $EA(M_{\varepsilon}^c) \to \operatorname{Map}_0(M_+, EA(S^V))$.

Lemma 1.5. ([18, Proposition (2.2)]). Let M be the unit sphere of V. Suppose $\Gamma^{G} \neq 0$ or EA(X) is G-connected for every $X \in \mathscr{FW}_{G}$ (e.g., $A = Z \otimes \sigma A'$ for some special Γ_{G} -space A' and a G-connected space $Z \in \mathscr{FW}_{G}$). Then D_{M} is a G-homotopy equivalence.

Proof. Choose an equivariant triangulation of M (cf. [6]), and let $\{C_{\lambda}\}_{\lambda \in \Lambda}$ be the covering by the open stars of open simplexes. We identify the indexing set Λ with the G-set of the barycenters of open simplexes. Moreover, by taking a refinement of the triangulation if necessary, we may assume that each C_{λ} either coincides with or is disjoint from its translate by elements of G.

Suppose ε is small compared with the minimum of the radii of the simplexes of positive dimension. Let $\pi: M_{\varepsilon} \to M$ be the radial projection, and let $X = \bigcup_{\lambda \in T} C_{\lambda}$ be a *G*-stable union of some of the C_{λ} . Let us denote $\hat{X} = \pi^{-1}(X)$ and $\check{X} = X - (M - X)_{\varepsilon}$. Then the *G*-map $M \to \operatorname{Map}(O_{\varepsilon}, M_{\varepsilon})$ restricts to $\check{X} \to \operatorname{Map}(O_{\varepsilon}, \hat{X})$, so that we have a based *G*-map

$$D_X: EA(\hat{X}^c) \to \operatorname{Map}_0(\check{X}_+, EA(S^{\vee})).$$

We will show, by induction on the cardinal of the orbits contained in T, that this is a G-homotopy equivalence.

If T, is a single orbit, then the closed embedding $T = \bigcup_{\lambda \in T} (\text{barycenter of } \lambda) \to \bigcup_{\lambda \in T} C_{\lambda}$ induces G-homotopy equivalences $T_{+} \simeq_{G} \check{X}_{+}$ and $T_{+} \land S^{v} \simeq_{G} \hat{X}^{c}$. Therefore D_{X} is identified with $P_{T+,S^{v}}$: $EA(T_{+} \land S^{v}) \to \operatorname{Map}_{0}(T_{+}, EA(S^{v}))$ which is a G-homotopy equivalence by **P1**.

Next let X_1 and X_2 be two G-stable unions of C_{λ} 's, and let X =

induced by the cofibration sequences $(\hat{X} - \hat{X}_1)^c \to \hat{X}^c \to \hat{X}_1^c = \hat{X}^c/(\hat{X} - \hat{X}_1)^c$ and $(\hat{X}_2 - \hat{X}_{12})^c \to \hat{X}_2^c \to \hat{X}_{12}^c$. (Notice that $\hat{X} - \hat{X}_1 \to \hat{X}$ and $\hat{X}_2 - \hat{X}_{12} \to \hat{X}_2$ are closed *G*-embeddings.) Because $EA((\hat{X} - \hat{X}_1)^c)$ is *G*-connected by the assumption, the horizontal sequences in the above diagram are *G*-fibration sequences by **P2**. Therefore the square

is G-homotopy cartesian. Moreover the corresponding square

is also G-homotopy cartesian. Hence we can prove inductively that D_x , and consequently D_M , too, is a G-homotopy equivalence.

Proof of Theorem B. We will show that $EA(S^0) \to \Omega^{\nu} EA(S^{\nu})$ is a G-homotopy equivalence if A(1) is grouplike and $V^G \neq 0$, or if EA(X)is G-connected for every $X \in \mathscr{FW}_G$. When $W^G \neq 0$, $EA(\cdot \land S^W) = E(S^W \otimes \sigma A)(\cdot)$ satisfies the latter condition; and so $\varepsilon_{V,W}$: $EA(S^W) \to \Omega^{\nu} EA(S^{\nu \oplus W})$ is a G-homotopy equivalence for any V.

Let B_r denote the closed disk of radius r in V and S_r its boundary sphere. Because $EA(S^0) \simeq_G A(1)$ is grouplike, the horizontal sequences in the diagram

are G-fibration sequences. By Lemma 1.5, D_{S_1} is a G-homotopy equivalence and D_{B_1} is trivially a G-homotopy equivalence. Therefore

the induced map $EA(S^0) \simeq_G EA(B_{1-\varepsilon} \cup S_{1+\varepsilon}/S_{1+\varepsilon}) \rightarrow \Omega^{\nu} EA(S^{\nu})$ is a *G*-homotopy equivalence. This completes the proof of Theorem *B*.

Remark. (Cf. [9, Chapters I and II].) Let $G\mathscr{P}\mathscr{A}$ (resp. $G\mathscr{P}\mathscr{A}$) denote the category of G-prespectra (resp. G-spectra) indexed on a indexing set \mathscr{A} in some G-universe U. Then our S_GA canonically defines a G-prespectrum $S_GA_{\mathscr{A}} = \{EA(S^{\nabla}) | V \in \mathscr{A}\} \in G\mathscr{P}\mathscr{A}$ with the structure maps $S^{W-V}EA(S^{V}) \to EA(S^{(W-V)\oplus V}) \cong EA(S^{W})$, and also the associated G-spectrum $LS_GA \in G\mathscr{P}\mathscr{A}$. By [9, Chapter II] any Glinear isometry $f: U \to U'$ between G-universes induces an equivalence $f^*: G\mathscr{P}U' \to G\mathscr{P}U$ and hence $G\mathscr{P}\mathscr{A} \cong G\mathscr{P}U$ is equivalent to $G\mathscr{P}\mathscr{A}'$ for another indexing set \mathscr{A}' in U'. In particular we see that the prespectrum $(S_GA)^H_{\mathscr{A}} = S(A^H)_{\mathscr{A}}$ indexed on any \mathscr{A} in a H-trivial universe U^H becomes equivalent, upon passage to stable category, to the usual prespectrum $\{E(A^H)(S^n)\}$ indexed on the standard *n*-spaces $\mathbb{R}^n \subset \mathbb{R}^{\infty}$.

§2. Proof of Theorem A

We now prove Theorem A. Thanks to Theorem B, it suffices to construct a functor which assigns to every (D, D') a special Γ_G -space such that the associated H-fixed point Γ -space coincides with the Γ -space arising from $B(D, D')^H$.

First recall the passage from symmetric monoidal categories to special Γ -categories (cf. [11], [19]). Given a monoidal category C, we have a Γ -category C^{\uparrow} such that, for each $\mathbf{n} \in \Gamma$, the objects of $C^{\uparrow}(\mathbf{n})$ are of the form $\langle a_U; \alpha_{U,V} \rangle$ in which a_U is an object of C for every based subset U of \mathbf{n} , and $\alpha_{U,V}$ is an isomorphism $a_{U\vee V} \rightarrow a_U$ $\bigoplus a_V$ for every pair of subsets $U, V \subset \mathbf{n}$ with $U \cap V = \{0\}$. Here $a_{(0)} = 0 \in C$ and the evident coherence conditions between $\alpha_{U,V}$'s (i. e., associativity, commutativity, and unit axioms) must be satisfied. When C is a symmetric monoidal G-category, the above construction of C^{\uparrow} can be extended to give a Γ_G -category, i. e., a G-equivariant functor from Γ_G to the category Cat_G of based G-categories and basepoint preserving functors: For every finite G-set S with underlying set \mathbf{n} , $C^{\uparrow}(S)$ is defined to be the category $C^{\uparrow}(\mathbf{n})$ equipped with a G-action

KAZUHISA SHIMAKAWA

$$g\langle a_U; \alpha_{U,V} \rangle = \langle ga_g^{-1}U; g\alpha_g^{-1}U, g^{-1}V \rangle$$

Then, for every $f: S \to T$ in Γ_G , we have $A(gfg^{-1}) = gA(f)g^{-1}$ where A(f) denotes the functor $C^{\wedge}(S) \to C^{\wedge}(T), \langle a_U, \alpha_{U,V} \rangle \mapsto \langle a_{f^*U}; \alpha_{f^*U,f^*V} \rangle$ $(f^*U = \{0\} \cup f^{-1}(U - \{0\}))$ induced by f.

Note that, if C is the realization of a simplicial monoidal Gcategory, then $|C^{\wedge}(S)| \in \mathscr{W}_{G}$ because $C^{\wedge}(S)$ is obtained as the realization of the simplicial G-category $[k] \mapsto C_{k}^{\wedge}(S)$. Thus we have a Γ_{G} -space $S \mapsto |C^{\wedge}(S)|$ such that the associated Γ -spaces $\mathbf{n} \mapsto |C^{\wedge}(\mathbf{n})|^{H}$ $= |C^{\wedge}(\mathbf{n})^{H}|$ coincide with the Γ -spaces $|(C^{H})^{\wedge}|$ arising from the (simplicial) monoidal categories C^{H} . However we do not know, in general, whether this $|C^{\wedge}|$ is special or not.

Definition 2.1. A Γ_G -category $F: \Gamma_G \rightarrow \mathbf{Cat}_G$ is said to be *special* if F is obtained as the realization of a simplicial Γ_G -category, and satisfies the following conditions

(a) $F(\mathbf{0}) = \text{point};$ and

(b) for every $S \in \Gamma_G$, the *G*-functor $P_S : F(S) \to F(1)^S = \operatorname{Cat}_G(S, F(1))$ induced by $S \wedge F(S) \mapsto F(1)$, $(s, x) \mapsto F(p_s)x$ is an equivalence of *G*-categories. (Compare Definition 1.3.)

If F is a special Γ_G -category, then $|F|: S \mapsto |F(S)|$ is a special Γ_G -space; and so we have an almost Ω -G-spectrum $S_G|F|$.

Proposition 2.2. Let (D, D') be a pair of simplicial monoidal G-graded categories. Then $B(D, D')^{\uparrow}$ is a special Γ_{G} -category.

Of course Theorem A follows from this proposition: We define $K_G(D, D') = S_G |B(D, D')^{+}|$. Then there are a natural G-homotopy equivalence

$$\boldsymbol{K}_{G}(D,D')_{0} \rightarrow |B(D,D')^{\wedge}(1)| = |B(D,D')|$$

and natural equivalences of prespectra

$$\boldsymbol{K}(B(D, D')^{H}) = \boldsymbol{S} | (B(D, D')^{H})^{*} |$$

$$\rightarrow (\boldsymbol{S}_{G} | B(D, D')^{*} |)^{H} = \boldsymbol{K}_{G}(D, D')^{H}$$

for all subgroups H of G.

Proof of Proposition 2.2. For simplicity, write C = B(D, D') and

 $\oplus = \bigoplus_{D}$. We define an adjoint $T_s: C^s = C^{(1)s} \to C^{(s)}$ of P_s as follows.

Let $a = (a_s)$ be an object of C^s . Each a_s is a functor $EG \to D'$ over G and particularly $a_0: EG \to G \to D'$ has value $0 \in D'$. For each $x \in G$ and every based ordered subset $U = \{0, u_1, \ldots, u_r\} \subset S, 0 < u_1$ $< \cdots < u_r$, we write

$$a'_{U}(x) = 0 \oplus a_{x^{-1}v_{1}}(x) \oplus \cdots \oplus a_{x^{-1}v_{r-1}}(x) \oplus a_{x^{-1}v_{r}}(x)$$

$$\stackrel{\text{def.}}{=} 0 \oplus (a_{x^{-1}v_{1}}(x) \oplus (\cdots \oplus (a_{x^{-1}v_{r-1}}(x) \oplus a_{x^{-1}v_{r}}(x)) \cdots))$$

where $\{0, v_1, \ldots, v_r\} = xU \subset S$, $0 < v_1 < \cdots < v_r$. Since D is a monoidal G-graded category, there is an isomorphism (of grade 1)

$$\rho_U = \rho_U(x) : a'_U(x) \to 0 \oplus a_{u_1}(x) \oplus \cdots \oplus a_{u_n}(x).$$

uniquely determined by the permutation of $U - \{0\}$, $u_j \mapsto x^{-1}v_j$ $(1 \le j \le r)$. Then, for every $U, V \subset \mathbf{n}$ with $U \cap V = \{0\}$, we have an isomorphism

$$\alpha'_{U,V}(x): a'_{U\vee V}(x) \to a'_{U}(x) \bigoplus a'_{V}(x)$$

such that $(\rho_U \oplus \rho_V) \alpha'_{U,V}(x) \rho_{U \vee V}^{-1}$ coincides with the uniquely determined isomorphism

$$0 \oplus a_{w_1}(x) \oplus \cdots \oplus a_{w_{r+s}}(x) \rightarrow$$
$$(0 \oplus a_{u_1}(x) \oplus \cdots \oplus a_{u_r}(x)) \oplus (0 \oplus a_{v_1}(x) \oplus \cdots \oplus a_{v_s}(x))$$

where $U = \{0, u_1, \ldots, u_r\}, V = \{0, v_1, \ldots, v_s\}$ and $U \lor V = \{0, w_1, \ldots, w_{r+s}\}$ $(0 \lt u_1 \lt \cdots \lt u_r, 0 \lt v_1 \lt \cdots \lt v_s, 0 \lt w_1 \lt \cdots \lt w_{r+s}\}.$

Similarly for every arrow $f: x \to y$ in EG, $a'_U(f): a'_U(x) \to a'_U(y)$ of the same grade as f, is uniquely determined by the commutativity of the diagram

$$\begin{array}{ccc} a'_{U}(x) & \xrightarrow{\rho_{U}} & 0 \oplus a_{u_{1}}(x) \oplus \cdots \oplus a_{u_{r}}(x) \\ a'_{U}(f) & & & & \downarrow \\ a'_{U}(y) & \xrightarrow{\rho_{U}} & 0 \oplus a_{u_{1}}(y) \oplus \cdots \oplus a_{u_{r}}(y). \end{array}$$

It is a routine exercise to show that $a'_U: x \mapsto a'_U(x)$ is an object of Cand $\alpha'_{U,V}(x): a'_{U\vee V}(x) \to a'_U(x) \bigoplus a'_V(x)$ is natural in x. Thus we have an object

$$T_{S}a = \langle a'_{U}; \alpha'_{U,V} \rangle \in C^{(S)}.$$

Clearly the construction of $T_{S}a$ is natural in a, and we get a fuctor $T_{S}: C^{S} \to C^{\wedge}(S)$.

We will show that T_s is G-equivariant. Let g be an element of G. Then

$$g(T_{s}a) = \langle ga'_{g} - \mathbf{1}_{U}; g\alpha'_{g} - \mathbf{1}_{U,g} - \mathbf{1}_{V} \rangle,$$

and we have

$$ga'_{g^{-1}U}(x) = a'_{g^{-1}U}(xg)$$

= 0 \operatorname{def} a_{g^{-1}x^{-1}v_{1}}(xg) \oplus \cdots \oplus a_{g^{-1}x^{-1}v_{r}}(xg)
= 0 \operatorname{def} (ga)_{x^{-1}v_{1}}(x) \oplus \cdots \oplus (ga)_{x^{-1}v_{r}}(x)
= (ga)'_U(x)

because $(xg) (g^{-1}U) = xU = \{0, v_1, \ldots, v_r\}$. Moreover it is easily checked that $g\alpha'_{g^{-1}U,g^{-1}V}$ coincides with $(ga)'_{U\vee V} \to (ga)'_{U} \oplus (ga)'_{V}$. Therefore the functor T_s is G-equivariant.

Evidently P_sT_s is the identity of C^s . On the other hand, the natural transformation $\langle t_U \rangle : \langle a_U; \alpha_{U,V} \rangle \rightarrow T_s P_s \langle a_U; \alpha_{U,V} \rangle$ given by the composite isomorphisms

$$t_{U}(x): a_{U}(x) \xrightarrow{\alpha} 0 \bigoplus a_{u_{1}}(x) \bigoplus \cdots \bigoplus a_{u_{r}}(x)$$
$$\xrightarrow{\rho_{U}^{-1}} 0 \bigoplus a_{x^{-1}v_{1}}(x) \bigoplus \cdots \bigoplus a_{x^{-1}v_{r}}(x),$$

where a_u denotes $a_{(0,u)}$ for every $u \in U$, is compatible with the G-action on $C^{(S)}$. It follows that P_S is an equivalence of G-categories.

We now state, in view of future applications, an immediate consequence of Theorem A.

Recall that the Grothendieck construction (cf. [20]) converts a (simplicial) monoidal G-category C into a (simplicial) monoidal G-graded category $G \int C$ which has

(a) the same objects as C;

(b) the pairs $\langle g, f \rangle$ with $f: ga \to b$ in C as morphisms $a \to b$ of grade g; and

(c) the unique multiplication \bigoplus_{GfC} : $GfC \times_G GfC \to GfC$ such that, for every pair of morphisms $\langle g, f \rangle$: $a \to b$ and $\langle g, f' \rangle$: $a' \to b'$ of the same grade g, the following holds:

$$\langle g, f \rangle \bigoplus_{G \notin C} \langle g, f' \rangle = \langle g, f \bigoplus_{c} f' \rangle : a \bigoplus_{c \notin C} a' \to b \bigoplus_{G \notin C} b'.$$

Observe that $G \int C$ becomes the product G-graded category $G \times C$ if C has the trivial G-action.

Given a pair of monoidal G-categories (C, C'), let us denote by $B_G(C, C')$ the full subcategory of the functor category **Cat**(EG, C) consisting of the objects $EG \to C$ which factors through C'. Then $B_G(C, C')$ equipped with the G-action

$$(g, f) \mapsto (gf: x \mapsto gf(xg)), g \in G$$

and the G-equivariant multiplication

$$(f, f') \mapsto (f \oplus f' \colon x \mapsto f(x) \oplus f'(x))$$

is naturally isomorphic to $B(G \cap C, G \cap C')$ under the monoidal G-functor $\Phi: \operatorname{Cat}(EG, C) \to \operatorname{Hom}_G(EG, G \cap C)$ which takes each $f: EG \to C$ to $\Phi f: EG \to G \cap C$;

$$\begin{split} \Phi f(x) &= x f(x) \qquad (x \in \text{ob} EG = G), \\ \Phi f(x \to gx) &= \langle g, \ gx f(x \to gx) \rangle \colon \ \Phi f(x) \to \Phi f(gx). \end{split}$$

Hence we have

Theorem A'. K_G restricts, via the Grothendieck construction, to a functor from the pairs of simplicial monoidal G-categories to almost Ω -G-spectra equipped with

(a) a natural G-homotopy equivalence $K_G(C, C')_0 \rightarrow |B_G(C, C')|$, and

(b) natural equivalences of prespectra $\mathbf{K}(B_G(C, C')^H) \to \mathbf{K}_G(C, C')^H$ for all subgroups H of G.

 $|B_G(C, C')|$ has the same G-homotopy type as the infinite loop G-space $K_G(C, C') = \Omega K_G(C, C')_R$ if and only if $|B_G(C, C')|$ is grouplike.

Remark. Our approach to Theorem A was based on Γ_{G} -spaces. There is another approach based on E_{∞} G-operads [9].

Let $\widetilde{\mathscr{D}}_{j} = \operatorname{Hom}_{G}(EG, G \times E\Sigma_{j}) = \operatorname{Cat}(EG, E\Sigma_{j})$ and let \mathscr{D}_{j} be the G-space $|\widetilde{\mathscr{D}}_{j}|$. By Theorem 3.1 (see also [15])

$$\mathscr{D}_{j} \to \mathscr{D}_{j}/\Sigma_{j} = |\operatorname{Cat}(EG, \Sigma_{j})|$$

is a universal $G-\Sigma_j$ bundle, and there are G-maps

$$\gamma \colon \mathscr{D}_k \times \mathscr{D}_{j_1} \times \cdots \times \mathscr{D}_{j_k} \to \mathscr{D}_j, \quad j = j_1 + \cdots + j_k$$

KAZUHISA SHIMAKAWA

induced by the functors $\tilde{\gamma}: E\Sigma_k \times E\Sigma_{j_1} \times \cdots \times E\Sigma_{j_k} \to E\Sigma_j;$

 $\tilde{\gamma}(\sigma;\tau_1,\ldots,\tau_k) = \tau_{\sigma^{-1}(1)} \oplus \cdots \oplus \tau_{\sigma^{-1}(k)}.$

(Compare [10, Lemma 4.4].) Thus we have an E_{∞} G-operad \mathcal{D} .

If D is a monoidal G-graded category (with strictly associative multiplication $\bigoplus = \bigoplus_D$), there is a Σ_j -equivariant functor over G

$$(G \times E\Sigma_j) \times_G D^{[j]} \to D \qquad (D^{[j]} = D \times_G \cdots \times_G D)$$

which takes each object $(\tau; x_1, \ldots, x_j)$ of $(G \times E\Sigma_j) \times_G D^{[j]}$ to $x_{\tau^{-1}(1)} \oplus \cdots \oplus x_{\tau^{-1}(j)} \in D$ (cf. [10, Lemma 4.3]). This induces a Σ_j -equivariant *G*-functor $\widetilde{\mathscr{D}}_j \times B(D, D')^j \to B(D, D')$ for every pair of monoidal *G*-graded categories (D, D'), and hence we have a natural action

 $\mathcal{D}_{i} \times |B(D, D')|^{i} \rightarrow |B(D, D')|$

of the E_{∞} G-operad \mathcal{D} on |B(D, D')|.

§3. Equivariant Classifying Spaces

We now apply our theorems to deloop the maps $BO(G) \rightarrow BPL(G)$ $\rightarrow BTop(G)$ equivariantly and infinitely.

To begin with, we shall describe a functorial construction of the classifying space for equivariant bundles. Let A be a topological group, and let $\eta = \eta_A$: $UA \to BA$ be a universal principal A-bundle. We assume here that (A, 1) is a strong NDR (e.g., the realization of a simplicial group) and take $|EA| \to |A|$ as our universal bundle unless otherwise stated. Then there is a new bundle $\langle \eta, \eta \rangle : \langle UA, UA \rangle \to BA \times BA$ whose fibre $\langle \eta, \eta \rangle^{-1}(x, y)$ over $(x, y) \in BA \times BA$ consists of all admissible maps $\eta^{-1}(x) \to \eta^{-1}(y)$; so that $\langle \eta, \eta \rangle^{-1}(x, y) \cong A$. (Compare [2] as well as [13].) It is easy to see that the maps

$$s = pr_1 \circ \langle \eta, \eta \rangle, \ t = pr_2 \circ \langle \eta, \eta \rangle : \langle UA, UA \rangle \to BA$$

and

 $i: BA \to \langle UA, UA \rangle, i(x) = \mathrm{id}_x \in \langle \eta, \eta \rangle^{-1}(x, x)$

together with the evident composition

 $\circ : \langle UA, UA \rangle \times_{BA} \langle UA, UA \rangle \rightarrow \langle UA, UA \rangle$

define a topological category (with trivial G-action) $\mathscr{G}A$ such that $\operatorname{ob} \mathscr{G}A = BA$ and $\operatorname{mor} \mathscr{G}A = \langle UA, UA \rangle$.

Theorem 3.1. Let A be the realization of a simplicial group and A' a subgroup of A. Then, for any compact Lie group G, $|B_G(\mathcal{G}A, \mathcal{G}A')|$ is a classifying space for G-(A, A') bundles in the sense of [8]. If G is a finite group, $|B_G(A, A')| = |B_G(EA/A, EA'/A')|$ is also a classifying space for G-(A, A') bundles.

(For a generalization of this theorem, see [15].)

Proof. There is a category $\mathscr{G}A$ with

ob
$$\mathscr{S}A = UA$$
, mor $\mathscr{S}A = \langle UA, UA \rangle \times_{BA} UA = \{(\phi, a) | s(\phi) = \eta(a) \},\$

and with structure maps $s(\psi, a) = a$, $t(\psi, a) = \psi(a)$, $i(a) = (\mathrm{id}_{\eta(a)}, a)$, $(\phi, \psi(a)) \circ (\psi, a) = (\phi\psi, a)$. Let π : **Cat** $(EG, \mathscr{G}A) \to$ **Cat** $(EG, \mathscr{G}A)$ denote the *G*-functor induced by the projection $\mathscr{G}A \to \mathscr{G}A = \mathscr{G}A/A$, $(\psi, a) \mapsto \psi$. We will show that $|\pi^{-1}B_G(\mathscr{G}A, \mathscr{G}A')| \to |B_G(\mathscr{G}A, \mathscr{G}A')|$ is a universal G - (A, A') bundle. Observe that $\pi^{-1}B_G(\mathscr{G}A, \mathscr{G}A')$ coincides with $B_G(\mathscr{G}A, \mathscr{G}A' \times_{A'}A)$. For simplicity of notation, write $E = \pi^{-1}$ $B_G(\mathscr{G}A, \mathscr{G}A')$ and $B = B_G(\mathscr{G}A, \mathscr{G}A')$. Then, for every element $f = (f_n \leftarrow \cdots \leftarrow f_1 \leftarrow f_0)$ of $N_n B$, we have a representation $\alpha(f) : H \to A'$ $(H = G_f)$ defined by

$$\begin{aligned} \alpha(f)(h) &= (f_0(1 \to h) : f_0(1) \to f_0(h) = f_0(1)) \\ &\in \langle \eta_{A'}, \eta_{A'} \rangle^{-1} (f_0(1), f_0(1)) = A', \end{aligned}$$

and $\pi^{-1}Gf \to Gf = G/H$ is G-A equivalent to the trivial G-A bundle $G \times_{H}A_{\alpha(f)} \to G/H$. Clearly this extends to a local trivialization of $N_{n}E \to N_{n}B$, and in fact we can prove that $|E| \to |B|$ is a numerable G-(A, A') bundle. (For details see [15].)

We now prove that $|E| \rightarrow |B|$ satisfies the condition (1) and (2) of [8, Theorem 6] for every representation $\rho: H \rightarrow A'$. Let us consider |E| as an *H*-space under the action $a \mapsto ha\rho(h)^{-1}$. Since $UA \rightarrow BA$ is a universal *A*-bundle, there exists a bundle map (\tilde{f}, f) : $(G \times_{H} A_{\rho}, G/H) \rightarrow (UA, BA)$ and the *G*-action on $G \times_{H} A_{\rho}$ determines a functor $F: EG \rightarrow \mathcal{G}A$; F(x) = f(xH), $F(x \rightarrow gx) = (g: \eta^{-1}(f(xH)))$ $\rightarrow \eta^{-1}(f(gxH))) \in \langle UA, UA \rangle$. Evidently *F* belongs to $B_{G}(\mathcal{G}A, \mathcal{G}A')$ and the lift $\tilde{F}: EG \rightarrow \mathcal{G}A$ of *F* given by $\tilde{F}(x) = \tilde{f}[x, 1]$ and $\tilde{F}(x \rightarrow gx) = (F(x \rightarrow gx), \tilde{f}[x, 1]) \in \langle UA, UA \rangle \times_{BA} UA$ is invariant under the *H*-action on *E*. Hence $|E|^{H} \neq \emptyset$. Moreover, since $\mathcal{G}A$ has a unique morphism between each pair of its objects, |E| is *H*-contractible to any vertex of $|E|^{H}$. Hence, by [8, Theorem 6], $|E| \rightarrow |B|$ becomes a universal $G_{-}(A, A')$ bundle.

When G is finite, every trivial G-A bundle $G \times_H A_{\rho} \to G/H$ is in fact a trivial A-bundle, and so classified by the constant map $G/H \to *$. It follows that $|\pi^{-1}B_G(A, A')| \to |B_G(A, A')|$ is also a universal G-(A, A') bundle. Here π denotes the G-functor **Cat**(EG, EA) \to **Cat**(EG, A) induced by the projection $EA \to EA/A = A$ and $\pi^{-1}B_G(A, A')$ is identical with $B_G(EA, EA' \times_{A'} A)$.

In particular, take the simplicial group $CAT_n = O_n$ or PL_n or Top_n as A, and the discrete group GL_n as A'. (Compare [7]. Note that GL_n is the 0-skeleton of O_n , and in fact $GL_n = O_n \cap PL_n$ in Top_n ; cf. [1, p. 216].) Then we have a classifying space

$$BCAT_n(G) = |B_G(\mathscr{G}CAT_n, \mathscr{G}GL_n)|$$

for locally linear G-CAT bundles with fibre \mathbb{R}^n . However, from the viewpoint of smoothing theory, there is a need to construct a G-fibration $BO_n(G) \to BPL_n(G)$, and $|B_G(\mathcal{G}O_n, \mathcal{G}GL_n)|$ is not adequate for this purpose. Therefore we replace $|B_G(\mathcal{G}O_n, \mathcal{G}GL_n)|$ by an equivalent G-space defined as follows: (Compare [7, §3].)

Let PD_n be the simplicial set whose k-simplexes are fibre preserving p.d. homeomorphisms $\mathcal{A}_k \times (\mathbb{R}^n, 0) \to \mathcal{A}_k \times (\mathbb{R}^n, 0)$. Then PD_n admits a left free PL_n -action $(h, f) \mapsto fh^{-1}$, $(h, f) \in PL_n \times PD_n$, and a right free O_n -action $(f, k) \mapsto k^{-1}f$, $(f, k) \in PD_n \times O_n$. Now consider the G-map $UPL_n(G) \times_{PL_n}PD_n \to UPL_n(G) \times_{PL_n}PD_n/O_n$ induced by the projection $PD_n \to PD_n/O_n$ where $UPL_n(G) = |B_G(\mathscr{G}PL_n, \mathscr{G}GL_n \times_{GL_n}PL_n)|$ is the total space of the universal $G - (PL_n, GL_n)$ bundle we have constructed in the proof of Theorem 1. Because the inclusion $PL_n \to PD_n$ is a homotopy equivalence, $UPL_n(G) \times_{PL_n}PD_n \simeq_G UPL_n(G) \times_{PL_n}PD_n/O_n = |B_G(\mathscr{G}'O_n, \mathscr{G}'GL_n)|$ where

 $\mathscr{G}'O_n = \mathscr{G}PL_n \times_{PL_n} PD_n/O_n$ and $\mathscr{G}'GL_n = \mathscr{G}GL_n \times_{GL_n} PD_n/O_n$.

Then there are G-fibrations $BO_n(G) \to BPL_n(G)$ induced by the projection $(\mathscr{G}PL_n \times_{PL_n} PD_n/O_n, \mathscr{G}GL_n \times_{GL_n} PD_n/O_n) \to (\mathscr{G}PL_n, \mathscr{G}GL_n)$ and

 $BPL_n(G) \to BTop_n(G)$ induced by the evident inclusion $(\mathscr{G}PL_n, \mathscr{G}GL_n) \to (\mathscr{G}Top_n, \mathscr{G}GL_n).$

Remark. Since G is a finite group, we can take much smaller Gspace $|B_G(CAT_n, GL_n)|$ (or $|B_G(EPL_n \times_{PL_n} PD_n/O_n, EGL_n \times_{GL_n} PD_n/O_n)|$ when $CAT_n = O_n$) as our $BCAT_n(G)$ (cf. Theorem 3.1). All the arguments below are valid for this choice of $BCAT_n(G)$ with $\mathscr{S}CAT_n$ and $\mathscr{S}CAT_n$ replaced by $ECAT_n$ and CAT_n respectively.

Let us denote by (CAT, GL) the pair of simplicial categories

$$(\coprod_{n\geq 0} \mathscr{G}'O_n, \coprod_{n\geq 0} \mathscr{G}'GL_n) \quad \text{if } CAT = O, \\ (\coprod_{n\geq 0} \mathscr{G}CAT_n, \coprod_{n\geq 0} \mathscr{G}GL_n) \quad \text{if } CAT = PL \text{ or } Top.$$

We make (CAT, GL) into a pair of symmetric monoidal categories by defining the multiplication $CAT \times CAT \rightarrow CAT$ as follows:

For every pair of integers m and n, there is a simplicial map $\oplus: Top_m \times Top_n \to Top_{m+n}$ which assigns to every $(x, y) \in Top_m \times Top_n$ the Whitney sum $x \oplus y \in Top_{m+n}$. Here we use the standard identification $\mathbb{R}^m \times \mathbb{R}^n = \mathbb{R}^{m+n}$. Clearly \oplus restricts to $PD_m \times PD_n \to PD_{m+n}$, $PL_m \times PL_n \to PL_{m+n}, \ O_m \times O_n \to O_{m+n}, \ GL_m \times GL_n \to GL_{m+n}$, and also induces $PD_m/O_m \times PD_n/O_n \to PD_{m+n}/O_{m+n}$ (cf. [7, §4]). Since \mathscr{S} (and hence \mathscr{G}) is compatible with the product of bundles, we get the functors

$$\mathscr{G}'O_m \times \mathscr{G}'O_n \to \mathscr{G}'O_{m+n}$$
 and $\mathscr{G}CAT_m \times \mathscr{G}CAT_n \to \mathscr{G}CAT_{m+n}$

(CAT = PL or Top) which restrics to $\mathscr{G}'GL_m \times \mathscr{G}'GL_n \to \mathscr{G}'GL_{m+n}$ and $\mathscr{G}GL_m \times \mathscr{G}GL_n \to \mathscr{G}GL_{m+n}$ respectively. Therefore we have a multiplication $CAT \times CAT \to CAT$ with respect to which (CAT, GL) can be regarded as a pair of symmetric monoidal categories (with strictly associative multiplication).

Now apply Theorem A' to (CAT, GL) and we get an infinite loop G-space

$$BCAT(G) = K_G(CAT, GL)$$
 ($CAT = 0, PL$ or Top).

Moreover the functors $(O, GL) \rightarrow (PL, GL)$ and $(PL, GL) \rightarrow (Top, GL)$, given by the projections $(\mathscr{GPL}_n \times_{PL_n} PD_n / O_n, \mathscr{GGL}_n \times_{GL_n} PD_n / O_n) \rightarrow$ $(\mathscr{GPL}_n, \mathscr{GGL}_n)$ and inclusions $(\mathscr{GPL}_n, \mathscr{GGL}_n) \rightarrow (\mathscr{GTop}_n, \mathscr{GGL}_n)$ respectively, are compatible with the multiplications. Thus we have KAZUHISA SHIMAKAWA

Proposition 3.2. There exist maps of infinite loop G-spaces $BO(G) \rightarrow BPL(G) \rightarrow BTop(G).$

We finally show that the G-map

$$\varepsilon i^{-1}$$
: $\coprod_{n\geq 0} BCAT_n(G) \to BCAT(G)$

is in fact an equivariant group completion, where i^{-1} is a *G*-homotopy inverse of $i: \mathbb{K}_G(CAT, GL)_0 \to |B_G(CAT, GL)| = \coprod_{n\geq 0} BCAT_n(G)$. Let *M* denote the *G*-monoid $\coprod_{n\geq 0} BCAT_n(G)$ and identify BCAT(G)with ΩBM . If $\xi: EG \to \mathscr{G}GL_1$ is the constant functor with value $* \in BGL_1, \ \xi \in BCAT_1(G)^G$ and we get *G*-maps $\bigoplus \xi: BCAT_n(G) \to BCAT_{n+1}(G)$. (Equivalently $\bigoplus \xi$ is the *G*-map induced by the inclusion $BCAT_n(G) \subset BCAT_{n+1}(G)$.) Let M_∞ be the telescope formed from the sequence

$$M \xrightarrow{\oplus \xi} M \xrightarrow{\oplus \xi} M \xrightarrow{\oplus \xi} \cdots$$

Then M acts on M_{∞} and we get a G-map $p: X = EM \times_M M_{\infty} \to BM$ with fibre M_{∞} at the basepoint b. Because $(M_{\infty})^H = (M^H)_{\infty}$ for every subgroup H of G, p restricts to a homology fibration $X^H \to BM^H$ with X^H contractible and with fibre $(M_{\infty})^H$ at the basepoint. (Compare [12, Proposition 2].) Therefore the natural map $(M_{\infty})^H \to F(p, b)^H$ $\simeq \Omega BM^H$ is a homology equivalence, and $H_*(\Omega BM^H) \cong H_*(M^H)[\pi^{-1}]$ $(\pi = \pi_0(M^H))$. This implies that

Proposition 3.3. $\varepsilon i^{-1}: \coprod_{n\geq 0} BCAT_n(G) \to BCAT(G)$ is an equivariant group completion map.

Remark. In [16] we shall show that a classifying space $BF_n(G)$ for *n*-dimensional (locally linear) spherical G-fibrations can be constructed as follows:

Let $B'_G(\mathscr{G}F_n, \mathscr{G}GL_n)$ be an O_G -subcategory of $B_G(\mathscr{G}F_n, \mathscr{G}GL_n)$ (which is considered as an O_G -category $G/H \mapsto B_G(\mathscr{G}F_n, \mathscr{G}GL_n)^H$) such that, for every G-orbit $G/H \in O_G$, $B'_G(\mathscr{G}F_n, \mathscr{G}GL_n)(G/H)$ has the same objects as $B_G(\mathscr{G}F_n, \mathscr{G}GL_n)^H$ and morphisms all natural transformations $f \to f'$ in $B_G(\mathscr{G}F_n, \mathscr{G}GL_n)^H$ which induces an Hhomotopy equivalence $S^n_{\alpha(f)} \to S^n_{\alpha(f')}$. Here $\alpha(f)$ denotes the representation $H \to GL_n$ associated to $f \in \text{Funct}(EG, \mathscr{G}GL_n)^H \cong \text{Funct}(EG/H)$,

 $\mathscr{G}GL_n$). (Compare the proof of Theorem 3.1.) Let C be the Elmendorf's functor [3] which converts O_G -spaces to G-spaces. Then we can show that the G-space

$$BF_n(G) = C |B'_G(\mathscr{G}F_n, \mathscr{G}GL_n)|$$

classifies *n*-dimensional spherical *G*-fibrations. Moreover, with minor modifications of the arguments of Sections 2 and 3, we can prove that there exist an equivariant group completion map $\coprod_{n\geq 0} BF_n(G)$ $\rightarrow BF(G)$ and also an infinite loop *G*-map $BTop(G) \rightarrow BF(G)$. Thus we get a sequence of infinite loop *G*-maps $BO(G) \rightarrow BPL(G) \rightarrow BTop(G)$ $\rightarrow BF(G)$. Details will appear in [16].

References

- [1] Boardman, J. M. and Vogt, R. M., Homotopy invariant algebraic structures on topological spaces, *Lecture Notes in Math.*, 347, Springer, 1972.
- [2] Dold, A., Partitions of unity in the theory of fibrations, Ann. of Math., 78 (1963), 223-255.
- [3] Elmendorf, A.D., Systems of fixed point sets, Trans. Amer. Math. Soc., 277 (1983), 275-284.
- [4] Fiedorowicz, Z., Hauschild, H. and May, J. P., Equivariant algebraic K-theory, in Algebraic K-theory, Lecture Notes in Math., 967, Springer, 1982, pp. 23-80.
- [5] Fröhlich, A. and Wall, C. T. C., Foundations of equivariant algebraic K-theory, in Algebraic K-Theory and its Geometric Applications, *Lecture Notes in Math.*, 108, Springer, 1969, pp. 12-27.
- [6] Illman, S., Smooth equivariant Triangulations of G-manifolds for G a finite group, Math. Ann., 233 (1978), 199-220.
- [7] Lashof, R. and Rothenberg, M., Microbundles and smoothing, *Topology*, 3 (1965), 357 -388.
- [8] _____, G-smoothing theory, in Proc. Symp. Pure Math., 32, American Mathematical Society, 1978, pp. 211-266.
- [9] Lewis, L. G., May, J. P. and Steinberger, M., Equivariant Stable Homotopy Theory, Lecture Notes in Math., 1213, Springer, 1986.
- [10] May, J. P., E_w-Spaces, group completions, and permutative categories, in New Developments in Topology, London Math. Soc. Lecture Note Series, 11, Cambridge University Press, 1974, pp. 61-93.
- [11] _____, The spectra associated to permutative categories, *Topology*, 17 (1979), 225-228.
- [12] Mcduff, D. and Segal, G. B., Homology fibrations and the "group-completion" theorem, Invent. Math., 31 (1976), 279-284.
- [13] Morgan, C. and Piccinini, R., Fibrations, Expo. Math., 4 (1986), 217-242.
- [14] Murayama, M., On the G-homotopy types of G-ANR's, Publ. RIMS, Kyoto Univ., 18 (1982), 183-189.
- [15] Murayama, M. and Shimakawa, K., A construction of equivariant classifying bundles, in preparation.

KAZUHISA SHIMAKAWA

- [16] _____, Equivariant fibrations, in preparation.
- [17] Segal, G. B., Categories and cohomology theories, Topology, 13 (1974), 293-312.
- [18] _____, Some results in equivariant homotopy theory, preprint.
- [19] Shimada, N. and Shimakawa, K., Delooping symmetric monoidal categories, Hiroshima Math. J., 9 (1979), 627-645.
- [20] Thomason, R. W., Homotopy colimits in the category of small categories, Math. Proc. Camb. Phil. Soc., 85 (1979), 91-109.
- [21] ____, The homotopy limit problem, Contemp. Math., 19 (1983), 407-419.
- [22] Wall, C. T. C., Equivariant algebraic K-theory, in New Developments in Topology, London Math. Soc. Lecture Note Series, 11, Cambridge University Press, 1974, pp. 111-118.
- [23] Woolfson, R., Hyper Γ-spaces and hyperspectra, Quart. J. Math. Oxford, 30 (1979), 229-255.