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Abstract

We construct a functor KG which takes each pair of monoidal G-graded categories
(D,Df) to an infinite loop G-space KG(D,D'). When D'=D, its homotopy groups
n%KG(D,D) coincide with the equivariant K-groups KnRepD of D. Applications include
the simple construction of equivariant infinite deloopings of the maps BO(G}—^BPL(G}-^>
BTop(G} between equivariant classifying spaces.

§ 0. Introduction

Let G be a finite group. By a (simplicial) G-graded category we
shall mean a (simplicial) category D equipped with a (simplicial)
functor 7- from D to G which is regarded as a category with only one
object. We often identify a simplicial G-graded category D with its
realization rD; a topological G-graded category such that ob(rZ)) and
mor (rD) are the geometric realizations of the simplicial sets [k~] i—>
obZ)fe and [k~\ i-» morDk respectively.

A G-graded category D is said to be monoidal if there exist a
functor (over G) 0D: D X GD -> Z), a section 0: G -^ D, and natural
isomorphisms a®D(b®Dc)~(a®Db}®Dc, a®Db = b@Da, Q@Da = a (all
simplicial in the case D is a simplicial G-graded category) subject to
the coherence conditions similar to those for symmetric monoidal
categories (cf. [5,22]). Given a pair (D, D') of a monoidal G-graded
category D and its G-graded subcategory Df closed under 0£>, we
define a G-category B(D,D'} as follows:
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Let EG be the translation category of G considered as a G-graded

category via the projection EG-^EG/G = G, Take the category

HomG (EG, D} whose objects are functors EG -> D over G and whose

morphisms are natural transformations. We endow HomG(EGJ D)

with a G-action

(&/) ->(£/: *•->/(**))

for every £<EG and /EE HomG (EG, D) . Then B(D,D') denotes the
G-stable full subcategory of HomG (EG, Z)) consisting of those functors
EG -> D which factors through /)'. Observe that if (D, D7) is a pair
of simplicial G-graded categories then B(rD,rD'} is naturally isomor-
phic to the realization of the simplicial G-category \_k~\ \-+ B(Dk, D'k).
Throughout the paper we write B(D, D') = B(rD, rDf) for any pair
of simplicial G-graded categories (D,/)').

Clearly B(D,D') has a structure of a symmetric monoidal G-
category given by the G-equi variant multiplication ©: jB(D,D') X

(/,/') -* (/©/'= * >->/(*) ©*/'(*»
for every /, f'&B(D9 £>') ; hence its classifying space |5(D, DOI
becomes a Hopf G-space. The purpose of this paper is to construct
a functor KG which assigns to each pair of simplicial monoidal G-
graded categories (£), DO an infinite loop G-space KG(D,D') having
the same G-homotopy type as \B(D,D')\ when (and only when)
\B(D,D')\ is grouplike, i.e., TTO \B(D, DO \H is a group for every

subgroup H of G. To state the results more precisely, we need
further definitions.

We use the term almost Q-G-spectrum to mean a system E consisting
of based G-spaces Ev indexed on finite dimensional real G-modules
F, and basepoint preserving G-maps ev>w: Sv /\EW -> Ev@w satisfying
the following conditions:

(a) eViV'@w(l /\eV'iW) =ev@v>iW holds for all G-modules F, V and
W, and

(b) the adjoint eVtW- EW->QVEV@W of eViW is a G-homotopy
equivalence if W°=£Q.

Note that any such E gives rise to a G-prespectrum E^ = [Ev \ V

^jtf] indexed on any indexing set jf in a G-universe U (cf. [9])B

(See also the remark at the end of Section 1.)
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By the definition QER becomes an infinite loop G-space where R
denotes the trivial G-module of dimension 1. Moreover, we have
fixed point prespectra EH= {E$} indexed on finite dimensional real
vector spaces (with trivial //-action). Clearly EH is an almost Q-
spectrum in the sense that Ew — &vEv@w if W=£Q.

Let K denote the functor which takes each simplicial monoidal
category C to the prespectrum

where C* is the special F-category constructed from C (cf. [11], [19])
and S is the Segal- Woolfson machine [17,23] which takes each
special F-space A to the almost /2-spectrum SA= (A'(SV) /A'(oo)}
(cf. Section 1). Then the main result of the paper can be stated as
follows :

Theorem A. There is a functor KG from the pairs of simplicial

monoidal G- graded categories to almost Q-G- spectra equipped with

(a) a natural G-homotopy equivalence KG(D, Z)')o -* \B(D, D') | ; and
(b) natural equivalences of prespectra K(B (£>, £>')*) -> KG (D, /)')*

for all subgroups H of G.

Put KG(D,D')=QKG(D,D'}R. Then there are natural G-maps

\B(D, D') | «-i- KG(D, /)')o -^ Kc(D, D')

in which i is a G-homotopy equivalence, and we have

Corollary. KG(D,D'} is an infinite loop G-space, and \B(D,D') \
has the same G-homotopy type as KG(D, D') if and only if \B(D, D') \
is grouplike.

Let us consider the particular case D' ' = D (so that B (/),/)') =
HomG (EG, /)) ) . Suppose D is stable, i.e., given M^D and g^G,
there exists an isomorphism/: M -> N of grade ?(f)=g. Then, for
every subgroup H of G, we have an equivalence of categories

HomG (EG, D)H = HomG (EG/H, D} -> Hom^ (H, DxGH)= Rep (//, D)

induced by the inclusion H = EH/H -* EG/H. Here Rep (//,/)) is
the category of representations of H by automorphisms (of the right
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grades) of objects of D (cf. [5]). Thus

Proposition. The coefficient groups x£KG (D, D) coincide with the
equivariant K-groups ^TnRep (H, D) in the sense of [5,22].

(More precisely we can prove that there is a natural isomorphism
of Mackey functors n?KG(D9 D) =KnRzp(H, D).)

As we shall see in Section 25 every symmetric monoidal G-category
C is accompanied with a monoidal G-graded category GJC such that
HomG (EG, GJC) is naturally isomorphic to the functor category
Cat (EG, C) having the G-action (g, F) H-> (gF: x^gF(xg)). Most of
interesting examples of monoidal G-graded categories are obtained in
this way, and we shall write KG(C9 CO =JfG(GJC, GJC') for every pair
of symmetric monoidal categories (C, C'). Among the examples, we
have

(1) Let -£= IL^o^n ke t'ie skeletal category of finite sets and
isomorphisms with symmetric monoidal structure given by disjoint
union. Then K0Cat(EG, I)H=KQRep (//, J) is the Burnside ring
A(H). In fact, each | Cat (EG, -TJ ] is a classifying space for ra-fold
G-coverings (cf. Theorem 3. 1), and hence KG(S,2) is equivalent to
the sphere G-spectrum.

(2) For any ring A we have a symmetric monoidal category
GLA=\±n^GLnA equipped with the trivial G-action. Since BGLnA(G)
= | Cat (EG, GLnA) \ is a classifying space for G-GLnA bundles, KG(GLA,
GLA) gives an infinite G-delooping of the G-space K(A,G)=QB(\)Ln^
BGLnA(G}) defining the equivariant JT-theory of A in the sense of
Fiedorowicz, Hauschild and May [4].

(3) Let k/k0 be a Galois extension of fields with finite Galois
group G = Gal(A;/A;0). Let V(k) be the category of finite dimensional
vector spaces over k and isomorphisms. G acts on V(k) via its action
on k. Then there is an equivalence of categories V(kH) -» Cat (E//,
F(£))*~Cat(£G, V(k))H (cf. [21. §5]). Thus KG(V(k\ V ( k ) ) con»
tains the (non-equivariant) algebraic ^-theory of each intermediate
field kH as the /f-fixed point subspectrum.

As another application of the theorem, we will construct, in
Section 3, a classifying space BCATn(G} for locally linear G-CAT
bundles with fibre Rn for CAT=0, PL and Top, and show that the
G-monoid J_L»^o-BC-4T'B(G) can be converted into an infinite loop
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G-space BCAT(G} through the group completion map

— > BCAT(G) (determined up to G-homotopy). By the naturality of

the constructions, we can also prove that the G-maps 50 (G) ->

BPL(G) -» BTop(G} can be taken to be maps of infinite loop G-

spaces. (In [16] we shall show that BTop(G) -> BF(G) =group com-

pletion of \_[_n^BFn(G) also becomes an infinite loop G-map, where

BFn(G} is a classifying space for n-dimensional spherical G-fibra-

tions.)

The author wishes to thank M. Murayama for useful discussion

about the subject of this work.

§ 1. rc-Spaces

In this section we introduce the notion of a special FG-space and

describe the passage from special FG-spaces to G-prespectra following

the idea of Segal [18].

Let i^G denote the category with objects all nondegenerately based

G-spaces having the G-homotopy type of a based G-CW complex and

morphisms all basepoint preserving maps (not necessarily G-equi-

variant) . Because every element g of G acts on the morphisms of i^G

by conjugation, iTG can be regarded as a G-category. Denote by FG

the full subcategory of all based finite G-sets having the underlying

set of the form n= {0, 1, . . . , w} based at 0. Then every G-equivarint

functor from FG to iTG is called a TG-space. (Notice that our r = r\

is the opposite of the original F of Segal [17].)

As in [23], we associate to every FG-space A and based G-space

X a topological G-category simp(.Z, FG ,^4) defined as follows:

ob(simp(Z, FG, 4)) = Jl Map0(S, X)

mor (simp (X, FG, A)) - ]_[ Map0 (T, X) X Map0 (S, T) X A (61).
s.rerG

Here each (x, f, a) ^Map0(r, X) xMap0(5, T) X4(S) is regarded as a

morphism from (#£, a) ^Map0(5, -X") X^4(5) to (#, ^4(f)a) eMap0(T', Jf)
XA(T)', the composition is given by (jy, 27, ^4(f)f l ) ° (yrj, f, a) = (jy, ^f,

a) ; and every element g of G acts on simp(X, FG, A) by g(x, f, a) =

(^<?~1j g£g~l, g°-} • Evidently the nerve of simp (X, FG, A) coincides
with the two-sided bar construction B*(X, FG, A) in which X is
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regarded as a contravariant G-functor S \— > Map0 (S, X) from FG to
?FG. We shall write B(X,TGyA) for the classifying space of simp (X9

FG, 4). (Woolfson [23] writes 4'CY) =5(Z, T, 4) when G is the
trivial group.)

Because B*(X, FG,4) is a proper simplicial G-space, we can apply

the arguments of [10, Appendix] and get

Proposition 1.1. (a) B(X,TG,A) belongs to WG if
(b) Let f: X -^> X' be a G-homotopy equivalence and let F: A — > A'

be a transformation of TG-spaces such that Fs: A(S) — > A' (S) is a G-
homotopy equivalence for every object S of TG. Then the induced map

G ? F) : B(X,TG,A) -* B(X\TG, A') is a G-homotopy equivalence.

Given a FG-space A, we have a new FG-space a A: £*-> B(S, FG, A),
Then there is a transformation of FG-spaces a A — » A such that, for
each 5eFG, a A (5) -> A (S) is a G-homotopy equivalence induced by
the equivalence of G-categories simp (5, FG, A) -> -4(5") which takes
each object (x, a) of simp(5, FG, A) to A(x}a^A(S} and each arrow

(x,£,a): (#£, a) -» (*, -4(?)fl) to the identity of 4(xf)0. Following
[17] let us denote by X®aA the FG-space

= JI Map0(rf J

Then there is a natural G-homeomorphism B(X,TG, A) -
(cf. the proof of [23, Theorem 1.5]).

Proposition L2. (a) There are natural G-homotopy equiva-
lences

B(X, FG, JB( -

G ,^ ) (resp. B(X/\-,TG, A)) denotes the TG-space S^

B(S/\Y,TG,A) (resp. S ̂  B(X/\S,YG, A}}.
(b) // X and 4(0) flrg G-connected (i.e., ^XH = nQA(^H= 0 /or

^ery subgroup H of G), so is B (X, FG, A) .
(c) //" X has the trivial G-action, then the natural map i: B(X,Y,A)

-*B(X, FG,4)3 induced by the evident inclusion FcFG, is a G-homotopy
equivalence ; that is, iH : B (X, F, AH) -> B (X, FG, A)H is a homotopy
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equivalence for every subgroup H of G.

Proof. Because B(*/\Y, FG, A) = Y®aA, we can define j to be the
canonical G-map X®a(Y®ffA) (1) -> X® (Y®aA) (1) = (X/\Y) (X)
0-^4(1) (cf. [17, Lemma 3.7]). To see that j is a G-homotopy
equivalence, let us consider the diagram

in which / = jB( l ,F G , |F|) is induced by the map of FG-spaces

\F\:\*imp(S/\Y,TG,A) \ -> | simp(y, FG,

and d= M| : | simp (^AF, TG, A) \ -> |simp ((ZA*>A, r cxTG , ̂ oA) |
is given by

^(XA,Y^^T9a^A(T)) = (X/\Y^^

Then it is easy to see that / and d are G-homotopy equivalences,
and that there is a G-homotopy dj ~ G /. Therefore j becomes a G
homotopy equivalence. The second arrow k in (a) can be constructed
similarly.

(b) follows from the fact that Map0 (£, X) is G-connected for all
SerG provided X is G-connected.

We now prove (c). The G-map i: B(X,T,A) -*B(X,TG,A) is
induced by the inclusion c: simp^, F, A) -> simp(JT, FG, A). Hence
we have only to prove that CH: simp ( X, F, A)H= simp (X, F, AH) ->
simp(Jf, FG, A)a is an equivalence of categories for every subgroup
H of G. Because X has the trivial G-action, every //-map #eMap0

(5, JQ H can be written as a composite

S -^ H\S — X

with #' in F. We now define a functor p : simp(Jf, FG, ^4)H — > simp
(Z,r,^) by
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for each object (x^a) E:MapQ(S, X)HxA(S)H, and

for every arrow (*, £ , a} : (*£, a) -> (*, A (£)*) in simp (X, FGj 4)*.

Note that there is a commutative diagram

-T

v«

*X'

'W *'

H\S-

«T

Clearly pcH = lA and there is a natural transformation Id-*cHp given

by (*', ?s, fl) : (*, fl) ̂ -> (*', 4(05)a) for each (x, a) e simp (Z, FG, 4)*.
This proves that ^ is an equivalence of categories, and completes the

proof of the proposition.

Definition 1. 3. A rG-space A is said to be special if

(a) -4(0) is G-contractible; and

(b) for every object S of FG, the adjoint Ps: A(S) -> Map0(S, 4(1))

of the based G-map S/\A(S) ->4(1), (j, a) t-^A(ps)a is a G-homotopy

equivalence. Here /?s: 5^1 denotes the based map such that ps(s)

= 1 and p,(S-[s})=Q.

Given a FG-space A and a finite dimensional real G-module F,
we put

^G4F-^(5F, rG, 4)/5(oo, rG? 4) -5F®^(i)/(j4(0)
where Sv denotes the onepoint compactification of V based at oo.

Because <r4(0) is G-contractible and the inclusion 5(oo 5rG ?4)->

B(SV, FG, 4) is a G-cofibration, the projection B(SV, FG, 4) -> SGAV is a

G-homotopy equivalence. Furthermore it is easily checked that the

inclusion Sv X (5^(g)a4)(l) -> 5F X (S^

(cf. Proposition 1.2 (a)) induces a based G-map

such that the equality eViV>@w (1 /\ev-iW) =ev@V'iW holds. Thus we have

a G-prespectrum SGA= {SGAV} such that
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Moreover by Proposition 1.2 (c), there are natural equivalences of
prespectra

fH: S(AH) -> (SGA)H

where S(AH) denotes the prespectrum {B (Sv, F, AH}/B (oo, F, AH}}
constructed from the special F-space AH : n^^4(n)^ by the method
of Woolfson [23]. (Compare the remark at the end of this section.)

The following theorem is essentially due to Segal [18].

Theorem B. Let A be a special YG-space. Then SGA is an almost

Q-G-spectrum^ that is, the maps ev w : SGAW-+ QVSGAV@W are G-homotopy

equivalences whenever WG=£Q. Moreover e: SGAQ-+@SGAR is a G-homotopy

equivalence if and only if ^4(1) is grouplike.

We now sketch a proof of this theorem and explain why the
condition (b) of Definition 1. 3 is required. (The situation was not
clear in the original proof of [18, Theorem A].)

For simplicity of notation, we shall write

EA(X) = B(X, FG, A)/B(*, FG, A)

for every X^i^G\ in particular SGAV — EA(SV). Because the inclusion
5(*,rG , A) ->5(JT, rG,4) is a G-cofibration, EA(X) has the same
G-homotopy type as B(X,TG,A). Let us regard EA : X*-+ EA(X) as
a G-equivariant functor from ^i^G to i^G where 3PiTG denotes the
G-stable full subcategory of i^G consisting of all compact G-ANR's.
(Compare [14, Theorem 1].)

Lemma 18 4. Let A be a special TG-space. Then EA enjoys the

following properties:

PI. For every X e^">TG and 5^FG, the G-map PSiX: EA(S/\X}

-> Map0 (5, EA (Z)), induced by S/\EA (S/\X) -> EA ( X ) , (s, x) i->

EA(ps/\l)x, is a G-homotopy equivalence.

P29 If Y — > X is a G-cofibration and EA (Y) is grouplike under the

G-equivariant multiplication EA(T) XEA(Y) ~GEA(Y/\2) -> EA(Y), then
EA (Y) -> EA (X) -> EA (X/Y) is a G-fibration sequence.

Notice that PI implies the speciality of the FG-space SW EA(S/\X)
for every



248 KAZUHISA SHIMAKAWA

Proof. By Proposition 1.2 (a) and the definition of EA, we have

a commutative square

EA(S/\X}~G E(T^aA(S/\T)}(X} -* E(T^ A(Sf\T)} (X}
ps,x\

in which the horizontal arrows are induced by the natural transfor-

mation a A — > A and TT is induced by the G-homotopy equivalences

PS,T: A(Sf\T)->A(T)s = M3.pQ(S,A(T», T^TG (cf. Definition 1.3(b)).

By Proposition 1.1 (b), all the arrows except for Ps x are G-homo-

topy equivalences. Hence PSiX becomes a G-homotopy equivalence.

This shows that PI holds.

Next, by the arguments quite similar to [23, Theorem 1.7], we

see that

B(Y9 FG, A) -> B(X, TG9 A) -> B(XU CY, TG9 A)

is a G-fibration sequence if B(Y,TG,A) is grouplike. This implies

that P2 holds. (Observe that in the proof of Theorem 1. 7 of [23]

the connectivity of Y is only used to ensure that A' (Y) -> QA' (SY)

is a homotopy equivalence. Of course this follows from the weaker

condition that A' (Y} is grouplike. See also [17, p. 296].)

Now suppose we are given a based G-map

fji'. Z->Map0(Y,Z).

Then, by fuctoriality, we get a G-map

Because EA (point) = point, ft' preserves basepoints; and so defines, by

adjunction, a based G-map

Dft: EA(Y)-* MaPo (X, EA (Z) ) .

For example, if S is a based finite G-set and fjt is a based G-map

S^Map0(6y\Z, X), s^ (p,/\l: S/\X-*l /\X^X), then D^ coincides

with PSiX: EA(S/\X) -> Map0(5, EA(X)); and if ^: ^-^MapoC^,

5F0W) is the adjoint of the identity map SV/\SW -> Sv®w, then D^
£v,w' &cAw ~* ** SGAV@W.

Let M be a compact G-stable subset of a real G-module F, and

let MB be the e-neighborhood of M in F. Then there is a G-map
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M -* Map(0e, Afe) which takes each element m of M to the map

x*-*m + x from the £-neighborhood of the origin to Me. By the

Pontryagin-Thom construction we get a based G-map

li : M+ -» MaPo (Ml, OS) ^ Map0 (jiff, Sv) .

Here, for every open subset X of V, Xc denotes the onepoint com-

pactification of X based at oo ; i.e., XC—V/V— X. Consequently we

get a based G-map

DM = D,: EA(Mi) -

Lemma 1.5. ([18, Proposition (2.2)]). Let M be the unit sphere

of V. Suppose TG^0 or EA(X} is G-connected for every X^^i^G (e.g.,

A = Z(x)ffA' for some special TG-space A' and a G-connected space ZEE^^G).
Then DM is a G-homotopy equivalence.

Proof. Choose an equivariant triangulation of M (cf. [6]), and

let [Cx\teA be the covering by the open stars of open simplexes. We

identify the indexing set A with the G-set of the barycenters of open

simplexes. Moreover, by taking a refinement of the triangulation if

necessary, we may assume that each Cj either coincides with or is

disjoint from its translate by elements of G.
Suppose e is small compared with the minimum of the radii of the

simplexes of positive dimension. Let n: MB—>M be the radial pro-

jection, and let X=\J^eTC^ be a G-stable union of some of the C^.

Let us denote X=7r~l(X) and X = X-(M-X)B. Then the G-map

M -> Map(0E, Afe) restricts to X -* Map (0E, X), so that we have a

based G-map

Dx : EA (1<) -> Map0 (1+, EA (Sv) ) .

We will show, by induction on the cardinal of the orbits contained

in T, that this is a G-homotopy equivalence.

If T, is a single orbit, then the closed embedding T= U ̂ T

(barycenter of X) -> U ̂ TC^ induces G-homotopy equivalences T+

~G X+ and T+/\SV— G Xc. Therefore Dx is identified with P v :

EA(T+/\SV) -> Map0(T+, EA(SV)) which is a G-homotopy equivalence
by PI.

Next let Xl and X2 be two G-stable unions of C/5, and let X=
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X1(JX2, Xl2 = XlnX2. Then we have a diagram

EA((X -X^} >EA(XC)

i i
EA ((X2 - X12)<) , EA (lO > EA (X\2}

induced by the cofibration sequences (X—X^)c-> Xc-> X{ =
XC/(X-X^C and (X2-X12)

C ~* XC
2 -* XC

12. (Notice that X-X^X and
X2 — X12-> X2 are closed G-embeddings.) Because EA((X — Xl)

c) is
G-connected by the assumption, the horizontal sequences in the above
diagram are G-fibration sequences by P2. Therefore the square

EA(X') >EA(Xc
l)

i. i
EA (XC

2) > EA (X{2)

is G-homotopy cartesian. Moreover the corresponding square

MaPo (X+ , EA (Sv)) » MaPo (Z1+, EA (5V))

Map0(Z2+9 EA(ST» - > MaPo(Z12+?

is also G-homotopy cartesian. Hence we can prove inductively that
DX) and consequently DM? too, is a G-homotopy equivalence.

Proof of Theorem B. We will show that EA(S°) -> QVEA(S*) is a
G-homotopy equivalence if -4(1) is grouplike and FG^0, or if EA(X}
is G-connected for every XEEJ^. When PKG^0, EA (• /\SW) =
E(SW®0A) ( * ) satisfies the latter condition; and so £VtW: EA(SW)
-> QVEA (Sv@w) is a G-homotopy equivalence for any Va

Let Br denote the closed disk of radius r in V and Sr its boundary
sphere. Because EA(S°) ~ G^(l) is grouplike, the horizontal sequences
in the diagram

n I I>c

' I '

Map0 (^A , £^ (57) ) -> Map0 (B1+9 E^ (57) ) -> Map0 (51

are G-fibration sequences. By Lemma 1. 5, Ds is a G-homotopy

equivalence and DB is trivially a G-homotopy equivalence. Therefore
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the induced map EA(S°)^G EA(B1_BUSl^/S1+B) ->QVEA(SV) is a G-
homotopy equivalence. This completes the proof of Theorem B.

Remark. (Cf. [9, Chapters I and II].) Let G^J/ (resp.
denote the category of G-prespectra (resp. G-spectra) indexed on a
indexing set <stf in some G-universe U. Then our SGA canonically
defines a G-prespectrum SGA^ = (EA(SV) \ V^stf] eG^j^ with the
structure maps S"~VEA(S*) -* EA(S(W~vmv) = EA(SW), and also the
associated G-spectrum LSGA^G£f<stf. By [9, Chapter II] any G-
linear isometry /: U-*U' between G-universes induces an equivalence
/*: G^U'-*G^U and hence G^^~G^U is equivalent to G<fdf

for another indexing set stf' in U'. In particular we see that the
prespectrum (SGA)I^=S(AH} ^ indexed on any jtf in a //-trivial
universe UH becomes equivalent, upon passage to stable category, to
the usual prespectrum (E(AH) (S71)} indexed on the standard n-spaces

§2. Proof of Theorem A

We now prove Theorem A. Thanks to Theorem B, it suffices to
construct a functor which assigns to every (/), D') a special FG-space
such that the associated //-fixed point F-space coincides with the
F-space arising from B(D,D')H.

First recall the passage from symmetric monoidal categories to
special F-categories (cf. [11], [19]). Given a monoidal category C,
we have a F-category CA such that, for each neF, the objects of
GA (n) are of the form <a^; aUiVy in which <% is an object of C for
every based subset U of n, and aUiV is an isomorphism <% v y—>%
@av for every pair of subsets C7, Fen with [7flF={0}. Here
a{0]=QEzC and the evident coherence conditions between aViyS (i.e.,
associativity, commutativity, and unit axioms) must be satisfied. When
C is a symmetric monoidal G-category, the above construction of CA

can be extended to give a TG-category, i. e., a G-equivariant functor
from FG to the category CatG of based G-categories and basepoint
preserving functors: For every finite G-set S with underlying set n,
CA (5) is defined to be the category C*(*0 equipped with a G-action
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Then, for every /: S -> T in FG, we have A(gfg~l) =gA(f)g~l where

A ( f ) denotes the functor CA (5) -»CA(T)3 ^u 3 &U, y> >-> <<z/*tf J <*f*u.f*v>
(J*U= {0} Uf~l(U- {0})) induced by /.

Note that, if C is the realization of a simplicial monoidal G-
category, then \CA (S) | e^G because C* (S) is obtained as the realiza-
tion of the simplicial G-category [&] "— » C A (S) . Thus we have a
FG-space £>-> |CA (5) | such that the associated F-spaces n»-> |C^ (n) |^
— | C A ( n ) ^ | coincide with the F-spaces | (C^) A arising from the
(simplicial) monoidal categories CH. However we do not know, in
general, whether this CA | is special or not.

Definition 2.1. A FG-category F: FG->CatG is said to be special
if F is obtained as the realization of a simplicial FG-category, and
satisfies the following conditions

(a) F(0) = point; and
(b) for every 5eFG, the G-functor Ps : F(S) -> F(l)5 = C*tG(S,

F(l)) induced by S/\F(S) ^ F(l), (s, x) ^ F ( p s } x is an equivalence
of G-categories. (Compare Definition 1.3.)

If F is a special FG-category, then |F|: S H-> \F(S} | is a special
FG-space; and so we have an almost <0-G-spectrum $G|F|.

Proposition 2e 2. Let (D, D') be a pair of simplicial monoidal G-
graded categories. Then B(D,D')* is a special TG-category,

Of course Theorem A follows from this proposition: We define
KG(D,D'}=SG\B(D,DT\. Then there are a natural G-homotopy
equivalence

KG(D, £>')„ -» \B(D, D') A (1) - \B(D, Z>') |

and natural equivalences of prespectra

K(B(D, D')H} =S\(B(D, D')H) A 1
-» (SG\B(D,DT\}H=KG(D,D')H

for all subgroups H of G.

Proof of Proposition 2.2. For simplicity, write C = B(D,D'} and
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© = ©£. We define an adjoint Ts : CS = C* (l)s -> CA (5) of Ps as

follows.

Let a=(as} be an object of Cs. Each as is a functor EG -» D'

over G and particularly <30: EG — » G — > Dr has value Oe£)'. For each

and every based ordered subset U= [Q, ul9. . . , ur] dS,

Cwr, we write

u (*) = 0©fl,-iBl (*) © • • • ©a,- V . O) 0fl,-i0 (*)1 r— i r

where {0, ul9 . . . , ur] =xUdS, 0<w1<- • -<yr. Since Z) is a monoidal

G-graded category, there is an isomorphism (of grade 1)

uniquely determined by the permutation of U— {0}, M> »-> ^"^(l ^j

^r). Then, for every C7, Fen with Ur\V= {0}, we have an iso-
morphism

such that (pu®pv)a'u.vWpuvv coincides with the uniquely determined
isomorphism

0©% (*) © • ' • ®awr+s (*) ->

(0©aMi W © - - - ©«Mr (x) ) © (0©^ U) © • • • ®aVs (x) )

where C/= [Q,u19..., ur] , 7= {0, v1 , . . . , vs] and f/V Tr= {0, wl , . . . , ̂ r+s}

Similarly for every arrow /: x -> y in EG, afu(f)\ au(x)

of the same grade as jf, is uniquely determined by the commutativity

of the diagram

%(/)
a'u 00 —^ 0@aUi 00 ©' •' ©#«r O) -

It is a routine exercise to show that <%: # i—>fltf(.x;) is an object of C

and a'u.v(x)\ auvv(x) -* av (x) ®a'v(x} is natural in x. Thus we have

an object
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Clearly the construction of Tsa is natural in a, and we get a fuctor

Ts: C5->CA(5)0

We will show that Ts is G-equivariant. Let g be an element of

G0 Then

and we have

= 0®ag-ix-i0l (xg) 0 • • • ®ag-ix-i0r (xg)

because (xg) (g~lU) =xU= {0, ^ , . . . , yr} . Moreover it is easily checked

that ga'g-iUig-iv coincides with (ga)uw~* (gaYu® (ga)'v- Therefore the

functor Ts is G-equivarianto

Evidently PSTS is the identity of Cs. On the other hand, the

natural transformation <j^> : <<%; au,vy^>TsPs^au\ <%.F> given by the

composite isomorphisms

00fl,-iWi (x) © • • • ®ax-i0r (x) ,

where <2M denotes fl,0itt} for every u^U, is compatible with the G-action

on CA(5). It follows that Ps is an equivalence of G-categories0

We now state, in view of future applications, an immediate con-

sequence of Theorem A.

Recall that the Grothendieck construction (cf. [20]) converts a

(simplicial) monoidal G-category G Into a (simplicial) monoidal G-

graded category G/C which has

(a) the same objects as C;

(b) the pairs <g, /> with/: ga -> b in C as morphisms a-*b of

grade g', and

(c) the unique multiplication ©G/C : G/C XGG/C -> G/G such

that, for every pair of morphisms <&/>: a -> 6 and <ft /7>: a' -*V

of the same grade £, the following holds :

<& f>@ofc<g, f> = <g, f@cf>- a
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Observe that G/C becomes the product G-graded category GxC if C
has the trivial G-action.

Given a pair of monoidal G-categories (C, CO, let us denote by
£G(C, CO the full subcategory of the functor category Cat (EG, C)
consisting of the objects EG — > C which factors through C'. Then
£G(C3CO equipped with the G-action

(ft/) >-> (gf: *•

and the G-equivariant multiplication

is naturally isomorphic to £(GJC, GJCO under the monoidal G-functor
0: Cat(£G5C)^HomG(£G5G/C) which takes each/: EG ̂ C to $/:
£G->G/C;

0/00 = */(*)
0f(x -> g*) = <& gxf (x -> ̂ ) > : 0/(%) -> Qf(gx) .

Hence we have

Theorem A'. KG restricts, via the Grothendieck construction, to a
functor from the pairs of simplicial monoidal G-categories to almost Q-G-
spectra equipped with

(a) a natural G-homotopy equivalence KG(C,C')Q-^> |5G(C5C") |, and
(b) natural equivalences of prespectra K(BG(C,C'}H} -^KG(C,C')H

for all subgroups H of G.

\BG(C, CO | has the same G-homotopy type as the infinite loop G-space
KG(C,C')=QKG(C,C')R if and only if \BG(C,C'} \ is grouplike.

Remark. Our approach to Theorem A was based on FG-spaces.
There is another approach based on E^ G-operads [9],

Let ^ = HomG(£G, Gx£J,) =Cat(£G, ES,) and let 2, be the G-
space \ ® j \ . By Theorem 3.1 (see also [15])

is a universal G-2j bundle, and there are G-maps
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induced by the functors f : ESkxEZJi X • ° • xESJk -> ESS;

f ( f f l T l 9 0 e a , rk) = ty-i(1)©* * • ©rff-ift) .

(Compare [10, Lemma 4.4].) Thus we have an £«, G-operad @.

If D is a monoidal G-graded category (with strictly associative

multiplication © = ©D), there is a -Fy-equi variant functor over G

which takes each object (r; ^1,...,^-) of (G X ES^ X GDD] to ^r-i(1)©
• ••©^r-i(y)ejD (cf. [10, Lemma 4.3]). This induces a -£,— equivariant
G-functor @jXB(D,D'y-*B(D,D') for every pair of monoidal G-
graded categories (D, D')? and hence we have a natural action

of the E^ G-operad S on |5(D,D7) |.

§3e Equlvariant Classifying Spaces

We now apply our theorems to deloop the maps 50 (G) -> BPL (G)
-> BTop (G) equivariantly and infinitely,,

To begin with, we shall describe a functorial construction of the
classifying space for equivariant bundles. Let A be a topological
group, and let y = r]Ai UA-*BA be a universal principal ^4-bundle.
We assume here that (-4,1) is a strong NDR (e.g., the realization
of a simplicial group) and take \EA\ -> \A \ as our universal bundle
unless otherwise stated. Then there is a new bundle <\^, iy> : (UA^ UAy
-^BAxBA whose fibre <57, ^X1 (#, y) over (x, y) &.BA X BA consists
of all admissible maps 5?"1 (#) -> 7]~l ( j) ; so that <^, ^X1 (x, j;) = A.
(Compare [2] as well as [13].) It is easy to see that the maps

and

together with the evident composition

define a topological category (with trivial G-action) ^^4 such that
ob&A=BA and
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Theorem 3e 1. Let A be the realization of a simplicial group and A'

a subgroup of A, Then, for any compact Lie group G, \BG(9 A, 9 A') \

is a classifying space for G-(A,A') bundles in the sense of [8]. // G

is a finite group, \BG(A,A')\=\ BG(EA/A, EA'/A') \ is also a classifying
space for G-(A,A') bundles.

(For a generalization of this theorem, see [15].)

Proof. There is a category & 'A with

= (UA, UA>XBAUA= ((</>, fl) |j(#) =?(fl)},

7(fl),and with structure maps s(faa}=a, t (fa a) = (p (a) , i(a) = (id7

( & 0 ( f l ) ) o ( & f l ) = (^,fl). Let TT: Cat(£G, &> A) -> Cat (EG, 9 A) de-

note the G-functor induced by the projection & 'A-* & A = ̂ A/A, (fa a)

^fa We will show that \n~lBG (9 A, & A'} \ -> \BG (9 A, 9 A") \ is

a universal G-(A,A') bundle. Observe that n~lBG(9 A, & A') coincides

with BG(^A, ^A' XA'A). For simplicity of notation, write E = K~I

BG(&A,&A') and B = BG(&A,&A'). Then, for every element /=

(fn
<~ ° B • <~/i<~/o) of NnB, we have a representation «(/)'. H -^ A'

(H = Gf) defined by

«(/) (A) = (/od ->« : /od) ->/o(A) =/oO))

and n~lGf-*Gf = G/H is G-^4 equivalent to the trivial G — ̂ 4 bundle

GXHAa(f) -> G///. Clearly this extends to a local trivialization of

NnE — » ^Vn5, and in fact we can prove that |£| -> |5| is a numerable

G-(^,^0 bundle. (For details see [15].)

We now prove that |£|-» |J5| satisfies the condition (1) and

(2) of [8, Theorem 6] for every representation p: H->Af. Let us

consider \E\ as an //-space under the action a *-» hap (h) ~1. Since

UA-+BA is a universal ^4-bundle, there exists a bundle map (/, /):

(GXHAP, G/H} -» (UA^BA) and the G-action on Gx#^ determines

a functor F: EG -* 9 A', F(x}=^f(xH}, F(x->gx)=(g: rl(f(xH))

-^T]-l(f(gxH)}}^JJA, UA>. Evidently F belongs to BG(9 A, 9 A')

and the lift F: EG-*3"A of F given by F(x) =f[x, 1] and F(*->

gx) = (F(x-*gx), fix, 1]) e<C/^4, f/^>X jBAf/^ is invariant under the
//-action on E. Hence \E\H^ 0. Moreover, since ¥ A has a unique
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morphism between each pair of its objects, |£| is //-contractible to
any vertex of \E\H. Hence, by [8, Theorem 6], |£| — > \B\ becomes
a universal G-(A,A') bundle.

When G is finite, every trivial G-A bundle GxHAp->G/H is
in fact a trivial ^4-bundle, and so classified by the constant map
G/H-**. It follows that \n^BG(A,At)\^\BG(A,A')\'^ also a
universal G-(A, A') bundle,, Here TT denotes the G-functor Cat (EG,
EA) -> Cat (EG, A) induced by the projection EA-*EA/A = A and
n-lBG(A,A') is identical with BG(EA, EA'XA.A).

In particular, take the simplicial group CATn — On or PLn or Topn

as Ay and the discrete group GLn as A'. (Compare [7]. Note that
GLn is the 0-skeleton of On, and in fact GLn = OnnPLn in Topn', cf.
[1, p. 216].) Then we have a classifying space

BCATn(G) = \BG(&CATn, 9GLJ \

for locally linear G-CAT bundles with fibre Rn. However, from the
viewpoint of smoothing theory, there is a need to construct a G-
fibration BOn(G) -> BPln(G), and \BG(&On, &GLJ \ is not adequate
for this purpose. Therefore we replace \BG(&On, &GLJ \ by an
equivalent G-space defined as follows: (Compare [7, §3].)

Let PDn be the simplicial set whose A-simplexes are fibre preserving
p. d, homeomorphisms Ak x (En, 0) -> Ak x (Rn, 0). Then PDn admits
a left free PLn-action (h, f) ^ fh~\ (h, /) ^PLn X PDn, and a
right free On-action (f,k)^k'lf, (f,k)^PDnxOn. Now consider
the G-map UPLn(G} XPLPDn-> UPLn(G} XPLPDn/On induced by the

projection PDn-+ PDJOn where UPLn(G) = \BG(6ePLn^GLnXGLPLn} \

is the total space of the universal G-(PLB,GLB) bundle we have
constructed in the proof of Theorem 1. Because the inclusion PLn->
PDn is a homotopy equivalence, UPLn(G) XPLnPDn^:GUPLn(G') becomes

a total space of a universal G-(Ora,GLJ bundle over UPLn(G)XPLn

PDJOna From now on we write B0n (G) = UPLn (G) X PL PDJOn =n

\BG(&'On,&'GLn)\ where

9 '0. = &PLnX PLPDJOn and 9 'GLn = #>GLnX GLPDJOn .

Then there are G-fibrations BOn(G) -> BPLa(G) induced by the pro-
jection (&PLnxPLPDn/On,ff'GLnxGI.PDH/OJ -> (9 PL,, 9GLJ and
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BPLn(G) -*BTopn(G) induced by the evident inclusion (& PLn, &GLn)

Remark. Since G is a finite group, we can take much smaller G-

space \BG(CATn,GLn)\ (or \BG(EPLnXPLPDJOn, EGLnXGLPDJOn} \

when CATn = On) as our BCATn(G) (cf. Theorem 3. 1). All the argu-

ments below are valid for this choice of BCATn(G) with &CATn and

&CATn replaced by ECATn and CATn respectively.

Let us denote by (CAT, GL) the pair of simplicial categories

( 1L 9 '0, , H. & 'GLJ if CAT= 0,
n^O n^O

(U_&CATn, H&GLJ if CAT=PL or Top.
n^Q n^Q

We make (CAT, GL) into a pair of symmetric monoidal categories

by defining the multiplication CATxCAT-*CAT as follows:

For every pair of integers m and n, there is a simplicial map
0: Topm X Topn -» Topm+n which assigns to every (x, y) e Topm X Topn

the Whitney sum x®y^Topm+n. Here we use the standard identifi-

cation RmxRn=Rm+n. Clearly © restricts to PDmX PDn -» PDm+n,

PLmxPLn^PLm+n, Omx0n-*0m+n, GLmxGLn-*GLm+n, and also in-

duces PDm/OmxPDn/On-*PDm^n/Om+n(cL [7, §4]). Since ^ (and hence

^ ) is compatible with the product of bundles, we get the functors

9 Vm X & 'On -> 9 'Om+n and 9 CATm X & CATn -> 9 CATm+n

(CAT=PL or Top) which restrics to 9 'GLm X & 'GLn -> 9 fGLm+n and
^ GLm X & GLn -> ^ GLm+n respectively. Therefore we have a multipli-

cation CATXCAT-+CAT with respect to which (CAT,GL) can be

regarded as a pair of symmetric monoidal categories (with strictly

associative multiplication) .

Now apply Theorem A7 to (CAT, GL) and we get an infinite loop

G-space

BCAT(G)=KG(CAT,GL) (CAT=0,PL or Top).

Moreover the functors (0, GL) -> (PL, GL) and (PL, GL) -> (7o/>, GL),

given by the projections (^PLn XPLjPDH/0H, ^GLn XGLPDn/On} ->

(^PLR, ^GLJ and inclusions (^PLn, ^GLJ -> (&Topn, &GLn) res-

pectively, are compatible with the multiplications. Thus we have
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Proposition 3e 20 There exist maps of infinite loop G-spaces

BO (G) -»5PL(G) -»BTop(G).

We finally show that the G-map

) -> BCAT(G)

is in fact an equivariant group completion, where i~l is a G-homotopy

inverse of i: KG(CAT,GL)Q-+ \BG(CAT,GL) | =JLL*o BCATn(G). Let
M denote the G-monoid JJ.BSO BCATn(G) and identify BCAT(G}

with QBM, If £ : EG -> ^ Glq is the constant functor with value

*eflGLb S^BCAT^G^ and we get G-maps ©f : BCATn (G) ->
BCATn^1(G). (Equivalently ©f is the G-map induced by the inclusion

5C^rra(G)c5C^rn+1(G).) Let AT,. be the telescope formed from the

sequence

\x ®* i* 01 a/f ®l
M - > M - > M - >

Then Af acts on M^ and we get a G-map /? : X=EMxMM00 -> 5Af

with fibre M^ at the basepoint 6. Because (M00)
H= (MH} ^ for every

subgroup H of G, p restricts to a homology fibration XH -> jBM^

with Jfff contractible and with fibre (M^11 at the basepoint. (Compare

[12, Proposition 2].) Therefore the natural map (AfJ* -* F(p, b)H

~QBMH is a homology equivalence, and H* (QBMH} ^ H* (MH) [jr"1]

(7r-7r0(MH))8 This implies that

Proposition 3a 3. ei'-1 :iin^0BCATn(G) -> BCAT(G) is an equivariant

group completion map.

Remark. In [16] we shall show that a classifying space BFn(G)

for 72-dimensional (locally linear) spherical G-fibrations can be con-

structed as follows:
Let B'G(&Fn, &GLn} be an 0G-subcategory of BG(& FH9 %GLn)

(which is considered as an 0G-category G/H H-> BG ( & Fn , ^ GLn)
 H )

such that, for every G-orbit G/7/EEOG, Bf
G(&Fn, &GLn)(G/H) has

the same objects as BG(^Fn, ^GLn)
H and morphisms all natural

transformations /-»/' in BG(& Fn, <gGL^H which induces an H-

homotopy equivalence Satf)-*Sa(f">* Here a ( f ) denotes the represen-
tation H-*GLn associated to f<= Funct(EG3 &GLJH= Fund (EG/ H,
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&GLn}. (Compare the proof of Theorem 3. 1.) Let C be the
Elmendorf s functor [3] which converts 0G-spaces to G-spaces. Then
we can show that the G-space

BFn(G)=C\B'G(9Fn,9GLn)\

classifies 7z-dimensional spherical G-fibrations. Moreover, with minor
modifications of the arguments of Sections 2 and 3, we can prove
that there exist an equivariant group completion map ]_\_n^BFn(G)
-*BF(G) and also an infinite loop G-map BTop(G) ->5F(G). Thus we
get a sequence of infinite loop G-maps fiO(G) -> BPL (G) -> BTop (G)
-»BF(G). Details will appear in [16].
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