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Abstract

We construct a functor K; which takes each pair of monoidal G-graded categories
(D,D’) to an infinite loop G-space Kg(D,D’). When D'=D, its homotopy groups
7$Ke(D, D) coincide with the equivariant K-groups K,RepD of D. Applications include
the simple construction of equivariant infinite deloopings of the maps BO(G)—>BPL(G)—
BTop(G) between equivariant classifying spaces.

§0. Introduction

Let G be a finite group. By a (simplicial) G-graded category we
shall mean a (simplicial) category D equipped with a (simplicial)
functor 7 from D to G which is regarded as a category with only one
object. We often identify a simplicial G-graded category D with its
realization rD; a topological G-graded category such that ob(rD) and
mor (rD) are the geometric realizations of the simplicial sets [£] —
obD, and [£] — morD, respectively.

A G-graded category D is said to be monoidal if there exist a
functor (over G) @p: DXsD — D, a section 0: G — D, and natural
isomorphisms a@, (0@ pe) = (aPpb) Ppe, aPpb=bPpa, 0Ppa=a (all
simplicial in the case D is a simplicial G-graded category) subject to
the coherence conditions similar to those for symmetric monoidal
categories (cf. [5,22]). Given a pair (D, D’) of a monoidal G-graded
category D and its G-graded subcategory D’ closed under @p, we
define a G-category B(D, D’) as follows:
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Let EG be the translation category of G considered as a G-graded
category via the projection EG — EG/G=G. Take the category
Hom;(EG, D) whose objects are functors EG — D over G and whose
morphisms are natural transformations. We endow Hom;(EG, D)
with a G-action

(& )~ @f: x> f(xg)

for every g&G and feHomg(EG, D). Then B(D,D’) denotes the
G-stable full subcategory of Hom.(EG, D) consisting of those functors
EG — D which factors through D’. Observe that if (D, D’) is a pair
of simplicial G-graded categories then B(rD,rD’) is naturally isomor-
phic to the realization of the simplicial G-category [k] — B(D,, Dy).
Throughout the paper we write B(D, D) =B(rD,rD’) for any pair
of simplicial G-graded categories (D, D").

Clearly B(D, D’) has a structure of a symmetric monoidal G-
category given by the G-equivariant multiplication @ : B(D, D’) X
B(D,D’y - B(D, D),

(L) (FRS 2= f()@of (%))

for every f, f'€B(D,D’); hence its classifying space |B(D,D’) |
becomes a Hopf G-space. The purpose of this paper is to construct
a functor K; which assigns to each pair of simplicial monoidal G-
graded categories (D, D’) an infinite loop G-space K;(D, D’) having
the same G-homotopy type as |[B(D,D’)| when (and only when)
|B(D,D") | is grouplike, i.e., 7, |B(D,D") |# is a group for every
subgroup H of G. To state the results more precisely, we need
further definitions.

We use the term almost 2-G-spectrum to mean a system E consisting
of based G-spaces E, indexed on finite dimensional real G-modules
V, and basepoint preserving G-maps ¢y w: S' A\Ey — Eygw satisfying
the following conditions:

@) ev.vew(l Aey-w) =eygy w holds for all G-modules V, V' and
W, and

(b) the adjoint &y w: Ey — 2"Eyew of eyw is a G-homotopy
equivalence if W¢=0.

Note that any such E gives rise to a G-prespectrum E_ = {E, |V
€4/} indexed on any indexing set & in a G-universe U (cf. [9]).
(See also the remark at the end of Section 1.)
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By the definition 2F, becomes an infinite loop G-space where R
denotes the trivial G-module of dimension 1. Moreover, we have
fixed point prespectra Ef= {E¥} indexed on finite dimensional real
vector spaces (with trivial H-action). Clearly E¥ is an almost Q-
spectrum in the sense that Ef~Q'E#y, if W+0.

Let K denote the functor which takes each simplicial monoidal
category C to the prespectrum

KC=S|C"|=S(n—|C"(n)])
where C" is the special I'-category constructed from C (cf. [11], [19])
and S is the Segal-Woolfson machine [17,23] which takes each
special I'-space A4 to the almost £2-spectrum SA={4'(S§")/4’(c0)}

(cf. Section 1). Then the main result of the paper can be stated as
follows:

Theorem A. There is a functor K; from the pairs of simplicial
monoidal G-graded categories to almost 2-G-spectra equipped with

(a) a natural G-homotopy equivalence K (D, D’),— |B(D,D’) | ; and

(b) natural equivalences of prespectra K (B (D, D")¥) — K; (D, D")¥
Sfor all subgroups H of G.

Put K;(D,D") =2K;(D,D")g. Then there are natural G-maps
|B(D, D") | «— K;(D, D")y —> Ko(D, D")

in which ¢ is a G-homotopy equivalence, and we have

Corollary. K (D, D’) is an infinite loop G-space, and |B(D, D’) |
has the same G-homotopy type as K;(D, D) if and only if |B(D, D) |
is grouplike.

Let us consider the particular case D’=D (so that B(D,D’) =
Homg(EG, D)). Suppose D is stable, i.e., given MeD and g€G,
there exists an isomorphism f: M — N of grade y(f)=g. Then, for
every subgroup H of G, we have an equivalence of categories

Hom¢ (EG, D)#=Hom;(EG/H, D) - Homy (H, DX H) =Rep(H, D)

induced by the inclusion H=EH/H — EG/H. Here Rep(H, D) is
the category of representations of H by automorphisms (of the right
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grades) of objects of D (cf. [5]). Thus

Proposition. The coefficient groups wfK(D, D) coincide with the
equivariant K-groups K,Rep(H, D) in the sense of [5,22].

(More precisely we can prove that there is a natural isomorphism
of Mackey functors #ZK. (D, D)= K,Rep(H, D).)

As we shall see in Section 2, every symmetric monoidal G-category
C is accompanied with a monoidal G-graded category GfC such that
Homg (EG,GfC) is naturally isomorphic to the functor category
Cat (EG, C) having the G-action (g, F) — (gF: x> gF(xg)). Most of
interesting examples of monoidal G-graded categories are obtained in
this way, and we shall write K;(C, C") =K;(GfC, GfC") for every pair
of symmetric monoidal categories (C,C’). Among the examples, we
have

(1) Let 2= ]|,»,2, be the skeletal category of finite sets and
isomorphisms with symmetric monoidal structure given by disjoint
union. Then K Cat(EG, 2)?=KRep (H, 2) is the Burnside ring
A(H). In fact, each |Cat(EG, 2,)| is a classifying space for n-fold
G-coverings (cf. Theorem 3. 1), and hence K (2, 2) is equivalent to
the sphere G-spectrum.

(2) For any ring A we have a symmetric monoidal category
GLA=]]l,-.GL,A equipped with the trivial G-action. Since BGL,A(G)
= |Cat (EG, GL,A) | is a classifying space for G-GL,4 bundles, K;(GLA,
GLA) gives an infinite G-delooping of the G-space K(4,G) =2B(]],»o
BGL,A(G)) defining the equivariant K-theory of 4 in the sense of
Fiedorowicz, Hauschild and May [4].

(3) Let k/k, be a Galois extension of fields with finite Galois
group G=Gal(k/k,). Let V(k) be the category of finite dimensional
vector spaces over k£ and isomorphisms. G acts on V (k) via its action
on k. Then there is an equivalence of categories V (£%) — Cat (EH,
V(k))*=Cat(EG, V(k))? (cf. [21.85]). Thus K;(V(k), V(k)) con-
tains the (non-equivariant) algebraic K-theory of each intermediate
field k¥ as the H-fixed point subspectrum.

As another application of the theorem, we will construct, in
Section 3, a classifying space BCAT,(G) for locally linear G-CAT
bundles with fibre R* for CAT=0, PL and Top, and show that the
G-monoid ] |,>(BCAT,(G) can be converted into an infinite loop
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G-space BCAT (G) through the group completion map |l,-,BCAT,(G)
— BCAT (G) (determined up to G-homotopy). By the naturality of
the constructions, we can also prove that the G-maps BO(G) —
BPL(G) — BTop(G) can be taken to be maps of infinite loop G-
spaces. (In [16] we shall show that BTop(G) — BF(G) =group com-
pletion of ]|,-,BF,(G) also becomes an infinite loop G-map, where
BF,(G) is a classifying space for n-dimensional spherical G-fibra-
tions.)

The author wishes to thank M. Murayama for useful discussion
about the subject of this work.

§1. T .-Spaces

In this section we introduce the notion of a special I';-space and
describe the passage from special I';-spaces to G-prespectra following
the idea of Segal [18].

Let #7; denote the category with objects all nondegenerately based
G-spaces having the G-homotopy type of a based G-CW complex and
morphisms all basepoint preserving maps (not necessarily G-equi-
variant). Because every element g of G acts on the morphisms of #75
by conjugation, #7 can be regarded as a G-category. Denote by I';
the full subcategory of all based finite G-sets having the underlying
set of the form n={0,1,...,n} based at 0. Then every G-equivarint
functor from T'; to #7 is called a T'g-space. (Notice that our I'=I,
is the opposite of the original I' of Segal [17].)

As in [23], we associate to every I';-space 4 and based G-space
X a topological G-category simp (X, I'¢, 4) defined as follows:

ob (simp (X, T'¢, 4)) =S_|_L Map, (S, X) X A(S)
EIG

mor (simp (X, I'g, 4)) = T_I_% Map, (T, X) X Map,(S, T) X 4(S).
Te G

Here each (x, &, a) eMap (T, X) X Map,(S, T) X A(S) is regarded as a
morphism from (x£, a) € Map, (S, X) X A(S) to (x, A(§)a) eMap, (T, X)
X A(T); the composition is given by (9,7, 4(§)a)° (7, &, a) = (y, 1§,
a); and every element g of G acts on simp(X,Is, 4) by g(x,§&,a) =
(gxg™, gég™%, ga). Evidently the nerve of simp (X, I¢, 4) coincides
with the two-sided bar construction By (X, I'z,4) in which X is
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regarded as a contravariant G-functor S~ Map,(S, X) from I to
#. We shall write B(X, I';, 4) for the classifying space of simp (X,
Ts, 4). (Woolfson [23] writes A’'(X) =B(X,T, A) when G is the
trivial group.)

Because By (X, I';, A) is a proper simplicial G-space, we can apply
the arguments of [10, Appendix] and get

Proposition 1,1, (a) B(X,Tg, 4) belongs to Wy if XEW .

(b) Let f: X— X’ be a G-homotopy equivalence and let F: A — A’
be a transformation of Tg—spaces such that Fs: A(S) — A'(S) is a G-
homotopy equivalence for every object S of T'c. Then the induced map
B(f,T¢, F): B(X,Ts,A) - B(X", I¢, A" is a G-homotopy equivalence.

Given a I'c-space 4, we have a new I'c-space ¢4: §+— B(S, T¢, 4).
Then there is a transformation of I';-spaces ¢4 — A4 such that, for
each S&Tl';, d4(S) - A(S) is a G-homotopy equivalence induced by
the equivalence of G-categories simp (S, T, 4) = 4(S) which takes
each object (x,a) of simp (S, T¢, 4) to A(x)acA(S) and each arrow
(x,6,a): (x§,a) = (x, A(§)a) to the identity of A(x€)a. Following
[17] let us denote by X®oA4 the I';-space

St XRoA(S) =TUE Map, (T, X) X6 ASAT)/(x§,a) ~ (x,64(1 \§)a).
€le

Then there is a natural G-homeomorphism B (X, I'¢, 4) » X®eA (1)
(cf. the proof of [23, Theorem 1.5]).

Proposition 1.2, (a) There are natural G-homotopy equiva-
lences

B(X,Tg, B(-\Y,Ts, 4)) —— B(XAY, T, 4)
—— B(Y,Ts, B(XA\-, T, 4))

where B(+ \Y, ¢, A) (resp. B(XN\-, T, A)) denotes the I'g-space S+—
B(SA\Y, T, A) (resp. S+— B(XN\S, T¢, 4)).

(b) If X and A(0) are G-connected (i.e., mX* =mA(0)¥=0 for
every subgroup H of G), so is B(X, T, 4).

(¢) If X has the trivial G-action, then the natural map i: B(X, T, 4)
— B(X,T¢, A), induced by the evident inclusion I'CT;, is a G-homotopy
equivalence ; that is, i": B (X, T, A") > B (X, I's, A)# is a homotopy
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equivalence for every subgroup H of G.

Proof. Because B(+A\Y, T, 4) =Y®oA, we can define j to be the
canonical G-map XQao(YRcd) (1) - XQ (YRed) (1) = (XA R
cA() (cf. [17, Lemma 3.7]). To see that j is a G-homotopy
equivalence, let us consider the diagram

B(X,T¢, B(-\Y, T, A)) —— B(XAY, Tg, 4)
f d

B(X, I, 8 B(Y,T's, A(S\))) =BUXNY)o N\, TexT¢, Ao \)
in which f=B(,T¢, |F|) is induced by the map of I's-spaces
|F|:|simp(SAY, Tg, 4) | = | simp (Y, T¢, ASA-)) | (SET);

FSAY <22 T ac A(T)) =(Y <T, A((s,1))ac ASNAT))

and d=|4|:|simp (XAY, T¢, A)|— |simp ((XAY)o A\, T¢x T, Ao A) |
is given by

AXNY<Z2 T ac A(T)) = (XAY<LTAT, A((1,1))ac A(TAT)).

Then it is easy to see that f and d are G-homotopy equivalences,
and that there is a G-homotopy dj ~; f. Therefore j becomes a G
homotopy equivalence. The second arrow £ in (a) can be constructed
similarly,

(b) follows from the fact that Map,(S, X) is G-connected for all
ST provided X is G-connected.

We now prove (c). The G-map i: B(X,I',4) - B(X, T, 4) is
induced by the inclusion ¢: simp(X,TI',4) — simp(X,T;, 4). Hence
we have only to prove that #: simp(X,T, 4)¥=simp(X, T, 4%) —
simp (X, I'c, 4)# is an equivalence of categories for every subgroup
H of G. Because X has the trivial G-action, every H-map x&Map,
(§, X)# can be written as a composite

S H\S > X

with x” in I'. We now define a functor p: simp (X, I';, 4)# — simp
(X, I, 4%) by

p(x,a) = (x', A(gs)a) EMap, (H\S, X) X A(H\8$)*
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for each object (x,a) EMap,(S, X)ExA(S)E, and

P(x, Sa a) = (x,, H\Ea A(‘Is) a)

for every arrow (x,§& a): (x§,a) = (x,4(&)a) in simp (X, T¢, 4)%.
Note that there is a commutative diagram

S £ T

S

q
9 X T

AN

H\S

H\T.

H\¢

Clearly pf=Id and there is a natural transformation Id — ¢#p given
by (x,¢s,a) : (x,a) — (x’, A(gs)a) for each (x,a) Esimp (X, T¢, 4)%.
This proves that <7 is an equivalence of categories, and completes the
proof of the proposition.

Definition 1.3. A T';-space 4 is said to be special if

(a) A(0) is G-contractible; and

(b) for every object S of I'g, the adjoint Pg: A(S) — Map, (S, 4(1))
of the based G-map SAA(S) »>AQ1), (s,a) —A(p,)ais a G-homotopy
equivalence. Here p,: §— 1 denotes the based map such that p,(s)
=1 and p,(§— {s}) =0.

Given a I'c-space 4 and a finite dimensional real G-module V,

we put
Ssdy=B(S8",T¢, A)/B (%0, T, 4) =8 Qo A1) /e A(0)

where §” denotes the onepoint compactification of V based at oo.
Because ¢4(0) is G-contractible and the inclusion B(oo, I'g, 4) —
B(8",Tg, A) is a G-cofibration, the projection B(S", I'g, A) — Sgdy is a
G-homotopy equivalence. Furthermore it is easily checked that the
inclusion 8" x (§"®o4) 1) — 8" x (§"QeA) (1) = (" A\S") QoA (1) =
S"XaA (1) (cf. Proposition 1.2 (a)) induces a based G-map

such that the equality ey y-gw (1 Aéy- . w) =¢yey.w holds. Thus we have
a G-prespectrum Sg4 = {S;A4y} such that
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S;4,=0A (1) /aA0) =.A(L).

Moreover by Proposition 1.2 (c), there are natural equivalences of
prespectra

St SAF) - (SeD)F
where S(A4%) denotes the prespectrum {B (S, T, 4%)/B (oo, I, 4%)}
constructed from the special I'-space 4”7: n—A(m)¥ by the method

of Woolfson [23]. (Compare the remark at the end of this section.)
The following theorem is essentially due to Segal [18].

Theorem B. Let A be a special To-space. Then SgA is an almost
Q-G-spectrum, that is, the maps ey ' ScAw— 2'ScAvew are G-homotopy
equivalences whenever WS+0. Moreover e: SgA,— 2S;Ag is a G-homotopy
equivalence if and only if A1) is grouplike.

We now sketch a proof of this theorem and explain why the
condition (b) of Definition 1.3 is required. (The situation was not
clear in the original proof of [18, Theorem A].)

For simplicity of notation, we shall write

EA(X)=B(X,T¢, 4)/B(x, ', 4)

for every Xe#7; in particular S;4, =FEA(S"). Because the inclusion
B(x,T¢, A) > B(X,T;,A) is a G-cofibration, EA (X) has the same
G-homotopy type as B(X, T;, 4). Let us regard E4: X— EA(X) as
a G-equivariant functor from F#; to #; where F# denotes the

G-stable full subcategory of #7% consisting of all compact G-ANR’s.
(Compare [14, Theorem 1].)

Lemma 1.4. Let A be a special Tg—space. Then EA enjoys the
Sollowing properties:

Pl. For every XEeFW; and ST, the G-map Psx: EAWSNX)
— Map, (S, EA (X)), induced by SN\EASNX) - EA(X), (s, x) —
EA(psN\1)x, is a G-homotopy equivalence.

P2, If Y— X is a G-cofibration and EA(Y) is grouplike under the
G-equivariant multiplication EA(Y) X EA(Y) =;EA(YN\2) »> EA(Y), then
EAY) » EA(X) - EA(X/Y) is a G-fibration sequence.

Notice that P1 implies the speciality of the I';-space S+— EA(SAX)
for every XeF#W5.
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Proof. By Proposition 1.2 (a) and the definition of EA, we have

a commutative square

EASNX)~; E(T—cASA\T))(X) - E(T— ASANT)) (X)

ros| !

Map, (S, EA(X)) ~¢ E(T — ¢A(T1)%) (X) —» E(T — A(T)%) (X)

in which the horizontal arrows are induced by the natural transfor-
mation 64 - A and =« is induced by the G-homotopy equivalences
Psr: ASN\T) - A(T)S=Map,(S, A(T)), TET; (cf. Definition 1. 3(b)).
By Proposition 1.1 (b), all the arrows except for Pgy are G-homo-
topy equivalences. Hence Pgx becomes a G-homotopy equivalence.
This shows that P1 holds.

Next, by the arguments quite similar to [23, Theorem 1.7], we
see that

B(Ys I‘Ga A) g B(Xa FG: A) i B(XUCYs FGaA)

is a G-fibration sequence if B(Y,T;, 4) is grouplike. This implies
that P2 holds. (Observe that in the proof of Theorem 1.7 of [23]
the connectivity of Y is only used to ensure that A’(Y) — 24'(SY)
is a homotopy equivalence. Of course this follows from the weaker
condition that 4'(Y) is grouplike. See also [17, p.296].)

Now suppose we are given a based G-map
p: X — Map,(Y, Z).
Then, by fuctoriality, we get a G-map
¢ X — Map,(EAY),EA(Z)).

Because EA (point) =point, #’ preserves basepoints; and so defines, by
adjunction, a based G-map

D,: EA(Y) — Map,(X, EA(Z)).

For example, if § is a based finite G-set and g is a based G-map
§— Map,(SAX, X), s— (p,Al: SAX—->1AX=X), then D, coincides
with Psx: EA(SAX) — Map,(S, EA(X)); and if p: S — Map, (57,
§7®") is the adjoint of the identity map S"AS” — §®", then D,=
ey w: Selw — Q"ScAvew.

Let M be a compact G-stable subset of a real G-module V, and
let M. be the e-neighborhood of Af in V. Then there is a G-map
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M — Map (O, M,) which takes each element m of M to the map
x> m-+x from the e-neighborhood of the origin to M,. By the
Pontryagin-Thom construction we get a based G-map

@ M, — Map, (Mg, Of) =Map, (Mg, S7).
Here, for every open subset X of V, X° denotes the onepoint com-

pactification of X based at co; i.e., X*=V/V—X. Consequently we
get a based G-map

Dy,=D,: EA(M:) — Map,(M., EA(S")).

Lemma 1.5. ([18, Proposition (2.2)]). Let M be the unit sphere
of V. Suppose T€+0 or EA(X) is G-connected for every X&FW#, (e. g.,
A=ZKaA’ for some special T's-space A’ and a G-connected space ZEFW).
Then Dy is a G-homotopy equivalence.

Proof. Choose an equivariant triangulation of M (cf. [6]), and
let {C;} ;e be the covering by the open stars of open simplexes. We
identify the indexing set 4 with the G-set of the barycenters of open
simplexes. Moreover, by taking a refinement of the triangulation if
necessary, we may assume that each C; either coincides with or is
disjoint from its translate by elements of G.

Suppose ¢ is small compared with the minimum of the radii of the
simplexes of positive dimension. Let #: M. — M be the radial pro-
jection, and let X= U;c7C; be a G-stable union of some of the Cj.

Let us denote X=7z"1(X) and X=X- (M—X).. Then the G-map

M — Map (O, M,) restricts to X - Map (O, X), so that we have a
based G-map

Dy: EA(X?) — Map,(X,, EA(S")).

We will show, by induction on the cardinal of the orbits contained
in T, that this is a G-homotopy equivalence.

If 7, is a single orbit, then the closed embedding 7T=U 7
(barycenter of 2) — U;crC; induces G-homotopy equivalences T,
~c X. and T.A\S"~=; Xc. Therefore Dy is identified with P ot
EA(T.N\S") - Map, (T, EA(S")) which is a G-homotopy equivalence
by P1.

Next let X; and X, be two G-stable unions of Cj’s, and let X=
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XUX,, X,=X,NnX,. Then we have a diagram

EA((X — X)) — EA(X) — EA(XY)

| l |

EA((X,—Xp)") — EA(X") — EA(X;,
induced by the cofibration sequences (X— X'l)‘ - X Xe=
X/(X—X) and (X,—X,)° — X — Xt (Notice that X—X, - X and
X,—X,—> X, are closed G-embeddings.) Because EA((X—X)°) is
G-connected by the assumption, the horizontal sequences in the above

diagram are G-fibration sequences by P2. Therefore the square

EA(X) —s EA(XD)

L]

EA(X;) — EA(Xy)

is G-homotopy cartesian. Moreover the corresponding square

Mapy (X, , EA(S")) —> Map,(X,,, EA(S"))

|

Map, (X,, EA(S")) — Map,(Xy,,, EA(S"))

is also G-homotopy cartesian. Hence we can prove inductively that
Dy, and consequently D,,, too, is a G-homotopy equivalence.

Proof of Theorem B. We will show that EA(S?) — Q"EA(S") is a
G-homotopy equivalence if 4(1) is grouplike and V60, or if EA(X)
is G-connected for every XeF#,. When WC¢+0, EA(-AS")=
E(S"®oA) (- ) satisfies the latter condition; and so ey n: EA(SY)
— Q'EA(SV®") is a G-homotopy equivalence for any V.

Let B, denote the closed disk of radius 7 in V and S, its boundary
sphere. Because EA4(S°) =;A4 (1) is grouplike, the horizontal sequences
in the diagram

EA(B,cUS81:e/811e) = EA(By4y/S14e) = EA(Byie/Bi_eUS,e)

Map, (B,/S,, EA(S")) — Map, (B, EA(S")) — Map, (S, EA(S"))

are G-fibration sequences. By Lemma 1.5, Ds is a G-homotopy

equivalence and Dp is trivially a G-homotopy equivalence. Therefore
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the induced map EA(S%) ~; EA (Bi_cUS.e/S11e) > R"EA(SY) is a G-
homotopy equivalence. This completes the proof of Theorem B.

Remark. (Cf. [9, Chapters I and 1I].) Let G?« (resp. G¥ )
denote the category of G-prespectra (resp. G-spectra) indexed on a
indexing set & in some G-universe U. Then our S;4 canonically
defines a G-prespectrum Sg4,={EASY) |VeL} eGL« with the
structure maps S"VEA(SY) » EA(SW ") =EA(S"), and also the
associated G-spectrum LS;A€G¥«/. By [9, Chapter II] any G-
linear isometry f: U—U’ between G-universes induces an equivalence
f*: GFU’ - G#U and hence G A =GSLU is equivalent to GF AL’
for another indexing set &/’ in U’. In particular we see that the
prespectrum (Sz4)%,=8(4%), indexed on any & in a H-trivial
universe U# becomes equivalent, upon passage to stable category, to

the usual prespectrum {E(4%)(S")} indexed on the standard n-spaces
R CR~.

§2. Proof of Theorem A

We now prove Theorem A. Thanks to Theorem B, it suffices to
construct a functor which assigns to every (D, D’) a special I';-space
such that the associated H-fixed point I'-space coincides with the
I'-space arising from B(D, D’)%.

First recall the passage from symmetric monoidal categories to
special I'-categories (cf. [11], [19]). Given a monoidal category C,
we have a I'-category C" such that, for each n&I, the objects of
C" (n) are of the form {ay; ayy)> in which ay is an object of C for
every based subset U of m, and ayy is an isomorphism ayyy —ay
@ay for every pair of subsets U, VCn with UNV={0}. Here
a,=0&C and the evident coherence conditions between ay,’s (i.e.,
associativity, commutativity, and unit axioms) must be satisfied. When
C is a symmetric monoidal G-category, the above construction of C"
can be extended to give a I';-category, i.e., a G-equivariant functor
from T'; to the category Cat; of based G-categories and basepoint
preserving functors: For every finite G-set § with underlying set m,
C" (S) is defined to be the category C"(m) equipped with a G-action
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Kay; ayy)=<{ga1; &1y ¢ 1v).
Then, for every f: § — T in I';, we have A(gfg™) =gA(f)g™! where
A (f) denotes the functor C" (§) — C" (T), Lay, ay vy > {apy; Apy vy
(fAU=1{0} U f*(U—-{0})) induced by f.

Note that, if C is the realization of a simplicial monoidal G-
category, then |[C"(S) | €% because C" (S) is obtained as the realiza-
tion of the simplicial G-category [£] — C;(S). Thus we have a
Ts-space S— |C" (S) | such that the associated I'-spaces n— |C" (n) |#
=|C"(n)?| coincide with the I'-spaces | (C*)"| arising from the
(simplicial) monoidal categories C?. However we do not know, in
general, whether this |C" | is special or not.

Definition 2.1. A T';-category F: I'c—Cat; is said to be special
if F is obtained as the realization of a simplicial I';-category, and
satisfies the following conditions

(a) F(0)=point; and

(b) for every ST, the G-functor Ps: F(S) — F(1)%=Cat, (S,
F1)) induced by SAF(S) — F(), (s,x) — F(p,)x is an equivalence
of G-categories. (Compare Definition 1. 3.)

If Fis a special I'g-category, then |F|: S+ |F(S)| is a special
I'c-space; and so we have an almost 2-G-spectrum S;|F|.

Proposition 2,2, Let (D,D’) be a pair of simplicial monoidal G-
graded categories. Then B(D,D’)" is a special T'g-category.

Of course Theorem A follows from this proposition: We define
K;(D,D"y=8;|B(D,D’)"|. Then there are a natural G-homotopy
equivalence

K:;(D,D")y— |B(D,D)" (1) |=|B(D, D" |
and natural equivalences of prespectra

K(B(D, D"*)=S|(B(D,D")")"|
— (S¢|B(D, D))" N*=K(D, D)*

for all subgroups H of G.

Proof of Proposition 2.2. For simplicity, write C=B(D,D") and
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@=@p. We define an adjoint Ts: CS=C"(1)S— C"(S) of P as
follows.

Let a=(a,) be an object of C°. Each a, is a functor EG — D’
over G and particularly ay: EG — G — D’ has value 0&D’. For each
x€G and every based ordered subset U= {0, u;,..., s} CS, 0<u,
<<u,, we write

ay(x) =0Da, 1, (x) D+ + - Pa,1,,_ (x) Da,1, (x)
20D (a1, W B (- D@, _ (1) Bas1, (1))
where {0,v,,...,0,} =xUCS, 0<v;<+++<v,. Since Dis a monoidal
G-graded category, there is an isomorphism (of grade 1)
pr=py(x): ag(x) — 0Pa, (x)D---Da, (x).

uniquely determined by the permutation of U— {0}, u;— x7,;(1<j
<r). Then, for every U, VCn with UNV = {0}, we have an iso-
morphism

agy(x) @ agyy (x) — ag(x) Day (x)

such that (py@pv)ay.v(x) oyvy coincides with the uniquely determined
isomorphism

0Da,, () D+ +Da, , (x) >
(OC—Daul (x)D-- ‘@aur (x)®D (O@aul X)D-+Da, (x))
WhCrC U= {Oyulv- .. 1ur}s V= {0)01’- .. ,Us} and U\/17= {Orwly- .. 7wr+s}
(0<u1<' °* <ur7 0<Z)1<' °e <Us, O<w1<' °° <u)r+s) .
Similarly for every arrow f: x —y in EG, az(f): ag(x) — ayz(p)

of the same grade as f, is uniquely determined by the commutativity
of the diagram

4 (x) — 0@a,, (x) D+ - - Da, (x)
4o (f) 0Da, (/) D+ Da, ()
v o v
ay(y) — 0Pa, (N D+ -Pa, ().

It is a routine exercise to show that ay: x+ ay(x) is an object of C

and ayy(x): ajyy (x) — ay (x) Pay (x) is natural in x. Thus we have
an object

Tsa=<ay; agyy>EC"(S).
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Clearly the construction of Tsa is natural in a4, and we get a fuctor
Ts: C°5— C"(8).

We will show that T is G-equivariant. Let g be an element of
G. Then

g(Tsa) ={gag1y; gagly g 1v),
and we have

gag—1y (x) = a1y (xg)
=0Da, 1,1, (x0) D = - Da,-1,-1, (x9)
=0 (ga) 1, (x) D+ - - D (ga) .1, (%)
= (ga)y(x)

because (xg) (g7 U) =xU={0,v,,...,v,}. Moreover it is easily checked
that ga;-15 -1, coincides with (ga)jvy— (ga) ;@D (ga)y. Therefore the
functor T is G-equivariant.

Evidently PsTs is the identity of C5. On the other hand, the
natural transformation <{ty) : <ay; ayyy— TsP{ay; ayyy given by the
composite isomorphisms

ty(x) ¢ ay(x) —— 0Da, (x) D+ Da,, (x)
'i) OC—Dax_lul (x) @ °ee @ax_lur (x) 9

where a, denotes ay,, for every u€U, is compatible with the G-action
on C"(S8). It follows that Ps is an equivalence of G-categories.

We now state, in view of future applications, an immediate con-
sequence of Theorem A.

Recall that the Grothendieck construction (cf. [20]) converts a
(simplicial) monoidal G-category C into a (simplicial) monoidal G-
graded category GfC which has

(a) the same objects as C;

(b) the pairs {g, /> with f: ga—b in C as morphisms a —b of
grade g; and

(c) the unique multiplication @y GJC X:GfC — GJC such
that, for every pair of morphisms {g, f>: a—>b and {g, f'>: a’ = b’
of the same grade g, the following holds:

<& f>@cjc<ga S>=Xg f@cf>: aBesca’ — bBg fcb’.
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Observe that GfC becomes the product G-graded category GXC if C
has the trivial G-action.

Given a pair of monoidal G-categories (C,C’), let us denote by
B;(C,C’) the full subcategory of the functor category Cat(EG, C)
consisting of the objects EG — C which factors through C’. Then
B;(C,C") equipped with the G-action

(&)= (gt x—gf(x9), g€G

and the G-equivariant multiplication

U, ) = (JOS " x> f()DSf (%)

is naturally isomorphic to B(GJfC, GfC") under the monoidal G-functor
@: Cat(EG, C) »Homg(EG,GJC) which takes each f:EG—C to 9f:
EG — GfC;

Of (x) =xf (x) (x€obEG=G),
Of (x — gx) =<g, gxf (x — gx)>: Of (x) — Of (gx).

Hence we have

Theorem A’, K restricts, via the Grothendieck construction, to a
Sunctor from the pairs of simplicial monoidal G-categories to almost 2-G-
spectra equipped with

(a) a natural G-homotopy equivalence K;(C,C")y— |Bs(C,C") |, and

(b)  natural equivalences of prespecira K (Be(G,C)") — K; (C,C")#
Sor all subgroups H of G.

|Be(C, C") | has the same G-homotopy type as the infinite loop G~space
K (C,C") =80K;(C,C") g if and only if |Bs(C,C")| is grouplike.

Remark. Our approach to Theorem A was based on I';-spaces.
There is another approach based on E. G-operads [9].

Let 9,=Homg(EG,GXEZ,)) =Cat(EG, EX,) and let 9, be the G-
space |Z,!. By Theorem 3.1 (see also [15])

2, 9,/%,=|Cat(EG, %)) |
is a universal G-2; bundle, and there are G-maps

TP DX D X XD, —> D, J=git et
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induced by the functors 7: EJ,XEZ; X+« XEX; — EZX};

f(d ;7'.1 goeey 7'-k) =T,,—1(1)@' ° '@Ta‘l(k) .

(Compare [10, Lemma 4.4].) Thus we have an E. G-operad 2.
If D is a monoidal G-graded category (with strictly associative
multiplication @=@,), there is a X;-equivariant functor over G

(GXEZX,) X;DY1'— D (DM1=D X e+ XeD)
which takes each object (z; x;,...,%;) of (GXEZ;) XD to x,-15,P
cee@x.-1;,€D (cf. [10, Lemma 4. 3]). This induces a 2);-equivariant
G-functor 9,XB(D, D’)’ — B(D, D’) for every pair of monoidal G-
graded categories (D, D’), and hence we have a natural action
2;X|B(D,D") |’ — |B(D, D) |
of the E, G-operad @ on |B(D,D’)|.

§3. Equivariant Classifying Spaces

We now apply our theorems to deloop the maps BO(G) — BPL(G)
— BTop(G) equivariantly and infinitely.

To begin with, we shall describe a functorial construction of the
classifying space for equivariant bundles. Let 4 be a topological
group, and let »=7,: U4 — B4 be a universal principal A-bundle.
We assume here that (4,1) is a strong NDR (e.g., the realization
of a simplicial group) and take |EA| — |A]| as our universal bundle
unless otherwise stated. Then there is a new bundle <y, 7> : K<UA4, UA>
— BAX BA whose fibre {3, > '(x, ) over (x, y) EBAX BA consists
of all admissible maps 77! (x) — 771 (»); so that <z, p>7' (x, y) = A.
(Compare [2] as well as [13].) It is easy to see that the maps

s=prioln, 9, t=pre<y, 1> : U4, UA> — BA
and

i1 BA—<UA, U4), i(x) =id, &<y, 7~ (x, x)
together with the evident composition

o : KUA, UA> X, U4, UA> — KUA, UA>

define a topological category (with trivial G-action) %A such that
ob% A=BA and mor% A=CUA, UA4>.
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Theorem 3.1. Let A be the realization of a simplicial group and A’
a subgroup of A. Then, for any compact Lie group G, |B;(% A, %A |
s a classifying space for G-(A, A’) bundles in the sense of [8). If G
is a finite group, |Bg(A, A’) |=|Bs(EA/A, EA’/A") | is also a classifving
space for G-(A, A”) bundles.

(For a generalization of this theorem, see [15].)

Proof. There is a category ¥4 with
obFPA=UA, morF A=LUA, UA> X 5, UA={(¢, a) |s(¢)) =7(a)},

and with structure maps s(¢,a) =a, t(¢,a) =¢(a), i(a) = (id,w, @),
(B, ¢(a))o (g, a) =(d¢,a). Let n: Cat(EG, #A) — Cat(EG, ¥ A) de-
note the G-functor induced by the projection ¥A— G A=SA4/4, (¢, a)
—¢. We will show that |[77'B;(% A4, $A’)| > |Bs (94, %A")]| is
a universal G-(4, A”) bundle. Observe that 77'B;(% 4, ¥ A") coincides
with Bo(#4, #A’X 4 A). For simplicity of notation, write E=z""
B;(9A4,%A’) and B=B;(9 A, 9A’). Then, for every element f=
(fas— o< fi—fy) of N,B, we have a representation a (f): H—> A’
(H=Gy) defined by

a(f) ()=l =h): fo(1) = fo(h) = fo(1))
EMar, N> (fo(D), fo(1)) =4,

and 77'Gf - Gf =G/H is G-A equivalent to the trivial G—4 bundle
GXydap — G/H. Clearly this extends to a local trivialization of
N,E — N,B, and in fact we can prove that |E| — |B|is a numerable
G- (4, A’) bundle. (For details see [15].)

We now prove that |E|— |B| satisfies the condition (1) and
(2) of [8, Theorem 6] for every representation po: H — A’. Let us
consider |E| as an H-space under the action a~ hap(h)~' Since
UA — BA is a universal A-bundle, there exists a bundle map (f, f):
(GXyd,, G/H) - (UA, BA) and the G-action on G X 4, determines
a functor F: EG— % A; F(x)=f(xH), F(x—>gx)= (g: 37 (f(xH))
— 77 (f(gxH))) €<UA, UA). Evidently F belongs to B;(% A4, % 4")
and the lift F: EG - %A of F given by F(x)=f[x, 1] and F(x—
gx) = (F(x—>gx), flx, 1]) €CUA, UAY X 3,UA is invariant under the
H-action on E. Hence |E|#% @. Moreover, since ¥4 has a unique
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morphism between each pair of its objects, |E| is H-contractible to
any vertex of |E|%. Hence, by [8, Theorem 6], |E| — |B| becomes
a universal G-(4, A’) bundle.

When G is finite, every trivial G-4 bundle G Xyz4,— G/H is
in fact a trivial A-bundle, and so classified by the constant map
G/H — =, It follows that |77'B;(4,A")|— |B;(4,A4")] is also a
universal G- (4, A’) bundle. Here = denotes the G-functor Cat(EG,
EA) — Cat (EG, 4A) induced by the projection E4A —>EA/A=A and
t'B; (A, A") is identical with B;(EA, EA’ X 4 A).

In particular, take the simplicial group CAT,=0, or PL, or Top,
as A, and the discrete group GL, as A’. (Compare [7]. Note that
GL, is the O-skeleton of O,, and in fact GL,=0,NPL, in Top,; cf.
[1, p. 216].) Then we have a classifying space

BCAT,(G) = |B;(%9CAT,, 4GL,) |

for locally linear G-CAT bundles with fibre R". However, from the
viewpoint of smoothing theory, there is a need to construct a G-
fibration BO,(G) — BPL,(G), and |B;(%0,, ¥GL,) | is not adequate
for this purpose. Therefore we replace |B;(%0,, 9GL,) | by an
equivalent G-space defined as follows: (Compare [7, §3].)

Let PD, be the simplicial set whose k-simplexes are fibre preserving
p. d. homeomorphisms 4, X (R*, 0) — 4, X (B",0). Then PD, admits
a left free PL,-action (&, f) — fh7Y, (h, f) €EPL,xXPD,, and a
right free O,-action (f, k) — k7'f, (f,k)EPD,x0,. Now consider
the G-map UPL,(G) Xpr PD, - UPL,(G) X5, PD,/0, induced by the
projection PD,— PD,/0, where UPL,(G) = |Bc(¥ PL,, #GL, X ¢ PL,) |
is the total space of the universal G-(PL,,GL,) bundle we have
constructed in the proof of Theorem 1. Because the inclusion PL,—
PD, is a homotopy equivalence, UPL,(G) X anPD,,:GUPL,, (G) becomes

a total space of a universal G-(0,,GL,) bundle over UPL,(G) X pL,
PD,/O,. From now on we write BO,(G)= UPL,(G) XPL"PD,,/On=
|Bs(%70,, 9'GL,) | where

%'0,=%PL,Xp, PD,/0, and ¢ 'GL,=SGL,X ¢, PD,/0,.

Then there are G-fibrations BO,(G) — BPL,(G) induced by the pro-
jection (¥PL, Xp, PD,/0,, ¥GL, X ¢, PD,/0,) - (¥ PL,, %GL,) and
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BPL,(G) — BTop,(G) induced by the evident inclusion (¥ PL,, ¥GL,)
— (% Top,, 9GL,).

Remark. Since G is a finite group, we can take much smaller G-
space |Bg(CAT,,GL,) | (or |[B;(EPL,Xp PD,/0,, EGL, X, PD,/0,) |
when CAT,=0,) as our BCAT,(G) (cf. Theorem 3.1). All the argu-
ments below are valid for this choice of BCAT,(G) with ¥ CAT, and
% CAT, replaced by ECAT, and GAT, respectively.

Let us denote by (CAT, GL) the pair of simplicial categories
(Lo, 1l¢'GL,) if CAT=0,

nz20 n=0

(1L %CAT,, 1|9GL,) if CAT=PL or Top.
nz0

nz0

We make (CAT,GL) into a pair of symmetric monoidal categories
by defining the multiplication CAT X CAT—CAT as follows:

For every pair of integers m and n, there is a simplicial map
@: Top,xTop, — Top,,, which assigns to every (x, y) €Top, X Top,
the Whitney sum x@yeTop,.,. Here we use the standard identifi-
cation R"XR"=Rm*". Clearly @ restricts to PD,xPD,— PD,,,,,
rPL,xPL,-»PL,.,, 0,x0,-0,,.,, GL,XGL,— GL,,,,, and also in-
duces PD,,/0,XPD,/0,—PD,,.,/0,.,(cf. [7, §41). Since & (and hence
%) is compatible with the product of bundles, we get the functors

%'0,x%'0,—> %'0,,, and 9CAT, X4 CAT,— 4 CAT,.,

(CAT=PL or Top) which restrics to ¥'GL,X¥%'GL,—» %'GL,,,, and
¢%GL,X%GL,—~ %GL,,,, respectively. Therefore we have a multipli-
cation CATXCAT — CAT with respect to which (CAT,GL) can be
regarded as a pair of symmetric monoidal categories (with strictly
associative multiplication).

Now apply Theorem A’ to (CAT, GL) and we get an infinite loop
G-space

BCAT (G) =K;(CAT,GL) (CAT=0, PL or Top).

Moreover the functors (O, GL) - (PL,GL) and (PL,GL) — (Top,GL),
given by the projections (¥ PL, xanPD,,/O,,, FGL, XGL"PD,,/O,,) —

(¢ PL,, 4GL,) and inclusions (¥ PL,, ¥GL,) » (9 Top,, 9GL,) res-
pectively, are compatible with the multiplications. Thus we have
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Proposition 3.2, There exist maps of infinite loop G-spaces
BO(G) — BPL(G) — BTop(G).

We finally show that the G-map
eil: || BCAT,(G) — BCAT(G)

nz0

is in fact an equivariant group completion, where i~ is a G-homotopy
inverse of i: K;(CAT,GL), — |B;(CAT,GL) |=]l|,», BCAT,(G). Let
M denote the G-monoid ||,», BCAT,(G) and identify BCAT (G)
with QBM. 1If &: EG — ¢GL, is the constant functor with value
*&BGL,, £ BCAT,(G)® and we get G-maps @&: BCAT,(G) —
BCAT,.,(G). (Equivalently @¢ is the G-map induced by the inclusion
BCAT,(G) cBCAT,,,(G).) Let M. be the telescope formed from the
sequence

M2 M, L

Then M acts on M. and we get a G-map p: X=EM X, M..— BM
with fibre M., at the basepoint b. Because (M.)"=(M%). for every
subgroup H of G, p restricts to a homology fibration X¥ — BM#
with X# contractible and with fibre (M.)¥ at the basepoint. (Compare
[12, Proposition 2].) Therefore the natural map (M.)* — F(p,b)?
~QBM?" is a homology equivalence, and Hy (2BM") =H, (M) [z"]
(r=mny(M*)). This implies that

Proposition 3.3. & !:]|,.,BCAT,(G) - BCAT(G) is an equivariant
group completion map.

Remark. In [16] we shall show that a classifying space BF,(G)
for n-dimensional (locally linear) spherical G-fibrations can be con-
structed as follows:

Let B;(¢F,, ¢GL,) be an Og-subcategory of Bz(¥%F,, ¢GL,)
(which is considered as an Og-category G/H +— B;(% F,, 4GL,)¥)
such that, for every G-orbit G/HEO;, B; (9 F,, 4GL,) (G/H) has
the same objects as Bg(¢F,, 9GL,)¥ and morphisms all natural
transformations f — f’ in Bg(%F,, 4GL,)" which induces an H-
homotopy equivalence S%,—S8%;,. Here a(f) denotes the represen-
tation H — GL, associated to f& Funct(£G, ¢GL,)?= Funct(£G/H,
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%GL,). (Compare the proof of Theorem 3.1.) Let C be the
Elmendorf’s functor [3] which converts Os;-spaces to G-spaces. Then
we can show that the G-space

BF,(G)=C|B:(¢ F,, 9GL,) |

classifies n-dimensional spherical G-fibrations. Moreover, with minor
modifications of the arguments of Sections 2 and 3, we can prove
that there exist an equivariant group completion map ||,»BF,(G)
— BF (G) and also an infinite loop G-map BTop(G) — BF(G). Thus we
get a sequence of infinite loop G-maps BO(G) — BPL(G) — BTop(G)
— BF(G). Details will appear in [16].
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