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Microhyperbolic Operators in Gevrey Classes
By

Kunihiko KAJITANI* and Seiichiro WAKABAYASHI*

§1. Introduction

Kashiwara and Kawai [16] defined microhyperbolicity and proved
that the microlocal Cauchy problem for microhyperbolic pseudo-
differential operators is well-posed in the framework of microfunctions,
which is a microlocalization of the results obtained by Bony and
Schapira [3]. In the microlocal studies of pseudo-differential
operators, the concept of microhyperbolicity is very useful. From
their results one can obtain results on propagation of analytic singu-
larities (propagation of micro-analyticities) of solutions for microhy-
perbolic operators (see [28]). On the other hand, Bronshtein [5]
proved that the hyperbolic Cauchy problem is well-posed in some
Gevrey classes which are intermediate spaces between the space of
real analytic functions and C= (see, also, [14], [15]). So we can
generalize the definition of microhyperbolicity in the framework of
some Gevrey classes, to say the least of it. In doing so, we expect
to get a clue to a generalization of microhyperbolicity and microlocal
studies of microhyperbolic operators in the framework of C=.

In this paper we shall consider microhyperbolic operators in
Gevrey classes and prove microlocal well-posedness of the microlocal
Cauchy problem and theorems on propagation of singularities for
microhyperbolic operators. Our aims are to show how one can obtain
microlocal results (microlocal well-posedness and, therefore, a micro-
local version of Holmgren’s uniqueness theorem) from methods to
prove well-posedness of the Cauchy problem and to show that
theorems on propagation of singularities are immediate consequences
of a microlocal version of Holmgren’s uniqueness theorem, using
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generalized Hamilton flows. We shall prove microlocal well-posedness,
reducing the problems to those in L% From this point of view one
may assert that consideration in L? (or =) are much more important
than in Gevrey classes. However, in the framework of Gevrey classes
one can easily solve some problems, which seem difficult to be solved
in the framework of C>, and obtain some conjectures on the problems
in the framework of C~. We should note that Uchikoshi [27]
investigated a related problem.

Let K be a regular compact set in R”, and let #>1 and A>0.
We denote by & **(K) the space of all feC=(K) which satisfies,
with some constant C>0,

(I.1) |D% f(x) | <Ch'® |a | for x€K and |a|=0,1,2,...,

where x= (x1,..., x,) €R", D=i"1(8/0x,,...,0/0x,), a=(a;,..., a,)
is a multi-index and |a|=3X", a;. We also denote by 2" the
space of all f€C~(R") with support in K satisfying (1.1). &"*(K)
and Z§"* are Banach spaces under the norm defined by

Ilf1le® kg =supex.a | D* f(x) |/ (A'*! & 1.

Let 2 be an open set in R". We introduce the following locally
convex spaces (Gevrey classes) :

E® (D) =lim &*®(K), £€®(K)=lim &"**(K),

KeQ h—0
EW (@) =lim &% (K), €% (K)=lim &**(K),
KeQ h—>oo

2®(2)=lim 29, 2P =lim 2%*
—_—_ «—
Kcg s

2% (D) =lim 2%, 2% =lim 2%*
KeQ h—>o0

where A€ B means that the closure 4 of 4 is compact and included in

the interior B of B. We denote by 2% (£2) and &* (2) the strong
dual spaces of 2*(2) and & *(£2), respectively, where * denotes (x)
or {«}. We also write &%*,..., instead of &*(R"),... (see, e.g.,
[18]). Let us define symbol classes S7, where meR. We say that
a symbol p(x, &) belongs to S7%,(resp. S7,) if p(x, &) €C=(T*R") and
for any compact subset K of R* and any A>0 there is C=Cyg ,>0
(resp. for any compact subset K of R* there are A=Ax>0 and
C=Cx>0) such that
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168 (5, ©) | SCA=1A ([ |+ B &1

for x€K, §=(§,..., §,) €R" and any multi-indeces a and f, where

T*R" is identified with R"X R, {(&>= (14692 and p@(x, &) =

0¢DEp(x, ). We impose the following conditions:

(A-1)  p(x, &) €87y, where x1 denotes (x,) or {r}, and &> and
meR. And p(x, D) is properly supported.

(A-2) There is a symbol p, (x, ), which is positively homogeneous
of degree m in £, such that p(x,&) —o (&) p,.(x, &) €557}

0(&)e €™ and a(&)=1 for |&|>1 and ¢(£)=0 for |£|<
1/2.

Definition 1.1, Let 2= (% ) €T*R"\0 and 9T (T*R") ~R™.

We say that p(x, &) (or p,(x,£)) is microhyperbolic with respect to
9 at 2’ if there are a neighborhood % of 2° in T*R"\0, [eNU {0}
and positive constants ¢ and f, such that

[ Xl o (=it p, (x,8) /| =ctt  for (x,&)EX and 0<t<t,
where 9= (9,,9,) is regarded as a vector field 9=39, (0/0x) +9,- (9/0¢).

Remark. (i) The above definition coincides with the definition
given in [33]. (ii) When p, (x, &) is real analytic, the above defini-
tion coincides with the definition of partially microhyperbolicity given
by Kashiwara and Kawai [16].

Let £ be an open conic set in 7*R"\0. We assume that
(A-3)  pn.(x, &) is microhyperbolic at each point in £.
For 2’€T*R"\0 we can write
D (20 +502) =5* (pu0 (62) +0(1))  as s >0,

where §,.0(0z) 20 in dz€T,o(T*R"), if there are multi-indeces a and
B such that p), (2% #0. p,.0(0z) is called the localization polynomial
of p,(2) at 2° and p=p(z°) is called the multiplicity of p,(z) at 2
If p,.(2) is microhyperbolic with respect to 9 at 2’ then p,.0(z) is
hyperbolic with respect to 9, i.e.,

Pt (02—159) 0  for dzeTo(T*R") and s>0
(see, e.g., [111). Therefore, we can define I" (p,,.0, 9) as the connected
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component of the set {0z&€T(T*R"); p,.0(0z) #0} which contains 9,
when p,(z) is microhyperbolic with respect to 9 at z°. For some
properties of hyperbolic polynomials and I"(p,,., 9) we refer to Atiyah,
Bott and Garding [2].

Definition 1.2, (i) t(x, &) €C'(R) is called a time function for
bn in 2 if ¢ (x, &) is real-valued and positively homogeneous of degree
0 in &, and if p,(2) is microhyperbolic with respect to —H,(z) at
every z€£, where H,(2)=37_,{(0t/0¢;) (2) (9/0x,) — (t/dx,) (z) (8/
0§,)}. (ii) Let t(x, &) €C'(2) be a time function for p, in £, and
let z&£2. We define the generalized Hamilton flows K*(z;2;t) by

K=(z2;92;0)=1{2(5) €2; £5>0, and {z(s)} is a Lipschitz continuous
curve in 2 satisfying (d/ds)z(s) EL (P, —H:(2(5)))°
(a.e. s) and z(0) =2},
where I'"= {(dx, 0§) €T, (T*R") ; o((dy, o), (0x,08)) (=0x « on—0y + 6§)
>0 for any (9y,09) €I’} for z&T*R"\0 and I'CT,(T*R").

Remark. We should note that Leray [21] and Lascar [20] defined
flows similar to K*(z;2;¢t).

Definition 1.3. Let £>¢ and f€2™. WF,(f) (resp. WF,
(f)) is defined as the complement in 7*R"\0 of the collection of all
(%% €9 in T*R"\0 such that there are a neighborhood U of x° and a

conic neighborhood I of &° such that for every goE.@(ﬂl)(U) and
every A>>0 there is a positive constant C (resp. for every 5069(‘1)
(U) there are positive constants 4 and C) satisfying

1#Tef1() |<C expl—4|§[*] for ¢<T,

where ZF[f]1(&) =f(&) denotes the Fourier transform of f (see [10],
[281).

Moreover, we assume that
(A-4)  p(@d)=sup.eg pR) <+ oo, and £ <« (2) =min {2, p(D)/ (¢
() —D} if x1=(x), and £,<e(2) if *1 = {r]}.

Theorem 1.4. Assume that (A-1)-(A-4) are valid, and let 9:2>2
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—39(2) €T, (2) be a continuous vector field such that p,(z) is microhy-
perbolic with respect to 9(z) at each zE82. We denote by *(x) or {£}, and
assume that £, <e<k(2) and *= (&) when *1= (x,) and that &, <r<r(2)
and *= {k} when *1={r}. If ue ¥, L2eWF, ) N2 and WFy(pw) N
Q=@, then there are ac (—o0,0) U {—oo} and a Lipschitz continuous
Sunction z(t) defined on (a, 0] with values in 2 such that z(t) EWFy ()
Jor t€ (0,01, @/d) 2@ €T (prawrs 9G1))°N 125 1821 =1} for a.e.
te (a,0], and z(0) =2°, and lim,.,., 2(t) €02 if a>>— oo, where 02
denotes the boundary of 2 in T*R".

Theorem 1.5. Assume that (A-1)-(A-4) are valid and that t(z) €
C'(2) is a time function for p, in 2. Moreover, assume that £, <r<r(2)
and *= (k) when x*1 = (k) and that £ <e<k(8) and *= {k} when
*l={k}. () Let 22€2 and t,€R satisfy ,<t(2"), and assume that
K- (20N {ze2; t(2) =2t} €. Then PEWF, W) if ue 9*,
WF, (pu) NK~(22:2:0) N {z€2; t(2) =t} = 0 and WF, (w) N K~ (2°:2;:¢)
Nze?; t(x)=t)= 0. (i) Furthermore, assume that K (z;8;t) N
(2el; 1) =t} € for every z€82. Then

WE, ) N z€2; 1(2) =t} C

[z€2; 2K (w;2;t) for some we (WFx(pu) N {z€82; t(2) =t}) U
(WFx ) N{ze2; t(2) =t})} for us 2%,

Remark. Theorem 1.5 is an immediate consequence of Theorem
1.4. We note that there do not always exist time functions for p,
even locally (see Proposition 5.1).

The remainder of this paper is organized as follows. In §2 we
shall give preliminary lemmas on calculus of pseudo-differential
operators. In §3 we shall investigate hypoellipticity in Gevrey classes
for operators which satisfy the so-called (H)-condition (see [9]).
The microlocal Cauchy problem will be studied and microlocal para-
metrices will be constructed in §4. We shall give the proof of
Theorem 1.4 and some remarks in §5.

§2. Calculus of Pseudo-Differential Operators

Using pseudo-differential operators of infinite order, we can reduce
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the problem in Gevrey classes to the problem in the Sobolev spaces
and prove Theorem 1.4. In doing so, we must establish calculus of
pseudo-differential operators of infinite order. By results in this
section (Proposition 2. 13 below) we can calculate the symbols of the
reduced operators. Throughout this paper we denote by C, 5. ...(4,
B, --+) a constant depending on a,b,+++ and A4, B, --- which is loca-
lly bounded in 4,B,+-+. Let £>1 and ¢e=R, and define
Pre=[0(©) €C=(RY 5 exp[&)¥Tu(6) €}

We say that ; » v in &, as j — oo if exp [e(EDY*]v, () — exp[edEDY*]
v(f) in & as j— oo, Since Z is dense in ,??m, it is obvious that
the dual space Pl of jm is identified with {exp[e<E)*]1v(§) €2’;
ved’}. For e=0 we can define

Fee=F [P ] (=F[L. ]=ueEF; exp[e&DFu(§) e&}).
We introduce the topology in &, . so that &: y?,,,e — &, is homeo-
morphic. Denote by ;. the dual space of &, for e>0. Then we
can define the transposed operators ‘# and '‘#! of # and F!
which map &/, and &,, onto £/, and ., respectively. Since
59,,,_5(:??;,5 (c2’) for €20, we can define 5”,5,_5=‘3"‘1[.9?,C,_5] for
€>0. It is easy to see that &, _,=F[%,_.] is the dual space of
Loy P CF TP, CLL_CP ' CFL, for €20 and that F='F
on &’. So we write 'F as #. Define

Hp.={ueS; _.; {Orexp[«&Vla(é) el?}, L. =H;.,

where mER and c€R.

Lemma 2.1. (1) 2% is a dense subspace of &,.. (1) D2¥PC Uy
yn.e- (111) ¢ ® c UEER‘?E,E and ¢ wr c ms<0ym.s- (IV) Q(E)ny,zc
S CHr . CH, CH", C%r_o C D%, where e=¢’>¢", m>m’ and
m’' ER.

Proof. The assertions (ii) and (iii) can be proved by the Paley-
Wiener theorem in Gevrey classes (see, e.g., [18]). We can also
prove that w,(§) =x(§/k)v(§) - v(§) in fm as kK — oo and that v,,(§)
= (3w e—1/pdr—>w(©) in Py a5 j—> 0, where 7EI*, 1(E)
=1if |&]|<1 and %(§) =0 if |£|>2, and dp= (27) "dy. This proves
the assertion (i). Q.E.D.
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In this paper we shall frequently use the following facts without
quoting.

Lemma 2.2, (i) N<ce "NV*V2 for N>1, where ¢ is a positive
constant, (ii) For t>1

infy_g10...Ni™¥<c infy_, , . NVV2(et) "N <ect'2e".

(i) |a|!<n'*'al and zlﬂ#,‘ﬂs‘,(g):(*‘;'), where<§)=a!/(ﬁ!(a~ﬁ)1).
1v) Zia=n(@l/NO)F1<erl if £2>1, where ¢, is a constant depending only
on k. (V) Zioktr=c, (1) <Aoo if >0 and £>1. (vi) {E+<
| l, where ED,= (K4 [E|1HYE (vi)) |98 < (14+y2)'* (a|
+[E]) KEX*1l /Tk]!, where k>0 and [k] denotes the largest integer
<k. (viil) Let 1<&’<k and NEN U {0}, and assume that y(§) €C~(R")
satisfies
|x©@*® (&) | <CA™B#' N« || for |a|<N and any B.

Then, for any ¢>0, and d>>0 there is C, p.a>0 such that

|05 205y (n<EDIN) | S Cupca A" dFHTIN (|B] + [7]) 1FCEDE eI+ IAD 1T
Jor 9| <e¢, >0, |a|<N and any B and 7.

Proof. The assertions (i)-(iii), (v) and (vi) are obvious. The
assertion (iv) can be proved by induction on the dimension n. The
assertion (vii) can be proved by induction on |a|. We note that a
similar estimate to (vii) can be also obtained by Cauchy’s estimates.
In order to prove (viii) it suffices to prove that

|95+ 9 (n<EX) | SCA' B BN (18] + [y )1 @y et v

for |7 |<&i'<¢, |@|<N and any § and 7, which can be proved by
induction on |r|. Here B, depends on 4, B and C. Q.E.D.

Let p(&, », ) be a symbol satisfying

|0g05 Dyp (&, 3, 7) | <CopA |7 Fexp[0:<EXYF +0,{n)1*]

for (&, »,7) ER"XR"XR" and any multi-indeces a, 8 and 7, where
A>0, 4,,0,€R and the positive constants C,; depend on @ and B.
Define

PP 3, Do) = £ Tt oo 6 D a (a1
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for ucs 29,

Proposition 2.3. p(D,, », D,) maps continuously s, to Lo if
0,— £ (nd) Vr<le,, 6<e—06,—08, and &<k (nA)™Y*—6,. In particular,
p(D,, y, D,) maps continuously &, . to & xe-8,-3, if le—0,|<<k(nd) V-

Proof. Let uc2*® and write
(&Y D {exp[a(& 1 F [5(D., 3, D)u(x)1(6)} =§F<s, dn,

where F(§, 1) =Se‘”"5""<$>"f N dy, f(6,7,9) =Talia2oq al(alla®)™

(=) > DECD Y fexp[eEX1p (€, y, ) a ()} and N=[(n+ |a])
/2]+1. Then we have

| D5 f (&1, 3) | SCL AP B y>2N+el py~M
X exp [(e+0) CEDVF+ (0,—¢,) <7]>W] lu I.VI:.EZ.M+2N5

where IuIym,,=supéexn,j+|ulsz|<E>"D§‘ (exp[e<ED*]a (€)) |. Since <E+n)
<J2EXRD, it follows from Lemma 2.2 that

[F (&) |<Cu o, pp7™
X exp[ (e,+8) EXVF+ (8, — &) (DVF — £ (nA") TV [ =7 |V*]

X |ul.9’lc’az,M+2N’
where A’”>A. Noting that (P — |E—n|*< £ (EXVF, we have

(F&nanI<Ci.,
X exp[ (6, +0; +max {0, —¢,, —&(nd")"V})<EX] |u |5PM52.M+2N
if A">A, 0,—e<k(mA)™Y* and M>j+n. This proves the proposi-
tion. Q.E.D.

Corollary. p(D,, y, D,) maps continuously &
k(nd) Vr<le,, 6,<e,—0,—0, and <r(nA) VF—o,.

to y;.—sl Z.f 52’_

-8y

Let {pf(&)} C &® satisfy the following conditions; 0<¢%(§) <1,
ef (&) =1 if EXF>2Rj, ¢f(§) =0 if EIF<Rj, and |pf@(§) |<
Cd"' |a|*(&>;'! for any d>0, where R>0, j=0,1,2,...,and C,;is
a positive constant depending on d. For example, ¢f(§)=1 and
R (&)= x(EW/(RD® (j=1,2,--+) satisfy the above conditions if
1<w'<k, y€ £ RY, 0<x () <1, x@) =1 if t>2° and x() =0 if
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t<1. A simple calculation gives the following

Lemma 2.4, Let R >0, £>0 and £>0. If
1955 (3, ©) | LA B 5111 (o= Fexp[aCHY"

Jor any a, B, j=0,1,2,+++ and {EN*2Ryj, then ¢ (x, §) = Xy (§)
q,(x, §) is well-defined and satisfies

g8 (x, &) |SC(al, {C icia) 4?81 <E " exp[0{EXN"]
Sfor R>max (R,, 2¢7'BY*). Moreover, if
195 (5, © | SCA=AB fa |+ 1) CEF 1 exp 3¢
Sor any a, B, j=0,1,2, -+« and {EDY*>R,j, then

lg&? (x, €) | SCL(CY A8 (| + [B])F<EDF " *lexp[a<ENY"
Sfor R>max (R, 2¢7*BY*).

Let 2<1 and m;, myER, and let p(x,&, y,7) be a symbol satisfy-
ing
2.1 |ogDiarD3p (x, €, 2, ) [ (= 1pBEB (x, & 3, 1)
S Ly A AP TAAY | B [ | |0 |
XMyt T exp[BCEDYE + 3D,
where L, ,=C or L, 4A*%"*=C,. We set L,=C if L, ,=C and L;=

maxgg;<,C; if L, 4A*%!*=C,. We consider only the cases where

“k'=k and £'=1” or “k’=1 and £"=«”. For uc 2® we can define

p(x, D,, y, D)u(x) =§e‘” <S€“”<S er7p (x, &, p, ) a (n)dn)dy) dé

if 0,<k(nd,) " when £’=1. Here we have applied the same argu-
ment as in the proof of Proposition 2.3. Put

(2.2)  ¢,(%, &) = X 101, 0DP (%, €, 9, D) lymngmes 5=0,1,2, 0o,
Then we have

19 (%, &) | < (maXocys a1 La a) (|| + |B] +5) e ™™

X exp[[ (3, +0,) CEOVFI 1l I8 (2, v) (nAyAy)° A1 =0+ A A=,

where I(g,v)=|a|l|BI(G+m " (Ja| = (8] +j—) {jig (la|—
oW B =!(la |+ B+ )} It is easy to see that
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lae [\

T8I - if =,
I(p,v) < Igl 1-% e,
( ; > pe i =1,

Applying Lemma 2.2, we have
g5 (x, §) | <C(A/A) (maXocssiarLs ) A= 4B (|| + B
X expl (6,8,) <6},
where

2.3) *max (4, 4;) and A=4, if &'=k,

A=2

A=2"max (4, 4,) and A=4, if «'=1,

and B=9214,4,. By Lemma 2.4

2.4) q"(x,8) =2 0f(8)q; (%, €)

can be defined for R>4e"'(nA4,A4,)VF and satisfies

(2.5) 9B (x, &) | <Cx (||, Lyay, &, A7, A/A)A"E ||
X <ET  exp [ (8, +8,) <&,

if R>4¢1(nd,4,)Vs, A”>A and L, ,4*!*=C,, and

(2.6) g% (x, €) | <C4(C, A/A) A= (o | + |

X <ESR exp (8, 4+8,) <&V,

if R>4¢7'(n4,4,)"* and L, ,=C. Therefore, Proposition 2.3 shows
that ¢®(x, D) maps continuously &,. to &,..s_5 when [e—0d —0,|

17 %
< k(nAh) -V~
Lemma 2.5. Let x(x) be a function in 2® such that 0<y(x) <1
and y(x) =1 near the origin. Then,
o(p(x, D,y y,D,)) (x,6)
—tim,.{e =7 (3, 649, 503, © 2/ 2/ il
(=Os—Se"""”p (x, E+1, x+y, §)dydn)

if 6,<k(ndy) V" when «"=«k. Here o(p(x,D,, y,D,)) (x,&) denotes the
simplified symbol of p, that is, p(x, Dy, y, D,) u(x) =0 (p(x, D, y, D))
(x, DYu(x) for ucs 2®,

Proof. Assume that 0,<t (nd,)™* when £"=x. By the same
argument as in the proof of Proposition 2.3, we have
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p(x, D,, y, Dyu(x) :SG (x,m)dy  for ue D@,

where G (x, p) =S(S ¢* eI =D p (9, &) 4 (E)dE)dy is integrable in
»n. And we have also

G (.X', 7]) :limj—»nGi (X, ﬂ) ’

where G, (x, 7) :gefz';‘eux—n-<”‘f’x((’/—5) /D x—=x) /1) p(x, 1, 9, &) X
u(€)dédy. Moreover, from the same argument as in the proof of
Proposition 2. 3, it follows that there is a function F(x,7) integrable
in % satisfying |G, (x, ) |<F(x,n) (j=1,2,---). Therefore, applying
Lebesgue’s theorem and Fubini’s theorem, we have

@.7) b(x, D, y, D) u(x) =1im,wg efx-f(ge—w-v

Xp(x, 47,0+, &) x(n/7) (0 /5) dydn) 4 (§)dE.

Similarly, there is a function F;(x, &) integrable in & such that

14 (8) Se—fy'vp (x, £+, x+9,6) 1 (0/D) 1O/ dyvdy |
=14 (&) S <Se-w~v<y>-2M<Dn>2M b (x, €4+, x+, €)

Xx/NxQ/Nydy)dn | <Fi (),

where M=[n/2]+1. So we can apply Lebesgue’s theorem to (2.7),
which proves the lemma. Q.E.D.

Let 1<{#<k, and let {¢n}y-012... be a sequence in 2% such that
on(E)=1if [§|<1/4, ¢y (6) =0 if [§]=1/2, and

(2.8)  |gEtP (&) |<C(A;(N+1)/2)' B8 |81 for |a|<N+1,

where A;, B and C are positive constants. By Lemma 2.2, for any
d>0 there is C,>0 such that

C2V AT a L(IB L + [y DY
X<E>;(|a|+lﬁl+17l) for lalSN-H,
Cad #7181+ 7 Y

X<E>;(lﬂl+lrl) if a=0,

since (N+ 1)< (N+ |a])l/N!<2¥41e! |a|!, Define for R>4¢7' (nA,4;) "
r®(x, D) =p(x, D,, », D,) —¢%(x, D),
v, © = (B (6) ¢ () (05— {7 10 (x, 647,143,
X gn (7/<E0n) dydn — Zioods (£, 6) },

|05 20 (7/<E0n) [ <
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5006, ©) = (@E @ — 9§ (©) 05— {7 7p (3, 47, 542, ©
X (1 =g (/<E>) )y}
Then it is obvious that
(5, ) (=0 ((x, D)) (x, £)) = Sioo (rfe (x, &) +75: (x, O}

First consider 7% (x, £). We can write
(5 8) = @B ~ e )| Twn W+ DR =0
x (1> 71y (3, €, 09, DY ban) do,
where iy (s, &, 89, 7) = <Dy} g (1/<E) (D) (x, & 47, x + 0, &)
and M=[n/2]+1.

Lemma 2.6. Put
(3/2)v¥,+6, if 6,>0,

9-sg 5, if 6,<0,

A if &' =k,
2.9 =| .
max (4, 4,) if ¥'=1,
a Al if E’:IC,
. 10) A,-{ .
max (4,, 4;/3) if £'=1.
Then,

(2.11) | (x, &) |SC (||, Ly, 4, Ay, Ay/A, As/A4;) (2°47) 17
X | BT  Texp [ (8 —k/ (2R) ) (EXYFT (N +1) 2671,
where p=T « 20 A, A,R".

Proof. For |r|=N+1 we have
|0g D2riy (x, &, 6y, m) |<2YC (|, Lia), 4, ) (N+DIN+14 |8

% <$>r}r:1+m2—la!—N—-lexp[5<$>}/m]
X TR (1 0) A* (BA) A0k 1o,

where I(g,v) =|BIWF wfE (N+ 14+ |8 =" {1 (18] — ) W (N+ 1+
|BD 1} ', Here we have used the facts that (j+£)!<C.(j) (1 +e)* x k!

for €0 and that <{63/2<<E+ <<+ 9| <BLEM/2 if gy (n/<EDW)
+#0. It is obvious that
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(1Bl = (N+1=—n)~* if £'=r,

(1" i w=l,
Therefore, applying Lemma 2.2, we have

‘a?‘Dgr{N('xa E: 0)}3 7]) ‘SC( ia l’ L\ala A, Al: AZ/A, 143/14].)AnﬁI
X (TA AN LN+ DI(N+14+ B
X (e T Texp[6¢EDYF].

I v <

This gives
|rﬁ\§f(129)(x’ E) |SC,([0[|, Llal’ A’ Ah AZ/A, Ag/Al)A,“gl
X (Tnd,A) Y (N+1+ |B]) ey e =1
X exp[0{EX/] DX (&),

where @X (&) is the characteristic function of {f€R*; RNZ(EVL
2R(N+1)}. From Lemma 2.2 it follows that

(2- 12) |rfal\(lc(%) (x, E) iSC”( Ia Ia L[ala A’ AI’ AZ/Aa A3/A1)
X (2547) 81| B 1EE e exp (3—8) <EYF]
X (L4 1/N)WD5 (N 1)2(7 « 2ne?®5=" 4, 4,R77) ¥+
for §<0. (2.12) with 6=«/(2R) shows (2.11). Q.E.D.

Lemma 2.6. implies that
|Z;\;=0 rﬁ\%)ﬂ) ('xs 6) : SC( la |9 L\al, Aa Al, AZ/Aa AB/AI) (QEAI) A
X 1B Texp [ (0—k/ (2R))<EDKF

for R>2'"3% (nA,A,)¥*. Next let us estimate 7% (x, ). We can write
rie (5 ) = @5 © —ofa ) (s, & 5y,

where ron (X, Ea s ﬂ) :<)’>—2M<D17>2M {[’ (x, E‘l"], X+, 340! — ¢y (77/<€>h))}
and M=[n/2]+1.

Lemma 2.7. Let A’ be defined in Lemma 2.6, and let B>0 if
£'=k and B=A4, if £'=1. Then,
]réel\%.??) (x’ E) :SC( ]a ls Llal, Aa A1> AZ/A5 AZ/Ba I/B)
X (2°47)"#'| B |*exp[0"<EX T (4R2+1) (N+1) ~?
if 10,1<27%%(nB) " and 6’ =06,+0,—4" 1"V g (nB) ~V¥,

Proof. The same calculation as in the proof of Lemma 2.6
yields
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|0¢ DiDYry (%, &, 3, 0) |ISC(lal, Lo, 4, 4y, 4:/4, A4,/B, 1/B)
X AMABT B+ 7 Iy [y | ™
X exp[0,<& +mi/* +0,KEMFTY (/<€)
where ¥ (£) is the characteristic function of {§€R"; |§|>1/4}. Thus
we have

gD e 5,8, 3, |
SCB' ( IO( Ia Llab Aa Ala AZ/A, Az/B, l/B) (2EA,) el !‘8 |!E<7)>_n—l
Xexp[—271k (nB") 7V [ [VE +6,KE + i/ + G, CEN"

XY (q/<EM)EX"
<Cp (la|, Ly, 4, 41, 4,/ 4, A,/ B, 1/B) (2°4") " |B| "y~
X exp[0"CEXFIKED
if B>B, 16,|<2'%(nB")"" and & =d,4+8,+47V(|3,| -2k (nB’) V%),
which proves the lemma. Q.E. D.

Lemma 2.7. implies that
IZ;=OTZRI\%§) (xa 5) {SC( Ia [5 Llab As Al, A2/A7 AZ/Bs I/Ba I/R)
X (2°47)'#"| B|**exp [67<EDV"
if 10,|<273%k(nB)~*, So we have the following

Proposition 2.8, Let p(x, &, y,7) satisfy (2.1). Then there are
r>0 and 6(1/4,, 1/4,)>0 such that 6(1/4,, 1/4,) =8(1/4,) A7V if
' =r, 6(1/4,, 1/4,) =8"(1/A) A;V* if &'=1, and the following estimates
hold if a>1 and R=ar,AV"AY~:

g8 (%, &) |I<Ca (], Ly, A, A7, A/4) A"V (|1
X CEYT expll (3,+3,)<6HH"]
if A>A4 and L, ,A*k*=C,,
g8 (%, &) |<C4(C, A/A) A<+# (|| + |B])IF
X< Mexp[[ (8, +8,) <N
if Lya=C,
r&? (%, &) |<Capa, (], Liay, A, Ay/A) (24781
Xexp[(3,+0,~0(1/4;, 1/4) /a)<&X
if 16,1<(1/4,, 1/4,) /a,
where q%(x,&) is the symbol defined by (2.2) and (2.4), r®(x, &) =0 (p
(%, D,y 3, D)) (x,8) —q®(x, §), and A and A, 4, and A’ are defined by
(2.3), (2.10) and (2.9), respectively.



MICROHYPERBOLIC OPERATORS 183

Proof. 1If, for example, we choose r,=2""¥nF and
2733 g (nA,A,) V* when £’'=k,
2737%g (nA,) "V*min (A7Y5, 2VF) when £'=1,

then the proposition easily follows from (2.5), (2.6) and Lemmas
2.6 and 2.7. Q.E.D.

51/ 4, 1/A2>:{

Let A(x, &) be a symbol satisfying
(2.13) [43) (x, &) | K CL A+ 18 (a | 4+ |8 IKEDYE1=!,

and set w§(4; x, &) =e 10 (e4=9) (3.

Lemma 2.9. If A, >A, p>0 and A;/A, + Cydoo 47 (1 — A,/ A) 7}
<1, then
2.14) 5@ (45 x, &) | <ATOA 8 (o[ 4+ [B]+ |7+ 0 D!
XCER I Sy P o EDKE /L.

In particular, we can take A,= (1+ (Cy/p)"?) A4, and 4,= (1+ (Cy/p)?)?4,
Sor p>0.

Proof. 1t is obvious that (2.14) holds for |a|+ |8]=0. Assume
that (2.14) holds for |a|+ |8|<N. Let |a|+ |f|=N and |e|+ ||
=1. Then

|03t (A5 %, 6) | =
|3ty (45 x, &) + (A48, (x, ) i (45 %, 8)) B
SAIITH-IM Agv'%—l(N_l_ |T‘ + I5‘+1)!<E>h—lal—17|—lel
X S oEN Ry i (71101
N+ 7|+
(Y
which proves the lemma. Q.E.D.

-1
1|5]+1> (N+1)Codop™ 45" (Ao/ 4D *},

Corollary. For p>0,

[ =)@ < {1+ (Co/p)V2)2 A} 1 1#1 (la | + [B])!
X< *lexp[oK€Di" +Re A(x, &) ].

Lemma 2.10. Let p(x, &) be a symbol satisfying
(2.15)  |p3 (%, §) | < Lyay 4418 o 17| B 1CEDT ™ lexp [6<EDI"],
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where m, 0€ R and L, JA*kF=C, or L, ,=C, and set 2A=inf,,,
SUPerm, e Re A(x, E)KEDTVF. Then (e) (x, D) p(x, D) maps continuously
Fre to Prep if p>4+0 and |e—0| <k(nd)~Ys. Moreover there are
7(4o) >0 and 0, >0 such that q%(x,&) =29 (£)q,(x, &) is well-
defined, and q®(x, &) and r®(x, §) =a((e?) (x, D) p(x, D)) (x, &) —q"(x, &)
satisfy the following estimates if a>1, R=ar(A,) A" and p>%+Cy+0,
where q,(x,8) =3 4=, @' 0* (A5 x, &) pra (x, §) =9
(2.16) 1985 (x, €) |<Cpn (], Lyay, 4, A7, Ao/ A) (2°47)7

X |BIEM " exp[p<EDY*

if A”>A and Ly ,A*%F=C,,

2.17)  g8® (x, 6) |<C, 4(C, Ao/ A) (2°4) " # (Ja |+ B

X< exp[p<&Di*]  if Lua=C,
(2.18) & (x, &) | <Cp ., (], Lig) (2°4)

X |B|exp[ (p—a3, A7) <EDY¥]

if 12+GCy|<aT'g, A7

Remark. () If le—6|<ke(nd)™Y* and |e—24,—C,—6|<2 'k (nd) V",
then (e?) (x, D) p(x, D) =¢%(x, D) +r%(x, D) on &,.. (ii) For exam-
ple, one can take r(A4,) =2"*¥ (nd,)¥ and 5A0:2"3‘3/‘ £n~Y* min (A7V",

2v%), where A,=max(84,, 4,/3) and 4, is the constant in (2.8).

Proof. From the corollary of Lemma 2.9 it follows that
| @ 0p (3, 1) B 1< C, (A/A) Ly 44717
X (SAO) ral f181 |a !| |‘3 ||n[ 7 |]/c ]5 “x<$>iia!<77>;ln—lrl
X exp <X +a{n)i"

if p>2,+C,. Therefore, the lemma immediately follows from Proposi-
tions 2.3 and 2. 8. Q.E.D.

Lemma 2,11 ([6]1, [7]1, [17], [19]1). Let 0<p<l and me<R.
Then, for each sER there are C.>0 and a non-negative integer N, such
that

[IKDYa(x, D)ul| 2<C,M|KDY ™ull,z  for us H**™

if 12 (x, &) |< M+ #i-tade for (x, &) ET*RY, h>1, |a| <N, and
| BI <N, where H* denotes the Sobolev space of order s.
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Proof. Make a change of variables: y=~h*x. Taking A(§) =h°"!
X<{E>u-o as a basic weight function, Theorem 1.6 in Chapter 7 of
[19] gives the lemma. Q.E.D.

Proposition 2.12. There is ¢,>>0 such that p(x, D) maps continuously
H; . to H::™ if p(x, &) satisfies (2.15) and |e—0d|<epA™V~.

Remark. Proposition 2. 12 was proved in [13] and [24] when 6=0.

Proof. It suffices to show that exp[(e—d)<DX/*]p(x, D) exp[—e¢
X<{D)}*] maps continuously H* to H*™™. By Lemma 2.10 and its
remark we can write

exp[ e—0)<DYi*1p(x, D) =q(x, D) +r(x, D),
where q('x7 E) = ZT=090$ (5)9; (x, E)a q; (x, E) = Zla[=ia!—lwa (E) p(a) (x, E)
exp[ (e— 0) <EDYF], R=21*¥* (nd,A)V*, A,= max (84,, A;3/3), Ay=1+y2
and (&) =0*((e—0){&E>}F; x,£). Moreover, we have
r@ (x, &) |<Cpallal, L) (2°4) B
Xexp[ (o —2d47F)<EDV]
if o>e+|e—3d| and |e—0|4+e—08<2,47VF, where e=2""%k(nd,) V",
Therefore, we have
(2.19) | (r(x, Hexp[ < DG < Callal, |8, Lia) EXF™
if le—d]<gA7'*. On the other hand, a simple calculation yields
[ (g; (x, ) exp[ <XV D B |
<C(lecl, 181, L), 4) (nAAg) gt Epp~ O 1mlal=
X 2 i=oCe<EY /!

<C'(lal, [Bl, L), A)KE = ay/mIad jE-D2(54-1)
X {et " nA AR ""max (C,, R™1)} if <EDYV*=Rj,

where C,=|e—d| and 4;=84,. Since
e nd A;R "max (Cy, R™Y) <1 when C,<leed™VF,

we have

(2.20) [ (g (x, &) exp[—eCEV DR
<C'(lal, |81, Liay, A)LEYp-a-vmial

if |e—d|<<e,A™Y*. Thus (2.19), (2.20) and Lemma 2.11 show that
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exp[ (e —0)<D>¥*1p(x, D)exp[ —e{D>}*] maps continuously H* to H*™
if |e—d|<gdV=, Q.E.D.

Proposition 2.13. Assume that A(x, &) satisfies (2.13) and that
p(x, §)is a symbol satisfying (2.15) with L, ,=C. Then (¢*) (x, D) p(x, D)
Rle=") (x, D) maps continuously P to Pre—p if 0>k+4+0 and |e—2,
—0|<k(nd)™V% and H:. to Hir, if o>+ 4+0, le—24—0]|<ed™VF
and sER, where ¢, and 2, are the constants defined in Proposition 2.12
and Lemma 2.10, respectively, and A =inf;s, sup,egr o>z —Re A(x, &)
EdiY*.  Here R(e=*) (x, D) denotes the transposed operator of (e=*)
(x, —D). Moreover there is cA0>0 such that there are symbols p,(x, &)
and 1,4(x, §) satisfying the following properties if Co<cAoA‘V" and |0
<0A0A"1/":

(¢4) (x, D) p(x, D) "(e™) (x, D) = p(x, D) +74(x, D),
2.21) [{p4(x, &) = Ziarripi<n (@!B) " (pe (%, §) @ (45 5, §)
X, (—A;x,8)) @} ég; 'SCA,AO(C, N) (2°4) lal+141

X (la|+ |81y a- 0V Vexp[a<EH],
N=0,1,2,...,

(2.22) [r s (x, &) ‘SCA.AO( la|, C) (2%4) "% |8
X exp[(6—ca0 A7) 6D,
(2.23) 14° e~ Py continuously if p=0—cy A7 and
le—6 <2k (nd) V",
(2.24) ra: Hi.— H;._, continuously if p=6—cAoA'1/",
s, S'ER and |e—3|<<2 %, A7V",

Proof. We set q(x, &) =2520%(8)q,(x, &) and r(x, &) =0 ((e) (x, D)
p(x, D)) (x, &) —q(x, &), where R=ar(4,) A%, a>1, q;(x, &) =2 o=l
0 (45 %, &) pay (%, £)e?*® and r(4,) is the constant in Lemma 2. 10,
Lemma 2. 10 implies that ¢(x, §) and r(x, &) satisfy (2.17) and (2.18),
respectively. The symbol rj(x, &) =0 (r(x, D) ®(e™*) (x, D)) can be
written as

ry(x, £) =0s— S e (x, E+9) e~ 15+ dydy

if |Z+4+Cy+6|<a7'9, A7 and |%4+Cy|<a7'9, A", where 540 is the

constant in Lemma 2.10. Then we have
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T'A?fég (xy E) = S fa.ﬂ (x9 6, ﬂ)d%
Fap(e&m)
={emryy g DD,y 1y (3, € 10 oy,

where M=[n/2]+1. A simple calculation gives
197 fap (%5 &, 1) |<ChapaClal, €) (2°4) ¥R || tod'™!
Xexp[ (0 —c, A7) <E+ 7]
if a0, [4+4+2C,|<<a 0, A7V /4, cay<a7'0,4 /2, |A+4+Co+0|<la™
04,A7 and |4 +Cy|<<a'd, A7V This gives

Ifa.ﬂ (x, E) 7]) |£CA,AO( ld la C) (2‘:A) 1l |ﬁ l"‘
X exp[(0—ca A7) EX — In V],
(2. 25) 174@ (%, ) |<Cha,(lal, C) (2°4) 1|8
X exp[ (6 —c A7F)EX],
if |6|<a‘15AOA‘1/"/2, Co<2‘4a“5AoA‘1/’“ and ¢, <a7'd, /2. Put
pa(x, &) =705 (€) Liar=sa! M g (x, ) (7% 9) 0} @,
" (x,8) =a(q(x, D)*(e™*) (x, D)) (x, §) —pa(x, €),
where R=ar(4,) AV, a>ay(>2), a, is a constant satisfying ag (4,)

=223y AY* and r, is the constant in Proposition 2.8. Then it
follows from Proposition 2.8 that

(2. 26) 17468 (x, €) |<Cpa.a, (|, C) (2%4) 1| B|1°
Xexp[ (p—a™10, A7) <EDV"]
if p>24+4+2C,+06 and |4+ 4+2C,+ 06| <la™'d, A%, where d; =
27%0,6(27%4;") and 0( +) 1is the constant in Proposition 2.8. In fact,
| {g(x, £)e 09) @, |<C, 4(C, 4r/A) (2% 4) ¢
X (2%4) 11 (84p) ' |a [ [B ¥ |y [KEXR'=! exp[o<EDY"

if o>+ 4+2C,+4d. (2.25), (2.26) and Propositions 2.3 and 2.12
imply that r,(x, &) =r)(x, &) +1(x, &) satisfies (2.22)-(2.24) if Ca,
<min (2770, , a0y /6, 27%kn "V, 27%,), Colca A7V, 10] <cA0A‘1/" and
a=a,. A simple calculation yields

|Z|a|=i.|ﬁl=kgc(r’.z;<g (x,8) |
<C(C, Ao/ A) By ) A8 (|a |+ |B| +j+k) ey =5+
X exp[0<EDN ] (o oCICEDY /1) (Zh-oCiKEDIE/LY),
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Where ga.ﬂ(x9 E) = (a!ﬁ!>_lp(ﬁ) (xa E) mﬂ (/1 ; xa E) wa (_A; x’ S)' Here we
have used the inequalities that
Z,u1+;z2+/13=lc'z]+1,ul+u2+v3=|5| ( ld | +.])' ’B I',ullx ("’1_’_/‘:)!1c
X (a4 v, +E) (st v+ ) {7R ! 1) !y 1w, w!
X (la|+ 1B +7+E)F}1(24,/A) #2* 32+

. 1-&
S2]+kZﬂ1+ﬂ2+#3+#4=ldl+lﬁl+iﬂ3!1—xﬂ4!1_x<‘u1:#2>
1
X (44,/A) 3 <270 (4,/A4).
Since (EDYF>2(N—1)R if j+Ek<N, ¢®(&) =1 and ¢f(§) =1, we have

IZIaI+IﬂI<N {ngRa} ) (§0*133| (E)ga.ﬁ(x$ £)@ "gc(xo.(;)s (x, &)} 5%3 I
<C(C, Ay/A, N, Cy, R, A 4) (27 A) '8 (& | + |
X CEOp 1410V exp[ACED-].

Moreover, we have

’ZxawmzN {of (©) (?’ﬁﬂ () &a.p (%, 8)) @} EE% |

<C(C, g/ 4) (2 4)*5 (a |+ B¢ a-a-von
X exp O/ 1 Xy 2iha0 (227 nd,A) 7 jIF (jR/2) D)
X {max (Co, 1/R)} (K1 (j—R)D 1 (j/2+1)?

<C'(C, 4,/A, N, R) (2 A)'«" 181 (|a |+ |B
X<5>hm—id!—(l—1/ﬂ)N exp[5<5>}/‘]

if 2%~ n 4 AR *max (C,, 1/R)<1. Thus we obtain (2.21) if a is
chosen large enough and if ¢, is chosen small enough.

Q.E.D.

Lemma 2.14. There are symbols q(x, &), §(x, &), r(x, &) and 7(x, &)
such that

Re™) (x, D) (¢”) (x, D) =1+q(x, D) +7(x, D),
(e") (x, D) ®(e™*) (x, D) =1+4(x, D) +7(x, D),

where o (1) (x, &) =1,
(2.27) 1g$8 (x, &) | <Cy,2(Co) d=+18 (a | + | B|) IFCEDYE1-lal,
(2.28) 17 (x, &) | <Cp.ay.a(lal, C)d? | B|"exp[ —p{EDV"

if d>0 and p=R, and §(x,§) and 7(x, &) satisfy the same estimates as
(2.27) and (2.28), respectively. Moreover we have
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(2.29) (14¢(x, D) +7r(x, D)) ®(e™*) (x, D)
=R (x, D) (1 +4(x, D) +7(x, D)).

Remark. With obvious notations, we have q(x, &) ~ 3 0%, (—4;
x, &) /al and §(x, &) ~3 50 (—A; x, &) /a!, and we can define ¢ (x, &),
G(x,8), r(x,€) and 7(x, &) as analytic symbols (see [26]).

Proof. From Proposition 2. 8 and Lemmas 2. 4 and 2.9 the lemma
easily follows. Q.E.D.

Lemma 2.15. Assume that a symbol p(x, €. y,7) satisfies
PBE (x, & 3, ) ) SCAHEH0 o [15[B]1F]5]1°
X<LEX™Mexp[0KEXVF+0,{p>]  for (x,6), (3, n) ET*RY,
[P EEH (x, §+m, x+9, 1) | <Co,, (274) 1B [0 ]1F
xexp[—al&X] if  [9]<ciKé) and |y|<c,,
where acR, ¢, and c, are positive constants. Then there are d,>>0 and
>0 such that p(x,D,, y,D,) maps continuously L. to Fyerp fOr
le+po|<<w(nA)~V*/2 and H, to Hi.., for le+p|<<e,d™V/2 if |0;]|<d,
A7Y* and p=min (a, d,A™VF—8, —d,), where ¢, is the constant in Propo-
sition 2. 12.

Proof. By the same argument as in the proof of Lemma 2.5, we
have

p(x, D,, y, Dy)u(x) =q(x, D)u(x) for ucP®
if 6,<k(nd)~Y*, where

0, §) =05 —\e71p (3, &1, x4+ 3, Oy,

We may assume that 0<(¢;<C1. Choose (&) e2® (1<g#<k) so that
x(&) =1 for |£|<1/2 and (&) =0 for |§|>1. Put

0.5 ) = (o1 (v, €400, x4, 020/ @& 1o/ i,
0., &) =05 = {e27p (5, €0, 542, ©) 20/ ((E))

X (1 =y (y/e;)) dydn,
33(x, &) =q(x, &) —q1(x, §) —q,(x, £).

Applying the same arguments as in the proofs of Lemmas 2.6 and
2.7, we have
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9 (5, ©) | <CL(2A)'# B I1EYexpL—aE)],
1055 (5 &) | Sinfregg o1 Qe 1y 127>
X (y » D)VgDIKD, Y {p (x, £+, x+, ) x(0/ (c(E)))

X (1= (/) }dy)dn<C, ,(4) A || exp[o<EX]
if >0, +0,+cY* |0, | — k(1 —cp) Vecy* (2nd) 7,

where M=[n/2]+1. Similarly, we have

152, (%, §) 1= C. 0,0 (2°4) " | B Fexp[0<€DV"]

if 0>0,+0,— (c,/2)V*(£(nd)™/2—16,|) and [6,| <<w(nd)™/2. In
fact,

({emncy-nagDec
X {pCx, €47, 53, &) (1 =1/ @ENN D

2C5.4.,(2°4)"" B [TexpLo [ [V +0,KE+ )M +3,(EH"]
Xg(p/(@<E)) if p>—r(nd)7"/2,

where ¢ (£) is the characteristic function of {§€R; |§|>1/2}. There-
fore, taking dy=min (27" Yk {(1 —¢,)c,/ (nc,)}*, kn"/4) and d,=min
@1 {(1 —¢) ¢y/n} VF, 27275k (¢, /n) V%), the lemma follows from Pro-
positions 2.3 and 2.12. Q.E.D.

Corollary 1. Let 1<k,<k, and assume that p(x, &) satisfies (A-1).
Then we have

WFy(p(x, D)u) CWFy () for us 9*,
where x= (k) if x1=(x) and *={x} if 1= {r}.

Proof. Assume that (x°, &) & WFy (u). Then there are y(x) € 2*
and ¢(§) € £* such that y(x) =1 near x° ¢ (&) is positively homo-
geneous of degree 0 for |&|>1, ¢(&) =1 if |£]>1 and & belongs to
a conic neighborhood of &° and ¢ (D) x(x)ucs S, , for any a>>0 when
*=(£) and for some a>>0 when *={x}. So we have p(x, D) ¢(D)
Xyxx)ue &*. Let y(x) € 2* satisfy supp p€ {(xeR"; y(x) =1}, and
let ¢;(§) € &* be a positively homogeneous function of degree 0 for
|£]>2 such that supp ¢;N (E€R"; |é|=2} € {é€R";¢(§) =1}. Then
Lemma 2.15 implies that x(x)p(x, D)¢(D) (1—x(x))u<E &* and
O (D) (D) p(x, D) (1 —¢(D))ucs &*. Thus we have ¢, (D) (x)p(x,
D)ue &*, which proves (x° &) & WFy(p(x,D)u). Q.E. D.
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Corollary 2. Let € be a conic subset of T*R™\0, and let x(x, §) €
E* be a positively homogeneous function of degree 0 for |&|=1 such that
x(x, &) =1 near € N {|€| =1} and {xER"; (x,&) Ssupp x for some

§cR"} is compact. Then, WF,(W)N¥€ =& if x(x,D)uc &* and
us g*,

Proof. Let y(x) €2* and ¢,(§) = £** be functions such that
nx)d (&) €x(x, &), ie, pnlx)¢ (&) is positively homogeneous of
degree 0 for |[£§|>M and supp n(x)¢ (&) N {l§l=Mle {8
T*R"; y(x,&) =1} for a sufficiently large M. Since ¢, (D) y(x)u=¢,
(D) 1 (x) x(x, D) u— ¢ (D) 11 (x) (x(x, D) — 1) u and ¢, (D) x (x) (x(x, D)
—Dues &*, we have ¢ (D)p(x)ucs &* if yues £*. This proves the
lemma. Q.E.D.

Corollary 3. Let ¢, and €, be conic subsets of T*R*\0 such that
€.€F, te, € .N{lEl=1}e¥,Nn{|E|=1}, and let x(x, &) EE® be
a function such that y(x, &) is positively homogeneous of degree 0 in & for
[§1>1, x(x,8) =1 near €,N {|§]=1} and supp x(x,& N {|6|=1} €
€ ,. Assume that symbols p(x, &) and q(x, &) satisfy

|6 (x, &) [ <CA™8 | |I¥| B |lexp [a<EX],
lg(@ (x, &) | <C" A 1# [ |17 | B [exp [8"CEI],

and supp q(x, ) N{IEIZL} (NE\C) =Z. Then there is >0 such
that q (x, D) [p (x, D), x (x, D)1 fE LL,, for fEL;: if le|<e=647
and |0]|+ |0"|<e, where [A, B]=AB—BA.

Proof. We can write

q(x, DY[p, XI=q U =) px—qup(1—1).

Let x;(x,8) € &9 (T*R") (j=1,2) satisfy x(x, &) €x(x, &) €x(x, §),
n(x, ) =1 near®,N{|§|=1} and supp %K & N{l&|=>1}e ¥,
and put ¢;(x, &) =q (x,8), x(x, &), pr(x, 8 =p(x, &) 1 (x,8),¢,(x, &) =
g(x,8) —q; (x, &) and p(x,8) =p(x,6) —p,(x,€6). Then it follows
from Lemma 2.15 that ¢, (x,D) (1 -y, D))f, ¢,(x, D) x(x, D) f,
9:(x, D) p1(x, D) f and p,(x, D) x(x, D) f belong to Li. if fEL., le|
<eg=&A7Y and |6|+ |0"|<e, where &>0. This proves that ¢(1—y)
px fELi,sl if fell,, |e|<e=ed Y and |d|+ |6"|<e, where §>0. We
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can also apply the same argument to gyp(1—yx) and prove the asser-
tion. Q.E.D.

To end this section we have to remark that calculus of pseudo-
differential operators in the space of real analytic functions and
Gevrey classes has been studied by many authors (see [1], [4], [8],
[22-26]).

§3. Hypoellipticity

To prove Theorem 1.4 we shall prepare several lemmas on
construction of parametrices in this section. As a consequence of the
lemmas, we shall prove that operators satisfying the so-called (H)-
condition are hypoelliptic in some Gevrey classes, which was essentially
proved by Taniguchi [25].

Let 0<6<1—1/k, 1/6<p<l, h=1 and m, m’eR. We say that a
symbol p (x, &) satisfies the condition (H; C, 4,d,, d,, B, N;), where
C, A, dy, d,, B>0 and N, is a non-negative integer, if

|63 (5, ©) | <CA#1 (Ja | + |8 for any « and f,

|5 (x, &) | ZdLEY,
6@ (%, ©)/p(x, &) | <d B FIENEeIl for |a], |BI<N,.

Lemma 3.1. Assume that p(x, &) salisfies the condition (H; C, A,
dy, dyB, Ny) and that A(x, &) satisfies (2.13). Then there are positive
constants &4, az, hy 4(a, 1/do, dy, B, Ny), ¢4y Cy.a, (C) and C(d,) and symbols

pa(x, &) and r4(x, &) for 0<a<a, A~V such that

(e*) (x, D) p (x, D) ®(e=**) (x, D) = p2 (x, D) +r24(x, D),

174 (x, §) | <Cypay (], C) (2%4) " | B |Fexp[ — 3e<EDV*],
ra(x, D) maps continuously Lic to L%, if le|<e=&,A7", and p5(x, &)
satisfies the condition (Hj Cyo4,(C),2%4,dy/2, C(dy), B, No—1) if h=hy 4
(a, 1/d,, di, B, Ny) and if azCOAOBgc,,1 when 0=1—1/k or p=1/k, where

r=[(m—m’+1)/(1—1/k)]. Here a, is a constant depending on A, and
Co, and hy 4(+++) is a constant depending on A, C, A, Cyy < -.

Remark. When 0=0 or p=1, we can also obtain similar results,
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which is not necessary in this paper.

Proof. Applying Proposition 2. 13 with 4(x, §) replaced by ad(x, §),
we obtain p5(x, &) and 7%(x,&). It is obvious that r%(x, §) has the
properties in the lemma if é, and a, are chosen suitably. p%(x, &)
can be written as

P'Z (.?C, 5) = Zla]+lﬂ|£r(a!48!) - {p(ﬁ) (x, S) wﬁ ((JA 5 Xy 6)
X, (—ad;x, £)} @+ 58 (x, §),
| 55 (x, §) | <Cy 0 (C) (2FA) ' (Ja | + [BDY
X <§>;’n— lal—(1-1/K) (r+1)_
It is easy to see that
[{o®(ad; %, &) — (aV A(x, £))°} &
SC(COa AO; aa a: IB’ a) <E>;(1—1/‘)ldi—1/ﬂ_ml9
| {wﬁ(—a/l 3 % E) - (ianA(xa E) )E} E‘Eg
SC(CO, AO: a: a9 187 5) <$>LBI/K—1/I€-M].
Therefore, we have
@G.1) |05 (%, €) /p (%, 6) — pB) (x, &) /p (%, §) |
= {Zg=lz|d1+15[=:dlBj+laH'ﬁl (aC,oAo)’
X <E>§lﬁ+1/lc—l)lﬁl+(l/lc—p)|dl/ (d!‘@!)
+Cpa(a, 1/dy, dy, B, Ny) (KEDi +<ED° +<E01*))
XLEWIelif e, |BI<Ny—r.
This shows that there are positive constants 4, 4(a, 1/d;, d;, B, N;) and
¢, such that [p2(x, &) |2 1p(x, &) |/2 if h=hy 4(a, 1/dy, dy, B, No) and
if aCoAOBSCd1 when 0=1—1/k or p=1/k. (3.1) also gives

653 (5, €/ pax, €) | S2(L+d)) Bt ei-eie
if h>hya(a,1/dy,d, B, N;) and |a|, |8] < No—r, and if aCydB<c,

when 0=1—1/k or p=1/k, modifying 4, 4(a,1/dy,d,, B, N;). This
proves the lemma. Q.E.D.

Lemma 3.2. Assume that p(x,&) satisfies the condition (H;C, A,
dy, dy, B, Ny). Then there is C(d,, No) >0 such that
[(1/p(x, ) B 1< Cdy, No) BI*I+PIENFI=e1l /| p(x, §) |
Jor lal,|B|<N,.
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Proof. 1t is sufficient to show that
(3.2) | (1/p(x, §))Q1<CWd, |a|+|B]) B+
X <$>ilﬂl—plal/ Ip (x, E) I

Using the identity {p(x, &) 9 (1/p (x, &)} Q= — {0p (x,8) /p (x, O} B,
(3.2) can be preved by induction on |a |+ |B8]. Q.E.D.

Lemine 3.3. Assume that p(x, &) satisfies the condition (H ;C, A4,
dy, d,, B, Ny) and that < p. Put q(x, &) =a (p(x, D)+ (1/p) (x, D)) (x,6) —1
and §(x, &) =c((1/p) (x, D) = p(x, D)) (x, &) —1. Then
3.3 1963 (x, &) | < {C (dy, Ny, B*h*=¢) B*h*~e BI=!*14!

+C(C, 4, 1/d,, dy, B, Ny) /h} (EXFI—e1e!

for |a|, |BI|<Nyand N;<Ny—r—2L(Ny) —1, where r=[(m—m’+n+1)/
(1=0)] and L(Ny) =[(oNo+6(r+1) + |m|—m’+n+1)/(2—26)]+1, and
G (x, &) also satisfies the estimates (3.3) for |a|<N,—2[n/2]—7—3 and
|81 < N,—7, where F=[(m—m’'+1)/p].

Proof. Let ¢ 2% (1<k'<k) be a function such that ¢(§) =1
for [£|<1/4 and ¢ () =0 for |£]|>1/2, and write

(%, &) =q; (x, ) +§:<r+1> (1=0)" (g (x, &, 6) +q5(x, €, 0)} b,
where ¢, (%, §) = X1ciai<r P (%, &) (1 /p (x, ) /@) and ¢q,(x, §, 0)
= Saror i@l 0s = 715 (5, € 4 7) (1/p (5 + 03, ) ot (1/<ED) o,

Then we have

3.4) 1% (%, &) |<C(dy, Ny, BH=0) BPh°=e B! 1#1(§ 1P -eled
fOT la ls |ﬂlSNo—T,
(3= 5) qu(?ﬂ)) (xs Sa 0) I -—<—C(C9 A9 1/d09 dl, B, NO) <$>ilﬁ|—p[al—1

for |la|<N, and |B|<Ny—r—1.

A simple calculation yields
(3= 6) ]‘1757,5)1) (x, 'S, 0) I S S<77>_ZLZIrl=r+12¢11+a2=a.ﬂ1+ﬁ2=ﬁa!lg!

X (rlatlo?lf1EA) 1| 3¢ DE'CD, Y™ {p0 (x, €+n) (1 —

¢ (1/<EMNY 1195 DIF<D,YH >~/ p(x+ 6y, ©) | dydy

SC(C9 Aa l/d07 dl ) B’ NO) <E>i|ﬁl-plal—1
for |a|,|8|<N; and Ng< Ny—r—2L —1, where L=L(N;) and M=
in/2]+1. (3.4)-(8.6) prove (3.3). Write
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108 =06, 0 +{ +D 1-0g( &, 000,

where ¢ (x, §) =X 1<, (1/p (%, 6)) @ pey (x, &) /a!. Then, it is obvious
that §,(x, §) satisfies the estimates (3.4) for |a|, |8| <N,—7. More-
over, we have

1455 (5, ©) | < Tiri-peart™ (<>~ |9 DD, YD,y
XA/ p(x, E+1)) P poy (x+y, €)} |dydn
<C(C, 4,1/dy, d\, B, Np)<{&H}Fi-elait
for |a|<N,—2M—#—1 and |B|<N,, where L=[{(@+p) No+ (1—p)
n+|m’|}/2]+1, which proves the lemma. Q.E.D.

Proposition 3.4. Let N, be a sufficiently large positive integer, and
assume that p(x, &) satisfies the condition (H;C, A, d,, d,, B, N,) and that
0<p. Then there are positive constants &, h,(1/d,,d,, B), Ca, and B(d,)
and an operator Q such that Q maps continuously L2, to HY, and HI™
to Hy. and satisfies Qp(x, D) =1 on H? (or on L%.) and p(x,D)Q=I
on Hp;™ (or on L%.), if |e|<<ey=8A™Y* and h>h,(1/d,,d,, B), and if
le]1B<c, when 6=1—1/k or p=1/k, and if B<B(d) when p=0.
Here I denotes the identity operator, and hy(++-) is a constant depending
on A, C,+++. Let €, and €, be conic sets in T*R™\O such that the
distance between € ,N {|E|=1} and € ,N {|E|=1} is not less than d,>0.
If ;€ ¢ ®(T*R"), supp 1, (x, ) C¥,; and | x5 (x,8) | <C A" (||
+ |BDKEY™ for any d>0 (j=1,2), then there are positive constants
d,, hy.a,(1/dy, d, B), Cay.d, and B’(d)) such that x,(x, D) Qy, (x, D) maps
continuously L% _, to L%, if OgagddzA’V" and hZhMZ(l /dy, d;, B), and

if aB<cy ., when 6=1—1/k or p=1/x, and if B<LB’(d,) when p=0.

Proof. From Lemma 3.1 with ad(x, §) replaced by &)/ it
follows that there are §>0 and symbols p.(x,§) and r.(x,&) for
le| <Le=6,A""F such that

exp[e(D>/*1p (x, D) exp[ —e(D/*]1 = ps (x, D) +r:(x, D),
[t (x, &) |<Ca(Jal, |81, C)<EDT~*exp[ —eKEDI]
if |e|<e, and p.(x, &) satisfies the condition (H ;C,(C), 2%4, dy/2,
C(d), B, Ny—r), if € and h satisfy the following conditions;
3.7 le|<ey and h>h,(1/dy, dy, B), and |e|B<c, when o=1
—1/k or p=1/k,
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where r=[(m—m'+1)/(1—1/x)] and C, (Ja|, |B],C), C,(C), C(d),
hy(1/dy, d,, B) and ¢q, are positive constants. We set

g (x, §) =0 ((pe(x, D) +r.(x, D)) (1/p) (x, D)) (x, §) — 1.

Applying Lemmas 3.2 and 3.3, we can see that ¢.(x, £) satisfies
the same estimates as (3.3) if C(C, 4, 1/d,, d,, B, N,) is replaced by
C;(1/dy,d,, B, N;) and ¢ and h satisfy (3.7) and if !al,lﬁISN —
and N,>N,_ +r -+ +1, where L=[(m—m'+n+1)/(1—-08)], =
2[ (N, +0L A1)+ |m|—m'+n+1)/(2—20)] +3 and N,_,. is the
constant in Lemma 2.11. In fact, o(r.(x, D) (1/p.) (x, D)) (x, &) =Os
—Se‘”'”rE (x, E+7) p. (x +p, §) *dydy can be estimated similarly.
Therefore, it follows from Lemma 2.11 that there is the inverse
(1+¢.(x,D)) ' of (1 +¢.(x,D)) such that (1+4+¢.)*(1+¢.)= 1+g.)
(1+¢)'=I on H™™ if ¢ and k satisfy (3.7), and if B<B(d)
when p=0, where h,(1/dy, d,, B), ¢, and B(dy) are suitable positive
constants. Put Q,=exp[—e<{D>*] (1/pe) (x, D) (1 +¢.(x, D)) 'exp
[e<D>/]. Then Q. maps continuously HZ;™ to HT. and satisfies
p(x,D)Q.=I on Hr;™ if le|<¢g. Here we have assumed that
Ny>N,+r, and applied Lemma 2.11 to (1/p.) (x, D). Put §,(x, &) =
o ((1/pe) (x, D) (pe(x, D) +r.(x, D))) (x, €) —1. Similarly (1+¢.(x, D))
has the inverse (1+4¢.(x,D))™! on H™ if ¢ and £ satisfy (3.7), and
if B<B(d,) when p=4, modifying the constants. If we set .=
exp[ —e(DDY*] (1 + ¢.(x, D))" (1/p.) (x, D)exp [{DD}*], then §, maps
continuously L2, to H, and satisfies Q.p(x, D) =I on HF, if |¢| <s,.
Here we have assumed that N, 2Nm1+r+lg+2[n/2]+3, where [; =
[(m—m’+1)/p]. It is easy to see that Q.=Q. on Hr;™ if e>¢’ and
0.=Q. on Hr;”, which proves the first part of the proposition.
Choose a symbol A(x, &) satisfying

(3.8) |45 (x, &) | <Co A7 (| + [B)KE 1=,
3.9 infse SUpigas |40, ) KOV,

(3.10) infse SUPG.peg,. 1204 (x, E)KEHF <],
@.11) SUPL>0 infeper, i0204(%, €)X VF>1.

For example, let ¢(x, ) be a function in C'(T*R*) such that the
first order derivatives of ¢ are bounded, and |p(x, &) |<<5/3, o(x, £)
=—4/31in ;N {|£|=>1/2} and ¢(x,£)=4/3 in €,N {|€|>1/2}. Put
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0, (x, &) =Exp(x, §) and A(x, §) =g, (x, §/<EX) D", where E;(x, ) =
J () "expl—j(|x 124+ 1612 /4]. If j is sufficiently large, then A(x,§)
satisfies (3.8)-(3.11). Let symbols p%(x,§) and r%(x,§) be as
defined in Lemma 3.1 for Ogagd,izA‘V", where d,, is a positive

constant. By Lemma 3.1 r4(x, D) maps continuously LZ. to L,%vzgl
for |e|<e=¢, A7V, where ¢,>>0. Applying the same argument as
in the first part of the proof to p% instead of p, we can show that
there is an operator Q% which maps continuously L, to H/, and
satisfies Q2p% =1 on HE,, if |e|<le,/4 and h>h, 4 (a, 1/dy, dy, B), and if
le!B<¢; and aC,,,ZAdZBSc,}1 when d=1—1/¢ or p=1/k, and if BB’
(d)) when p=d, where hy.a,(a, 1/dy, dy, B), c,}l and B’(d,) are positive
constants. Here we have assumed that No>N,,_, +2r +1,+1,, N;>N,,
+2r and N,>N, +2r+1,+2[n/2]+3. Lemma 2.14 and the same
argument as in the first part of the proof show that ®(e7*4) (x, D)
(¢*Y) (x, D) can be written as %(e7*4) (x, D) (¢**) (x, D) =1+ ¢4 (x, D)
+74(x, D) and that (1+¢%(x, D) +7%(x, D)) has the inverse on L2,
if le|<e¢ and hzhdz(a, &). In fact, using an oscillatory integral, we
can estimate a symbol o (exp[e<D>}*]74(x, D) exp [ —e<{D>/]) (x, &).
Let 0<a < min(ddZA‘l/", &/12, £/3), and put u=Qy (x, D) f (e H"_,)
for feH7™7w. By Lemma 2.10, Proposition 2.12 and (3.10), we
have (e*?) (x, D)y, (x, D) f€H™ ™. Similarly, Propositions 2.8 and
2.12 and (3.11) imply that yx,(x, D)Z(¢*4) (x, D) maps continuously
H:, to Hi, , if |e|<e,. Thus we have

2Q 10 f =x" () Qaphe (14 §4+7%) u

=1 D a("p X~ —riet (1 +ga+72) 'u

=% () Qa1 f— 1 (e Qorse* (1 + ¢4 +7%) u€ HY,,
which completes the proof. Q.E.D.

Let (&% &) eT*R"\0 and |£°|=1, and let ¥ be a convex conic
neighborhood of (x% &°. Choose a neighborhood U of x* and a
conic neighborhood I" of &° so that UXI'C¥. Moreover, let ¥, be
a conic neighborhood of («° &% such that €,€UXxI. Choose ¢,
(x) 2% and ¢,(§) € & for a fixed #’<rk so that ¢,(§) is positively
homogeneous of degree 0 for [£|>1, 0< ¢ (x)¢,(6) <1, supp ¢,(x)
g, N{lEl=1}eUXI" and ¢ (x)P(E)=1 on #,N{|€]=1}. Let
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g(§) € €’ be a function such that ¢(&) =0 for |£]|<1 and ¢(§) =1
for |£|>2, and write 6,(§) =6(&/h) for h>1. We set

X(x) == (x))x°+ ¢ () x,
(&) ={h(1 =04(8)) +0,(8) (1 —=¢,(8)) [§1} £+ 04 (£) 9 (6) &,
Bu(x, ) =p (X (0), 5,(8)).

Then it is obvious that f,(x, &) =p(x, &) if (x,8) %, and [£|>2k.

Lemma 3.5. Assume that h>1 and that
3.12) |28°4+-€|=> A+ |£1)/2  for >0 and (x, &) EF.
Then we have (X(x), 5,(8))E ¥, |5,(5) |=h/2 and
(2V3) KEM S 18,(8) | <KEL () > <V,

Lemma 3.6. Assume that (3.12) is satisfied. If a symbol p(x, &)
satis fies

|65 (5, &) |SCA=8 (|a |+ |BDIE™  for (x,8)EF
with [&]>h (21),

then
|Bieh (x, §) | <C(C, 1/4D) A|*"#! (o | + |B)ICEF"!
for h=2h, and (x, &) €T*R", where A,=Coy 4, 4 and Co.4,.4,>0.

Proof. 1Tt is sufficient to verify that
(3.13)  |3gDipB (X (x), Ex(€)) < (2y5)™ICAL+1#1(254) ' +¥!
X Cla | 181+ I7]+ Iy )@= S8 e
for h>2h,, where b=b(1/4,). (3.13) can be proved by induction
on |a|+|B| if 4,=>C,y 4,4 Q.E.D.

Lemma 3.7. Assume that (3.12) is satisfied. If a symbol p(x,§)
satisfies
(3.14) [p(x, &) | =d<E™,
(3.15)  [pB(x, &)/ p(x, &) | <d BIIHIAICgHAI~elel
Jor (x,6) €¥ with |§|=h(=1) and |a|,|B|<N,, then

(3.16) |4 (%, €) 1= (2y5) ™ 1dKEDY
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Sor (x, &) €eT*R"* and h>2h,,

B.17)  1Bith (x, ©) /Ba(x, §) | S By HEKEH e
Sor (x,&) ET*R, |al, |BI<N, and h=h(1/B, ks, No),

where B, =Cs.y 4,8, Co.4,.4,0 and h(1/B,, hy, Ny) >0.

Proof. (3.16) is obvious. We can prove by induction on [a |+ |B]
that

[0¢DEp (X (%), E,(6))/Pa(x, &) |
SdlB{aHlﬁl (2\53) Irl+wl<§>i(iﬂl+w!)—p(lal-HTI)

if A>h(1/By, hy, Ny), la|+ |y|<N,and |B]+ |v| <N, using p<<l and
0>0. This proves (3.17). Q.E. D.

Proposition 3.8. Let (x°,8° €T*R"\0, and let % be a conic
neighborhood of (x°, &%). Assume that 0<0<1—1/k, 1/6<p<l and
0<p, and that p(x, &) €ST satisfies (3.14) and (3.15) for (x, &) EF
with |§]>hy(=1) and ||, || < Ny, and p(x, D) is properly supported,
where N, is a sufficiently large positive integer, m, m'ER and h,, d;, d,
and B are positive constants. Moreover assume that 6<1—1/k and p>1/x

if *=(x). Then there is an operator Q, which maps continuously D*' to
D*, such that

)Y EWF,(pQ f— YUWELQpf—Ff) for fEDY,
(O, EEWFL(Qf) if (&) EWFy(f) and fED*.

Remark. (i) Taniguchi [25] essentially proved the proposition by
his method of multi-products of pseudo-differential operators, and
constructed Q as a pseudo-differential operator. (ii) The proposition
implies that p(x, D) has a microlocal parametrix at (x° &°) modulo
€* and, therefore, p(x, D) is hypoelliptic at (x% &%) (in %) with
respect to &* (iii)) When p=1 or =0, the proposition is valid,
modifying e and 4.

Proof. We may assume that for any A>0 there is C=C,>0
(resp. there are 4>0 and C>0) such that

68 (x, ) | SCA# (Jae| + |BICE""1 for (x, &) €T*R"
if x=(x) (resp. if *={x}), and that [&°|=1 and (3.12) is satisfied.
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By Lemmas 3.5-3.7, Proposition 3.4 can be applicable and there is
an operator 0., which maps continuously L2, to H?, and H7;™ to
Hp, and satisfies 0,5,=1I on Hr, and $,0,=I on H™;™ if ¢ and h
satisfy the following conditions ;

(3.18) |5|<515‘§U><1".q1A_1/E and hzkﬁ.B,er,gl(l/do, dy, ), and

|e|B£cd1,pr.(gl when 0=1—1/k or p=1/k.

Fix h>0 so that & satisfies (3.18). If *=(x), then A can tend to
zero. So, for any e€R we can define

Qf:Qh‘f— Qh(ﬁh_ﬁh')Qh‘f Sfor fEHT™,
where A" (=h) is sufficiently large according to |e|, when *= (k).
In fact, ZahQ,f:f and Qﬁhf:f“‘ (Qh - Qh) Br—0Dw) f — Qh (Bw— D) Q,h'
Gw—20w)f=f for feHr™, since p,(x, &) = p; (x,&) for |E| =2h".
This implies that Q does not depend on A’. When *= {}, we define
0=0,. Then we have
(319 0f~0uf=0f— Qb0 f=0x B —5) AfEHE,
if feHr:™, 0<e,<le; and |e|<ley, and if A" (=4) is sufficiently large
according to g (or A7') when *=(x), and if ¢ and A’ (=h) satisfy
(3.18) when *={r}, modifying éyxr¢. Let ¢(x) E2® and x(x &)
€ &®(T*R") be functions such that ¢(x) =1 in a neighborhood of
U, x(x,&) is positively homogeneous of degree 0 in & for [£]>1,
0<yx(x, &) <1, supp x(x, &) N{l§I=1}€¥, and x(x, &) =1 if (x,§)
belongs to a conic neighborhood of (x° &% and |£§|>1. We write
YE¥Z, for (&% if yx(x,é) has the above properties. Let y(x,§)
€ & W (T*R") satisfy y€yx for (x° &9, ie, 1€ {(x,28); x(x &) =1,
|6]>1 and 2>>0} for (x° £%. We set Qf=0yx(x, D)o(x) f. Then it
follows from (3.19) that Q maps continuously 2* to 2* and &*
to &* In fact, if x=(x), then A can tend to zero and ¢ can tend
to +oo. So, for any &>0 @, maps continuously L2, to H7. if
*=(£), |e|<le; and A’ is sufficiently large. We have also

0nebQ f—unef=ne(xe—1) f+une(p—»p)Q fEE*

for fe2*. Taking h’ sufficiently large according to %, and yx, it
follows from Proposition 3.4 (pseudo-locality of § ,) and (3.19) that

Qb f —nf= XlQh’ (Xgop_i’h)f-l_XI(Q—Qh’) (X?P—ﬁh)fELﬁ.sl
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if fel?, and |e|<lg, and if |e| is sufficiently small according to B,
d, % and y when 6=1—1/k or p=1/k, modifying éyxr¢. This
implies that y,Qpf—xpnfE &* for fED¥, since 6<1—1/k and p>1/k
when *=(x). Assume that fe2* and (x% &) EWF,(f). We may
assume that fe &*. Then there is x(x, §) € & ®(T*R") such that
€y for (x% 6% and yx,(x,D) fe &*. In fact, by definition there
is 3(x,6) € &®(T*R*) such that €y for («° &% and %5(x, D) f e
&* If peg for (x% 8, Lemma 2.15 implies that y,(x, D) %%
(x, D) f— 1,(x, D) f€ &*. Let y3(x,8) € &® (T*R") satisfy y;&Ey, for
(x% £%. Taking A’ sufficiently large according to y, and yx;, Lemma
2.15 and Proposition 3.4 give

(%, D)0, x (%, DY () (1 — 1, (x, D)) fELE ¢ vy,

where ¢, (A") >0 and ¢ (h’) - © as A" — co when *= (k). In fact,
we can write

2101 =2) f=bip(1 =) f+b0(1 —x2) f,

by(x, &) =x(x, &) (1 —xu(x, €)), by (x, &) =2(x, &) xu (%, €),
where y,(x, §) € & ® (T*R") satisfies €y Cyx, for (x° &). On the
other hand, we have y;(x, D)Q x,(x, D) f € &*. Therefore, by (3.19)
we have x,(x, D)Q fe &*. Corollary 2 of Lemma 2.15 implies that
(% EY EWFL(QS). Q.E.D.

§4. The Microlocal Cauchy Problem

Modifying p(x, D) and wusing pseudo-differential operators of
infinite order, we shall reduce the problem in Gevrey classes to the
problem in the Sobolev spaces and construct the inverses of the
reduced operators in this section. Then we can construct microlocal
parametrices of the microlocal Cauchy problem in Gevrey classes and
prove microlocal well-posedness (see Theorem 4. 11 below). Theorem
1.4 easily follows from Theorem 4.11 (see §5). In this section we
assume that p(x, £) satisfies the conditions (A-1) and (A-2) with &
replaced by & (>1). Let 2*=(" &) eT*R"\0, |&] =1 and Je
To(T*R"), and assume that p, (x, £) is microhyperbolic with respect
to 9 at 2"

Lemma 4.1. ([30], [33]). Let MEI (p,0,9). Then there is a
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neighborhood % of z° in T*R*\O such that pn. is microhyperbolic with
respect to JeM at zeu, and MCT (p,.,9) for zE%.

Define for v&T,o(T*R")
pm <x9 3 50y t) = Z;":o(“itv)jﬁm (x, 5) /J"
where [=p(2%) and v is regarded as a vector field. By definition

there are a neighborhood # of Z° in T*R"\0 and positive constants
¢ and ¢, such that

“4.1 [ pm(x, 59, 8) | =ct! for (x,8)EU and 0<t<4,.

Lemma 4.2, Let M be a compact subset of I’ (pn0,9). Modifying
U, ¢ and t,, we have
4.2) | pn(x, E50,8) | =0t
(4.3) |0Ipia (x, &5 0,8) /pu(x, E50,8) |<C (a, B)t~'a!-1AI7i
if (8 eU, vEM and 0<t<ty.

Remark. Without applying the Malgrange preparation theorem,
we can also prove the lemma if only p,(x, §) €C'**(T*R") and 0<6
(<D.

Proof. Let y(x, &) €Cg (T*R") satisfy supp yC {|x|+ [§]<2h} and
x(x, &) =1 for |x|+ |§|<h, where £>>0, and define an almost analytic
extension of p,(x, &) by

bn(x+iy, §+in) =3, 5 (alf) 7 (i) * (—2) P bty (x, €)

XA Bia1+18195 biai+1am) for (x,6) €U and (y,n) ER"XR",
where b,=1 and {} CR is a rapidly increasing sequence. Then
we have
.9 |08 D% {pn (%, £) —it0) — pu(x, § 50, 1)} | <cp|t |17
if teR, [t1<t, (x,6)e%, j<Il and |a|+ |f|<Il. From Lemma 2.6
in [33] it follows that

| pm((x, &) —it0) | =cit!  for (x,6) €U, vEM and 0<t<4,,
modifying % and ¢, if necessary, which proves (4.2). Applying the
Malgrange preparation theorem, there are a neighborhood %, of 2°
0>0, e(z,0,t) €EC (U, XM x[—96,6]) and a,;(z,0v) €EC (U, X M) (1<j
<lI) such that q;(2%v) =0 for veEM and 1<j<I, p,(z+1tv) =e(z, v, t)
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X g(z,v,t) and e(z,v,t) #0 for (z,v,t) EF, X M X[—0,d], and g(z,,1)
=t'4a,(z, 0) " oo +a,(2,0) #0 for (z,0,t) EX, X M XxC and Im
t<0. In fact, by Mather’s proof of the Malgrange preparation
theorem we can obtain the above assertion without dividing M (see
[30]). Applying Theorem 2 in [32] to g(z,v,t), we have
|0ig® (x, §50,8) /8(x, §50,8) |SC’ (@, B) [Im ¢ [~1eI7181~

if x,8)eu,, veM, teC and —1<Im t<0. On the other hand,
(4.4) yields

Iai {pm(xs E 50y t) —e(x, 87 0, _1t)g(x9 Ea 0, —1't))gg; |SC(,) ‘t IHI_j
for teR, |t|<t,, (x,6) €%, j<Il and |a|+ |8]| <!, modifying # if
necessary, where e(x, §,v,t+ir) is an almost analytic extension of
e(x,&0,t) in £. This proves (4.3) for j<!I and |a|+ |B|<L It is
obvious that (4.3) is valid for j+ |a |+ |B|>1. Q.E.D.

Corollary. Let M be a compact subset of I' (p,.0,9). Then there are
a conic neighborhood € of 2° and positive constants ¢ and t, such thai

| (x, &5 0(8), £1E1) | Zet! €17,
[y (%, €) / pm (2, §50(8), £ 1€ ) | SC(a, pe =718 £ |71

if (x,8)E€,vEM and 0<t<t,, where v(§) = (v,/ 11, ve) for v="0,, )
ER"XR*.

Proof. 1t is easy to see that
Doty (6, €/ 16 1) = Zhao (—8) 01 piin (x, §/ 16| 50,8 /1.
On the other hand,
bn(x, §/ 1615 0,8) =pu(x, §50(8), £1E1) 1€

Therefore, we have

| D5ty (%, £) / b (%, E50(6), L 1€])

<10 U 10ipath (x, E/ 16150, 0) pu(x, €/ 1€ 152, 8) /5!

SC,(a, ‘B)t—lal—|ﬂ| lg |—Ial
if (x,&/16) €%, veM and 0<¢<t,. This completes the proof.

Q.E.D.

Now assume that 1<#<k=min {2, 2(z%)/ (¢ — D} if *= (&)
and 1<<«e<lk, if *={s}. Let ¢(x, &) eC*(T*R"\0) be a real-valued
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positively homogeneous function of degree 0 in & such that ¢(z%) =0
and —H, ()= — 31, {(3p/38,) (&%) (3/0x,) — (3p/dx,) (2°) (3/3€)} &
I'(pn0,9). Choose a compact subset M of I'(p,.0,9) so that &M
and —H,(x")€M. Then there is a neighborhood % of 2° such that
MeTl (p,.,9) for ze%. For given feD* with WF,(f) N {e(x, &)
<0} N% = &, we shall consider the microlocal Cauchy problem at 2°

{P(x, D)u= f,

(MCP)
WEw) N {elx, <0 N% =4,

where ue 2%,

Lemma 4.3. Let M, be a compact convex subset of I (p,:0,9) such
that MEM\ET (p,:,9) for 2EU. Then there are symbols 4,(x, &)
(h=1), a convex conic neighborhood € of Z°, and positive constants e, C,,
Ay, ¢ and c, such that

(4.5) |4, (x, &) | <<KEX* for (x,8) ET*R",

(4.6) | 4,49 (x, &) | < Cod) 181 (|a | + | B]) IKEDYE—1al
Jor (x, &) ET*Rr,

(4- 7) IA;, (xo, ZEO) I £01h421/"_4 fOT Zzh,

(4.8) 4,(x%, ) < — (@ (x, &) + [x =212+ £/ |E] =& [P KEDVF +chM"
for (x,6) €% and |E|=H,

4.9) KEXFVERr 1 {1€1(04,/3€)) (x, &) (9/0x;)
— (04,/0x;) (x,&) (8/0¢,)} + 211 {»,(9/0x;) +7,;(0/05)} eM,
Jor (x,6) €%, |E|=h and |y|*+ |I7*°<d.

Proof. Put

o1 (%, &) = (x—x°) V0 (2) + &V (2"
+B,(|x—=x°|?+ |§-£1),
(4.10) 22 (%, &) =1 (x, &) (1 + ¢, (x, )% 74,

and choose B, R so that ¢(x, &) <@ (x,8) —2(|x—x"|*4+ [§ —£°19)
for [x—x°24 |£—£°12<1 and [£]=1. If we set 4,(x,&) = —¢,(x, &/
{EDar) <EXY* and 0 (0<<O<L1) is chosen appropriately, we can show
that 4,(x, &) satisfies (4.5)-(4.9). It is obvious that 4, (x,$)
satisfies (4.5). Noting that ¢,(x,7) is a polynomial of (x, %), there
are L>0 and (13>) ¢>0 such that Re ¢;(x,7)?2>0 if (x,7) €C"X
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C*. |Re x—x°|>L, |Im x|<c¢|Re x—x°| and |7|<3. Then Cauchy’s
estimates yield
@i (x, 7) | SCpdg™ 1 (la |+ |B)!

for (x,7) €T*R" with 1/2<|y|<2. From Lemma 2.2 (4.6) easily
follows, where A, depends on 6. (4.7) is trivial. It is easy to see
that

@, (x, §/<Ean) —@ (%, §)

201(x, §/161) —o(x, &) — o1 (x, §/1€1) —@1(x, §/<EDam) |
— 1 (x, §/<Ea) =2 (%, €/<Eam) |,

oy (x, €/ 1€1) — 1 (x, £/<EDan) | <H? Ve (2%) I<KEDai 1€177/2
+28 | B, [<EDan [E17 for §0,

and that there are §,>>0 and 6,>0 such that 6,<1 and

o1 (%, §/<ED0n) — @2 (%, §/<E0a) | < |1 (x, €/<EDus) 1°/2
Sx—a P4 1€/ 18| =& P+ 6:h*ED:*

if 0<<0<80,, |x—=x°|>+16/16| —£€°|2<d, and |E|=>h, where ¢;>0. Here
we have used the inequality that [§/<)sp—&/ |E|]| < PR EDa € [71/2.
This proves (4.8), taking 6<6,. A simple calculation gives

o5 (%, 6) =0ith (x, &) U+, (x, )2 for |a|+ [B]=],

oith (x, &) =0 () +2B, (18| (x—x°)#/i+ |a | (§—E)*)

Jor Ja|+18]=1,
A7 (%, €) = = Thaps® (5, 6/<ED08) (BuCEDar —E6:CEDa OV
— @5 (%, §/<EDan) EXEDV 2/ K,
Ah(e,) (x, &) = — P2 (%, §/<EDa) <EDVF,

where ¢,= (0, +++,1,++,00& (NU {0})". Moreover, with C,>0, we
have

@1 (x, §/<EDen) | S Cp(|x—x° 2+ [£/EDar—E° |V
Jor |x—x"1P+ [§/{EDa— & I?<],
| S1a0r® (x, E/<E0a) EXEN | < (7022 [ +21B, 1)
X [€/<EDer—E°1,
since §°-V0(2’) =0. Therefore, we have

KOO 16147 (x, )+ () |+ KDy 5 (5, €) +00, 20 |
SCoUx =2+ 8/ 1€ =& [H 2+ °h<EN;,
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if 0<1/2, |x—x02+ |6/|6]|—&P<1/2 and ||>h Taking % and
6 sufficiently small, 4,(x, &) satisfies (4.9). Q.E.D.

Lemma 4.4. Modifying a conic neighborhood € of 2° there are
symbols Wy (x, &) (h=1) and positive constants Cy and Ay such that

Wi (x, §) <2{EHYF,
[ With (x, &) | < Codg 1 (Ja | + |BDKEX ",
EVIEPIP W, (x, &) 124 7 Wy (x, §) 17} <é¢
for (x,6) € with |§|>h,
elEW /24 | 4 (x, &) |[<W, (%, 8) +cih  for |§|=h,

where €, (<2) and ¢, are the constants in Lemma 4. 3.

Proof. There is a conic neighborhood % of z° such that ¢cé
and

|4, (x, &) | <eXEDVF/8+ ek for (x,€) EF with |E|>h,
modifying ¥. Choose w(x, §) C?*(T*R") so that the first and second
order derivatives of w are bounded, and 3¢/4<w(x, §) <2, w(x, §)
=3¢,/4 for (x,6) €% with |£]>1/2 and w(x, &) =2 for (x,&) &%
with |£|>1/2. Put w;(x, &) =Exw(x, §) and W, (x, &) =w;(x, §/{E>s)
x<E/*, where E;(x,§) =j"(4m)"exp[—j (|x|*+ |£1) /4], If j is
sufficiently large, then W, (x, &) satisfies the conditions in the lemma.

Q.E.D.

We may assume that for any 4>0 there is C=C,>0 (resp. there
are A>0 and C>0) such that
16 (x, §) |SCA™ P (Ja |+ |B])1EI"!
if *=(x) (resp. if x={x}). From (4.1) it follows that
(4.11) Re{ @/ leo]) pm(x, €59, )} = | [8/2

for (x,8)e % and ¢,/3<i<t,, where ¢y = p0(—19) (=pn(x°E;9,1)
Xt7"), modifying % if necessary. Let ¥ and % ,(j=1,2) be conic
neighborhoods of z° such that ¢ N {|¢|=1} €%, ¥,€%¥,€ ¥ and
Lemmas 4. 3 and 4. 4 hold for ¥. Let x;(x, &) €& ®(T*R"\0) (j=1,2)
be positively homogeneous functions of degree 0 such that 0<y;(x, §)
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<L, x,&x& =1 on %, supp nC %, and supp % C ¥, and let
g(§)e &® be a function such that 0<a (&) <1, (&) =1 for [£]|>1
and ¢(§)=0 for [£|<1/2. We set for h>1

Pun(%,8) =0, (&) 12 (x, &) pn(x, §39(8), to{(1 —0,(E))A
+ A =xx,8) [£1}/3) +eo(te/3)" 1€ |0, (8) (1 — 12 (x, £)) /2
+eo(te/3) A (1 —0,(8)),
Pr(x, 8) =P pi(x, 8) +0,(8) (p(x, &) — pnl(x, £)),
where ¢, (§) =a(&/h), 9=0,,9) and 9(&) =@,/ |£|,9%). Note that
Pmn(x,8) =pn(x, 6) and p,(x, &) =p(x, &) for (x,8) €¥, with |§|=2h,
and that p,(x, &) =p, (x, &) if A’>h and |E|>2h".

Lemma 4.5. There are positive constants C'= C;CI-XZ»U-A(C) and d,
and hy>1 such that
(4.12) 1§ (x, &) [<C7(224) =11 (e | + [B)CEDR 1,
(4.13)  [pu(x, &) | =dLKEDF  if (x,6)&EF, or |E|<h and if h=h,.

Proof. Since (&)<, <{5¢E) for h>1 and |E|>h/2, (4.12)
easily follows. If |§|<h/2, then B, ,(x, &) =c,(t,/3)'A". If h/2<
|€] <h, then ¢,/3<t,{h/|E|+ (1 —nx (x,£))}/3<t,. Therefore, (4.11)
gives

Re {(@Go/ o) P (%, )} = o | (/3 H{ B+ (A =3 (x,€)) [E])
X &[0, (8) %o (%, €) /24 [€ 70, (§) (1 — (%, §)) /2
FRr (L =0, (8N} =5 o) | (t/BKER/2  if B/2< |E|<h,

where m, =max(m,0). Since t,/3<t,{(1—a,, ())/|E|+1}/3 <, for
|&|>h, it follows from (4.11) that

Re {Go/leo]) fmn(x, €)F = leo | (20/3)"
XA = ENA+1EN E " e (x, &) + 1E1" (1 —12(x, £))} /2
227" o | (6/3)KEF  if 1€12h and (x,6) € €;.
So there is d,>0 such that
[Bmn (%, 8) | 22d<KEDT  if (%, E) &G, or [E]Zh.
This proves (4.13). Q.E.D.

Applying Proposition 2.13, we can write
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exp[ad,](x, D)p, (x, D) "exp[ —a;](x, D) =p3* (x, D) +r5* (x, D)

if 0<a<d 4™ and —1<b<1, where 4L (x,&) =4, (x, &) +bW, (x, 5),
¢,>0, >0 and

| Bris® (x, &) | <C4(C) (22 = A) 1 =+1B (| | 4 |B]IF
X (Eyp- AU d+D-lal
w0 (%, &) =p5" (%, 6) — X s (@lf) !
X {ﬁh(ﬂ) (xa E)w'g(d/li 3 Xy E)wa(_aAz 5 Xy 6)} (a)’
75> (x, &) |<Cy(lal, C) (2274 4) ¥ | B |lFexp [ 647D ].

Lemma 4.6. For a fixed N, there are positive constants a,, h,(a),
C,(C), Cs, ¢ and ¢, such that p%°(x,&) satisfies the condition (H ;
C, (), A, cd', Cy, a™t, Ny) with m'=m— (1—=1/k)l, 6=1—1/x and
o=1/k defined in §3 if 0<<a<d,A™Y*, —1<b<1 and h=>h,(a), and if
a>a, when k=rx,. Here a,, hy(a) and C, do not depend on the choice of
A when *1= (k).

Proof. When (x,8) &%, or |§|<h, by Lemma 4.5 we can apply
Lemma 3.1 with d=(1—1/%)/2 and p=0+1/k. So it is sufficient to
estimate p3'(x, &) for (x,&) =%, with |[§|=>h Let (x, & €%, and
|€|>h. Then we have

W (%, &) =pul (x, &) +531 (%, &) +55:5(x, 6),
P (%, &) =pu(x, £59(8), di(x, 8)),
where
15 (%, &) = L rim< (@1B) TP (%, §)
X (il Ay (x, £)) = (aV A3 (%, €))%,

553(%, 8) =X arip< (@) ?
X Bmnee (%, E) @ (ady 5 %, &) 0, (—ady 5 x, £)} @
—pr5(x,6),
555 (%, €)= fi° (%, ) + Ziarip< (@) 7 {(pea (%, €)
— Py (%, 6)) @ (all} 5 %,8) 0, (—ady 5 x, £)} 2,

di (%, 8) =t {(1 =05 (E)) R+ (1 —x.(x,8)) |1} /3.
Put

Drs (6, ) =p(x—X(x,8), §—5(x,8) ;0,(x,8), v(x,8), d(x, ),
X(x, &) =a{4i(x, ), di(x,8)/£1}9,,



MICROHYPERBOLIC OPERATORS 209

E(xa E) =a {AZ(x, E)’ dl (x’ S)}gés
v, (x, 8) =d(x, §) 7 {d\(x, 6)9,/ |€| +aV A (x, 6)},
v (x, §) =d(x, &) " {d, (x, E)—alV A (x, )},
d(x, E) :'dl (x9 E) +a<§>}/’ca
where {f, g} =27.,{(3f/0¢,) (3g/0x;) — (3f/0x,) (9g/9¢€,)}. Note that
there is 4(a)>0 such that (x—X(x, &), §—5(,8))€% if h=h(a)
and —1<6<1, ((x,8)E%, and |€|>h). From Lemmas 4.3 and
4.4 it follows that (|€]v,(x, &), v:(x, §)) €M,. Therefore, by Corollary
of Lemma 4.2 we have
(4.14) B35 (x, &) | =cd (x, &) &,
lpr(n‘z;)?) (x_'X(xy E), S_E(xs E))/ﬁfnbh(x’ 6) l
SC(OZ, ‘B)d(x, E)—Ial—lﬁl |{:|lﬁ|
if h>h(a), modifying A(a). A simple calculation gives
| Doty (%, §) /B3l (x, 8) | < Cd (%, §) ~1=171AKEM !
SC'”a_'“'—'B|<E>§}—1/”)’ﬁ’_l‘z'/" lf hth(a) and Ia ] + L@ | Sl,
where 4,(a)>0. It is easy to see that
(4.15) X iar+1a1< (@B T {p (x, €) (di(x, 6)9,/161)° )
X (—id, (x, £)9,)°} § (ial A, (x, €) )2 (aV o 43 (%, €))F
= 2100410 s1-n (@UB) T p853 00, (5, €)
X (iaV A (x, £)) (aV o2 (x, £)) ¥ (—id, (x, £)9:—E (x, £))°
X (dl (x, E)'gx/ “E ‘ _iX(x5 E))ﬂ+213
2= (Zla0i+---+)aNi4—]/301+---+I/SNISI
— T sty a1 <1 asien) (@) TP (x, €)
X (iaV A (x, £))" (all A2 (x, £))PTLIZ, (1Y) 1,5 (, )
X (ial A5 (x, €))% (aV i (%, £)) TIV g1y (@1B))
X (dy(x, &) /16 1) 7 Gl A (x, £)) % (al oA (x, €))% (—i9) 9,
where N=|a|+ |8|=Il. Then we have
|5/B54 (5, ©) |
SCP(Z!aol+(ﬁ°lsl-—N.1$la1!+---*IﬂNISN+1ala0'+m+l

—N—1a%—18° —al|+eeet18V] -
Xd(x, E) N-la”|-18 fdl(x’ S)N (lat |+ +]87 -1

O teeetiall O} 4eeet 18N /e~
X<E>§.]a [+eeetla D/E+UB o0 +187 D/E-1

8N

104418V
+ 20100 418 <t e e 418V > N 418

0 0 0 0 N
X d (x, &) “N-1"1-181 gy lp+ 180+ et iaN /s
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—(1=1/8) 1B oo 418N —lalj=eeemaV!
X<E>h A-1/R)UB | +==++IB" DN+lal—la"| la

0 N
Foeeet
+ 2N <1 1180 <1 10l ek 18 <i-18 18

Xd(x, &) ~'d, (%1, E)N—(lall+-..~,~|ﬁN()

X<$>L—N—(l—1/ﬂ)(laol+lﬂol)+(Ia1|+---+IﬁN|)/ﬁ}
<aCKXEN 1 if h=hy(a),
modifying %,(a). Therefore, we have
155 (%, ©) = 10 11024181 4171 <2 (@M B )
X paiiE8 (x, ) (=5 (x, )= (—iX (x, ) (—id (x, £)v (x, §)
X (d (%, £)v, (x, )+ Z,= P25 (x, &) + T, + 35,
where |[2,/p%% (x, &) | <aCyEXY*! if h>h,(a) and
2= iarim< (@) Hpn (x— X (x,6), §—E5(x, )
— Ziar+igisi-ial-ia (@) TPty (x, §) (—E(x, §))°
X (—iX (x, €))%} (—id(x, &) v (x, £))* (d(x, §)v,(x, £))".
It follows from (4.14) that |2,/5%%(x, &) |<aCy <&V if h>hy(a).
So we have
|5 (x, &) — Bl (x, 6) |/ 1§35 (%, €) 1<1/6
if h>h,(a). The same argument as in (4.15) yields
|Brnier (%, €) /Dl (x, §) | S Cpa oI 1B EH[mIBImalle
if h>h,(a) and |a|+ |B|<I. This implies that
[s:3Cx, 6) /Bl (x, 6) IS1/6 if h>hy(a),
since
oo (—ady; x, ) — (iaV 4, (x, £))°} H |<C(a, a, B, a)
X <§>La|/n—1/l€—|d|,
| {* (ay ; %, &) — (VA (x, €))} B 1< C (B, &, B, a)
X (€S a1 IBI-Ve-1al
e (adi ; x, O @, (—ady; %, )} B |<C (e, B, &, B, 0)
X (Elal/e-a-vmi8I-1al
It is obvious that
5.5 Cx, &) /P55 (x, 8) |1<1/6  if h>hy(a) and £<c,.

When t=«,, we have also

szt (x, €) /P%h(x, 8) |[<1/6  if h>h,(a) and a>a,,
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where a,>0. Thus we have
185 (3, ©) |2 1320 (5, €) 1/22 /a0
if A>h,(a), and if a>a, when k=k,, where ¢’>>0. Similarly, we have

B (5, © /B3 (€ | <2UBIY 5, ) /55, )|
<C,(a, B)a~lI-1BILEYA-VRIEI=lal/E

if A>h,(a), and if a>a, when £=&k,. Here we have modified A,(a),
if necessary. This proves the lemma. Q.E.D.

From Proposition 3.4 (or its proof) and Lemma 4.6 it follows
that p2%(x, D) +7r2%(x, D) has the inverse Q%% 1ie, Q%® maps
continuously L? to H™ @V®I(CH™) and H%Y®! to H™ and satisfies
)3 (33" (x, D) +ri*(x, D)) =1 on H™ and (B3’ (x, D) + 15 (x, D)) Q5"
=1 on H*V®! if q b and h satisfy the following conditions;

(4.16) 0<a<dg A7V, —1<b<1 and h=>h,,, and a>a; when £=x,,
where h,, and a; are positive constants. By Lemma 2.14 and
Proposition 3. 4, for any ¢>0 there is h,()>>0 such that 1+¢%°(x, D)
=Rexp [—al] (x, D) expl[at](x, D) has the inverse (I +¢2®(x, D))
which maps continuously L%, to L2, if |¢'|<s, h=>h,(e), a=0 and
—1<b<L1. Let us introduce the following spaces.

Definition 4.7. Let A(x, &) satisfy (2.13). For s&€R we define
9=1{f; (") (x, D) fEH}, and write Ly}=H%, H;,=Hip and LI,
=H2'b.

Lemma 4.8. (i) f€H*if and only if ®(e™*) (x, D) fEH%. (i) If
feH;s, and k(x, &) satisfies

&3 (x, &) | <CL AP (Ja |+ [BDICET",
then k(x, D) fEH;™ for |a|<c,ATY*, where ¢,>0.

Proof. By Lemma 2.14 we can write

R(g=") (x, D) (") (x, D) =1+¢; (x, D) +r (x, D),
" (x, D)Xe**) (x, D) =1+¢g3 (x, D) + 74 (x, D),
where #’>1 and

105 (6, €) | < Coaad ™ ¥ (e | + [B)ECEN=11 for any d>>0,
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g (%, ) =0 for |[§|<H,

re (x, D) : L2, — L%,  for any ¢, ¢'ER,
and §j (x, §) and 74 (x, §) have the same properties as ¢j (x, &) and
i (x, &), respectively. From Proposition 3.4 it follows that 1-¢%
(x,D) and 1+ §; (x,D) have the inverses (1 +g¢§ (x,D))™! and
(1443 (x, D)), respectively, which map continuously LZ, to LZ,
and Hi. to H:. if A’ is large enough and |¢|<A7Y. Then the
assertion (i) is obvious. Using (2.29), we have

(e*Y) (x, D)k (x, D) f =e**k[®(e™*4) (1 + g5 ) ~te*4

— (L +gi) R e 75 —riRe™* D} (L +g5) e

—(+g) ' lf
if feHS, and |a|<c,A7Y*, where ¢,>0. Here we have chosen A’
sufficiently large according to 4,. Modifying ¢, if necessary, Proposi-
tions 2.12 and 2.13 imply that (¢*4) (x, D)k (x, D)®(e**) (x, D) maps
continuously H® to H*™™ for |a|<c¢,A7Y. This proves the assertion

(i). Q.E.D.

Lemma 4.9, Let A(x, &) and A'(x, &) satisfy (2.13), where h>1,
and assume that a symbol q(x, &) satisfies

[g(8 (x, &) | < Cud' ¥ |a [IF| B 15CEYT1! for any d>0.
If inf‘L>O SUP (x, &yesupp q(x,8), I€IZL(A(x5 6) A (xa 5))<E>}:1/’:<€a then Q(x, D)
(e*) (x, D) ®(e=*) (x, D)f and (e*) (x, D)q(x, D) ®(e~*) (x, D)f belong to
L .. for feLi,.

Proof. By Proposition 2.8 we can write ¢(x, D) (¢?)(x,D)=
¢(x, D) +7(x, D), where ¢(x, §) = XoX a=s!0F ()¢ (x, §) X
(e"*®) o and 7(x,D):L%,— L?, continuously for any a,a’€R. It
follows from Corollary of Lemma 2.9 that

1G6 (x, )| < Cppad 1 |a || B1CE1!
xexp [p&DYF+A(x, 8)] for any d, p>>0,

and that supp §(x, §) Csupp ¢(x,&). Since A(x,&) and A4'(x, &)
satisfy (2.13), there are ¢,>>0 and ¢,>>0 such that inf;,,sup {(4(x, §+
7) — A" (x4, E+7))ETV 5 (x, E+n) Esupp g, 1612L, |7]<e€) and
[y<c}<e. Applying Lemma 2.15 to §(x, &) ®(e™*) (x, D), we have
g(x,D) ®(e=*) (x,D) feL?, . for feL?,, which proves that g¢(x, D)
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X (") (x, D) ®(e™*) (x, D) fL?,_. for feL?,. Similarly, we can prove
(e") (x, D)q(x, D) ®*(e=*) (x, D)fE L2, . for fel?,. Q.E.D

Let us construct parametrices of (MCP). Define Q 3’ by
Q3 f="exp[ —a#](x, D) Q5" exp[ak] (x, D)f.

Then Q4° maps continuously L%, to H73;%"V®! and HI V! to Hf,
and satisfies Q2%,(x, D) =1 on HZ, and p,(x, D)Q4*=I on HJ;'"!
if a, b and £ satisfy (4.16). In fact, by Lemma 2. 14 and Proposition
3.4 we may assume that 1+¢i?(x, D) =explad}](x, D) Rexp[—a}]
(x, D) has the inverse (1+4¢°(x, D))~! which maps H. to Hj. if
Is1<|m|+AQ—-1/6)l, le|<4a, —1<b<1 and h>h,,. We may also
assume that (1+4¢3°(x, D))~! maps continuously LZ. to LZ. if |¢|<4a,
—1<b6<1 and A>h,,. From Corollary of Lemma 2.9 and Proposition
2.12 it follows taht Zexp[—a4}](x, D)geL? _,, for g H*, where s€R,
a>0, —1<b6<1 and h=h;,. So, by (2.29) we have
(4.17) f=Fexp[—as](x, D) (1+43*(x, D)) explati](x, D) f
if feH;,;, s€R, a>0, —1<b<1 and h>h,,. This implies that
v b (x, D) f =*exp[ —a4;]1Q 5 expladi]; "exp[ —al]g

=Fexp[—afi](1+¢;*) "'expladi] f =,

g=+g") "explaf] fEH",
if feH;, and a, b and & satisfy (4.16). Similarly, we can prove
bu(x, D)Qs* f=fif f€eHY! and a, b and h satisfy (4.16). From
Lemma 4.9 and (4.17) it follows that H; ,C H:  _, for seR, 0<a<a’,
—1<b6<1 and h>h,,. Therefore, we have Q&' f=Q%? fif fe HI ;P!

and a, b and & satisfy (4.16). Fix h sufficiently large and define Q,
by
Q.f=Q5 7 f —Q5 7 (Bulx, D) —pw (x, D))Q5 71 f
for feH{ ! where a’ and &’ satisfy (4.16). Then, by the same
arguments as in the proof of Proposition 3.8 Q, does not depend on
the choice of a, a’ and &', and satisfies p,(x, D)Q,f=0 ,.ps(x, D) f=f
if feLZ _, and a’ satisfies (4.16). Moreover we have
Q,hf_Q_;:'_leHZf,—fl—l/ﬁ)l

if feHSY?! and a’ and A’ satisfy (4.16). Here we have modified
d, if necessary. So Q, maps continuously L% , to HZ3;¢ V"' if a’ and
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b satisfy (4.16). To obtain this result we used 4, instead of 4,.
Let x(x, §) € & ® (T*R") satisfy y&€ %, for z°. Here we have used the
notation in the proof of Proposition 3.8. Choose ¢(x) €E2® so that
¢(x)=1 in a neighborhood of {x&R"; (x,&) €%, for some §€R"},
and define Q by Q f=Q,x(x, D)¢(x)f. Let x(x, & & (T*RY)
satisfy ;€ y for z2°. Then we have
%6, D) p(x, D)Q f—x(x, D) f=p(xp—1) f+0(p— 6)Q fELL g,
if feH} YD and a’ satisfies (4.16), where ¢ =§A47 and §>0.
Define 4;(x, &), replacing ¢,(x, &) by ¢ (x, §) —2(|x—=°|>+ |6 —£€°]%) /3
in the construction of 4,(x, &) in the proof of Lemma 4.3. Then we
may assume that 4;(x, £) satisfies
4, (x, &) <A(x, &) — (|x—x" |2+ |/ 16| =€ |P) <EXV*/2+Cy(h)
< —(p(x, 8) + [x—x |2+ [§/ 6| =€ DD +Cy(h)
for (x,6)=¥ and |£|=>1. Let us prove that Q is a left microlocal
parametrix of p on H',,"(A;'J,,,,,,h). Let fEH;"(A;lH,.,,b), and let 5(x, &) €
& ®(T*R") be a positively homogeneous function of degree 0 in §
for |§]=1 such that 0<g(x,&)<I1, supp xNsupp (1—x) N {|§|=1}
€ {(x, ) ET*R"; 7(x, &) =1} and supp (%, &) is included in a small
conic neighborhood of supp yNsupp (1—x) N {|§|=1}. Assume that
a and h satisfy (4.16). Then it follows from Proposition 2.8, Corol-
lary 3 of Lemma 2.15 and its proof that

(1—7(x, D))explady](x, D) [p, 291 f € L*
if b, b’e[—1, 1], modifying d¢,. On the other hand, Lemma 4.9 and
(4.17) yield
7 (x, D)exp[ady](x, D) [p, 2¢1f = gexplady 1¥exp[ —a(4,+bW))]
X (1+g*) "expla(4+bW,) 10, 291 f €L

if &' —b<2by=inf, gesupp 1 (|2 —2°12+ |E/1E| — €°]2) /4, where 1+ §*?
(x, D) = expla(4;+bW},)] (x, D)Rexp[—a(4,+bW,)] (x, D). We may
assume that 5,<2. So we have [p, ;(gb]fEL,z,,,,J,,,0 if —1<b6<1—b,.
This gives Q,[p, xgb]fEH;”,;o‘};V"” if 16|<b,/2. Modifying y,, we can
assume that

infr50 SUPG.oesuppey. 1612 |4 (%, §) [<ED7VF<e,hy/8.
Then, by Lemma 4.9 and (4.17) we have
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1AL, Xﬁb]fEL:Zc.aslbo/a if 1b]<by/2.
This implies that

0, D)Q p(x, D) f — (%, D) f=—nQilp, x¢1f +0u(xg—D f
+ 10, (p— ﬁh) xgbelet.afo

if 161<by,/2, where ,>0. Now assume that f€2* and WF,(f) N

% C {p(x, €) >0}, For a fixed b with —b,/2<b<C0 there is a;,>0 such
that

(4.18) %, DY (x) f EHETV' N HE gy

if a>a; when *=(x) and if 0<a<a;, when *={s}. In fact, let
X:(x, §) € € ® (T*R") be a positively homogeneous function of degree
0 in & for |£]>1 such that 0<y,(x, &) <1, 3 (x,&) =1 if |£]|>1 and
B supjon (4 (x, 28) + bW, (x, 2€) /4) (R|E])"¥¢<0, and x,(x, £) =0 if
|[§1>1 and lim inf,, . (4;(x, 2&) +bW,(x, 2£) /2) (2]&]) "*>0. Since

lim inf,, .4 (x, 26) Q€))7
<lim infy... (4 (x, 28) +6W; (x, 26)) (A|&]) 7" <bey/4<0

for (x,§) Esupp x,N¥ with |[§|>1, applying Lemma 4.9 and the
Paley-Wiener theorem for &*’ (see, e.g., [18]), there is a;>0 such
that ,(x, D) x(x, D) ¢ (x) fEHZY' N H 4l 40w, if a>a; when *= (k)
and if a>0 when *={x}. On the other hand, we have (1—
%2, D)) x(x, D) ¢(x) fE€ X, since {x,(x,€)#1 and [§|=1}NFE{p
(x,£)<<0}. This proves (4.18), taking a;(>>0) small enough when
x={r}. Noting that 4 can tend to zero when *= (¥) and, therefore,
a can tend to oo, we have ypQ f—nfeé&* and QO pf—unfeé*
In particular, if fE2* and WF,(f) N ¥ = @, then there is a;,>0
such that y(x, D)¢(x) feL?, for any a>0 when *=(x) and for
0<a<a; when *={x}. This implies that Q fe&* if f€2*" and
WFE.(f)N€=0. Therefore, we have just proved the following
microlocal version of Holmgren’s uniqueness theorem, which is neces-
sary to prove that there is a conic neighborhood %; of 2’ such that
WFy(Q f)N%:C {p(z) =0} for fED* with WF,(f)C {p(z) >0}.

Proposition 4,10. Assume that p(x, &) satisfies the condition (A—1)
and (A-2) with &, replaced by £ (C1). Let 22 T*R"\0, and assume
that ¢(z) €C?(T*R"\0) is real-valued positively homogeneous of degree 0
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in & and ¢(2°) =0 and that p,(2) is microhyperbolic with respect to
—H,(2") at 2. Then 2&EWFy () if uc2*, "¢ WFy (pu) and
WF,w)N¥ N {p) <0} =0 for a conic neighborhood € of z°. Here *
denotes (k) or {&}.

Let fe 2% satisfy WF,(f) N € C{p(z) >0}. Then Q feHI;¥"!
for a fixed b with —6,/2<5<0, and a=>a; when *=(x) and 0<a<as
when *= {#}, if a satisfies (4.16). Therefore, we have WF,(Q f)N
{3, (x, £)<<8b} = @, since inf;,, sup {4i(x, &) |17V &(x, £)<3b and
|6 =L} > —b, where &,(x,&) =¢,(x,&/]&]) and ¢,(2) is defined by
(4.10). We may assume that —H,(z) and —H¢2(z) belong to
I'(prey?d) for zEe€,={(x, &) ;5 |x—2°|2+|&/16|—&°|2°<rE} and WF,
PQf—fH)N¥,= @, where r,>0. Let {(x, &) €C*(T*R"\0) be a real-
valued positively homogeneous function in § such that 0 < {(x, §) <1,
and {(x, &) =1 if [x—x°|2+ |&/]&|—&12<r? and {(x, &) =0 if |x—x"|?
+1&/1&| —&°12=4r%, where 0<r, (<r,/2). Then we may assume
that |H,(x, &) |=0@1Y) for [§]=1. Since |p(x, &) —@(x, &) |=0(|x
—x° 124+ |6/ 16| =819, we have —H, (2) €' (p,.,9) for z€ €, and O
[0, 17, if |b| and r, are sufficiently small, where ¢;(2) =60{{(2)¢ ()
+ (1 —=C(2)) (@,(2) —3b)} + (1—0) (,(z) —3b). Now assume that there
is [0, 1) such that WF,(Q )N {zEe¥,; 9s(2) =0} #0. We set
O,=inf {#=[0,1); WF.(Q )N {ke®,; ps(2) =0} #@}. Then, WF,
BQHINREF,;50,(2) =0} =0 and WF(Qf)N REF ;s (2) <0}
= ¢. Therefore, Proposition 4. 10 implies that WF,(Q f) N z€¥,;
Ps, (2) =0} = @, which contradicts the definition of ¢,. This proves
that WF,(Q /) N ¥:C {p(2) 20}, where €3={(x, &) ; [x—2°|*+ |§/|€]
—&%12<r?}. Thus we have the following

Theorem 4.11.  Let the hypothesis of Proposition 4.10 be satisfied,
and let € be a conic neighborhood of z°. Then there are a continuous
operator Q © D% — D¥* and a conic neighborhood €, of Z° such that

LEWF(pQ f—HUWELQpf — 1),
WE.(Qf)N%,C{p(z) =0},
if fE2* and WP« (f)N¥ C {p(z) =0}. Moreover, 22 WF,(Q f) if
ZLEWF(f).
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Remark. (i) The theorem implies that (MCP) is microlocally well-
posed in 2* at 2° modulo &*  (ii) By Theorems 1.5 and 4.11,
(MCP) can be solved globally modulo & * under reasonable assump-
tions.

§5. Proof of Theorem 1.4 and Some Remarks

Let us begin with some remarks on existence of time functions.

Proposition 5.1, Let 2°= (x° &) €T*R"\0 and 9T, o(T*R"), and
assume that p,(x, &) is microhyperbolic with respect to 9 at 2°. Then the
Sollowing conditions are equivalent : (1) There are a conic neighborhood ¥
of 2° and a time funciion for p, in €. (i) There is 9T (T*R")
such that p,, is microhyperbolic with respect to 9 at 22 and o (ry,J) =0,
where 1,=3""_, £(8/0¢,). (iii) There is I€To(T*R") such that p,, is
microhyperbolic with respect to 9 at 2° and +r, & (p,0, 9)°.

Proof. Let t(x,€) be a time function for p, in €. Then p, is
microhyperbolic with respect to —H, (2% at 2’ and X7_,(0t/0§,) (x, &)
§,=0, i.e., a(r,, —H,(2)=0. This proves that the condition (i)
implies the condition (ii). It is obvious that the condition (ii)
implies the condition (iii). Assume that the condition (iii) holds.
Then there are 9 &l (p,.0, 9) (j=1,2) such that (—1)a @@, r°)>0.
Therefore, there is 1906['([],,,20,9) such that ¢ (9, 7% =0. Then ¢(x, &)
=, (x—x° |°|&/|6]—&") is a time function for p, in a conic

neighborhood of 2°. Q.E.D.

We assume that the hypotheses of Theorem 1.4 be satisfied. We
shall prove Theorem 1.4 by the same arguments as in [30], using
Proposition 4.10 (and Theorem 4.11). If p,(z°) #0, Proposition 3.8
implies that 2°&WFy(u) when u€2* and 2&EWF,(pu). So, in
Theorem 1.4 p,(z) must vanish at 2% If I'(p,0, 9(2°))° contains
re=>"_, £%(0/0¢;) or —r,, then Theorem 1.4 is trivial.

Proposition 5.2, Let 22=(x" &) and || =1, and let M be a
compact subset of I'(p,.0, 9(2°)). Assume that p,(2°) =0 and +r,&
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I'(pn0, 9)° and that P<TI (p,0, 9(2°)) and a@@, 1) =0. Then
there is t,>0 such that

WFe ) N {(x, ) €=M’ 0((x—x°, §/16| -8, I =t} + 0
Sfor  0<i<t,

if ueD* and LPEWF, (W) \WFx(pu).

Proof. We may assume that ue &* and that 9"6]\7[, i.e, o,
0z) >0 for dzeM°\ {0}. Let M, be a compact subset of I"(p,.0, 9(z%))
such that M&M,. Then there are a neighborhood % of 2’ and
t,>0 such that WF,(pu) N% = @, p, is microhyperbolic with respect
to 9 at ze%, M,\cl'(p,.,9 for z€u, t(x,&) is a time function
for p,, in a conic neighborhood of # and {z€2’— M°; —¢,<t(x, &)
<0} €%, where t(x,8)=0@, (x—x° &/]16|—£&")). Now assume taht
WFE,(w) N {z€22—M°; t(x, &) =—t} =@ for some ¢ with 0<¢<¢,.
We can assume without loss of generality that §=(0,.-+,0,1). We
denote by S*R"(~R"xS§"!) the cosphere bundle over R* and we use
inhomogeneous local coordinates (x,¢). Let z:T*R"\0 — S$*R" be the
canonical map defined as (x, &) — (x, —§,/&,, ¢+, —§,.,/&,) for (x, &)
eT*R"\0 with £,#0. The map r induces a map dr,: T,(T*R"\0)
> (0x, 08) — (0x,0q) € T,y (S*R™), where dq;=—&,;1(06;4+¢,0¢6,) (1<j
<n—1), 2z=(x,€) and ¢,=—¢,/§, (1<j<n—1). Since =+r,& M° and
M° is a closed proper convex cone, modifying # if necessary,
there is a closed convex cone K with its vertex at the origin in
R*»! (=T, (S*R*)) such that

dr,(M°) DK>2dr,(M?)  for z€%,
T(X@=M)Nt(%)D () —K Nt (%).

Then there are e>0 and QEIE such that

t(WF@)NK'N{cR); —t,+e>t () > -4} =0,

where K'=7() +2—K. Let ¢(x,6) €& ™ (T*R") be a positively
homogeneous functions of degree 0 in & for |£]|>1/2 such that
O(x, &) =1 if (x,6)€¥, |£|>1/2 and t(x, &) > —t,+e, and ¢(x, &)
=0 if (x,6§)=¥, |£|=1/2 and ¢(x,&) < —i;, where ¥ is a conic
neighborhood of #. We set v=¢(x, D)u and g=p(x, D)v (=¢pu+
[, ¢lu). Then,
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WFE, (@) N% =WFy([p,dle) N U C{zEU ; —t,+e=t(2) = —ty},
t(WFE(@)NK' =0, WFu@) N%CREX ; t(2) = —1,}.

We may assume that the boundary 6(K'NT) of K'NT in S*R"NT is
smooth, where T={r(z);t(z)=—¢t}. Let § be a C? hypersurface
in S*R" such that SNT=0(K'NT) and one of the normals (dx, dq)
at each point on SNz(%) belongs to K*, where K*= {(dx,0dq) ;
0x * 0%+0q » 0§=>0 for any (0%,0§) €K}. The family of hypersurfaces
S with the above properties sweeps out the region KN {r(2); t(zx) >
—t,} (see [12]). Assume that o=C?(T*R"\0) is real-valued, positively
homogeneous of degree 0 in & ' (S)N% ={zEe¥ ; ¢(2) =0}, dr,(H,
@))eEK* on I N% and WFy @) N ze%; 0(2)<0}=0. We
need the following

Lemma 5.3, (Lemma 3.1 in [30]). For 2’=(L &) e S) N,
we have —H,(2") €I (ppa1, ).

From Lemma 5.3 and Theorem 4. 11 it follows that Z*eEWFy,(Q¢g
—v) for zZer (SN Ko'), where Q is as defined in Theorem 4.11,
replacing 2° and & by 2! and &, respectively. From the proof of
Theorem 4.11 it follows that Q : 2¥ — 2* and Q satisfies the
assertions in Theorem 4.11 with 2° replaced by 2. Therefore, we
have Z2&EWF4(Qg) and WFy () Nt} (SﬂKO')=ﬂ. The method of

sweeping out in [12] shows that 2’ WF, (v). This proves Proposition
5. 2. Q.E.D.

From the same arguments as in the proof of Theorem 3.3 in
[31], it follows that for every 2 there are neighborhood % (z°)
(C9) of 2° and ¢(z®)>0 such that for any €% (z") there is a
Lipschitz continuous function z(¢) defined on (—¢(z%, 0] with values
in @2 satisfying z2(t) €eWFx () for t=(—¢t(z%), 0], (d/dt)z(t) €I (Pmevrs
)N {dz; |0z] =1} for a.e. t€(—t(z%), 0] and z(0) =2 if
UE DX, 2EWF4,(u) and WFy(pu) N2= g . Therefore, by the same
arguments as in the proof of extension theorem in theory of ordinary
differential equations, we can prove Theorem 1. 4.
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