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Some Classes of Functions with Exponential
Decay in the Unit Ball of Cn

By

OUYANG Caiheng*

§ 1. Introduction

One of the characterizing properties of the functions of bounded
mean oscillation (BMO) is that their distribution functions have an
exponential decay effect, i. e. the famous John-Nirenberg's theorema:i.
In 1980, Baernstein® proved that the distribution functions of the
non-tangential maximal functions decrease exponentially for a bounded
subset of the Nevanlinna class in the unit disk, and as corollaries, he
obtained an analytic form of John-Nirenberg's theorem with a weaker
integrability assumption and pointed out that in the analytic category
BMO is equivalent to BMO of logarithmic type. Long Ruilin and
Yang LeC3] obtained similar results to Baernstein's theorem in the
^-dimensional real and complex ball by showing that BMO(10g)* =
BMO for spaces of homogeneous type.

In this paper, we try to generalize a series of the famous Baern-
stein's results for the unit disk to the unit ball with respect to different
topological structures applying Rudin's function theory in the unit
ball of CM. In order to lead to the discussion, we define a class of
point sets in the ball in §2, where we point out that there is a useful
geometric property of the intersections of this class of sets and the
admissible domains Da (Q defined by Koranyirs:i. The key part of
this paper will be found in §3, where the decay characterizations will
be studied for a bounded subset of a function space larger than the
Nevanlinna class, which shall be referred to as H9 class in the
present article. Hence the maximal function in the admissible domain
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plays an important role in the proof- As the corollaries of the main

results in §3, in §4, for the BMOA functions in the ball, we will

prove the John-Nirenberg theorem with respect to the harmonic

measure as well as the results derived thereof,

The main results had been reported in [6].

§2e A Class of Point Sets In the Unit Ball

Let B be the unit ball fceC*:<£, £> = Z^<1} and let s be its

boundary, i. e. the unit sphere. By Rudin's expression, the group
JC of the Mobius transformations of the unit ball is written as

\\/2

where a^B, and U are unitary transformations,

^^ ? Qa = I-Pa, *.= (l-

0, fl = 0,

Obviously ^(0)=0. Since, ^>fl maps the unit sphere S into itself,
^ is also the transformation group of S into itself. Note that
30, C/e^ (unitary group), such that <[)(z) =<pJJ(z).

Now we define a class of point sets in the unit ball.

Definition. For /3>0 and ae5(a =£()), C^5, define

I: | l -<£ ,0> |< /3 | l -<<

The point sets Rpia(£) possess the following properties:

1) When j S < } ~ | ^ | , ^..(C) is the empty set.

As a matter of fact, V^G.B, C^S, from Schwarz inequality,

-<*, f l> |>l -k | • \a >\-\a\,
and

Thus, when 1 - \a \>fi(\ + \a |), 1 1 -<*, a> ]>,8 1 1 -<a, C> |.

2)

ball B.

2) When /3> j+ |a | , for every fixed Ce5, /Zfr.(C) nils the closed
—
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3) When /3>1+ a\, a^R^a(Q for any C
The reason of properties 2) and 3) is the same as 1).
4) For any unitary transformation, U(R^a(Q) =

This is obvious from the defining equation of J?^ i f l(C). Hence,
without loss of generality, take ^ = el= (1, 0, . . . , 0), and especially
put a = r^(0<r<l), then

2
Again denote zl = peie. For instance, if we take r— — , /3 = 3, then

< cos , -

It is the point set in the closed unit ball where those first variables
£j belong to the closed disk ^3 cos 0. This special case provided
some geometrically intuitional information for point sets /2^.a(C).

In the following, the relationship between /?^ifl(C) and the admissi-
ble domain is discussed. According to the Rudin'sC€ expression

In the discussion of function theory in the unit ball, its situation is
similar to Stolz region ra(6) in the unit disk. From the defining
equation of Z)a(C), it is easy to know that for radial point a =

2
of C, fle/)a(C), when rx> — — 1, therefore, radial points z =

belong to Z)a(C). Combining property 3) of point set

then, when «>T-^ — , jS^l +rb ^ = <(r1^r<l) belongs to Z)a1 +TI
l f l(C). Generally, it is always possible to set point sets Da

(Q r\R/3,a(Q to be nonempty when the values of a. and /3 are
suitably chosen. Thus we have

Proposition. // ^e^, choose a and $ so that a/3>l and Da(Q fl
,a(C) is nonempty, then

where 0(f) =C.

Proo/. It is pointed out in theorem 2.2.5 of [4] that if
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(5), and a = (fi~1(0), then there exists a unique £7, such that
U(pa ; and

Since, if Ce5, ^ e Da (C) n /?/,.. (C), then

2 | l -<^,a>|2 2 v

But then «/5;>l, thus <p(z~) eDa/3(^(C)). Then it is deduced that

Notice that p3 is the 1 — 1 mapping on B, then

A.CO n^CQc^O^C?)), f

However, since (/>al=<pa, then ^~1= (U(pa)~
l = <paU~l^J£, denoting ^ as

<p~\ then #(f)=C. Thus

Remark, This result means that under Mobius transformation,
the admissible domain for a point f on the unit sphere includes the
intersection of the admissible domain Da(Q and Rp,a(Q for its image
point C. This is an interesting fact for the complex geometry of Cn.
We are to use it below.

§ 3. Baernstein Theorem for the H9 Class of Functions

Let E be a measurable set on the sphere S, for a^B, we define®

to be the harmonic measure of E at a with respect to 5. The
integrand function at the right-handed side of the above equation is
the Poisson integral kernel P(a, Q in B, For any EcS, the normal-

ized Lebesgue measure o(E}=^(E')a

As in [4], let <p\ [ — oo? oo)->[0, oo) be a nondecreasing convex

function, not identically 0, the class of functions in B
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!

f is holomorphic in B
r

A (/) = sup \ <p (log | /„ | ) rfaO, fr =f(rQ .
Q<r<lJS

If p (*)=;T = max (0,*), then H(p(B)=N(B). Here N(B) denotes
the Nevanlinna class

(/ is holomorphic in B
N(B) =

If <p(x)=epx, then H9(B)=HP(B), 0</<oo. When p,>p29 we

have HPldHPzdN.
For the admissible domain Da(Q and a continuous function F in

£, the maximal function in the admissible domain is definedc€ by

Obviously, if there is a K-limit F*(C)= lim F(^) of function F
*e.Da(a*-C

for a point C, then (MflF) (Q > |F*(C) |.

Lemma 1. If f^H99 then for every t satisfying ^(log 0>05

the following inequality

where C(a) 15 a constant depending on a.

Proof. If /etf,, then /:(/)= sup ^(log |/r |) rf<r<oo. Hence
0<r<lJS

from theorem 5.6.2. (a) in [4], there is a positive measure v on 5,
such that u = P{y\ is the least ^-harmonic majorant of p(log]/|),
and H^H^/ iC/) , here 11^11=1^1(5 ) is the total variation measure of v
on 5.

From the definition of the least ^-harmonic majorant function,
for every z^B, there is <p(log |/ |)<PM- However, since the com-
pound function ^olog is nondecreasing, so that for definite A*(O we
have p(log(Ma/) (Q) < (MaP\y\) (C). Therefore, if (Ma/) (Q>^, then

Hence

M0PM) (Q >^(log 0}.
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Thus it is only necessary to prove

: (Ma PM ) (0 > <p (log 0 } X \} /i (/) •

Now let us prove this inequality. According to Rudin [4, p68],
define the maximal function of a complex measure on S by

: 1 1 - <C, ?> 1 1/2<5, C, ?&?, d>0} is the "ball"
on S, C is the center of the ball and 5 is the radius. Then one has
the corresponding inequality of weak type (1,1):

M^S:(Mv-)(Q>r}}<A^\\v\\, for every r>0.

A result of Koranyi [5] is expressed as

Combining this inequality and the above inequality of weak type
(1, 1), suitably enlarging constant A (a), then

C(o;)

Similar to that of [2], we introduce the set of functions

Then we have

Theorem 1. Suppose that f(z) is holomorphic in B, if JH(f) is a
bounded subset of H9, then for every g(z) e^(/), we have

where K denotes the absolute constant, and 2 = Ce-(p~l(c(a}a<P(f}\ ^(/) =

for an increasing convex function.

Proof. Before beginning the proof, we ought to have some neces-
sary preparations.

Let G be any compact set on S whose measure is non-zero, and



FUNCTIONS WITH EXPONENTIAL DECAY 269

employing finite many balls {QJ, with the centers CeG, cover G.
Since [Q] are only finitely many, suitably choosing the positions of
the centers of those balls and the radii of those balls, it is always

possible that a(J) ^ - < r ( Q , ) holds for every Q, where J=Gr\Q9 M is

a larger positive constant given in advance. Next using the covering
lemmaC4\ we choose a disjoint subcollection F= {(£,•} from {QJ, thus

a(^. Writing

Obviously J{ are nonempty and pairwise disjoint, and each J{ has
the possibility to be composed of the countable many of path-
connected components. Denote M1 as the product A3M, then

,•). (1)
r

In addition, for every ball Q,t- (Ct- , <5f.) in F, we might as well suppose

ff(Q,-)<l/4 and take fl,.=r&, r£ = l-3?.

When r] belongs to certain (£,- in the above-mentioned text, as (2)
in [7]

where Cx only depends on the dimension w(>l) . Thus for every
7,-ca,., there is

M/:0<CrVa/^o(Q.-). (2)

When ^(/) is bounded in //^ class, set ^(/) = sup {I\(g) '• g^
^(/)1- For constant Ml in (1) and constant d in (2), choose r
large enough so that

t i
where C(ff) is the constant in Lemma 1.

Now the proof of the theorem is carried out successively.
1° For the fixed £U)e^(/), define

Eh=[7ieS: (Mag)(^>kT}, A = 1,2,...

Obviously Ek^c:Ek. Assume that Ek+l is nonempty, let G be a
compact subset of the open set Ek+1 whose measure is non-zero, same

as the statement in the preparation in this proof, cover G by those
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balls {QJ which are included in Ek with their centers C^G, and also
write F= [Qi] to be the disjoint subcollection chosen by the covering
lemma.

2° Now let us prove

A (£*+i)< 0/2) #,(£*), *^1- (*)

Since f(z) is holomorphic in 5, and ^?fl : 5->5 is the holomorphic
mapping, thus g(z) is holomorphic function in B. Hence in closed
ball BrQ={z^B: k|<r0} with its radius r0 near to 1 (i.e. 1— r0 =

o(<5?)), for enough large r in (3), we have \g(z) \< fa. Therefore
when

( 5 )

where B*Q={z(EB: k|>r0}.

For the given a, when z^Da(r}} fl5^, there is

if not, then suitably increase the value of r0. However

| l - < f l 4 . , 7 > l ^ l - k - l ' l 7 l = l - ^ = ^

hence

By the definition of set /^.fl(C), we know that ^e/Z4i t f.(^)- Therefore,

we deduce that Da(^) n5^ c/Z4.a (17) which could be written as

Defining ^fl. = pfl.f/e^ and &(*) =^o^a.(^) -g°^.(0) =5°^«.fe) -g(^),

and applying the proposition in §2, then we have the following
inclusion relation

A.Wn^c^CA.Cf)), (6 )

where &.(£)= 7-

For/, is nonempty, then, when ^eJt(cEk+1), from Eq. (5) and

(6)
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Since we have taken ai=riC,i, r; = 1 — S2
t<^r0, thus a;€:jSro, therefore

!g(flj) |<A:r. Thus, there is

noting that i} = $„.(£), this means

y, c & . ( {£ e 5 : (M^ft) (f ) >r} ) . ( 7 )

Since ^e^(/), applying Lemma 1 and (3), we obtain

MIfeS: (M^ft) («>*})£ 2^-. (8)

Denote /= {£ e5 : (M^gi) (f)>r}, combining (7) and (8), and apply-
ing Eq. (8. 11) in [8], then

. , ^a>. (0) (^

Together with (2) and (9), we deduce

Now let us discuss as above for every /i? and permute the order
of all the path-connected components of Ji9 it does not matter to
write it as Jim Applying (10), then

MO < îS ^o(/;) < d/2) Z A«o((li) < d/2) M£4).

Now (4) follows by taking the supremum over all compact subsets
GdEk+l.

3° Lemma 1 and (3) are to be used once more, then there is

1«0(£'1)<l/4<l/2. Thus it can be deduced from (4) inductively that

< (1/2) #,(£»-i) <• • • <

For any £>0, when ^>r, there always exists certain &5 such that
r5 hence
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ft ( foe=S : (Af „

<2~* = 2<f (^'°B

again when 0-O<V, we have also

Thus for any Z>0, there is

where #=2, for increasing convex y>, J=_log 2 = C*~*r"1(c(Q:)V/))
e Now

the theorem is proved.

Remark. For general nondecreasing convex functions, it does not
seem that it is easy to yield the converse of Theorem 1, however, for
some H9 defined by ^, the converse is also true, just as the N class
to be proved in the following.

Before the further discussion is going on, let us first introduce the
elementary Lemma used in [2] :

Lemma 20 Let h be a nonnegative measurable function on some measure
space (.0, J% //). The distribution function A(t) of h is defined as

Then the following two equalities hold

(i)
Q

(ii) { (log+^\dfjt=-{°°(log-L]dA(t) ={~rlA(t)dt, 0<><oo.
Jo\ p/ JP\ p/ JP

Similarly, we could obtain the following lemma by the standard
argument of real function theory, i. e. the simple functions approximate
to an arbitrary measurable function.

Lemma 30 h and its distribution function A(t) are defined as above

and [i(P) =1, then
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, 0<><oo.

As a deduction of Theorem 1 and Lemma 2, there is

Theorem 2. Suppose that f(z) is holomorphic in B, then the following

are equivalent:

(a) ^(/) is bounded in N.

(b) there exists an absolute constant K and a constant l = l(a, f)

such that for every g^Jt(f} and

Proof, (a) => (b) is the implication following directly from Theorem

1. In fact, if take (p (*) = *+ = max(0, *), then H9(E)=N(E). Thus
by Theorem 1, it is clear that (a)=>(b). At this moment, X =

Ce-cw9 where ff(f)=sup{T(g): g<=Jf(f)}.

(b)=>(a). Take Q = S in Lemma 2(ii), p=l, and set h = Mag,

: (Mag}(ri>t}). If (b) holds, then

For the sake of definitivity, firstly, let a>2, when 0<^<1 there is

rr]<=,Da(r]}. Thus for every ^eS, \gr(yj) \ < (Mag) (TJ). Therefore, for

every

that is, ^(/) is bounded in N.
2

When l<a<2, take ri = — — 1, clearly 0<r!<l0 Since the holomor-

phic function gr is bounded in the closed ball 5r , hence, when r<r l 5

it is also bounded for \ (log4" \gr \)da. While, when r!<r<l,
JS

€=/)«(?), therefore \gr(ij) \ < (Mag) (37). Similar to "a>2",

\gr\}da is bounded. Summing up, for a>l, there exists the impli-

cation (b) => (a) .

as
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§4. The Jofan-Nirenberg Theorem in the Sense of

Harmonic Measure

For given f^Ll(o} , its Poisson extension to B is also denoted by

/, i. e.,

In [7] we had defined a norm equivalent to the usual BMO norm

ll/ll**=sup\
aeSjs

If the Poisson extension of a BMO function is holomorphic in 5, then

we call this / to be the holomorphic function with bounded mean

oscillation (BMO A),

Theorem 3e f<=BMOAe>for every

where K is an absolute constant, Ai =

Proof. "i>". First of all, notice that (Mag) (?) ^ \g(rj) |, a. e. on

S. In fact, by theorem 5.4. 8 and differentiation theorem (5.3.1)

in [4], the ^T-limit of Poisson integral /°^CO of L1 function
on S is still /o0 (57) 0 Thus g* is the JT-limit of g,

a e e 0 on .

Hence (M^) (^) > |^*(^) | - |g(7) |, a. e. on 5.
If /eBMOA, applying the corollary 3 in [7], then uT(/) is

bounded in Hl. And again, using theorem 19 and combining

|, then

where i = C/C(a)a1(/), ^(/) =sup{||g||Hl: geuT(/)} HI/11**. Thus

setting ^-C||/||;i<2, "^>" is proved.
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"4:". Set A(f) = ft.([teS: |/(Q -/(a) )>*}), by means of Lemma
2(i), then

Thus

. Q.E.D.

Corollary. For holomorphic function f in B, the following are equiv-

alent :
(a) f^BMOA.

(b) ^(/) ^ bounded in N.
(c) ^(/) w bounded in Hp, Q<p<°o.

(d) There exists /o = /

sup sup
0<

up \ /'*r'
><i Js

Proof. Since HpcN, it is clear for the implication (c)i^(b).
Now we prove (b)i>(c). Set 4(0 =ft(foeS: (M^) (?)>*}). By

means of Theorem 2 and Lemma 2(i), then for every
there is

Similar to the treatment of proving (b) => (a) in Theorem 2, distin-
guishing the cases of a>2 and 1O<2, we have both

sup \ \gr\* da<C2<oo,
0<r<l JS

for every g^Jl(f), i.e. Jt(f) is bounded in Hp,
The above assertion holds for every Hp or for some Hp. Especially,

when 1 </?<C°°5 since we have already supposed that the Poisson
extension to B of an Ll function g on S is also denoted by g. By
theorem 3.3.4. (b) in [4], it follows
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<\s

Since /eBMOA^^(/) is bounded in Hl (see [7]), thus
(b) is the special case of (b)<^>(c) when p = l.

) is quite an obvious fact. Since p\grKePgr
9 thus

11/11**= sup sup \ \gr\da<p-1 sup sup \ ep}gr*
ge^(/) 0<r<lJS *euf(/) 0<r<lJs

Now we would like to prove (a)=^(d). Suppose
Si |/(C) — /(«) l>^}). Employing Theorem 3 and Lemma 3, then for
every

=(
Js

p-dt, (11)
o

it is only necessary to take /o<C^i = C/|)/||##, then this integral con-
verges.

On the other hand, when 0<r<l,

f P\8rW\j , ^ f x pl\ e r d<j(f])=\ (e J

JS JS

<f (//S"«)l*'r,'0)rfff( )

Js

as the measure /^a(5)=l5 so by Jensen's convexity inequality and

noting { P(n?3 Qda(^=l (see [4]), then for
Js

f p\er
\ e r

Js

<\
Jss s s

s

Combining (11) and taking p = pf^(0, C/||/||*#), then for every

0 < r < l s
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(a)=>(d) is proved.
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