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§ 1. Introduction

We consider the scattering problem for the wave equation by two
finite obstacles. Let 0 be a compact set in 72" (w^ 2), and assume

that Q = Rn—(9 is connected. Consider the following problem

(1.1)

M * , * = - M M = n
M(*,*)=0 on RlxdQ,

«(0,*)=/i(*) on Q,

Ui<(0,*)=/2(*) on O.

Denote by k_(s, w) (k+(s9 a>)) eL2(/Z1x511"1) the incoming (outgoing)

translation representation of the initial data (/i,/2). The scattering

operator S: k_->k+ has a distribution kernel S(s,09co) called the

scattering kernel (cf. Lax and Phillips [6], [7]).
Recently several authors have studied on the relation between 0

and S(s, 0, to). Soga [14] and Yamamoto [17] have characterized

the convexity of 0 in terms of the singularities of S(s, —CD, CD) as
follows :

(1.2) 0 is convex if and only if sing supp $(•, —O),(D) has only

one point for any &Ei.Sn~l.

The purpose of this paper is to study the location of sing supp

£ ( • , — a>,fl>) when 0 consists of two convex obstacles 6l and 6 2-

Set r t-(cw) — min,^ x • <w(i = l, 2). Suppose that 0 ln @ 2
 = <f>- The first

main results is the following:
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Theorem 1. Let ax^S"'1 satisfy

Then there holds

sing supp 5(«, -oi,oi)n [min I.=l i2(-2r f.(cw)), + oo) = {-2^(0)), -2r2

For the more restricted <w, we can know precisely sing supp
£( •> — ft), co) which is included in ( — oo, minz-=1,2( — 2r£(o>))) . Let
xQ&P = {x: x * w = mini==li2ri(a)) — 1}, and consider the broken ray
starting at XQ in the direction o> at the law of the geometrical optics.
Suppose that this ray is reflected once at each points xl9 °**,xm on
the boundary and returns to the point xm+1 on the hyperplane P in
the direction — CD. To those points we assign the numbers

(1-3) £ = 1^1 l*/-i-*, I -2 Xle=d0 ^ = 1,2).

Theorem 2e Let aj&S""1 satisfy the same assumption as in Theorem
1. Then the following statements hold:
(I) For any positive integer m there exist the broken rays and a constant

Cx^>0 independent of m and i such that

(1.4) jiI~dist(P,^1)

(ID //

dist(01? 0 2) >4maxz-=1>2diam 0 i

and

Ir^w) -r2(a))

then we have

(i) min£=li2^il+i>maxI.=lf2j'm for m^l,
(ii) sing supp S(-? -o>, o>) = {-2mint.=li2r£(aO -4} .=1.2

(Ill) Let d is t ( (P l 3 tP2) awflf ft> satisfy the assumption in (II).
further if there exists the only one pair of points (a1? a2) ^ d ( D 1 X d@
such that \al — a2\=dht((9 1, ^2) , then the following equalities hold:

(iii)
(iv)

2
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In case each 0 { is a ball In R2 or J23, these theorems correspond-
ing to Theorem 1 and Theorem 2 have been proved by Nakamura
and Soga [10] under the slightly different assumptions. The main
tasks in the proof of Theorem 2 are to show that there exist actually
the broken rays with the properties (i)9 (ii) and (iv) stated in
Theorem 2. In [10] they have been proved the existence of such
rays in the case of two disjoint disks in J22, and that the proof in
Rz can be reduced to that in R2 when both 01 and 0 2 are balls.
However to the present case we cannot apply the method employed
in [10].

Our proof is based on the following thoughts. Let a) be the
direction given in Theorem 1. Suppose a plane wave propagates in
the direction CD and hits a convex obstacle 0 l. Then the wave front
reflected by Ol will be have no focal points and that there will be
at least one broken ray reflected in the direction — co. Suppose the
wave front reflected by G ̂  hits 0 2 subsequently and is reflected by
0 2> Then it also has no focal points and there exists at least one
reflected ray with the direction — a) again. Using the precise investi-
gation of the convexity property concerned with the incident wave
front, the reflected one and the obstacle (Lemma 2. 1), we can check
that this process is successively true. For proving the property (i)
in Theorem 2 it is essential to use the estimate (1.4). The estimate
of the type (1.4) is proved in [10] based on the fact the Gaussian
curvature of the boundary dQ does not vanish anywhere. However,
this is not our case. Actually we derive (1.4) by estimating more
precisely the difference \Xj — xj+1 \ — d is t (0 l 5 02) (Lemma 2.6).

After completing this work, the author is informed that Petkov
and Stojanov [12] (without proofs) have extended our results [10] to
the case for several strictly disjoint obstacles in U3 under some
assumptions. But it seems to the author that all our results cannot
be obtained from theirs, especially the properties (i) and (iv) stated
in Theorem 2.

§2e Properties of the Broken Rays

First, we define the broken rays according to the law of the
geometrical optics. For x^dQ, denote by v(x} the unit inward normal
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defined at points of the boundary. We suppose that {x =
0} ndQ=£0 for XQ^Q and %Q^Sn~l. We define Z,_ l 5 ^ and ?y succes-
sively by

,_!<= 30}.

where ZJ_1 = oo when tfy^ + Z^.j^SS for any />0. Assuming that
these {7,}, {Xj} and {£,} are well-defined, we call the set

the broken rays starting at x0 in the direction f0, and {#,} the
reflection points. When there exists an integer 772^! such that
[x=xm+l?m; />0}n9^ = ^5 we set

*ref Z,(*0, f0) =wz,

dir0 0L(^0 , fo)=f«-

The purpose in this section is to show some theorems which play
an important role in the proof of Theorem 2 in Introduction.

Theorem 2.1. Let w^Sn~l satisfy

Then for any positive integer m, there exist a broken ray Z/(#O,G;) (i = l,
2) such that

(i) XQ is on the plane P= {x: x • <y = min i= l i2f r
£(cw) — 1 } ?

(ii) £/Z£ yzrs£ reflection point xl belongs to 0 {,
(iii) *ref L{(xQ9 o>) =m5

(iv) dir^I/ (*„, o>) = — n>.

Furthermore, if there exist the broken ray Z/Oo?^) and L 'CjVoj^) satisfying
the above conditions (i)^(iv), then we have

Z m+l I v v I — •V~lm-^-l I .. ..I
j = l \Xj-i Xj I 2-17 = 1 I./7-1 Jj I

where {Xj} (resp. (jvj) are the reflection points of the broken ray

L'Oo,<») (resp. I/(jo,<»))•

First, we study the convexity of the surface. Let M be a smooth
hypersurface in Rn. Let v be any tangent vector at x^M, Pick any
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curve x = x ( t ) through x so that dx/dt\t=0 = v. Then we define the
operator A (called the shape operator) as follows:

where v(x) is a unit vector at x normal to M. The following
properties of A are well known (cf. §8.2 in [1]).

(i) A is well-defined independently of the choice of the curve x ( t }
so long as it has the prescribed tangent vector v at £ = 0.

(ii) A is the self-adjoint linear operator on the tangent space TXM
at x.

(iii) The hypersurface M is convex if and only if for any x£EM A
is positive (or negative) semi-definite.

(iv) Let [x = 0(a); a^U^,Rn~1} be a local coordinate system of M
such that #° = <P(0). Then we have the following representa-
tion of A at XQ with respect to the basis d0/dak(0) (k = l9 2,
• • - , w — 1) :

where (ajk)j.k=i,2.—,n-i is a (w — l ) X ( w — 1) matrix.
We will use later the notation * (ajk) Jik==li2,...,n-i which is a transpose

matrix of (Oy,*=i,2.-,»-i.

Next we study the convexity property concerned with the incident
wave front, the reflected one and the obstacle. For <j>(x) with

|F000 =1, we will call the surface [y: 0(jO=0(*)} tne wave front
of <j> passing x (cf. §4 in [4]). Let 0 be an obstacle and fix *°e
3 6 . Let ^± be functions defined in a neighborhood V of x° in Rn

satisfying

(i) 1^1=1 in V,
(ii) 0+ (x) = (j)~ (x) for x e 3 0 n V,

(iii) 3f73i/>0, 3

Let {$()?) ; ^eC7} (C/CJR"-1) be a local coordinate system of 3d? such
that #° = <P(0). Assume that the wave front of $~ passing XQ has a
coordinate representation {W(a)\ a<=U(Uc:Rn-1)} such that x° = ¥ (0).
Set x(<r) = (F0~) (?r(o1)). Using the implicit function theorem, we define
27 ((7) and /(#) which satisfy the following equality
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(2.1) 0 (7 ( f f ) )=y( f f )+ / (<0»(<0 for o^U (cf. §4 in [4]).

Then the wave front 0+ passing x° is represented of the form

where

r(<0=x»-2{i» -

Obviously It holds (F^+) (r(») = r(0). Under the above notations,
we have the following lemma.

Lemma 20 L It holds that

(2. 2) (dr/da, (0) - 3r/3<7, (0) ) 1^^H.l = (di/do, (0) - d¥/dak (0) ) ^.^

^^

and that rank (3^/3^ (0)) l iy f 4^ I I_1 = « — l,

Proo/. Using Z ( 0 ) = 0 and y • (d@oy/dak) | f fas0 = 0, we have

4-2i(0) • ( -y (A;°))3y o0o ̂ /3(7. (0) • 3

Differentiate the both sides of (2. 1) with respect to ak and take inner
product with 3i'/3^(0). Then we get

Similarly we obtain

0) .300^/3^(0) -

Combining these equalities imply the equality (2.2). It is easily
seen from (20 1) that rank (3^/3^(0)) is equals to n — l. Thus the
proof is completed,

Lemma 20 1 shows that the reflected wave front generates a convex
surface when the incident convex wave front hits transversely the
convex obstacle. For the strictly convex obstacles CJ23

3 Ikawa [4]
obtained a relation between the principal curvature of the incident
wave front and that of the reflected one.

Let U be a connected open set contained in d01 or 302. Let
-f] 00 be a S'^-valued smooth function defined on U satisfying
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f](x} *u(x)^>Q for all x^U. We choose ^-valued smooth function

luto satisfying (v(x) +d(lu(x)r}(x))) • v = Q for all v^TxU, where d

denotes the differential. Then the wave front passing x° + ln (#°) t] (x°)

(*°et/) is the set

(2. 3) This is called the wave front associated with y.

Let the assumptions in Theorem 2. 1 be satisfied. Then we can

assume without loss of generality that 0 XC [x= (xl, • • • , xn) ; #^0},

02c{x: xl>0} and o>=(0, • • - , ( ) , 1). Set

Then, we have

Lemma 2.2. Let U be a connected open set contained in d d ) l .

Let f o (x) be a Sn~l-valued smooth function defined on U satisfying

(i) tf^C {£„(*): x^U] and {f0W : x^3U} C^T1

(ST1 ij M^ c/ojMfg o/ ST1),

(ii) f0W • y W> 0 /or fl« A:eC/5

(iii) the wave front associated with ?oOO ^ convex surface (cf. (2. 3)).

M7^ consider the broken ray L (x, f 0 (A;) ) (A; e £7) .

connected open set V contained in d (9 2 satisfying

(i)' Sr'ctoOO: ^eF} aW foOO: ^

(ii)' fjC*,) • v(*1)>0/or aM ^eF,

(iii) ' ^/z^ wave front associated with f : (X) generates a convex surface.

Proof. Combining Lemma 2. 1, with the property (iv) of A^ the

convexity of 90 2 and the assumption (iii), we see that if above V

satisfying (ii) ' then V has the property (iii) '. Therefore it suffices

to prove the existence of the V with (i) ' and (ii) '. The assumption

that Olc.{xl^0\ and 6> 2d {xl^> Q] implies that there exists an open

set ^(CS"-1) such that S^dW and [x + l(-0): x ^ d ( D 2 ^

O^W] r\^0l = (j). Take an arbitrary d^W arid fix it. Let us prove

the existence of a broken ray which is reflected in the direction gl =

6 by 02. We set

' , (-6) -p
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Taking account of Lemma 2. 1 and the convexity of 9 0 2 ? we observe

that the wave front associated with £(jy) generates a convex surface.

We may assume

f|

Let Ci=*i + /ff(*i)£o(*i) foe 10 and C2=^2 + /Ffe)? fo) feet?) be the
points such that

If £2 belongs to dV', then f fo) equals to —0. But 0 belongs to W,
hence there cannot exist Cl5 and so we have £2^^. I*1 tne same
way, we see that ^eC/ from the second half of the assumption (i).
Therefore the broken ray starting at Zi^U in the direction ?0fo)
hits transvarsely at £2EEF and then the direction of the reflection
becomes 6. Let V be a set as the collection of z2 for each

Hence we have been proved the existence of V with Sn_ l C {fx (^):
^! e F} in (i)' and (ii)'. Therefore, it only remains to prove {f x (^0:

x1EE3F}c#Trin (i). We set V/=[x1: CiW -^0} ( ^ = ( - 1 , 0 , - - - ,
0)). It is easily seen that V is a closed connected set. We take an
arbitrary w^V— V and fix it. Since the continuity of^Cj;) fo r jy^F
follows from the assumption (ii), it suffices to show a inequality
$i(w) • 05^0. If it were £i(r0) • ^> 0, there should exist r£/eF' such
that f i (w) =fi(z^0. In view of the convexity of the wave front
associated with fl5 we can choose a line x ( t ) ( O f g Z r g l ) joining w'
and w with A:(0) =w' and ^(1) =«; such that ?iO(0) = fi(^) — f iG^O-
Consequently we have fi(^(0) * ̂ > 0 for O^^l. According to the
choice of z#x and w, x ( t ) must intersect 3F. Hence there exists t0

(0 <£0<1) such that f i (^ ( f 0 ) ) • « = 0. This is a contradiction. Thus
the proof is complete.

Remark 2.1. Lemma 2.2 is valid also when (!) l and 0 2 are
exchanged each other.

Proof of Theorem 2. 1. We take the coordinates given before
Lemma 2.2, and consider any broken ray L(^0 ,cw) with
Assume that the first reflection point xl of L(xQ,w) belongs to
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We set

Then, taking account of Lemma 2.1, we see that Lemma 2.2 is
satisfied. Using Lemma 2.2 inductively (cf. Remark 2.1) implies
that for any positive integer m(>l) there exist at least one broken

ray L ( x 0 , ( o ) with *ref L(x0,co)=m such that either £m covers 5+"1

or SnJl when XQ moves some open set in P. Therefore there exists a
broken ray L(# O ,CM) satisfying the required properties (i)~(iv). If

there exist the broken rays Li(x0,a)') and Z/( joj^) (XQ^JQ) satisfying
(i)~(iv), it follows from Lemma 2. 1 that the Gaussian curvature of
dQ at {#,}?!=! and {jy,}!T=1 are zero. Hence the law of reflection gives

Z m + l I v _ v I — ym + 1 I .. _ ». I
j~\ \Xj-l xj\— 2-*j = l \ y j - \ Jj\

Since the case of x^dO 2 can be treated in the same way, the proof
is completed.

Theorem 2. 2. //

dis t (0 l 9 02)>4max.=l i2diam $,. + (?! (cf. (1.4))

and

\ rl (a)} — r2 (co) \ <max diam 0 ,-

holds, then we get

min^^+^max^!,^ for m^l,

where s*m's are the ones defined by (1.3).

For the proof of this theorem, we shall prove some lemmas
concerned with the reflection points of the broken ray. Set

(2.4) &={tal+(l-t)a2: t^R\ (al9 a2) eStf^X 302 ,
\a1-a2\=dist(01, «2)},

and choose a coordinate system in Rn such that &Q= {(0, • • •, 0,0 :

Lemma 2. 3. Take the points xQ&dd) l(resp. d@2} and xl

(resp. 3 0 x) such that
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dist (*0 , J^0) < dist (xl , J2?0) .

Then, for the broken ray L(xQ, (xl — XQ) / \x1 — XQ |), ie;

dist O0 , J?0) < dist (xj , J^0) < dist (x2 , J?0) < dist ( *3 ,

Proof, For x= (x1, ° o% AT"), denote by x' the point (x1, • • •, tf*"1, 0).

Let #(5) = Oc1^), - • -, xn(s)) be the parametric representation of the

broken ray stated above by the length of the broken ray from XQ

to x(j). Then to prove the lemma, it suffices to show the following

inequality.

d x'(s) \/ds>0 for 5£{0} U {ZU4: J = l,2, .-•}.

If *(j)e {*,+/,£,: 0^/^/y}9 we have

(2. 5) - (maxi=1.2diam tf ,.) -1 {^ - (s - Sfc^) f J ' • f ,
^ (maxt-=li2diam 6 ,-) "^y e £,-.

On the other hand, we get

X'j • fy = *J • £y-i +2 (-»(*,) • fy-^K^) 8 Xj.

Since for some constant p^> 0

— v(Xj) * fy-i> p for any j (Lemma 3. 1 in [4]),

we immediately have

X'j • fy^Xy « £y-l+2|W(Xy) « Xy.

This, combined with (2.5), implies

d\x'(s) \/ds^(maxi=L2diam(!}i)-
1{x{

^ (maxt.=1,2diam G ,-) -1 {*! • 0

From the assumption that dist (x0 , JSf 0) <Cdist (^ , «2P0) , it follows that

x{ • f0> 0 and v(x4) • ^> 0 for k^l,

so finally we have

d\x'(s)\/ds>0,

which proves our Iemma0

Remark 2. 2. Even if XQ does not belong to & fl 9^, Lemma 2. 2

is also true under the assumption that dist (XQ , J^0) ̂  dist (xl9 cSP0).
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Lemma 2.4. Suppose that *ref Ll(x0, (o) =*ref L2(xQ, CD) =2m — 1,
and let x^ •mm,x2m-i be the reflection points of the broken ray Ll(xQ,a))
or L2(x0,w) in Theorem 2.1. Then there holds that

*,- = *2»-i-o-i) for j = 1,2, • • - , w,

and that

(2. 6) dist(*l5 j?0)> dist (*2, J£

Proof. If .KI^A^-!, then x2=£x2m_2 from Lemma 2. 1 and ^w-^
— o>. Therefore successively we obtain tf^tfgw-mC—'Oj which is a
contradiction. So we have

(2.7) *,=*2»-i-o-i> for j=l ,2 , - « - 5 m .

Let dist (*,.,e^0)^ dist (*l+1,JS?0) for an z ( l^z^m-2) . Then by
Lemma 2. 3 and Remark 2. 2, we have

(2. 8) dist(*,+1, cS?0)< dist(*,+2, J2?0) for all z'<j.

However, from (2.7) follows the equality dist (xm_ 15 J£?0) = dist (xm+1,
J^0), which is not consistent with (2.8). Hence we arrive at (2.6).
In case *ref L is even, the following lemma is obtained by the same
procedures as in Lemma 2. 4.

Lemma 2. 5. Suppose that *ref Ll(xQ, ri) =*ref L(x0, col) =2m, and let
xi> " " " 5 X2m be the re/lection points of the broken ray Ll (XQ, co) or
L2(x0,(i)} in Theorem 2. 1. Then there exists the only integer I such that

dist (x1 , J*?0) > dist (x2 , & 0) > • • • > dist (xl , J^0) ,
dist (Xl , J*?0) < dist Um , J?0)< • • • < dist (x2m , J? 0) .

Lemma 2.6. For any positive integer ra, let [Xj] ™=l be the reflection
points of the broken ray such that

dist (*! , J?0) >dist (^2 , J?0) > • • • >dist (xm , J2?0) -

TA^?z ^/zer^ exists a constant C^O independent of m such that

(2. 9) £-_-& - (m - 1 ) dis

Proof of Lemma 2. 6. Without loss of generality we may assume

that Oej?0n 30i , 0!C{xn^O} and 02c{^M>0}. Let
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#2=tf i+(0,-- - , 0, dis

For simplicity, we set <^=dis
Since dist(x,-, =^0)>dist(^-+1, J^0), we have

1? 02)

+l,n2) if *,e3

and Ar,+1

ist^!,/?!) if ^e3
and ^+1

There exists a constant C2> 0 such that

K^) -^ + ̂ (^+1) «^+ i} for allj.

Hence we obtain

(2.10) ZZ.-ft-On

On the other hand, by the same procedures as in the proof of Lemma
2. 3, we obtain

I for all

From the assumption dist(#y, j£P0)>dist(#J+1, JSf0), we have ^ • ?
This, combined with the above estimates, gives

^ • xk.

Therefore, we conclude from (2. 10) that

Then for Cl = l+2C2p~\ we have (2.9).
Now we are in position to give

Proof of Theorem 2.2. Let # 0 5 - - - , xm+l be the points associated
with max£=li2^ (cf. (1.3)). Then we have
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and

maxz.=L24^ |*0-*ii+ I *„-*„+! | -2 + Zm^
diam(? f .+2|r1((M)-r2((w) l+Zr=i^

Thus from Lemma 2. 4, 2. 5, 2. 6, it follows that there exists a con-
stant Cj>0 independent of m such that

(2.11) (Og) Z^-Cm-OdistCc^, 02)<C!

and hence

maxf=L24^4max diam0 .- + Q+ (m- l)dist( 0 15 02) .

From the assumption that dist(01 ? 02)>4max diam0 ,- + (?!, we have
the inequality

which completes our proof.

Remark 2.3. Taking account of the above inequality (2. 11), we
have proved (1.4) in Theorem 2.

The following theorem is concerned with the distribution of sl
m

denned by (1.3) as m-> + oo.

Theorem 2.3. Assume that d is t (0 l 5 02)=^>4 (dQ is the constant

in Theorem 2.2) and that cueS*"1 satisfy the assumption stated in

Theorem 1. Moreover suppose that there exists the only one pair of points

(fll5 <22) E=d0 j_ X d(9 2 such that \a1 — a2\=d then we have

(i) limm_(4+1-4-i)=2J (i = l ,2 ) ,
(ii) lim_+co{4M-2-1(^-i + 4,n-i)} =d (» = 1,2).

For the proof, the following lemma is needed.

Lemma 2.7 (Lemma 3.3 in Ikawa [4]). Set

U(d) = {x^dQ; dist (x, J?) ^5} , <5>0 (/or J?, see (2.4)) .

L^^ A : 1 5 A : 2 , 8 - ' ^ the reflection points of a broken ray L(x0 ,£D) «^rf

assume that xl^d@ — U(d) and L(%0 , f0) fl t/(^) ~^. 7"/z^?z there exists a

positive constant C§ such that
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*ref

Remark 2. 4. Ikawa [4] assume that 0 { is strictly convex. But
it can be easily checked that we can apply the proof of Lemma in
[4] to our case.

Proof of Theorem 2. 3. First, let us show that for any £> 0

if m is sufficiently large. Combining this with (ii) in the theorem,
we get (i) in our theorem. We take d in Lemma 2.7 so that d=e.

Let {#,}5=0
 and {^j}2jm=+o2 be the points defining 4«-i and 4m+i

respectively (cf. (1.3)). Since the equalities xj = x2m_l_u_l) (j = l, 2, • •«,
m) follow from Lemma 2. 4, we have

2 -lci _ ^T^m-l I v v I 1S2m-l— 2^j=0 \Xj — Xj + l\—L.

From Lemma 2.7, there exists a positive integer / = /(e) independent
of m such that x} (l^j^m — 1) does not belong to C/(e) for j^/.
Also we have the same properties for {jyj^i1- Hence we have

+ \d- \ym-ym+l

=1^1,+!^

As in the proof of Lemma 2. 6, we obtain

^{m-1 -(/

where the constant C(e) (> 0) does not depend on m and tends to 0
as £-»0. The same inequality holds for ZHT=/ l^—^+i L to°- Therefore
we obtain

From the assumptions, 3? consists of the only one line. Taking
account of this result, Lemma 2. 2 and Lemma 2. 4, we have

A + ̂ 3<£ as 772-* + 00.

which gives the required inequality.
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Let us prove (ii). Let [xJH=o and {jyJH^o1 be the sets of points
defining jjm-i and s\m(i= 1,2) respectively. From Theorem 2.1 it
follows that s\m = s\m. Hence we get

By the same arguments as above, we see that / f->0 (i = l ,2 ,3) as
772— > + oo. Hence (ii) is obtained. Thus our theorem has been prov-
ed.

§3. A Sketch of the Procedures in the Proof of
Main Theorems

In view of Theorem 2. 1, 2. 2, 2. 3 and Remark 2. 3, all we want to
do is to prove Theorem 1 and (ii) in Theorem 2. The procedure of
these proofs are the same as those used in [10]. Therefore we
only sketch it here (for details procedures, see §3 in [10]). To
analyze the singularities of £(•, — <w, a>), we use the following repre-
sentation (cf. Majda [8] and Soga [14]) :

(3. 1) S(s,0, o))=( {v6drlv(x-6-s,x;a))
JdQ

where v(t,x',o)} is the solution of the mixed problem

'DK*,*; «)=0 in RlxQ,

(3.2) • v = 2-l(-2m^l'nd(t-x • 01) on IPxdQ,

v = Q for t<r(w).

Taking account of the relation between the singularities of v and the
broken rays of the geometrical optics considered in Guillemin [2],
Petkov [11], etc., we may expect that sing supp 5(-, — CD, (o) is
contributed only by the broken rays associated with (1.3). We can
construct the asymptotic solution of the equation (3. 2) near these
broken rays in the same way as in §7 in [4], and reduce the proof
of Theorem 1 and (ii) in Theorem 2 to showing that the following
integral does not decrease rapidly as | < r | — >oo:
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(3.3) eia(x'a+<i>3m(xY)a(-x^o)~^m(x) +2mini=1 2r,(o>) +
JdQ

where fi(x) is a non-zero C°° — function, a (5) is a cut-off C°° — function
with small support and satisfying a (0)^0 and <j>j

m is a phase function
associated with the broken ray defining sj

m. By the results obtained
by Soga [15] when 0 1- is convex, we observe that (3. 3) does not
decrease rapidly as | e j | — »oo.
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