Qu*-Algebras and Twisted Product

By

Gerd LASSNER* and Gisela A. LASSNER**

Abstract

Fundamental properties of Qu^* -algebras of operators are shown, and the class of CQ^* algebras is introduced. They are the natural generalization of C^* -algebras to the case of unbounded operators. The CQ^* -algebra ($\mathscr{S}_2, \mathscr{S}^+$) of distributions with the twisted product is defined, and some of their Qu^* -subalgebras are described.

§1. Introduction

The noncommutativity of the multiplication of observables is the fundamental fact in quantum theory. This leads to the realization of the observables as (in general) unbounded operators in a Hilbert space. One can assume that the observables form a *-algebra. But already the fundamental procedure of Weyl quantization of classical observables leads to unbounded operators which cannot be multiplied in any cases.

Let $\mathscr{G} = \mathscr{G}(R^d)$ resp. $\mathscr{G}' = \mathscr{G}'(R^d)$ be the Schwartz spaces of test functions resp. tempered distributions with their strong topologies tresp. t'. We put $\mathscr{G}_2 = \mathscr{G}(R^{2d})$ and $\mathscr{G}'_2 = \mathscr{G}'(R^{2d})$. For every $f \in \mathscr{G}'_2$ we denote by \tilde{f} the Fourier transform $\tilde{f}(q, p) = (2\pi)^{-2d} \int e^{-i(q_u + p_v)} f(u, v)$ du dv. qu, pv are the Euclidean scalar products in R^d . Let $Q = (Q_1, \ldots, Q_d)$, $P = (P_1, \ldots, P_d)$ be the position and momentum operators $Q_i \phi =$ $q, \phi, p, \phi = \frac{1}{i} \partial_{q_i} \phi$ defined on $\phi(q) \in \mathscr{G} \subset \mathscr{H} = L_2(R^d)$. $W(q, p) = e^{i(qQ + pP)}$ is a unitary operator on \mathscr{H} . They Weyl quantization or Weyl correspondence [42] of a classical distribution $f \in \mathscr{G}'_2$ is the operator

Communicated by H. Araki, August 1, 1988.

^{*} Naturwissenschaftlich-Theoretisches Zentrum, Sektion Mathematik, Karl-Marx-Universität, 7010 Leipzig, Karl-Marx-Platz, German Democratic Republic.

^{**} Naturwissenschaftlich-Theoretisches Zentrum, Sektion Physik, Karl-Marx-Universität, 7010 Leipzig, Karl-Marx-Platz, German Democratic Republic.

GERD LASSNER AND GISELA A. LASSNER

$$\hat{f} \equiv W(f) = \int W(q, p) \,\tilde{f}(q, p) \, dq \, dp. \tag{1.1}$$

W(f) is a well-defined operator of $\mathscr{L}(\mathscr{G}, \mathscr{G}')$, i.e. a continuous linear map of \mathscr{G} into \mathscr{G}' , and the Weyl correspondence $f \to W(f)$ is an isomorphism between \mathscr{G}'_2 and $\mathscr{L}(\mathscr{G}, \mathscr{G}')$ (see §4). f is called the symbol of the Operator $\hat{f} \equiv W(f)$.

 $\mathscr{L}(\mathscr{G}, \mathscr{G}')$ is not an algebra, and therefore the product W(f)W(g) = W(h) is not always defined. It is defined e.g. if W(f), W(g) leave \mathscr{S} invariant. Then $h = f \circ g$ is called the twisted product of f, g, and it can be calculated by the formulae

$$(f \circ g) (q, p) = \pi^{-2d} \int f(q+q_1, p+p_1) g(q+q_2, p+p_2) e^{2i(q_1p_2-q_2p_1)} \prod_i dq_i dp_i$$
(1.2)

if the integral is well-defined in a certain sense. Thus the twisted product is only defined for partial pairs $f, g \in \mathscr{S}'_2$ and therefore \mathscr{S}'_2 has the structure of quasi *-algebra which is isomorphic to the quasi *-algebra $\mathscr{L}(\mathscr{S}, \mathscr{S}')$. This we had pointed out in [26, 27].

We repeat the fundamental facts in §4 and discuss the problem of extending the twisted multiplication.

In §§2, 3 we collect some basic properties of quasi *-algebras of operators and define the class of CQ^* -algebras, which are the natural generalization of C^* -algebras to the case of unbounded operators.

We gratefully acknowledge discussions with J.-P. Antoine, G. Epifanio, K.-D. Kürsten, K. Schmüdgen, W. Timmermann, and A. Uhlmann. One of the authors, G. Lassner, thanks Professors S. Albeverio, Ph. Blanchard, L. Streit and the ZiF in Bielefeld for the warm hospitality.

§2. Quasi-Uniform Topologies

The rigged Hilbert space $\mathscr{G} \subset L_2 \subset \mathscr{G}'$ is a special case of such spaces generated by a Hilbert scale $\mathscr{H}^s = \mathscr{D}(T^s), -\infty < s < +\infty$, where $T \ge I$ is a unbounded selfadjoint operator in a Hilbert space $\mathscr{H} = \mathscr{H}^\circ$. The scalar product in $\mathscr{H}^s = \mathscr{D}(T^s)$ is $\langle \phi, \psi \rangle_s = \langle T^s \phi, T^s \psi \rangle$, where \langle , \rangle is the scalar product in \mathscr{H} . Let us put $\mathscr{D}[t] = \mathscr{D}^\infty(T) =$ $\lim_s \operatorname{proj} \mathscr{H}^s$ and $\mathscr{D}'[t'] = \mathscr{D}^{-\infty}(T^{-\infty}) = \lim_s \operatorname{ind} \mathscr{H}^s$. t resp. t' are the projective resp. inductive limits of the topologies of \mathscr{H}^s . Thus we

get a rigged Hilbert space

$$\mathscr{D}[t] \subset \mathscr{H} \subset \mathscr{D}'[t']. \tag{2.1}$$

For $\phi \in \mathscr{H}^s$ and $\psi \in \mathscr{H}^{-s}$, $s \in [-\infty, \infty]$ the scalar products $\langle \phi, \phi \rangle = \langle \overline{\psi}, \phi \rangle$ are well-defined and the elements $F \in \mathscr{D}'$ define by $\langle F, \phi \rangle$ all linear continuous functionals on \mathscr{D}' . Therefore, \mathscr{D}' is the dual space of \mathscr{D} (equipped with the dual linear structure) and t' is the strong topology of the dual pair $(\mathscr{D}', \mathscr{D})$. The sesquilinear form $\langle F, \phi \rangle F \in \mathscr{D}', \phi \in \mathscr{D}$ is antilinear in the first factor. Without loss of generality we can suppose T to have only integer eigenvalues t_i in the spectrum, $1 \leq t_1 < t_2 < t_3 < \ldots$, $t_i \rightarrow \infty$. Let $\mathscr{H} = \sum_i \bigoplus \mathscr{H}_i$ be the corresponding decomposition of the Hilbert space, $T\phi = \sum_i t_i\phi_i$ for $\phi = \sum \phi_i \in \mathscr{D}$, then we get [22]

$$\mathscr{D} = \{\phi \colon \sum t_i^{2k} ||\phi_i||^2 < \infty, \ k = 0, 1, 2...\}$$

$$(2.2)$$

and the topology t is defined by the seminorms, $k=0, 1, 2, \ldots$,

$$||\phi||_{k} = ||T^{k}\phi|| = (\sum t_{i}^{2k} ||\phi_{i}||^{2})^{1/2}.$$
(2.3)

Let Γ_T be the set of all decreasing sequences (a_i) of positive numbers, $a_1 \ge a_2 \ge \ldots > 0$, that $\sum a_i^2 t_i^{2k} < \infty$ for every $k = 0, 1, 2, \ldots$. The elements $F = \{\phi_1, \phi_2, \ldots\} \in \mathcal{D}', \ \phi_i \in \mathcal{H}_i$, are determined by the conditions

$$||F||_{(a_i)} = \sum ||\psi_i||a_i < \infty$$
(2.4)

for all $(a_i) \in \Gamma_T$. The seminorms $|| \cdot ||_{(a_i)}$, $(a_i) = \Gamma_T$, define the topology t' on \mathscr{D}' .

Let \mathscr{F} be the set of all positive, monotone and continuous functions f(x) on \mathbb{R}^1_+ , which are decreasing faster than any inverse power, i. e. $\sup_{x\geq 0} x^k f(x) < \infty$ for all $k=0,1,2,\ldots$. Now we can characterize the bounded sets of $\mathscr{D}[t]$ [8, 22, 23]:

Lemma 2.1.

i) For $(a_n) \in \Gamma_T$ we put $\mathcal{M}_{(a_n)} = \{\phi = \sum a_n \phi_n : \phi_n \in \mathcal{H}_n, ||\phi_n|| \leq 1\}$ and $\mathcal{M}_f = \{f(T)\phi; \phi \in \mathcal{H}, ||\phi|| \leq 1\}$ for $f \in F$. The two systems $\{\mathcal{M}_{(a_n)}; (a_n) \in \Gamma_T\}$ and $\{\mathcal{M}_f; f \in \mathcal{F}\}$ of bounded sets coincide and form a fundamental system of bounded sets in $\mathcal{D}[t]$.

ii) The sets $\{T^k\phi: ||\phi|| \le 1\}, k=0,1,2,\ldots, are the unit spheres in <math>\mathcal{H}_{-k}$ and therefore they form a total system of bonded sets in $\mathcal{D}'[t']$.

Now we recall some fundamental facts about the unbounded operators on a rigged Hilbert space [21, 22] which lead to the concept of quasi *-algebras.

Let \mathscr{D} be a unitary space (incomplete Hilbert space) with the scalar product $\langle .,. \rangle$, \mathscr{H} its completion. By $\mathscr{L}^+(\mathscr{D})$ we denote the set of all endomorphisms $A \in \operatorname{End} \mathscr{D}$ for which an $A^+ \in \operatorname{End} \mathscr{D}$ exists with $\langle \psi, A\phi \rangle = \langle A^+\psi, \phi \rangle$ for all $\phi, \psi \in \mathscr{D}$. $\mathscr{L}^+(\mathscr{D})$ is a *-algebra with the usual algebraic operation with operators and the involution $A \to A^+$. If $\mathscr{D} = \mathscr{H}$, then $\mathscr{L}^+(\mathscr{D}) = \mathscr{B}(\mathscr{H})$ the C*-algebra of all bounded operators on \mathscr{H} . We call a *-subalgebra \mathscr{A} of $\mathscr{L}^+(\mathscr{D})$ containing the identity Op^{*} -algebra [21].

On \mathcal{D} we define a locally convex topology t by the following system of seminorms

$$t: ||\phi||_{A} = ||A\phi||, \ A \in \mathscr{L}^{+}(\mathscr{D}).$$

$$(2.5)$$

A domain in \mathscr{H} is called a *closed domain*, if $\mathscr{D}[t]$ is a complete space. Then $\mathscr{D} = \bigcap_{A \in \mathscr{Q}^+(\mathscr{D})} \mathscr{D}(\overline{A})$, where $\mathscr{D}(\overline{A})$ is the domain of the closure \overline{A} of the operator A.

The dual space of $\mathscr{D}[t]$ we denote by $\mathscr{D}'[t']$, where t' is the strong topology on \mathscr{D}' . The Hilbert space \mathscr{H} is canonical imbedded into $\mathscr{D}'[t']$. Hence, any dense domain $\mathscr{D} \subset \mathscr{H}$ defines in a canonical way a rigged Hilbert space

$$\mathscr{D}[t] \rightarrow \mathscr{H} \rightarrow \mathscr{D}'[t']$$

where the scalar product $\langle F, \phi \rangle$ is defined for $\phi \in \mathcal{D}$, $F \in \mathcal{D}'$. In what follows we regard only such \mathcal{D} for which $\mathcal{D}[t]$ is a reflexive space. Let $\mathcal{L}(\mathcal{D}, \mathcal{D}')$ be the linear space of all continuous maps of $\mathcal{D}[t]$ into $\mathcal{D}'[t']$. Further we write $\mathcal{L}(\mathcal{D}) = \mathcal{L}(\mathcal{D}, \mathcal{D})$ and $\mathcal{L}(\mathcal{D}')$ $= \mathcal{L}(\mathcal{D}', \mathcal{D}')$ which are algebras with respect to the usual operations with maps. Then we get ([22, Lemma 2.1]):

Lemma 2.2. Let $\mathscr{D}[t]$ be a reflexive space. Then

i) if $A \in \mathscr{L}(\mathcal{D}, \mathcal{D}')$, so the adjoint operator $A^+ \in \mathscr{L}(\mathcal{D}, \mathcal{D}')$ is uniquely defined by $\langle A\phi, \phi \rangle = \langle \overline{A^+\phi, \phi} \rangle$. $A \to A^+$ is an involution on $\mathscr{L}(\mathcal{D}, \mathcal{D}')$.

ii) $\mathscr{L}(\mathscr{D}), \ \mathscr{L}(\mathscr{D}') \subset \mathscr{L}(\mathscr{D}, \mathscr{D}') \text{ and } \ \mathscr{L}(\mathscr{D})^+ = \mathscr{L}(\mathscr{D}')$

iii) $\mathscr{L}^+(\mathscr{D})$ is a subspace of $\mathscr{L}(\mathscr{D})$ and it is $\mathscr{L}^+(\mathscr{D}) = \mathscr{L}(\mathscr{D}) \cap \mathscr{L}(\mathscr{D}')$.

If E, F are two locally convex spaces, then the topology τ of uniformly bounded convergence on $\mathscr{L}(E, F)$ is defined by all seminorms $q_{\alpha,\mathscr{M}}(A) = \sup_{\phi \in \mathscr{M}} p_{\alpha}(A\phi)$ where p_{α} runs over the seminorms defining the topology of F and \mathscr{M} runs over all bounded sets in E.

The topologies of uniformly bounded convergences on the spaces $\mathscr{L}(\mathscr{D}, \mathscr{D}'), \mathscr{L}(\mathscr{D})$ and $\mathscr{L}(\mathscr{D}')$ we denote by $\tau_{\mathscr{D}}, \tau^{\mathscr{D}}$ and $\tau^{\mathscr{D}'}$. Let us describe the seminorms determining these topologies more explicitly [8, 22].

$$\tau_{\mathscr{D}}: ||A||_{\mathscr{M}} = \sup_{\substack{\phi, \phi \in \mathscr{M} \\ \phi \neq \in \mathscr{M}}} |\langle A\phi, \phi \rangle|, \ \mathscr{M} \text{ bounded in } \mathscr{D}[t]$$

$$\tau^{\mathscr{D}}: ||A||^{\mathscr{M},\mathscr{B}} = \sup_{\substack{\phi \in \mathscr{M} \\ \phi \in \mathscr{M}}} ||BA\phi||, \ B \in \mathscr{L}^{+}(\mathscr{D}), \ \mathscr{M} \text{ bounded in } \mathscr{D}[t]$$

$$\tau^{\mathscr{D}'}: ||A||^{\mathscr{M}',\mathscr{M}} = \sup_{\substack{\phi \in \mathscr{M} \\ \psi \in \mathscr{M}'}} |\langle A\phi, \phi \rangle|, \ \mathscr{M} \text{ bounded in } \mathscr{D}[t]$$

$$\mathscr{N}' \text{ bounded in } \mathscr{D}'[t']. \qquad (2.6)$$

This definition of the topologies makes sense also for non-reflexive $\mathscr{D}[t]$.

Lemma 2.3[8,22]. Let $\mathcal{D}[t]$ be reflexive. Then

i) the topology $\tau^{\mathscr{D}'}$ is given by the seminorms $||A||_{+}^{\mathscr{M},B} = ||A^+||_{-}^{\mathscr{M},B}$ where B runs over all operators of $\mathscr{L}^+(\mathscr{D})$ and \mathscr{M} over all bounded sets of $\mathscr{D}[t]$.

- ii) $\mathscr{L}(\mathscr{D})[\tau^{\mathscr{D}}], \mathscr{L}(\mathscr{D}')[\tau^{\mathscr{D}'}]$ are topological algebras of operators.
- iii) $A \rightarrow A^+$ is one-to-one between $\mathscr{L}(\mathscr{D})[\tau^{\mathscr{D}}]$ and $\mathscr{L}(\mathscr{D}')[\tau^{\mathscr{D}'}]$.
- iv) $\mathscr{L}^+(\mathscr{D})[\tau_{\mathscr{D}}]$ is a locally convex *-algebra.

Let us still introduce $\tau_*^{\mathscr{D}} = \max(\tau^{\mathscr{D}}, \tau^{\mathscr{D}'})$ on $\mathscr{L}^+(\mathscr{D})$. Then $\mathscr{L}^+(\mathscr{D})$ becomes a locally convex *-algebra with respect to the topology $\tau_*^{\mathscr{D}}$. The relations between the different linear spaces of operators and their topologies are expressed by the following scheme.

$$\mathscr{L}^{+}(\mathscr{D})[\tau^{\mathscr{D}}_{*}] \xrightarrow{\mathscr{L}} \mathscr{L}(\mathscr{D})[\tau^{\mathscr{D}}] \xrightarrow{\mathscr{L}} \mathscr{L}(\mathscr{D}, \mathscr{D}')[\tau_{\mathscr{D}}] \qquad (2.7)$$

where \longrightarrow denotes a continuous injection. If $\mathscr{D} = \mathscr{H}$ then all four spaces coincide with $\mathscr{B}(\mathscr{H})$ and all topologies with the operator norm

topology. Among the four topologies $\tau_{\mathscr{D}}$ plays an exceptional role [21, 22]. Therefore, we call it the *uniform topology* on $\mathscr{L}^+(\mathscr{D})$. The other topologies are called *quasi-uniform topologies*.

Now we go back to rigged Hilbert spaces (2.1), associated to $\mathscr{D}[t] = \mathscr{D}^{\infty}(T)$. Then the quasi-uniform topologies (2.6) are defined by the following systems of seminorms [23]:

$$\begin{aligned} \pi_{\mathscr{D}} : & ||A||_{f} = ||f(T)Af(T)|| \\ \pi^{\mathscr{D}} : & ||A||_{f^{k}}^{f,k} = ||T^{k}Af(T)|| \\ \pi^{\mathscr{D}} : & ||A||_{f^{k}}^{f,k} = ||f(T)AT^{k}|| \\ \pi^{\mathscr{D}} : & ||A||_{f^{k}}^{f,k} = \max\{||T^{k}Af(T)||, ||f(T)AT^{k}||\}, \end{aligned}$$

$$(2.8)$$

where f runs over F, $k=0,1,2,\ldots$, and the norm on the right-hand side is the usual operator norm.

Another explicitly given system of seminorms for the quasi-uniform topologies we get by using the decomposition $\mathscr{H} = \sum \bigoplus \mathscr{H}_i$ in eigenspaces \mathscr{H}_i of T(see (2,2)). Let P_i be the projection of \mathscr{H} to \mathscr{H}_i . Then every operator $A \in \mathscr{L}(\mathscr{D}, \mathscr{D}')$ gives a matrix $A = (A_{ij})$, i.e. $A = \sum_{i,j} A_{ij}$ with

$$A_{ij} = P_i A P_j, \quad P_i \mathscr{H} = \mathscr{H}_i \subset \mathscr{D}$$

$$(2.9)$$

and the quasi-uniform topologies are defined by the following seminorms [22], where (a_i) runs over all $(a_i) \in \Gamma_T$ and $k=0,1,2,\ldots$

$$\tau_{\mathscr{D}} : ||A||_{(a_{i})} = \sum_{i,j} ||A_{ij}||a_{i}a_{j}$$

$$\tau^{\mathscr{D}} : ||A||^{(a_{i}),k} = \sum_{i,j} ||A_{ij}||t_{i}^{k}a_{j}$$

$$\tau^{\mathscr{D}'} : ||A||_{+}^{(a_{i}),k} = \sum_{i,j} ||A_{ij}||a_{i}t_{j}^{k}$$

$$\tau_{*}^{\mathscr{D}} : ||A||^{(a_{i}),k} = \sum_{i,j} ||A_{ij}||(t_{i}^{k}a_{j} + a_{i}t_{j}^{k}).$$
(2.10)

The linear spaces (resp. algebras) of operators (2.7) are formed exactly by all operator-matrices $A = (A_{ij}), A_{ij} \colon \mathscr{H}_i \to \mathscr{H}_i$, for which the corresponding seminorms in (2.10) are finite. Furthermore, one can see immediately from (2.10) that with respect to each of the four topologies every A can be approximated by finite matrices $A_N = (A_{ij}),$ $A_{ij} = 0$ for $i, j \ge N$. Therefore we have ([22, Lemma 2.6]):

Lemma 2.4. i) $\mathcal{L}^+(\mathcal{D})$ is dense in the three other locally convex spaces of

operators \$\mathcal{L}(D)[\tau^D]\$, \$\mathcal{L}(D')[\tau^D']\$, and \$\mathcal{L}(D, D')[\tau_D]\$.
ii) All these four locally convex spaces of operators are complete.

All the above results about $(\mathscr{L}(\mathscr{D}, \mathscr{D}')[\tau_{\mathscr{D}}], \mathscr{L}^+(\mathscr{D})[\tau_{\ast}^{\mathscr{D}}])$, especially the fundamental Lemmas 2.1 and 2.4, can be generalized to a wide class of rigged Hilbert spaces $\mathscr{D} \subset \mathscr{H} \subset \mathscr{D}'$ [19,33]. But there exist also remarkable counterexamples, where $\mathscr{D}[t]$ is not separable and $\mathscr{L}^+(\mathscr{D})$ not dense in $\mathscr{L}(\mathscr{D}, \mathscr{D}')[\tau_{\mathscr{D}}]$ [18].

We conclude this Section with a third characterization of the topologies on the operators. They are defined by the following systems of seminorms, where (a_i) runs over all Γ_T , $k=0,1,2,\ldots$

$$\tau_{\mathscr{D}}: q_{(a_{i})}(A) = \sup_{i,j} ||A_{ij}||a_{i}a_{j}$$

$$\tau^{\mathscr{D}}: q^{(a_{i}),k}(A) = \sup_{i,j} ||A_{ij}||t_{i}^{k}a_{j}$$

$$\tau^{\mathscr{D}'}: q_{+}^{(a_{i}),k}(A) = \sup_{i,j} ||A_{ij}||a_{i}t_{j}^{k}$$

$$\tau_{*}^{\mathscr{D}}: q_{*}^{(a_{i}),k}(A) = \sup_{i,j} ||A_{ij}||(t_{i}^{k}a_{j} + a_{i}t_{j}^{k}). \qquad (2.11)$$

Since we supposed t_i , $i=1,2,\ldots$, to be integers, we have $\sum t_i^{-2} = \kappa < \infty$. Therefore, we get e.g. for the seminorms of the topology $\tau_{\mathscr{D}}$ in (2.10) and (2.11) the estimation $q_{\langle a_i \rangle}(A) \leq ||A||_{\langle a_i \rangle} \leq q_{\langle l_i^2 a_i \rangle}(A) \cdot \kappa^2$. In the same way one can prove the equivalence of the corresponding seminorms in (2.10) and (2.11).

§3. Qu*-Algebras

One of the fundamental ingredients of the C^{*-} and W^{*-} -theories is the relation $\mathscr{B}(\mathscr{H}) = \mathfrak{S}'_{1}$, i. e. the space \mathfrak{S}_{1} of all nuclear operators is the predual of the C^{*-} -algebra $\mathscr{B}(\mathscr{H})$ of all bounded operators on \mathscr{H} . This property can be generalized to $\mathscr{L}(\mathscr{D}, \mathscr{D}')$. For that first we describe the set $\mathfrak{S}_{1}(\mathscr{D})$ of the nuclear operators associated to a rigged Hilbert space [28]:

$$\mathfrak{S}_{1}(\mathfrak{D}) = \{ \rho : \rho \in \mathscr{L}^{+}(\mathfrak{D}), \ A\rho B \in \mathfrak{S}_{1} \text{ for } A, B \in \mathscr{L}^{+}(\mathfrak{D}) \}.$$
(3.1)

Let $||\rho||_1 = tr(\rho^+\rho)^{1/2}$ be the trace-norm on the nuclear operators, then by β^* we denote a locally convex topology on $\mathfrak{S}_1(\mathscr{D})$ defined by all seminorms $||A\rho B||_1$, $A, B \in \mathscr{L}^+(\mathscr{D})$. In the case $\mathscr{D} = \mathscr{D}^{\infty}(T)$ every operator $A \in \mathscr{L}^+(\mathscr{D})$ can be estimated by a power of T, and therefore the topology β^* is defined by the following denumerable system of seminorms (see also [25]):

$$\beta^*: ||\rho||_{(k)} = ||T^k \rho T^k||_1, \ k = 0, 1, \dots$$
(3.2)

In correspondence with (2.10-2.11) the β^* -topology can also be given by the seminorms:

$$p_{k}(\rho) = \sum_{i,j} ||\rho_{ij}||_{1} t_{i}^{k} t_{j}^{k}$$

$$\beta^{*}: \qquad (3.3)$$

$$q_{k}(\rho) = \sup_{i,j} ||\rho_{ij}||_{1} t_{i}^{k} t_{j}^{k}.$$

This follows from the estimations

$$||T^{k}\rho T^{k}||_{1} \leq \sum_{i,j} ||P_{i}T^{k}\rho T^{k}P_{j}||_{1} = p_{k}(\rho)$$

$$p_{k}(\rho) = \sum_{i,j} ||\rho_{ij}||_{1}t_{i}^{k}t_{j}^{k} \leq q_{k+2}(\rho) \kappa^{2}$$

$$q_{k}(\rho) \leq ||T^{k}\rho T^{k}||_{1} = ||\rho||_{(k)}$$
(3.4)

where $\kappa = \sum t_i^{-2}$.

Furthermore, in correspondence with Lemma 2.1 we have

Lemma 3.1. For every $f \in \mathscr{F}$ we set $\mathfrak{B}_f = \{f(T) Df(T); D \in \mathfrak{S}_1, ||D||_1 \leq 1\}$ (3.5)

is bounded in $\mathfrak{S}(\mathcal{D})$. The system of bounded sets $\{\mathfrak{B}_f; f \in \mathcal{F}\}$ is total in $\mathfrak{S}_1(\mathcal{D})[\beta^*]$.

In fact, let \mathfrak{B} be a bounded set in $\mathfrak{S}_1(\mathfrak{D})[\beta^*]$ and $\alpha_{ij} = \sup_{\rho \in \rho_1(\mathfrak{D})} ||\rho_{ij}||_1$, then by (3.3) $\sup_{i,j} \alpha_{ij} t_i^k t_j^k < \infty$ for every $k = 0, 1, 2, \ldots$. Therefore, it exists a $f \in \mathscr{F}$ with $\alpha_{ij} \leq f(t_i) f(t_j)$. Thus $\mathfrak{B} \subset \mathfrak{B}_f$. If $\rho \in \mathfrak{S}_1(\mathfrak{D})$, $A \in \mathscr{L}^+(\mathfrak{D})$, then

$$tr\rho A = \sum_{i,j,k} tr\rho_{ik} A_{kj}.$$
 (3.6)

As a consequence of (3.3) and the characterization of the $A \in \mathscr{L}(\mathscr{D}, \mathscr{D}')$ by the finiteness of the first seminorm in (2.10), we see that the right-hand side of (3.6) is also defined for $\rho \in \mathfrak{S}_1(\mathscr{D})$ and $A \in \mathscr{L}(\mathscr{D}, \mathscr{D}')$. We choose the notation $tr\rho A$ also for this general case, but ρA is in general not a nuclear operator (also not bounded).

Lemma 3.2.

- i) (S₁(D), L(D, D')) is a dual pair with respect to the binilinear form (ρ, A) = trρA defined by (3.6).
- ii) The uniform topology $\tau_{\mathcal{D}}$ on $\mathcal{L}(\mathcal{D}, \mathcal{D}')$ and the topology β^* on $\mathfrak{S}_1(\mathcal{D})$ are the strong topologies of the dual pair.

iii)
$$\mathscr{L}(\mathscr{D}, \mathscr{D}')[\tau_{\mathscr{D}}]$$
 is the strong dual of $\mathfrak{S}_{1}(\mathscr{D})[\beta^{*}] = \mathscr{D} \otimes_{\pi} \mathscr{D}, i.e.$
 $\mathscr{L}(\mathscr{D}, \mathscr{D}')[\tau_{\mathscr{D}}] = \mathfrak{S}_{1}(\mathscr{D})[\beta^{*}]'.$ (3.7)

This lemma (see [24, 26]) is essentially a consequence of the characterization of $\mathscr{L}(\mathscr{D}, \mathscr{D}')[\tau_{\mathscr{D}}], \mathfrak{S}_1(\mathscr{D})[\beta^*]$ by the seminorms (2.10), (3.3). The duality $\mathscr{L}(\mathscr{D}, \mathscr{D}')[\tau_{\mathscr{D}}] = (\mathscr{D} \otimes_{\pi} \mathscr{D})'$ is a special case of the unsolved "Grothendieck-Problem", whether $\mathscr{L}(E, F') \equiv B(E \times F)[\tau_{bb}] = (E \otimes_{\pi} F)'$ (for arbitrary metric spaces E, F ([17, p. 1985]). For Frechet spaces $E = F = \mathscr{D}[t]$ which are closed domains (see (2.5)) the duality $\mathscr{L}(\mathscr{D}, \mathscr{D}') = (\mathscr{D} \otimes_{\pi} \mathscr{D})'$ has been proved recently [20].

The duality $\mathscr{L}(\mathscr{D}, \mathscr{D}')[\tau_{\mathscr{D}}] = \mathfrak{S}_1(\mathscr{D})[\beta^*]'$ is a consequence of (2.8) and Lemma 3.1, since

$$||f(M)A f(M)|| = \sup_{\|D\|_{1} \le 1} |tr \ D \ f(M)Af(M)| = \sup_{\rho \in \mathfrak{B}_{f}} |tr\rho A|.$$
(3.8)

By Lemma 3. 2, iii), $\mathscr{L}(\mathscr{D}, \mathscr{D}')[\tau_{\mathscr{D}}]$ is the natural generalization of the W^* -algebra $\mathscr{B}(\mathscr{H})$ to unbounded operators. But $\mathscr{L}(\mathscr{D}, \mathscr{D}')$ is not a *-algebra. It is a quasi *-algebra in the sense of the following definition [24]:

Definition 3.3. A locally convex quasi *-algebra, shortly Qu^* -algebra, $(\mathscr{A}[\xi], \mathscr{A}_0)$ is defined by the following conditions:

(1) $\mathscr{A}[\xi]$ is a locally convex space with a distinguished dense subspace \mathscr{A}_0 .

(2) Partial multiplications $A \rightarrow AB$ and $A \rightarrow BA$ are defined on \mathscr{A} for every $B \in \mathscr{A}_0$. They are continuous linear operators on $\mathscr{A}[\xi]$ and \mathscr{A} is an \mathscr{A}_0 -module with respect to these multiplications.

(3) A continuous involution $A \rightarrow A^+$ is defined on $\mathscr{A}[\xi]$, which leaves \mathscr{A}_0 invariant. $(AB)^+ = B^+A^+$, $(BA)^+ = A^+B^+$ for $B \in \mathscr{A}_0$, $A \in \mathscr{A}$. Qu^* -algebras are special cases of the more general class of partial *-algebras [1, 2, 3], which have importance in mathematical physics. A simple consequence of the definition is the following

Lemma 3.4.

i) Let $(\mathscr{A}[\xi], \mathscr{A}_0)$ be a Qu*-algebra and $\mathscr{A}[\xi]$ the completion. Then the multiplication A, $B \rightarrow AB$, BA can be extended by continuity for $A \in \mathscr{A}[\xi], B \in \mathscr{A}_0$. $(\mathscr{A}[\xi], \mathscr{A}_0)$ is a Qu*-algebra, the completion of $(\mathscr{A}[\xi], \mathscr{A}_0)$.

ii) The completion of a topological *-algebra $\mathscr{A}[\xi]$ is a Qu*-algebra $(\widetilde{\mathscr{A}[\xi]}, \mathscr{A})$.

The completion functions leads beyond the category of topological *-algebras. The category of Qu^* -algebras is the smallest extension with completion. Since the completeness of the observable *-algebras in statistical physics is important for the existence of limits (e.g. thermodynamical limit), the fundamental results on general *-algebras in physics (see [4, 7, 14, 37, 38, 39, 40]) must be generalized to Qu^* -algebras.

Let us call a dense domain $\mathscr{D}[t] \subset \mathscr{H}$ a basic space, if it is reflexive and Lemma 2.4 and Lemma 3.2 hold true.

In this paper, all basic spaces are of the form $\mathscr{D} = \mathscr{D}^{\infty}(T)$.

Theorem 3.5.

i) Let \mathscr{D} be a basic space. For the topologies of (2.7) we choose the abbreviation $\tau \equiv \tau_{\mathscr{D}}, \tau_* = \tau_*^{\mathscr{D}}$. $(\mathscr{L}(\mathscr{D}, \mathscr{D}')[\tau], \mathscr{L}^+(\mathscr{D}))$ is a Qu*algebra.

ii) For $A \in \mathscr{L}(\mathcal{D}, \mathcal{D}')$ the multiplications $B \to AB$, BA are continuous linear maps from $\mathscr{L}^+(\mathscr{D})[\tau_*]$ to $\mathscr{L}(\mathscr{D}, \mathscr{D}')[\tau]$.

Proof: i) By Lemma 2.4 we have only to show the continuity of the multiplication. But by (2.6) we get for $A \in \mathscr{L}(\mathcal{D}, \mathcal{D}')$, $B \in \mathscr{L}^+(\mathcal{D})$

$$||BA||_{\mathscr{M}} \leq ||A||_{\mathscr{M} \cup B^{+} \mathscr{M}}$$
$$||AB||_{\mathscr{M}} \leq ||A||_{B\mathscr{M} \cup \mathscr{M}}.$$
 (3.9)

ii) Let $B \in \mathscr{L}^+(\mathscr{D})$ and $A \in \mathscr{L}(\mathscr{D}, \mathscr{D}')$, then ||f(M)BA f(M)|| =

 $\sup_{\phi \in \mathcal{H}} ||f(M)B\phi||, \text{ where } \mathcal{N} = \{Af(M)\phi \colon \phi \in \mathcal{H}, ||\phi|| \le 1\}.$ But by Lemma 2.1, ii) \mathcal{M} is contained in a set const. $\{T^k\phi \colon ||\phi|| \le 1\}.$ Therefore $||BA||_f \le \text{const. } ||f(M)BT^k|| = \text{const. } ||B||_{+}^{f,k}$ (see (2.8)). The estimation for $||AB||_f$ is analogous.

Definition 3.6. $(\mathscr{B}[\xi], \mathscr{B}_0)$ is called a Qu^* -subalgebra of a Qu^* algebra $(\mathscr{A}[\xi], \mathscr{A}_0)$, if $\mathscr{B}[\xi]$ is a topological subspace of $\mathscr{A}[\xi], \mathscr{B}_0$ a *-subalgebra of $\mathscr{A}_0 \cap \mathscr{B}$ dense in $\mathscr{B}[\xi]$ and if \mathscr{B} is a \mathscr{B}_0 submodul of \mathscr{B}_0 . $(\mathscr{B}[\xi], \mathscr{B}_0)$ is called a closed Qu^* -subalgebra of $(\mathscr{A}[\xi], \mathscr{A}_0)$ if \mathscr{B} is a closed subspace of $\mathscr{A}[\xi]$ and $\mathscr{B}_0 = \mathscr{A}_0 \cap \mathscr{B}$.

The maximal Qu^* -algebra of operators $(\mathscr{L}(\mathscr{D}, \mathscr{D}')[\tau], \mathscr{L}^+(\mathscr{D}))$ (Theorem 3.5) on a rigged Hilbert space is the generalization of the C^* - and W^* -algebra $\mathscr{B}(\mathscr{H})$. Therefore, we propose the following definition

Definition 3.7. Let \mathscr{D} be a basic space. A closed Qu^* -subalgebra $(\mathscr{A}[\tau], \mathscr{A}_0)$ of $(\mathscr{L}^+(\mathscr{D}, \mathscr{D})[\tau], \mathscr{L}^+(\mathscr{D}))$ is called a CQ^* -algebra of operators. It is called WQ^* -algebra of operators if $\mathscr{A}[\tau]$ is the strong dual of $\mathscr{A}_* = \mathfrak{S}_1(\mathscr{D})[\beta^*]/\mathscr{A}^0$, $\mathscr{A}^0 = \{\rho \in \mathfrak{S}_1(\mathscr{D}) : tr\rho A = 0 \text{ for all } A \in \mathscr{A}\}$ is the polar of \mathscr{A} in the dual pair $(\mathscr{L}(\mathscr{D}, \mathscr{D}')[\tau], \mathfrak{S}_1(\mathscr{D}) [\beta^*])$. An arbitrary Qu^* -algebra $(\mathscr{A}[\xi], \mathscr{A}_0)$ we call CQ^* -algebra resp. WQ^* -algebra if it is isomorphic to a CQ^* -algebra resp. WQ^* -algebra of operators.

In the CQ^* -algebra $(\mathscr{L}(\mathscr{D}, \mathscr{D}')[\tau], \mathscr{L}^+(\mathscr{D}))$ the *-algebra $\mathscr{L}^+(\mathscr{D})$ is maximal in the sense of the following lemma. \mathscr{D} is assumed to be a basic space.

Lemma 3.8.

i) If for $A \in \mathscr{L}(\mathscr{D}, \mathscr{D}')$ the products AB, BA are in $\mathscr{L}^+(\mathscr{D})$ for every $B \in \mathscr{L}^+(\mathscr{D})$, then $A \in \mathscr{L}^+(\mathscr{D})$.

ii) If for $A \in \mathscr{L}(\mathscr{D}, \mathscr{D}')$ the products AB, BA are in $\mathfrak{S}_1(\mathscr{D})$ for all $B \in \mathfrak{S}_1(\mathscr{D})$, then $A \in \mathscr{L}^+(\mathscr{D})$. Consequently, $\mathscr{L}^+(\mathscr{D}) = \{A \in \mathscr{L}(\mathscr{D}, \mathscr{D}'): AB, BA \in \mathfrak{S}_1(\mathscr{D}) \text{ for all } B \in \mathfrak{S}_1(\mathscr{D}) \}.$

Proof: From the assumptions i) or ii) it follows $A: \mathcal{D} \to \mathcal{D}$ and also $A^+: \mathcal{D} \to \mathcal{D}$. By the closed graph theorem we have $A, A^+ \in \mathscr{L}(\mathcal{D})$ and therefore $A \in \mathscr{L}^+(\mathcal{D})$ (Lemma 2.2, iii)).

In ii) we chose the fact that $\mathfrak{S}_1(\mathfrak{D})$ is an ideal in $\mathscr{L}^+(\mathfrak{D})$ ([28], see also [36, 37]). The maximality of $\mathscr{L}^+(\mathfrak{D})$ in $\mathscr{L}(\mathfrak{D}, \mathfrak{D}')$ is connected with completeness of $\mathscr{L}^+(\mathfrak{D})[\tau_*]$, as we shall explain now.

Definition 3.9. Let $(\mathscr{A}[\xi], \mathscr{A}_0)$ be a Qu^* -algebra. By ξ_0 we denote the weakest locally convex topology on \mathscr{A}_0 such that for every bounded set $\mathfrak{M} \subset \mathscr{A}[\xi]$ the set of maps $\{B \to BA, B \to AB; A \in \mathfrak{M}\}$ from $\mathscr{A}_0[\xi_0]$ into $\mathscr{A}[\xi]$ is equicontinuous ([16, §15.13]).

Let \mathscr{F} be a system of seminorms $p(\cdot)$ on \mathscr{A} defining the topology ξ . We call \mathscr{F} a \mathscr{A}_0 -system of seminorms, if for every $p \in \mathscr{F}$ and $B \in \mathscr{A}_0$ also the seminorms $(Bp)(\cdot), (pB)(\cdot), p^+(\cdot) \in \mathscr{F}$

$$(Bp)(A) = p(BA), (pB)(A) = p(AB), p^+(A) = p(A^+).$$
 (3.10)

Lemma 3.10.

i) $\mathscr{A}[\xi_0]$ is a locally convex *-algebra

ii) If \mathscr{F} is an \mathscr{A}_0 -system of seminorms of $\mathscr{A}[\xi]$, then ξ_0 is defined by the following system of seminorms on \mathscr{A}_0

$$p_{\mathfrak{m}}(B) = \sup_{A \in \mathfrak{m}} p(BA), \quad {}_{\mathfrak{m}}p(B) = \sup_{A \in \mathfrak{m}} p(AB)$$
(3.11)

where $p \in \mathcal{F}$ and \mathfrak{M} runs over all bounded sets of $\mathscr{A}[\xi]$.

Proof: ii) is an immediate consequence of the definition of ξ_0 . i) follows from ii) and the following relations for $B, C \in \mathcal{A}_0, p \in \mathcal{F},$ \mathfrak{M} bounded in $\mathscr{A}[\xi]$:

$$p_{\mathfrak{m}}(BC) = p_{C_{\mathfrak{m}}}(B) = (Bp)_{\mathfrak{m}}(C)$$

$${}_{\mathfrak{m}}p(BC) = {}_{\mathfrak{m}}(pC)(B) = {}_{\mathfrak{m}}p(C)$$

$$p_{\mathfrak{m}}(A^{+}) = {}_{\mathfrak{m}^{+}}p^{+}(A), \; {}_{\mathfrak{m}}p(A^{+}) = p^{+}{}_{\mathfrak{m}^{+}}(A).$$
(3.12)

Lemma 3.11. Let \mathscr{D} be a basic space and $(\mathscr{L}(\mathscr{D}, \mathscr{D}')[\tau], \mathscr{L}^+$ $(\mathscr{D}))$ the maximal Qu^{*}-algebra. Then $\tau_0 = \tau_*$ on $L^+(\mathscr{D})$.

 $Proof: \text{ The system } ||A||_{\mathscr{M},\mathscr{N}} = \sup_{\phi \in \mathscr{M}, \phi \in \mathscr{N}} |\langle A\phi, \phi \rangle|, \ \mathscr{M}, \ \mathscr{N} \text{ bounded}$

in $\mathscr{D}[t]$, is a $\mathscr{L}^+(\mathscr{D})$ -system of seminorms for the topology τ (see (2.6)). For example we have $||A^+||_{\mathscr{M},\mathscr{M}} = ||A||_{\mathscr{M},\mathscr{M}} = ||A||_{\mathscr{M},\mathscr{M}} = ||A||_{\mathscr{M},\mathscr{B}^+\mathscr{M}}$, etc.

Let $\mathfrak{L} = \{A \in \mathscr{B}(\mathscr{H}), ||A|| \leq 1\}$ the unit sphere of $\mathscr{B}(\mathscr{H}) \subset \mathscr{L}(\mathscr{D}, \mathscr{D}')$. \mathfrak{L} is bounded in $\mathscr{L}(\mathscr{D}, \mathscr{D}')[\tau]$. Since \mathfrak{L} contains all projections $|\phi\rangle\langle\phi|, ||\phi|| = ||\phi|| = 1$, there is a $\lambda > 0$ for every bounded set $\mathscr{M} \subset \mathscr{D}[t]$ such that $\lambda \cdot \mathfrak{L} \cdot \mathscr{M} \supset \mathscr{H} = \{\phi \in \mathscr{H}; ||\phi|| \leq 1\}$. Now we put $\mathfrak{M} = \lambda T^+ \cdot \mathfrak{L}$ for one $T \in \mathscr{L}^+(\mathscr{D})$. For the seminorm $p(\cdot) \equiv ||\cdot||_{\mathscr{M}} \equiv ||\cdot||_{\mathscr{M},\mathscr{M}}$ we estimate $p_{\mathfrak{M}}(\cdot)$ (3.11) from below and get

$$p_{\mathfrak{m}}(B) = \sup_{A \in \mathfrak{m}} ||BA||_{\mathscr{M}} = \sup_{A \in \mathfrak{m}, \phi, \phi \in \mathscr{M}} |\langle BA\phi, \psi \rangle|$$

$$= \sup_{C \in \mathfrak{n}, \phi, \phi \in \mathscr{M}} \lambda |\langle C\phi, TB^{+}\psi \rangle|$$

$$\geq \sup_{\mathcal{Q} \in \mathscr{M}, \phi \in \mathscr{M}} |\langle \mathcal{Q}, TB^{+}\psi \rangle| = ||B^{+}||^{\mathscr{M}, T}.$$
(3.13)

Thus we have estimated a seminorm $||B||_{+}^{\mathscr{M},T}$ of τ_* (see Lemma 2.3) by a seminorm $p_{\mathfrak{m}}(B)$ of τ_0 . On the same way every seminorm of τ_* can be estimated. Therefore, τ_0 is stronger than τ_* . But since $\mathscr{L}^+(\mathscr{D})[\tau_*]$ is a barrelled space, τ_0 cannot be stronger than τ_* by Theorem 3.5, ii). Therefore $\tau_* = \tau_0$, and the proof is complete.

Let $(\mathscr{A}[\xi], \mathscr{A}_0)$ be a Qu^* -algebra with complete $\mathscr{A}[\xi]$. Then the bilinear maps $A, B \to A \cdot B, B \cdot A$ from $\mathscr{A}_0 \times \mathscr{A}$ to \mathscr{A} can be extended to $\widetilde{\mathscr{A}}_0[\xi_0] \times \mathscr{A}$ by continuity. In that sense $\mathscr{L}^+(\mathscr{D})$ is maximal in $\mathscr{L}(\mathscr{D}, \mathscr{D}')[\tau]$ by the last Lemma, since $\mathscr{L}^+(\mathscr{D})[\tau_*]$ is complete.

§4. Weyl Quantization and Twisted Product

The Weyl quantization $f \to W(f)$ leads to operators on the rigged Hilbert space $\mathscr{G} \subset L_2 \subset \mathscr{G}'$. It is of the type (2.1) $\mathscr{G} = \mathscr{D}^{\infty}(T)$, $\mathscr{G}' = \mathscr{D}^{-\infty}(T)$ where for T we can take the operator $T = P^2 + Q^2 + 1$ $= P_1^2 + \ldots + P_d^2 + Q_1^2 + \ldots + Q_d^2 + 1$ (number operator). Therefore, all definitions and statements of §§2, 3 are applicable. For the topologies of the Qu^* -algebra $(\mathscr{L}(\mathscr{G}, \mathscr{G}')[\tau_{\mathscr{G}}], \mathscr{L}^+(\mathscr{G})[\tau_{\ast}^{\mathscr{G}}])$ we choose the abbreviations $\tau \equiv \tau_{\mathscr{G}}, \tau_{\ast} \equiv \tau_{\ast}^{\mathscr{G}}$ (see Theorem 3.5).

The differential operator T generates the Hilbert scale

$$\mathscr{H}_{s} = \mathscr{D}(T^{s}) = T^{-s}L_{2}(\mathbb{R}^{d}), \quad -\infty < s < \infty$$

$$(4.1)$$

of Sobolev spaces, $\mathscr{S} = \lim_{S} \operatorname{proj} \mathscr{H}_{S}$, $\mathscr{S}' = \lim_{S} \operatorname{ind} \mathscr{H}_{S}$. Since T^{-2d} is a

nuclear operator, besides $\mathscr{L}(\mathscr{G}, \mathscr{G}') = \mathfrak{S}_1(\mathscr{G})'$ we have also $\mathfrak{S}_1(\mathscr{G}) = \mathscr{L}^+(\mathscr{G})[\tau]' = \mathscr{L}(\mathscr{G}, \mathscr{G}')[\tau]'$ [28] (see also [29]). \mathscr{G} is a Montel space [16]. Therefore, the last duality relation is a special case of the more general results in [34].

Since $\mathscr{L}(\mathscr{S}, \mathscr{S}')[\tau]$ is a dual space with all good properties for an integration theory, the Weyl integral (1.1) $(W(f) = \int e^{i(qQ+pP)} \tilde{f}$ (q, p)dq dp is well-defined in $\mathscr{L}(\mathscr{S}, \mathscr{S}')$ for any $f \in \mathscr{S}'_2$ [26, 27].

Theorem 4.1 [13, 30, 32]. The Weyl quantization $f \rightarrow W(f)$ is a linear continuous isomorphism between the locally convex spaces \mathscr{G}'_2 and $\mathscr{L}(\mathscr{G}, \mathscr{G}')[\tau]$ and also between \mathscr{G}_2 and $\mathfrak{S}_1(\mathscr{G})$, i.e.

symbol
$$f : \mathscr{G}'_{2} \supset L_{2} \supset \mathscr{G}_{2}$$

 $\uparrow \qquad \uparrow \qquad (4.2)$
operator $W(f) : \mathscr{L}(\mathscr{G}, \mathscr{G}') \supset \mathfrak{S}_{2} \supset \mathfrak{S}_{1}(\mathscr{G}).$

From the classical Banach space only the symbols $f \in L_2$ are in correspondence to a well-known class of operators, namely to the Hilbert-Schmidt-operators $W(f) \in \mathfrak{S}_2$ [32], and for $f, g \in \mathfrak{S}_2$

tr
$$W(f) W(g) = \frac{1}{(2\pi)^d} \int f(q, p) g(q, p) dq dp.$$

If $f \in \mathscr{S}_2$, then $W(f) \in \mathfrak{S}_1(\mathscr{S})$, but the symbols of all nuclear operators do not form a classical Banach space. In [6] it has been shown that there are nonsummable functions leading to nuclear operators but also bounded functions corresponding to unbounded operators (see also [9, 10, 15]).

If $f \in \mathscr{S}'_2$ and $g \in \mathscr{S}_2$, then the twisted products (1.2) $f \circ g$, $g \circ f$ are well-defined (in the sense of distribution) and elements of \mathscr{S}'_2 . Furthermore, $f \circ g \in \mathscr{S}_2$ if f, $g \in \mathscr{S}_2$. All these multiplications are (separately) continuous in the corresponding topologies. More precisely, we have the following theorem [26, 27].

Theorem 4.2.

i) $(\mathscr{G}'_2, \mathscr{G}_2)$ is a Qu*-algebra with respect to the twisted product (1.2) and the involution $f \rightarrow f^+ = \overline{f}$. It is also called the Qu*-algebra of symbols.

ii) The Weyl quantization $f \rightarrow W(f)$ is an isomorphism of the Qu^{*}-

algebra $(\mathscr{G}'_2, \mathscr{G}_2)$ of symbols onto the Qu*-algebra $(\mathscr{L}(\mathscr{G}, \mathscr{G}')[\tau], \mathfrak{S}_1(\mathscr{G})[\beta^*])$.

 $(\mathscr{L}(\mathscr{G}, \mathscr{G}'), \mathfrak{S}_1(\mathscr{G}))$ is a Qu^* -algebra of operators but not yet a CQ^* -algebra since $\mathfrak{S}_1(\mathscr{G}) \subset \mathscr{L}^+(\mathscr{G})$. Its smallest CQ^* -extension on \mathscr{G} is the CQ^* -algebra $(\mathscr{L}(\mathscr{G}, \mathscr{G}'), \mathscr{L}^+(\mathscr{G}))$, i.e. the maximal one on \mathscr{G} . Since $f \Leftrightarrow W(f)$ is an isomorphism we can define an extension $(\mathscr{G}'_2, \mathscr{G}^+)$ of the Qu^* -algebra $(\mathscr{G}'_2, \mathscr{G}_2)$ by

$$\mathscr{S}^{+} \in f \leftrightarrow W(f) \in \mathscr{L}^{+}(\mathscr{S}). \tag{4.3}$$

In this way the twisted product $f \circ g$ of two elements $f, g \in \mathscr{S}^+$ is defined by $W(f \circ g) = W(f)W(g)$, where on the right-hand side we have the multiplication in the Op^* -algebra $\mathscr{L}^+(\mathscr{S})$. Thus the integral (1.2) is (formally) extended to a certain class of distributions, but we have not an explicit characterization of the symbols $f \in \mathscr{S}^+$. But an important *-subalgebra $S \subset \mathscr{S}^+$ is well-known from the theory of pseudodifferential operators [5, 12], studied in detail in [41], where they are called GLS-symbols (see [12]).

Definition 4.3. We use the abbreviation $x = (q, p) \in \mathbb{R}^{2d}$, $x^2 = q^2 + p^2$, $\partial^{\alpha} f = \partial^{\alpha_1}_{q_1} \dots \partial^{\alpha_{2n}}_{p_n}$, $|\alpha| = \alpha_1 + \dots + \alpha_{2d}$. A function $f \in \mathbb{C}^{\infty}(\mathbb{R}^{2d})$ is called GLS-symbol of order $\leq m$, arbitrary real number, if for every $k \geq \sigma$

$$p_{m,k}(f) = \sup_{x, |\alpha| \le k} |\partial^{\alpha} f(x)| (1+x^2)^{-(m-|\alpha|)/2} < \infty.$$
(4.4)

The space of symbols of order $\leq m$ we denote by S_m . It is a Frechet space with respect to the seminorms $p_{m,k}(\cdot)$, $k=0,1,2,\ldots$. Furthermore

$$S = \bigcup_{m} S_m \tag{4.5}$$

and we equip with the locally convex topology ξ_0 defined by $S = \lim_m$ ind S_m . The following facts are proved in [41, Theorems 2.3.1, 2.4.1 and Proposition 2.7.3].

Lemma 4.4.

i) The Weyl quantization $f \to W(f)$ maps S into $\mathcal{L}^+(\mathcal{S})$. We denote S = W(S) and $S_m = W(S_m)$.

ii) S is an Op^* -algebra. More precisely, $A \cdot B \in S_{n+m}$ for $A \in S_n$, $B \in S_m$. Therefore S is a *-algebra with respect to the twisted multiplication, and $f \circ g \in S_{n+m}$ for $f \in S_n$, $g \in S_m$.

iii) If $A \in S_m$ and $n \ge \frac{m}{2}$, then A is a continuous map from \mathscr{H}_k to \mathscr{H}_{k-n} for all k. Therefore, A is an operator of order $\le \frac{m}{2}$ for the Hilbert scale $\{\mathscr{H}_S, -\infty \le S \le +\infty\}$ (4.1).

S is a subspace of the space $O_M = O_M(R^{2d})$ ([35, II, 5]) of multiplications for the distributions. O_M contains all functions $f \in C^{\infty}(R^{2d})$, such that for every α there exists a k with $\sup |\partial^{\alpha} f(x)| (1+x^2)^{-k} < \infty$.

Let us describe the structure of O_M in more detail: For two integers k, m we define

$$||f||_{m.k} = \sup_{x, |\alpha| \le m} |\partial^{\alpha} f| (1+x^2)^{-k} < \infty.$$
(4.6)

Let O_k^m be the Banach space with the norm $|| ||_{m,k}$. From these spaces one gets O_M in the following way:

$$O_M = \bigcap_{m=1}^{\infty} O^m, \ O^m = \bigcup_{k=1}^{\infty} O^m_k.$$
(4.7)

We equip O_M with the natural locally convex topology ξ given by O_M =lim proj O^m , O^m =lim ind O_k^m .

Theorem 4.5.

i) $(O_M[\xi], S)$ is a Qu^* -algebra with respect to the twisted multiplication, i.e. $f \circ g$, $g \circ f \in O_M$ for $f \in O_M$, $g \in S$ and the multiplications are continuous.

ii) For every pair m, n of integers there exists an integer r such that

$$O^r \circ S_n, \quad S_n \circ O^r \subset O^m.$$
 (4.8)

iii) Let $n, m, k \ge 0$ be three given integers. Put r=m+2n+2d and l=k+n. Then

$$O_k^r \circ S_n, \quad S_n \circ O_k^r \subset O_l^m. \tag{4.9}$$

Furthermore, the bilinear maps

$$O_k^r \times S_n \xrightarrow{f \circ g. g \circ f} O_l^m \tag{4.10}$$

 $f \in O_k^r$, $g \in S_n$ are continuous, i.e. there exists a seminorm $P_{n,S}(\cdot)$ (4.4)

such that

$$||f \circ g||_{m,l}, \quad ||g \circ f||_{m,l} \le c ||f||_{r,k} P_{n,s}(g), \tag{4.11}$$

c is a constant. One can choose s=m+2k+2d.

Proof: We shall prove the estimation (4.11). ii) follows from iii), since the k in iii) can be chosen independently of r. Furthermore, the integers m, n in ii) can be arbitrary, and therefore i) is a consequence of ii).

Now we prove for $f, g \in S_2, r=m+2n+2d, l=k+n$,

$$||f \circ g||_{m,l} \le c||f||_{r,k} P_{n,s}(g), \qquad (4.12)$$

with a certain s. The second estimation of (4.11) can be proved in the same way. Since S_2 is dense in all spaces in (4.9), iii) is completely shown.

We use the following abbreviations: $\sigma(x_1, x_2) = p_2 q_1 - q_2 p_1$,

$$\mathcal{A}_{x} = \sum_{i=1}^{d} \left(\partial_{q_{i}}^{2} + \partial_{p_{i}}^{2}\right), \ dx = \prod_{i} dq_{i} dp_{i}$$
$$(f \circ g)(x) = \frac{1}{\pi^{2d}} \int f(x + x_{1}) g(x + x_{2}) e^{i\sigma(x_{1} \cdot x_{2})} dx_{1} dx_{2}.$$
(4.13)

Now we have to estimate $\partial_x^{\gamma}(f \circ g)$ for $|\gamma| \leq m$. If we carry out the differentiation in (4.13), we get in the integral terms of the form $\partial^{\alpha} f(x+x_1) \partial^{\beta} g(x+x_2)$, $|\alpha|$, $|\beta| \leq m$. Now we use the relation

$$(1+x_{1}^{2})^{-i}\left(1-\frac{1}{4}\mathcal{\Delta}_{x_{2}}\right)^{i}e^{2i\sigma(x_{1},x_{2})} = e^{2i\sigma(x_{1},x_{2})}$$
$$(1+x_{2}^{2})^{-i}\left(1-\frac{1}{4}\mathcal{\Delta}_{x_{1}}\right)^{i}e^{2i\sigma(x_{1},x_{2})} = e^{2i\sigma(x_{1},x_{2})}$$
(4.14)

where t is an integer. Then we get

$$\int \partial^{\alpha} f(x+x_{1}) \,\partial^{\beta} g(x+x_{2}) \,e^{2i\sigma(x_{1},x_{2})} dx_{1} dx_{2}$$

$$= \int \frac{\left(1 - \frac{1}{4} \mathcal{A}_{x_{1}}\right)^{n+d} \partial^{\alpha} f(x+x_{1})}{(1+x_{1}^{2})^{k+d}} \cdot \left(1 - \frac{1}{4} \mathcal{A}_{x_{2}}\right)^{k+d} \\ \frac{\partial^{\beta} g(x+x_{2})}{(1+x_{2}^{2})^{n+d}} e^{2i\sigma(x_{1},x_{2})} dx_{1} dx_{2}.$$

$$(4.15)$$

We estimate the first factor by using $(1 + (x + x_1)^2)^k \le 2^k (1 + x^2)^k (1 + x_1^2)^k$ and get GERD LASSNER AND GISELA A. LASSNER

$$\frac{\left(1-\frac{1}{4}\mathcal{A}_{x_{1}}\right)^{n+d}\partial^{\alpha}f(x+x_{1})}{(1+x_{1}^{2})^{k+d}} \leq \text{const. } ||f||_{r,k}\frac{(1+x^{2})^{k}}{(1+x_{1}^{2})^{d}}.$$
 (4.16)

The second factor we have to estimate by $P_{n,s}(g)$. We get

$$\left| \left(1 - \frac{1}{4} \mathcal{A}_{x_2} \right)^{k+d} \frac{\partial^{\beta} g\left(x + x_2 \right)}{\left(1 + x_2^2 \right)^{n+d}} \right| \le \text{const. } ||g||_{s,n} \frac{\left(1 + x_2^2 \right)^n}{\left(1 + x_2^2 \right)^d}$$
(4.17)

where s = m + 2k + 2d. Since the integral $\int (1 + x_1^2)^{-d} (1 + x_2^2)^{-d} dx_1 dx_2$ is finite, we get from (4.15)-(4.17) the estimation

$$||f \circ g||_{m,n+k} \le \text{const.} ||f||_{m+2n+2d,k} ||g||_{m+2k+2d,n}.$$
(4.18)

But since $||g||_{s,n} \le p_{n,s}(g)$ we have proved $||f \circ g||_{m,l} \le \text{const.} ||f||_{r,k} p_{n,s}(g)$. Therefore, the proof of the theorem is complete.

Let us discuss the estimations above a little more. (4.12) means that the multiplication $f, g \rightarrow f \circ g$ is continuous from $O_k^{m+2n+2d} \times O_n^{m+2k+2d}$ into O_{n+k}^m , i. e.

$$O_k^{m+2n+2d} \circ O_n^{m+2k+2d} \subset O_{n+k}^m.$$
 (4.19)

But from this last inclusion we cannot conclude $O_M \circ O_M \subset O_M$, as one could suppose. Let f, g be two elements of O_M , then for arbitrary m, n we can indeed choose k so large that $f \in O_k^{m+2n+2d}$, but then it is not clear that $g \in O_n^{m+2k+2d}$. If one takes n once more larger, then k has to be larger, and so on.

The indices in (4.19) mutually influence each other in such a way that one cannot conclude $O_M \circ O_M \subset O_M$. But this was stated in [31, Lemma 3.18, i)]. One cannot absolutely exclude such an extension of the twisted product that O_M becomes an algebra, but this is impossible in the sense of distributions and the proof in [31] is incorrect. This can be seen by the following counterexample.

Example 4.6. $f(q) = e^{iq^2}, g(p) = e^{ip^2}, (q, p) \in \mathbb{R}^2$, are elements of O_M , but $(f \circ g)(q, p) = \sqrt{\pi/2} (1+i)e^{ip^2}\delta(p-q) \notin O_M$ (in the sense of distributions).

In fact, by using the relations $\int e^{-2ixt} dx dt = \pi$, $\int e^{ix^2} dx = \sqrt{\pi/2}(1+i) = c$, $\int f(n)e^{2int} dn = ce^{-t^2}$ we get

Qu*-Algebras and Twisted Product

$$(f \circ g) (q, p) = \frac{1}{\pi} \int e^{i(q+q_1)^2} e^{i(p+p_2)^2} e^{2ip_2q_1} dq_1 dp_2$$

$$= \frac{1}{\pi} \int e^{i(q+p_2+q_1)^2} e^{-p_2^2i} - e^{-2ip_2q} e^{i(p+p_2)^2} dq_1 dp_2$$

$$= \frac{c}{\pi} e^{ip^2} \delta(p-q).$$

All topological spaces S_n , S, O_k^n , O^n , O_M of Theorem 4.5 contain S_2 as a dense subspace. Therefore, this spaces are admissible spaces in the sense of [27, Definition 3.4], i.e., the twisted product $f, g \rightarrow f \circ g$ as a bilinear map of (S_2, S_2) in S'_2 can be extended by continuity to the following pairs of spaces

We conclude the paper with a remark. In [10] it has been introduced the set $\mathcal{M} \subset S'_2$ of such distributions f, for which the twisted products $f \circ g, g \circ f \in S_2$ for every $g \in S_2$. Then it was proved ([10, Proposition 7.8]) that $W(\mathcal{M}) = \mathscr{L}(\mathcal{D}) \cap \mathscr{L}(\mathcal{D}') = \mathscr{L}^+(\mathcal{D})$, i. e. $\mathcal{M} = S^+$ (see (4.3)). This statement is a consequence of Theorem 4.2, ii), and Lemma 3.8.

References

- Antoine, J. -P. and A. Grossmann, Partial inner product spaces, I, II, J. Funct. Anal., 23 (1976), 369-391.
- [2] Antoine, J.-P. and W. Karwowski, Partial *-algebras of Hilbert space operators, in Proc. Second Int. Conf. Operator Algebras, Ideals and their Applications in Theoretical Physics, BSB
 B.G. Teubner Verlagsgesellschaft, Leipzig 1984, 29-39.
- [3] _____, Partial *-algebras of closed operators in Hilbert space, Publ. RIMS Kyoto Univ., 21 (1985), 205-236.
- [4] Araki, H. and J. P. Jurzak, On a certain class of *-algebras of unbounded operators, Publ. RIMS, Kyoto Univ., 18 (1982), 1013-1044.
- [5] Berezin, F.A. and M. A. Shubin, Representations of operators by means of functionals, Colloquia Math. Soc. Jano Dolai (Hungary) (1978), 21-52.
- [6] Daubechies, I., Continuity statements and counterintuitive examples in connection with Weyl quantization, J. Math. Phys., 24 (1983), 1453-1461.
- [7] Epifanio, G. and C. Trapani, V*-algebras: an extension of the concent of von Neumann algebras to unbounded operators, J. Math. Phys., 25 (1984), 2633-2637.
- [8] Friedrich, M. and G. Lassner, Angereicherte Hilberträume, die zu Operatoren algebren assoziiert sind, Wiss. Z. Karl-Marx-Univ. Leipzig, Math. Naturwiss. R., 27 (3)

(1978), 245-251.

- [9] Gadella, M. and E. Santos, A general Weyl correspondence I, II, J. Math. Phys., 22 (1981), 1651-1659; 24 (1983), 534-538.
- [10] Gracia-Bondia, J. M. and J. G. Varilly, An algebra of distributions suitable for phasespace quantum mechanics, Prepr. Univ. Costa Rica 1984.
- [11] Grossmann, A., Homomorphisms and direct sums of nested Hilbert spaces, Comm. Math. Phys., 4 (1967), 190-202.
- [12] Grossmann, A., G. Loupias and E. M. Stein, An algebra of pseudo-differential operators and quantum mechanics in phase space, Ann. Inst. Fourier, 18 (1969), 343-368.
- [13] Hörmander, L., The Weyl calculus of pseudo-differential operators, Comm. Pure Appl. Math., 32 (1979), 359-443.
- [14] Inoue, A., On a class of unbounded operator algebras I, Pacific J. Math., 65 (1976), 77-95.
- [15] Kammerer, J. -B., La star-v-algèbre de Banach, C. R. Acad. Sci. Paris, 295 (1962), 317-320.
- [16] Köthe, G., Topologische lineare Räume, Springer-Verlag, Berlin, Heidelberg, New York, 1966.
- [17] _____, Topological vector spaces II, Springer-Verlag, New York, Heidelberg, Berlin, 1979.
- [18] Kürsten, K. -D., On topological properties of domains unbounded operator algebras, in: Proc. Second Int. Conf. Operator Algebras, Ideals and Their Applications in Theoretical Physics, BSB
 B.G. Teubner Verlagsgesellschaft, Leipzig, 1984, 105-107.
- [19] —, The completion of the maximal Op*-algebra on a Frechet domain, Publ. RIMS, Kyoto Univ., 22 (1986), 151-175.
- [20] _____, Duality for maximal Op*-algebras on Frechet Domains, to appear.
- [21] Lassner, G., Topological Algebras of Operators, Rep. Math. Phys., 3 (1972), 279-293.
- [22] , Quasi-uniform topologies on local observables, Math. Aspects of Quantum Field Theory I, Acta Univ. Wratislaviensis No. 519, Wroclaw 1979.
- [23] —, Topological algebras and their applications in quantim statistics, Wiss. Z. KMU, Leipzig, Math. -Nat. R. 30, 6 (1981), 572-595.
- [24] —, Algebras of unbounded operators and quantum dynamics, *Physica* A (1984), 471-479.
- [25] Lassner, G. and G.A. Lassner, On the continuity of the entropy, Rep. Math. Phys., 15 (1970), 41-46.
- [26] —, Quasi-*-algebras and general Weyl quantization, Preprint Univ. Bielefeld, Project Nr. 2 (1984), Proc. 12. Int. Conf. Differential Geometric Methods in Theoretical Physics, Lect. Notes Math. (1984).
- [27] _____, Twistprodukt und Quasi-*-Algebren, Zeitschr. Anal. Anwend., 4 (4) (1985), 363-372.
- [28] Lassner, G. and Timmermann, W., Normal states on algebras of unbounded operators, Rep. Math. Phys., 3 (1972), 295-305.
- [29] _____, Classification of domains of operator algebras, Rep. Math. Phys., 9 (1976), 205-217.
- [30] Lassner, G. A., Operator symbols in the description of observable-state systems, Rep. Math. Phys., 16 (1979), 271-280.
- [31] Liu Kuang Chi, An expansion theorem for the twisted product with applications, J. Math. Phys., 16 (1975), 724-728.
- [32] Pool, J., Mathematical Aspects of Weyl Correspondence, J. Math. Phys., 7 (1966), 66-76.
- [33] Schmüdgen, K., On topologization of unbounded operator algebras, *Rep. Math. Phys.*, 17 (1980), 359-371.

- [34] —, On trace representation of linear functionale on unbounded operator algebras, Commun. Math. Phys., 63 (1978), 113-130.
- [35] Schwartz, L., Théorie des distributions I, II, Hermann, Paris 1966.
- [36] Timmermann, W., On an ideal in algebras of unbounded operators I, Math. Nachr., 92 (1979), 93-110.
- [37] _____, On an ideal in algebras of unbounded operators II, Math. Nach., 93 (1979), 313-318.
- [38] Uhlmann, A., Some general properties of *-algebra representation, Acta Univ. Wratislawensia, No. 184 (1977), 122-132.
- [39] —, An introduction in the algebraic approach to some problems of theoretical physics, Cours à l'école internationale de la physique des particules élémentaires, Baske Pole. Makarska. Strasbourg, Belgrad 1974.
- [40] Vasiliev, A. N., Theory of representations of a topological (non-Banach) involutory algebra, *Theor. Math. Phys.*, 2 (1970) 113-123.
- [41] Voros, A., An algebra of pseudodifferential operators and the asymptotics of quantum mechanics, J. Funct. Anal., 29 (1978), 104-132.
- [42] Weyl, H., The Theory of Groups and Quantum Mechanics, New York, Dover Publ. Company Inc., 1950.