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Qw*-Algebras and Twisted Product

By

Gerd LASSNER* and Gisela A. LASSNER**

Abstract

Fundamental properties of Q,M*~algebras of operators are shown, and the class of CQ,*-
algebras is introduced. They are the natural generalization of C*-algebras to the case of
unbounded operators. The CQf-algebra (27 2, <^+) of distributions with the twisted product
is defined, and some of their Qw*-subalgebras are described.

§ 1. Introduction

The noncommutativity of the multiplication of observables is the
fundamental fact in quantum theory. This leads to the realization
of the observables as (in general) unbounded operators in a Hilbert
space. One can assume that the observables form a ^-algebra. But
already the fundamental procedure of Weyl quantization of classical
observables leads to unbounded operators which cannot be multiplied
in any cases.

Let ff' = ̂ (Rd) resp. &" = &"(Rd) be the Schwartz spaces of test
functions resp. tempered distributions with their strong topologies t
resp. t'. We put ^2 = ̂ (R2d} and yf

2 = #"(R2d). For every /e^

we denote by / the Fourier transform /(?,/>) = (2^~2d(e-i(qu+pv} f (u, v)

du dv. qu, pv are the Euclidean scalar products in Rd. Let Q= (di, - - -,
Q,d), P= (Pi,... ,Pd) be the position and momentum operators Qj<t> =

Vd, PJ<f>=-^-d*J<f> defined on 0(?) G^C^= L2(R
d). W(q,p) =ei(qQ+p^

is a unitary operator on Jf. They Weyl quantization or Weyl
correspondence [42] of a classical distribution /G^ is tne operator
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) dq dp. (1.1)

W(f) is a well-defined operator of J^C^^Os L e0 a continuous
linear map of &* into ^'5 and the Weyl correspondence f-*W(f) is
an isomorphism between £P'2 and JSfC^,^7) (see §4). /is called the
symbol of the Operator f=W(f).

&(&,&") is not an algebra, and therefore the product W(f)
W(g)=W(K) is not always defined0 It is defined e0 g. if W ( f ) ,
W(g) leave ff> invariant. Then h=fog is called the twisted product
of/, g, and it can be calculated by the formulae

(1.2)

if the integral is well-defined in a certain sense. Thus the twisted
product is only defined for partial pairs /, g^^'2 and therefore y'2
has the structure of quasi ^-algebra which is isomorphic to the quasi
*-algebra &(&, &") . This we had pointed out in [265 27] .

We repeat the fundamental facts in §4 and discuss the problem
of extending the twisted multiplication.

In §§2, 3 we collect some basic properties of quasi *-algebras of
operators and define the class of CQ,*-algebras, which are the natural
generalization of C*-algebras to the case of unbounded operators.

We gratefully acknowledge discussions with J0 -P. Antoine, G.
Epifanio3 K. -D. Kiirsten, K. Schmiidgen, W. Timmermann, and A.
Uhlmann. One of the authors, G. Lassner, thanks Professors S.
Albeverio, Ph. Blanchard, L. Streit and the ZiF in Bielefeld for the
warm hospitality.

§20 Quasi -Uniform Topologies

The rigged Hilbert space ^aL2c:^f is a special case of such
spaces generated by a Hilbert scale 3?S = @(TS}, — oo<>< + oo? where
T>I is a unbounded selfadjoint operator in a Hilbert space Jf=^f °.
The scalar product in jTs = S(Ts) is <& ̂ >S = <TS^? T

s^>9 where
< , > is the scalar product in Jfm Let us put &[t']=&oa(T) =
limsproj Jfs and &'\t'] = @-°°(T-00) =limsind Jfs. t resp. t' are the
protective resp8 inductive limits of the topologies of JP0 Thus we
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get a rigged Hilbert space

>']. (2. 1)

For 0ejfs and ^e^f~s, ^e[ —oo, oo] the scalar products <0, <py =

<^, 0> are well-defined and the elements FeS' define by <F, 0>
all linear continuous functional on 2'. Therefore, Sff is the dual
space of ^ (equipped with the dual linear structure) and t' is the
strong topology of the dual pair (@\ ^). The sesquilinear form
<F, 0> Fe^', 0e^ is antilinear in the first factor. Without loss of
generality we can suppose T to have only integer eigenvalues t{ in
the spectrum, 1 <t1<^t2<it3<^..., t,->oo. Let Jjf' = 11 ©^'» be the

t
corresponding decomposition of the Hilbert space, T^=^lti^i for

i

^ — XI ̂ f ^ ^ j then we get [22]

^ = {0: Z^fll^ll^00 , £ = 0, 1,2...} (2.2)

and the topology t is defined by the seminorms, £ = 0, 1 ,2 , . . . ,

Let FT be the set of all decreasing sequences (fl f) of positive
numbers, al'>a2'>... >0, that 2 fl?^f <C°° f°r every £ — 0 ,1 ,2 , . . . .
The elements F= {^l3 02 , . . .} e^7, (p^^f^ are determined by the
conditions

for all (fl.-)^^r- The seminorms || • ||(f l0, («,-) = /"V, define the

topology ^7 on S'.
Let ^ be the set of all positive, monotone and continuous functions

f ( x ) on /?+, which are decreasing faster than any inverse power, i. e.
sup xkf(x)<^oo for all £ = 0 ,1 ,2 , . . . . Now we can characterize the
*>0

bounded sets of 3f p] [8, 22, 23] :

Lemma 2.1.
i) For (an) err we put Jf^ = {0 = E an<f>n: &*=#„ ||^||<1} and

jff={f(T)<f>- 0ejf,||^||<l}/or/eF. The two systems [JK^ ; (aj eTr}

flrao? {^r ; /eJ^} o/ bounded sets coincide and form a fundamental system
of bounded sets in &\f\.

ii) The sets [Tk(f>: ||0||<1}, £ = 0 ,1 ,2 , . . . , are the unit spheres in
$'_* and therefore they form a total system of bonded sets in ^'[V].
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Now we recall some fundamental facts about the unbounded
operators on a rigged Hilbert space [21, 22] which lead to the concept
of quasi ^-algebras.

Let 3i be a unitary space (incomplete Hilbert space) with the
scalar product <. , . >, ffl its completion. By J£?+ (^} we denote the
set of all endomorphisms A^End@ for which an A+^End@ exists
with <& 4£> = 01>, <f>y for all 0, ^e^0 j£f+(S) is a *-algebra
with the usual algebraic operation with operators and the involution
A-*A+. If &=tf, then J*?+ ($} =3S (tf) the C*-algebra of all bounded
operators on Jf. We call a *-subalgebra stf of <g+($i) containing
the identity Op* -algebra [21],

On S we define a locally convex topology £ by the following
system of seminorms

t: \\f\\A = \\At\\, AtE&+(®). (2.5)

A domain in ^f is called a closed domain, if @\f\ is a complete space.
Then @ = r\ @ ( J~) ? where ^ ( J) is the domain of the closure A

AeS?4-^)

of the operator A.

The dual space of £}[t] we denote by ^'[*'L where ^ is the
strong topology on $}'. The Hilbert space 3? is canonical imbedded

into Q}f\tr~\« Hence, any dense domain ^C^f defines in a canonical
way a rigged Hilbert space

where the scalar product <F, 0> is defined for 0eS, FeS'. In
what follows we regard only such ^ for which ®\t\ is a reflexive
space. Let <&(&,&') be the linear space of all continuous maps of

into 2'\t'~\. Further we write J2?(0) =J2>(0, 0) and &(&')
&') which are algebras with respect to the usual operations

with maps. Then we get ([22, Lemma 2. 1]) :

Lemma 2e2. Let @[t~\ be a reflexive space. Then

i) if A<=&(@, ^'), so the adjoint operator A+^^(^,^f} is

uniquely defined by <\A(f>3 ^> = <44"^, 0>. A-^A+ is an involution on

(9, &').

ii)



Q,H*-ALGEBRAS AND TWISTED PRODUCT 283

iii) 3?+(@) is a subspace of £ '(9) and it is &+ (9) = &(&) fl

If £, F are two locally convex spaces, then the topology r of
uniformly bounded convergence on ££ (£", F) is defined by all seminorms
qai^(A)=sup pa(A<f>) where pa runs over the seminorms defining the

^jf
topology of F and Jt runs over all bounded sets in E.

The topologies of uniformly bounded convergences on the spaces
&($,$'}, &(&) and &(&') we denote by r2, r® and T®' . Let
us describe the seminorms determining these topologies more explicitly
[8,22].

r^: ||4|Lr = sup |<40, 0>|, uT bounded in 9\f\
0,0e^

^ ||5^#||, B^&+(^, Jt bounded in 9\f\
<t>^je

^>|, jt bounded in 9\f\

Jfr bounded in ^'\tf~\. (2.6)

This definition of the topologies makes sense also for non-reflexive
9\f\.

Lemma 2. 3 [8, 22]. Let ®\t\ be reflexive. Then
i) the topology T®' is given by the seminorms \\A\\^'B — \\A+\\^iB where

B runs over all operators of j£?+(^) and Ji over all bounded sets of &[f].

ii) JSfWO*], J^C^OC^'] are topological algebras of operators.
iii) A-»A+ is one-to-one between JS?(^)[r*] and
iv) cJ^^C^)^] is a locally convex *-algebra.

Let us still introduce rf = max(r^, r^') on £>+(&). Then
becomes a locally convex *-algebra with respect to the topology rf.
The relations between the different linear spaces of operators and
their topologies are expressed by the following scheme.

(2-7)

where - > denotes a continuous injection. If &=Jl? then all four
spaces coincide with 38 (J^) and all topologies with the operator norm
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topology. Among the four topologies Tg, plays an exceptional role

[21,22]. Therefore, we call it the uniform topology on 3e+(&). The

other topologies are called quasi-uniform topologies.

Now we go back to rigged Hilbert spaces (2. 1), associated to

@\t~] = Si0°(T). Then the quasi-uniform topologies (2. 6) are defined

by the following systems of seminorms [23] :

**: \\A\\f = \\f(T) A f(T)\\

**'• \\A\\V = \\f(T)A1+\\
if : \\A\\f'k = max{\\TkAf(T)\l |]/ (7)^*11}, (2.8)

where / runs over F, k = Q9 1 ,2 , . . . , and the norm on the right-hand
side is the usual operator norm.

Another explicitly given system of seminorms for the quasi-uniform
topologies we get by using the decomposition 3F = ]T 0«^,- in eigen-
spaces je{ of T(see (2.2)). Let P{ be the projection of tf to tfim

Then every operator A ̂ 3? (@, ̂ ') gives a matrix A=(Aij)^ i.e.
A = l£ Au with

iJ

AiJ = PiAPj, Pitf=J?'i(Z& (2.9)

and the quasi-uniform topologies are defined by the following

seminorms [22], where (a;) runs over all (a,-) eFT and k = 0,1, 2,. . .

(a.-).*

) >*=Z:il^ll( /X + a,-«). (2.10)
i , J

The linear spaces (resp. algebras) of operators (2.7) are formed
exactly by all operator-matrices A=(AU), Au: ^fy->^f£, for which the
corresponding seminorms in (2. 10) are finite. Furthermore, one can
see immediately from (2. 10) that with respect to each of the four
topologies every A can be approximated by finite matrices AN=(Aij')9

Aij = Q for i,j>N. Therefore we have ([22, Lemma 2.6]):

Lemma 2B4.
i) &+(@} is dense in the three other locally convex spaces of
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operators &(®)\r*~\, J?(0 ')!>*'], and &(®, 9')\r9~\.
ii) All these four locally convex spaces of operators are complete.

All the above results about (£> (®, 2 ') [T^], JSP+ (^) [rf ]) , especially
the fundamental Lemmas 2. 1 and 2. 4, can be generalized to a wide
class of rigged Hilbert spaces ^c^fc^' [19,33]. But there exist
also remarkable counterexamples, where @[t~\ is not separable and
J5?+(S) not dense in &(®,®')\ra~\ [18].

We conclude this Section with a third characterization of the
topologies on the operators. They are defined by the following
systems of seminorms, where (X) runs over all /V, A = 0, 1,2, ...

^s : ?<«.)CA)=sup H^-Hfl,.*,-
'

» . y
=sup |UU|«^ + a^). (2. 11)

t .7

Since we supposed ti9 i = l, 2, . . . , to be integers, we have 2 t^2 = K<^oo.
Therefore, we get e. g. for the seminorms of the topology T@ in
(2.10) and (2.11) the estimation q^(A) <\\A\\^<q^ (A) • re2. In

the same way one can prove the equivalence of the corresponding
seminorms in (2.10) and (2.11).

§ 3. QM* -Algebras

One of the fundamental ingredients of the C*- and M^*-theories
is the relation ^(Jf)=@i, i.e. the space @: of all nuclear operators
is the predual of the C*-algebra 3% (jff ) of all bounded operators on
Jf. This property can be generalized to &(&,&'). For that first
we describe the set @:(S) of the nuclear operators associated to a
rigged Hilbert space [28]:

@1(^) = {/o : 1oe^f+(^), 4,05 e@! for ^, B^&+(®)}. (3.1)

Let ||jo||i = ^(iO+|0)1/2 be the trace-norm on the nuclear operators, then
by £* we denote a locally convex topology on @i(^) defined by all
seminorms P^IL, ^, 5e^+(^). In the case @ = @00(T) every
operator ^e=^f+(^) can be estimated by a power of T, and therefore
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the topology /3* is defined by the following denumerable system of
seminorms (see also [25]) :

JB*: \\P\\m = \\TkpT%, * = 0,1, . . . . (3.2)

In correspondence with (2. 10-2. 11) the /3*-topology can also be given
by the seminorms:

A(/0=Sl l f ty l l i*W
i,j

j8*: (3.3)
?»(/(»)= sup ||fc,|li#}.

i. J

This follows from the estimations

(3.4)

where K = ̂  t^2.

Furthermore, in correspondence with Lemma 2. 1 we have

Lemma 3. 1. For every f^^ we set

tof={f(r>Df(T)\ />£=©!, \\D\\^l} (3.5)

is bounded in <&(&). The system of bounded sets (S3/ ; f^^} is total

n

In fact, let S3 be a bounded set in @i(^)[j8*] and a fV= sup \\pu\\i,
pepjC^)

then by (3.3) sup a.^fj^oo for every A = 0 f l , 2 f . . . . Therefore, it

exists a f^^ with a fV</(O /(*>)• Thus »CS3/. If /oe©^^),
, then

. (3.6)
i.j.k

As a consequence of (3.3) and the characterization of the
&(&,&') by the finiteness of the first seminorm in (2. 10), we see
that the right-hand side of (3.6) is also defined for joe©^^) and
A^&(3,S'). We choose the notation trpA also for this general
case, but pA is in general not a nuclear operator (also not bounded).
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Lemma 3.2.
i) (@i(^), J^C^F, ̂ ')) is # ^M#J /><zir with respect to the binilinear

form (p,A)=trpA defined by (3.6).
ii) The uniform topology T$ on &(&,&') and the topology j8* on

@i(^) are the strong topologies of the dual pair.

iii) &(@, &')[TS'] is the strong dual of ®1(®)[P*~\ = ®®1C®9 i.e.

8*]'. (3.7)

This lemma (see [24, 26]) is essentially a consequence of the
characterization of & (2 , &') [%], @X(S) [0*] by the seminorms

(2.10), (3.3). The duality J*f(S, SO fo] = (9®*9) ' is a special
case of the unsolved "Grothendieck-Problem", whether J£? (£", F') =

5(£xF)[rii] = (£(g)JCF)/ (for arbitrary metric spaces E, F ([17, p.
1985]). For Frechet spaces E — F=$}[f} which are closed domains

(see (2.5)) the duality &(®, S') = (S(g)^) ' has been proved
recently [20].

The duality J*?(S, 07) [r^] =@1(^) [^S*]7 is a consequence of
(2. 8) and Lemma 3. 1, since

*r Df(M)Af(M) |= sup Ur^|. (3.8)

By Lemma 3. 2, iii), =£f ( S , Q) ') [r^] is the natural generalization of
the W*-algebra @ (tf ) to unbounded operators. But Jg?(0, 0'') is
not a *-algebra. It is a quasi *-algebra in the sense of the following
definition [24] :

Definition 3. 3. A locally convex quasi *-algebra, shortly Qu*~

algebra, (^[f],^0) is defined by the following conditions:
(1) <£/[?] is a locally convex space with a distinguished dense

subspace j/0.
(2) Partial multiplications A^>AB and A-+BA are denned on stf for

every .Z?EEj/0. They are continuous linear operators on J/[f] and s$
is an j^0~

m°dule with respect to these multiplications.
(3) A continuous involution ^4— >^4+ is defined on <£/[?], which

leaves jaf0 invariant. (AB) + =B+A+, (BA) + =A+B^ for
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Q^*-algebras are special cases of the more general class of partial
^-algebras [1, 2, 3], which have importance in mathematical physics.
A simple consequence of the definition is the following

Lemma 3. 4e

i) Let (X[?]?e£/o) be a Qu*-algebra and <*/[?] the completion.
Then the multiplication A^ B—>AB, BA can be extended by continuity for

/0) is a Qu*-algebra, the completion of

ii) The completion of a topological *-algebra *£/[<?] is a Qu*-algebra

The completion functions leads beyond the category of topological
*-algebras. The category of Q^*-algebras is the smallest extension
with completion. Since the completeness of the observable ^-algebras
in statistical physics is important for the existence of limits (e. g.
thermodynamical limit), the fundamental results on general *-algebras
in physics (see [457,14,37338,39,40]) must be generalized to Qu*-
algebras.

Let us call a dense domain ^[/f]CJf a basic space, if it is reflexive
and Lemma 2. 4 and Lemma 3B 2 hold true.

In this paper, all basic spaces are of the form @ = &°°(T)a

Theorem 385e

i) Let 2 be a basic space. For the topologies of (2, 7) we choose
the abbreviation T=T^ T*=T®. (&(9,®')\r\, J^+(S)) is a Qu*-
algebra,

ii) For A^J?(@, 2'} the multiplications B-+AB, BA are continuous
linear maps from J^+(^) [r*] to

Proof: i) By Lemma 2. 4 we have only to show the continuity
of the multiplication. But by (2.6) we get for

(3.9)

ii) Let 5e^+(S) and At=&(9,9'), then \\f(M)BA f ( A f ) \ \ =
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sup||/(Af)50||, where Jf = [ A f ( M ) $ : <j>^tf, II0| |<1}. But by Lemma
4>^jr
2.1, ii) Ji is contained in a set const. {Tk<p : ||0||<1}. Therefore
115411/^const. |]/(Af)Brfc||=const. ||5||£* (see (2.8)). The estimation
for 1 1-45| |/ is analogous.

Definition 3. 6. (#[£], #0) is called a Q,M*-subalgebra of a Qu*-
algebra G*/[f], ^0), if *[?] is a topological subspace of .«/[£], «^0

a *-subalgebra of j/0n^ dense in ^ [f] and if & is a «^0-
submodul of #0. (#[£], #0) is called a closed Qu*-subalgebra of

^o) if ^ is a closed subspace of J/[f] and &0 = jtfQr}&.

The maximal Qy-algebra of operators (J2f(^, Sr) [r], ^
(Theorem 3. 5) on a rigged Hilbert space is the generalization of the
C*- and W*-algebra. $8 ( Jf ) . Therefore, we propose the following
definition

Definition 3.7. Let ^ be a basic space. A closed £h**-subalgebra
(J*l>],j*o) of (^? +(^ J^)H, &+(@)} is called a CQ^-algebra of
operators. It is called I^Q^*-algebra of operators if J/[T] is the
strong dual of j/^-S^S) [/3*]/j/°, j/°= (loe©^^) : ^4 = 0 for all
A^stf] is the polar of j/ in the dual pair (JS?(®, S7)[>], ^(S)
[j8*]). An arbitrary Q^w*-algebra (jtf[f], J^0)

 we call CQ^*-algebra
resp. l/KQ.^-algebra if it is isomorphic to a CQ^*-algebra resp.
algebra of operators.

In the C£*-algebra (J2f(^, ̂ OW, ^f+(^)) the *-algebra
is maximal in the sense of the following lemma. 3f is assumed to be
a basic space.

Lemma 3. 8.
i) If for A<=&(@,®') the products AB, BA are in <&+(@) for

every 5<EEJS?+(^)3 then A^&+(@').
ii) If for A^&(®, ®'°) the products AB, BA are in ©i(^) for all

J5e@!(^), then A<^£>+(®}. Consequently,
AB, BA^^(^) for all
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Proof: From the assumptions i) or ii) it follows A : Si->@} and
also A+ : &-*&. By the closed graph theorem we have A, A+ e
J^(^) and therefore A<E:£>+(@) (Lemma 2. 2,iii)).

In ii) we chose the fact that (5l(^} is an ideal in ^+(^) ([28],
see also [36,37]). The maximality of £>+(@) in J?(0, 3') is
connected with completeness of J£?+(S) [T>], as we shall explain now.

Definition 3B9. Let G£/[?],^O) be a QM*-algebra. By £0 we
denote the weakest locally convex topology on e£/0 such that for every
bounded set 2Rcj*[f] the set of maps [B-^BA, B-+AB]
from .fl/o[fo] into J/[f] is equicontinuous ([16, §15. 13]).

Let !F be a system of seminorms p( • ) on J/ defining the topology
f. We call 3F a j/0-system of seminorms, if for every p^^ and

0 also the seminorms (Bp) ( • ), (/?5) ( • ), /?+( • ) <E^

. (3.10)

Lemma 3. 10.
i) J2/[f0] w « locally convex *-algebra
ii) //" J^ w an ^Q-system of seminorms of j/[f], then f0 z'j defined

by the following system of seminorms on j/0

/>, (5) - sup p(BA), mp (B) = sup /> (Xfi) (3.11)
Aesui Aesui

and 3K rwn5- oy^r a// bounded sets of

Proof', ii) is an immediate consequence of the definition of f0.
i) follows from ii) and the following relations for B,

m bounded in

(3. 12)

Lemma 38118 Let ^ be a basic space and
^A^ maximal Qu*-algebra. Then TO = T* on L+

Proof: The system ||-4||ur^== SUP \(A<j>, ^>|, Ji^ Ji bounded
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in @[t~], is a JS?+(^) -system of seminorms for the topology r (see
(2.6)). For example we have ll^lU^-ll^iU,^. \\BA\\^ = \\A\\^iB+^
etc.

Let fi=Ue#(jf), ||4||^1} the unit sphere of & (#)d&(9, 9').
Sis bounded in J^(S, S') M. Since £ contains all projections
|0X0|, 11011 = 11011 = 1, there is a ^>0 for every bounded set JtC.®\f\
such that ^ • £ - .^DJf ={0<EJf ; ||0||^1}. Now we put m = *T+ •
£ for one r^J^+(^). For the seminorm p( • )=|| • |U = || ILr.ur we
estimate pm( • ) (3. 11) from below and get

£. (5)= sup 115-411^= sup \<BAfr 0> |
Aesn

= sup
Ces,0,^e^

^ sup |<fl, r5»|=||5+||^r. (3.13)
-

Thus we have estimated a seminorm ||5|j^'r of T* (see Lemma 2.3)
by a seminorm pm (B) of r0. On the same way every seminorm of
T* can be estimated. Therefore, r0 is stronger than r*. But since
=5f+(S) [r*] is a barrelled space, r0 cannot be stronger than r* by
Theorem 3. 5, ii). Therefore 7^=^, and the proof is complete.

Let (e£/[f], J2/0) be a ^*-algebra with complete <£/[£]. Then
the bilinear maps A, B->A • 5, jB • ^4 from j/0Xj/ to «5/ can be

extended to ^[fo] XJ/ by continuity. In that sense c^+(^) is
maximal in 3? (@, 3t'} [r] by the last Lemma, since =^?4"(^)[^] is
complete.

§4. Weyl Quantization and Twisted Product

The Weyl quantization f->W(f) leads to operators on the rigged
Hilbert space ^ C L2 c ,$". It is of the type (2.1) ^ =
#"=@-°°(T) where for T we can take the operator T=
= P\ + . . . + P2

d + Qj + . . . + Qj + 1 (number operator) . Therefore, all
definitions and statements of §§2, 3 are applicable. For the topologies
of the Qw*-algebra (^(^, ^0 0>], ^+(^) [if]) we choose the
abbreviations r=r^, r^^rf (see Theorem 3.5).

The differential operator T generates the Hilbert scale

jes = @(Ts)=T-sL2(R
d), -oo<><oo (4.1)

of Sobolev spaces, <$? =lims proj^, <^' = lim5 ind^fs. Since T~2d is a
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nuclear operator, besides J? («$*,«?") =©i («**)' we have also
= J^+(^)[r]' = j^(^, ^')W' [28] (see also [29]). & is a Montel
space [16], Therefore, the last duality relation is a special case of

the more general results in [34] .

Since J£?(<^3^')[r] is a dual space with all good properties for

an integration theory, the Weyl integral (1.1) (W(f) = (ei(qQ+pp} f

(q,p}dq dp is well-defined in &(&>,&") for any/e^J [26,27].

Theorem 4.1 [13,30,32]. The Weyl quantization /->Pf(/) is a

linear continuous isomorphism between the locally convex spaces SP'2
 and

")[*] and also between &2 and ©i(^), i.e.

symbol f : &"2 Z> L2 D &
i i :

operator W(f) : JZ?(5% ,?")=> ©2

From the classical Banach space only the symbols f^L2 are in
correspondence to a well-known class of operators, namely to the

Hilbert-Schmidt-operators W(f) e@2 [32], and for /,

tr W(f)W(g)=-f(q,p)g(q9p)dq dp.

If /<E^2, then WX/)e@i («$"), but the symbols of all nuclear opera-
tors do not form a classical Banach space. In [6] it has been shown

that there are nonsummable functions leading to nuclear operators but

also bounded functions corresponding to unbounded operators (see
also [9,10, 15]).

If /e«$*2 and £e<^23 then the twisted products (1.2) fog, gof
are well-defined (in the sense of distribution) and elements of &*'2.

Furthermore, fog^<?2 if /, g^^2. All these multiplications are

(separately) continuous in the corresponding topologies. More precise-

ly, we have the following theorem [26, 27].

Theorem 40 20

i) (^25^2) ^ a Qu*-algebra with respect to the twisted product

(1.2) and the involution /->/+ =/. It is also called the Qu*-algebra of

symbols.

ii) The Weyl quantization f-^W(f) is an isomorphism of the Qu*-
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algebra (ff"2, &>£ of symbols onto the Qu*-algebra (&(&, ff")

D3*]).

is a Q,M*-algebra of operators but not yet a
CQ,*-algebra since @i(^) CJ$?+(^). Its smallest CQ,*-extension on
^ is the CQ*-algebra (JS?0^, ^0, ^+(^))? i.e. the maximal one on
^. Since f&W(f) is an isomorphism we can define an extension

(^2,^+) of the ^M*-algebra (ff"2,&'2) by

^+EE/<-»I^(/)<EJSf+(^). (4.3)

In this way the twisted product f°g of two elements jf, gEi<9*+ is
defined by W(f°g) =W(/) W(g), where on the right-hand side we
have the multiplication in the 0/?*-algebra J^+(^). Thus the integral
(1.2) is (formally) extended to a certain class of distributions, but
we have not an explicit characterization of the symbols /e<^+. But
an important *-subalgebra Sd^+ is well-known from the theory of
pseudodifferential operators [5, 12], studied in detail in [41], where
they are called GLS-symbols (see [12]).

Definition 4.3. We use the abbreviation *=(?,£)

p\ daf = 3£. . . daj«, | a | - a, + . . . + <x2d . A function / <= C°° (R2d) is

called GLS-symbol of order ^m, arbitrary real number, if for every

x,\a\<k

The space of symbols of order <m we denote by Sm. It is a
Frechet space with respect to the seminorms pmik(

 e ), k = Q, 1,2,.. . .
Furthermore

S=USm (4.5)
m

and we equip with the locally convex topology ?0 defined by S =
limm ind Sm. The following facts are proved in [41, Theorems 2.3. ls

2.4.1 and Proposition 2.7.3].

Lemma 4.4.
i) The Weyl quantization f-^W(f) maps S into ^+(^. We

denote §=W(S} and §m =
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ii) £ is an Op*-algebra. More precisely, A*BE:§n+mfor
B€ESm. Therefore S is a *-algebra with respect to the twisted multipli-
cation, andfog^Sn+mforf^Sn,

iii) If A^§m and w>~, then A is a continuous map from 3?k to

J^k-n for oil k- Therefore, A is an operator of order <-?- for the

Hilbert scale [JPS, -oo<5<+oo} (4.1).

S is a subspace of the space 0M = 0M(R2d) ([35, II, 5]) of multiplications
for the distributions. 0M contains all functions / e C°° (R2d) , such that
for every a there exists a k with sup 1 9a/ (#) | (1 + #2)~*<Coo.

X

Let us describe the structure of 0M in more detail: For two
integers k, m we define

II/IL,*= sup \d«f\(l+x*rk<°°. (4-6)
x, \a\<*m

Let Of be the Banach space with the norm || | |m i f e . From these
spaces one gets 0M in the following way:

0M= nOM , Om= U 0?. (4.7)
m=l k=l

We equip 0M with the natural locally convex topology ? given by

0M = lim proj Om
5 Om=lim ind Of,

m k

Theorem 4. 5B

i) (0M[?]5 -S1) is a Qu*-algebra with respect to the twisted multiplica-
tion, i.e. f°g, g°f^OM for /eOM, g^S and the multiplications are
continuous.

ii) For every pair m, n of integers there exists an integer r such that

Oro$n, Sn°0rc.0m. (4.8)

iii) Let n,m, k>0 be three given integers. Put r = m + 2n + 2d and
l = k + n. Then

0'koSn, SnoOldOf. (4.9)

Furthermore, the bilinear maps

f (4.10)

£, g&Sn are continuous, i.e. there exists a seminorm Pn,s( * ) (4.4)
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such that

l l /°£lL, / , \\g°f\\m,l<C\\f\\r,kPn,S(g^ (4- ID

c is a constant. One can choose s = mjr2k + 2d.

Proof: We shall prove the estimation (4.11). ii) follows from

iii), since the k in iii) can be chosen independently of r. Furthermore,

the integers m, n in ii) can be arbitrary, and therefore i) is a conse-
quence of ii).

Now we prove for/, g^S2, r = mjr2njr(2.d, l —

with a certain s. The second estimation of (4.11) can be proved in

the same way. Since S2 is dense in all spaces in (4.9), iii) is

completely shown.

We use the following abbreviations: G(XI, x2} =p2ql — q2p1,

4 = Z(9i + 3j.), dx = Udqidpi
i=i l ' »

( f ° g ) (*) =-±rf(x+x1-)g(x+xt')J'(*1-t*dXldxi. (4. 13)

Now we have to estimate d l ( f o g ) for \y\<m. If we carry out the

differentiation in (4. 13), we get in the integral terms of the form

daf(xjrx1)d
/3g(xjrx2), \a |, \fi\<m. Now we use the relation

(1 +,$ -t(i __^4 \«'W =e
2i°W

where t is an integer. Then we get

5«f (x + so Vg (x + x2) e^^'^dxjdxt

(4. 15)

v/^^
J (l+*f)*+« V 4

We estimate the first factor by using (1 + (x + x^k<2k(l +x2)k(\

and get
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n+d
\a f («« I ^ N

(1+x2)* (4.16)
< const,

The second factor we have to estimate by PHlS(g). We get

<const I I - M d+*2)* (4 17)-const m*'n ( }

where s = m + 2 k + 2d. Since the integral \ ( 1+ *f ) ~d ( 1 + *1) ~ddx^x2 is

finite, we get from (4. 15) -(4. 17) the estimation

ll/°£lL»+*<const. \\f\\m+2n+2d,k\\g\\m+2k+2d.n. (4- 18)

But since ||^||s.w<^,s(^) we have proved |J/og|L,<const. \\f\\r,kpn,s(g^
Therefore, the proof of the theorem is complete.

Let us discuss the estimations above a little more. (40 12) means
that the multiplication/, g-^f°g is continuous from Qr2n+2d X 0™+2k+2d

into {%_*, i.e.
Qm+2n+2d Q Qm+2k+2d c Qj^ ^ (4^9)

But from this last inclusion we cannot conclude 0M°0MdOM, as one
could suppose. Let /, g be two elements of 0M, then for arbitrary
m,n we can indeed choose k so large that f^0f+2n+2d, but then it is
not clear that g^0%+2k+2d. If one takes n once more larger, then k
has to be larger, and so on.

The indices in (4. 19) mutually influence each other in such a way
that one cannot conclude 0M°0Mc:0M. But this was stated in [31,
Lemma 3. 18, i)]. One cannot absolutely exclude such an extension
of the twisted product that 0M becomes an algebra, but this is impossi-
ble in the sense of distributions and the proof in [31] is incorrect.
This can be seen by the following counterexample.

Example 48 68 f ( q ) =e
iq\g(p) =eip\ (q,p) <=R2, are elements of 0M,

but ( f ° g ) ( q , P ) =i^n (\ + i)eip2d(p-q) ejEOM (in the sense of distri-
butions) .

In fact, by using the relations (e~2ixt dx dt = x, (ei^dx=^/2(l + i) =c,

\f(ri)e2intdn=ce~i2 we get
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All topological spaces Sn, S, 0\, 0", 0M of Theorem 4.5 contain
$2 as a dense subspace. Therefore, this spaces are admissible spaces
in the sense of [27, Definition 3. 4], i. e., the twisted product /, g-*
fog as a bilinear map of (6*2, 52) in S'2 can be extended by continuity
to the following pairs of spaces

(^,0f), (01 SJ

(0|+2n,0*+2fe), etc. (4.20)

We conclude the paper with a remark. In [10] it has been introduced
the set <Jt dS2 of such distributions f, for which the twisted products
f ° Si g°f^$2 for every g^S2. Then it was proved ([10, Proposition
7.8]) that W(uO=«S?W n&(@')=<&+(@), i.e. J( = S+ (see (4.3)).
This statement is a consequence of Theorem 4.2, ii), and Lemma
3.8.
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