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Kuranishi Family of Vector Bundles and
Algebraic Description of the Moduli
Space of Einstein-Hermitian Connections

By

Kimio MIYAJIMA*

Introduction

There are two different ways of defining complex structures of the
moduli space of irreducible Einstein-Hermitian connections (cf. [Don
11, [Don2], [U-Y1); i.e. a differential geometric way (cf. [I], [Ko],
[L-O]) and an algebro-geometric way (cf. [Ma]). It has been
unclear whether these two complex structures are isomorphic when
they are non-reduced i.e. their structure sheaves have nilpotent
elements. A main reason for this is that the deformation theory of
Kuranishi type for vector bundles (e.g. [Ak]) has not been fully
generalized so that we can hardly deal with non-reduced structures
in differential geometric arguments.

Main purposes of this paper are to give a complete generalisation
of the deformation theory of Kuranishi type for vector bundles and
to prove that the above two complex structures are isomorphic to
each other.

In §81 and 2, we will give a generalisation of the local deformation
theory of Kuranishi type for vector bundles. In §1, we will show the
existence of semi-universal local family of holomorphic structures
(Theorem 1) using Banach analytic space argument in [Dou]. By
[Ko], Ch. VII or [L-O] together with the arguments of §l, the
moduli space of simple holomorphic structures will be a (non-
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reduced) complex space. In §2, by a power series argument, we will
show that the semi-universal local family of holomorphic structures
induces that of holomorphic vector bundles (Theorem 2). In §3, we
will prove that, over a projective algebraic manifold, the analytic
moduli space of simple holomorphic structures (cf. [Ko], [L-O]) and
the algebraic one of simple vector bundles (cf. [A-K]) are isomorphic
to each other as not necessarily reduced complex spaces (Theorem 3).
By Theorem 3 together with the theorems of S. Donaldson, K.
Uhlenbeck and S. T. Yau, we will obtain the isomorphism between
the two complex structures of the moduli space of irreducible Einstein-
Hermitian connections. Finally in §4, we will prove along [F-S] that
the forgetful map from the moduli space of irreducible Einstein-
Hermitian connections into that of simple holomorphic structures is
an open embedding as not necessarily reduced real analytic spaces
(Proposition 4.2). This implies that the two complex structures
considered above are natural.

This work was done during my stay at SFB 170 and was announced
in [Mi]. I would like to thank Prof. Dr. H. Grauert, Prof. Dr. H.
Flenner and SFB 170 for their hospitality. Prof. Dr. H. Flenner
showed me his simpler proof than my original one for Proposition 2.3
(2). I would also like to thank Prof. Dr. M. Maruyama for helpful
discussions with me during this work and Prof. Dr. M. Liibke and
Prof. Dr. C. Okonek, whose lectures at Géttingen introduced me to
this problem. Finally, I would like to thank the referee for a valuable
suggestion.

§1. Kuranishi Family of Holomorphic Structures

In this section, we will prove the existence of semi-universal family
of holomorphic structures, using the Banach analytic space argument
in [Dou]. The following notion of a Banach analytic space is due
to A. Douady (cf. [Dou]).

Let £ and F be Banach spaces over C (resp. B) and 6 : EDU
—F be a C- (resp. B-) analytic map from an open neighbourhood
U of 0 in E into F with 6(0) =0. C- (resp. £-) analytic functions
h on an open neighbourhood in U with the form A (u) =<0 ), f(u)),
where fis a C- (resp. R-) analytic map from the same neighbourhood
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into a Banach space L(F,C) (resp. L(F, R)), the space of bounded
linear forms on F, forms an ideal of the sheaf @,. We consider a
ringed space (07'(0), Oy/F5) a local model of a Banach analytic
space.

Definition 1.1, A Banach analytic space is a ringed space
(X, 0 x) which is locally isomorphic to a local model of the above

type.

Remark. If E is, in particular, finite dimensional, then a Banach
analytic space is an analytic space in usual sense, because @y is a
sheaf of noetherian rings.

A ringed space (X, 0x) which is locally isomorphic to local
models of the above type with #=0 is called a Banach analytic
manifold. A ringed subspace (Y, @v) of a Banach analytic manifold
X is called a direct submanifold if, for each point y €Y, there exists a
local chart ¢: U-WCE of X with a direct sum decomposition E=
F,+F, by closed Banach subspaces such that o(YNU)=Wn (F,+0)
and Oyyoy=0Ow/S,,, where p,: E=F,+F,—>F, is the projection op-
erator. A direct submanifold (Y, @) with local models as above
induces a Banach manifold (Y, 0 7) with local charts (YNU, ¢iyny).

Proposition 1.1. (Y, 0y) = (Y, O3) as ringed spaces.

Proof. We infer from the following lemma that Ker (0 ;— (9F1)
=S, Q.E.D

Lemma 1.2. Let E and G be Banach spaces with a direct sum
decomposition E=F,+F,. If a local analytic mapping h from E inio G
vanishes identically on F,, then there exists a local analytic mapping f from
E into L(F,,G) such that h(t, s) =<{f(t,s), s).

Proof. Let h=73,5.h, be an expansion of 4 into a sum of polyno-
mial maps and u, be a symmetric n-form on F;XF, with values in
G associated with #4,. Let a;, a, be non-negative integers with
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ay+a,=n and u, be a (a,, a,)-form induced from u,. Then A,(x)
=370 .Co Usns(®y...,x). Since k(¢ 0)=0, we have u,,=0. If
a<n, let #@,,, be a (a,n—a—1)-form with values in L(F,,G)
induced from u, ,—,. Because ||&Z, ol =|ltig.n-all; 22022225 Call@a,allr™™
is convergent for some r>0. Hence we have a local analytic map
Ji ByXFy>L(F,, G) by f=2Xx0fs, where f,(x) =22320 .Cotla,n-a (%, - . -
x). It is clear that (¢, s) =<{f(¢,s),s) by the construction of f.

Q. E.D.

Throughout this paper except §3, by “analytic” we mean “C-
analytic”.

Let E be a differentiable complex vector bundle over a compact
complex manifold X.

Definition 1.2, A semi-connection on E is a C-linear map d,-:
A*(E)— A*Y(E) satisfying the Leibnitz-rule d,-(f - s) = (f) Qs+
f' (34'5) for fECN(X) and SEAO'O(E)_

A semi-connection induces a first order differential operator d,-:
A9 (E)—A* 1 (E).

Definition 1.3. A semi-connection d,- is called a holomorphic
structure if it satisfies 94.00,-=0.

Definition 1.4, A semiconnection 9,4; is isomorphic to E_)A; if

there exists a gEGL(E) such that g-9 ;=0d,;-¢ holds.

By 2 (E) we denote the set of all semi-connections on E. The
following proposition is well known (cf. [Ko] Ch. VII).

Proposition 1.3. (1) For any 0,-€ D (E), D (E) =0, +A" (End

(2) Let 94 be a holomorphic structure. Then (8, +a)o (9, +a)
=0 if and only if P, (a)=D,a+aNa=0, where Dja=[3,,a].

(3) Let geGL(E). Then (d4-+a,) - g=g+ (34-+ay) if and only
if g+ a;—a;+ g—D,g=0.
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Let E be a holomorphic vector bundle over a compact complex

manifold X and 0: A*°(E)—>A"'(E) be the canonical holomorphic
structure.

We fix an integer £>dimzX+1 and denote the Sobolev completion
of order £ by a subscript %.

Let P be an analytic map A"'(End E),—A"?(End E),_, defined
by P(a) =Da+a/a where Da=[d, a].

Definition 1.5. By a local family of deformations of 4, we mean
a pair (o, (T,0)) of a germ of an analytic space (7,0) and an
analytic map o from (7,0) into a germ of a Banach analytic space

(P71(0), 0), which is of class C~ on X XD where D is an ambiant
space of 7.

Definition 1.6. Two local families (o, (T,0)) and (o', (T,0))
are equivalent if there exists an analytic map g: (7, 0) > (GL(E) .1, idg)
such that it is of class C~ and the map t—g(t)w(t) —o’(t)g(t) — Dg(t)
is a 0-map from (7,0) into A*'(End E),.

For a local family (w, (T,0)) and a holomorphic map o: (S,0)
— (T, 0), we denote by (c*w, (S,0)) the family given by wos: (S, 0)
- (P71(0), 0).

Definition 1.7. A local family (@, (7,0)) is complete at o if for
any local family (@', (S,0)) there exists a holomorphic map a: (S, 0)
— (T, 0) such that (¢*w, (S,0)) is equivalent to (@', (S§,0)).

Let (o, (T,0)) be a local family of deformations of 4. For
v€T,T we have D(dw(v)) =0 because {D(dw()), f>=v(P(®), f>) =0
for any feL(A*2(End E),,, C). Thus we define the infinitesimal
deformation map o: T,T—H"'(End E) by p(@)=[dw(®)].

Theorem 1. There exists a local family (a, (T,0)) such that

(1) the infinitesimal deformation map p: T,T—H"'(End E) is bijective,
and

(2) it is complete at any point of T.

Proof. Let Q= [a€A* (End E),| ||a|ly<e, D*a=0, D* (Da+a \a)
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=0}. Then Q CA"'(End E) because a satisfies an elliptic partial
differential equation [ ja+ D*(a Aa) =0.

Lemma 1.4, Q is a direct submanifold of a neighbourhood of 0 in
A" (End E), for sufficiently small >0, whose local chart is (Q, prio),
where by p, we denote the projection onto the harmonic space H"'(End E).
In particular, Q is finite dimensional.

Proof. Let q: A" (EndE), — H*' (End E) + D* A% (End E) , +
D*A*?(End E),_, be an analytic map defined by ¢ (a) = (pa, D*a,
D*(Da+aNa)). Since dgq @) = (pw, D*s, D*Dv), dgq, is a topologi-
cal linear isomorphism. Indeed, dgg! (u,u, u) =+ GDuy + Gu,.
Hence, by the inverse mapping theorem in Banach analytic manifolds,
g is a local analytic isomorphism at 0. Since Q =¢ '(H*!(End E) X0
%X 0) locally around 0, Q is a direct submanifold for a sufficiently small
e>0 and p,: Q—>H"'(End E) gives its local chart. Q.E.D.

Remark. On Q, p, coincides with the Kuranishi map K(a)=a
— D*G (a \a).

Let P: A"Y(EndE),— A*2(End E),_, be a local analytic map
defined by the integrability condition P(@)=Da+aAa. Then we
have a local family (a, (7,0)) of deformations of ¢ parametrized by
a germ of an analytic space T=P,71(0).

Remark. T is isomorphic to a Banach analytic space {aE
A"V (End E),| |la|l;<e, D*a=0, Da+a/\a=0}.

Since Q is finite dimensional, £ is finitely generated. We will find
a canonical generator of 5.

Let F={(a,0) €Q X A" (End E);,| |laily<le, {0i]:-<le, D¥=0,
D*(D—20\a) =0}.

Lemma 1.5. F is a finite dimensional direct submanifold of a
neighbourhood of (0,0) in Q X A**(End E),_, for sufficiently small ¢ 0,
whose local chart is (F, (pXp,)\r) where p; is the projection onto the
harmonic space H"'(End E) for i=1, 2.



KURANISHI FAMILY OF VECTOR BUNDLES 307

Proof. Let f: QX A**(End E),_1—>Q X A*?(End E),_; be an ana-
lytic map given by f(a, 0) = (a, p,0 + DD*0+ D* (D0 —20 \a)). Since
df 0.0 (01, v) = (o1, pop+ DD*v, + D*Du,), df .y is 2 topologicall linear
isomorphism. Indeed df gk, (uy, u,) = (, pou,+ Gu,). Hence, by the
inverse mapping theorem in Banach manifolds, f is a local isomor-
phism at (0,0). Since F=f1(Q XH"?(End E)) locally around (0, 0),
F is a direct submanifold of a neighbourhood of (0,0) in QX
A**(End E)4_,. Since fr induces a local isomorphism from F onto
a neighbourhood of (0,0) in Q X H*?(EndE), ,, (p X p)ir: F—
H'(End E) X H*?(End E) is a local chart of F. Q.E.D.

Let 6° be the expression of an analytic map 0 =pryz: F—
A"*(End E),-, with respect to the local chart (F, (p,Xp,) r), where
pr, is the projection onto the second factor.

Lemma 1.6. 6’(¢,0)=0.

Proof. Let (a,6) €F and p,8=0. Then 6=GD*DI=2GD* (6 \e).
Since |10]li-1 < |l Al <Zcyl0]]i-1llalls for some constants ¢; and ¢,,
we have =0 if ||a||, <1/c,. Q.E.D.

Lemma 1.7, /4= I pyp-

Proof. 1t is clear that I p,pCFp.

Let 2 be a local analytic map from Q into F defined by A(a)=
(e, Da+a/\e). If 2’ is the expression of 2 with respect to the local
charts (Q, p1o) and (F, (p,X po) r), then 2'(¢) = (¢, poP(a(2))). Since
P(a)=600i(a), we infer from Lemma 1.2 that the expression P’ of P
with respect to the chart (Q,p;r) has the form P’(¢) =60"(t, po
P(a(t))) =<, proP(a(t))), poP(a(t))>. Therefore we have £,
C I sy Q.E.D.

By Lemma 1.7, hj,...,h, is a system of generators of £, if
proPla(®)) =h @) e;+... +h.()e, where ¢,...,¢ is a base of
H**(End E).

Since p,0P(a(t)) has no linear terms, we have T,7=~H"(End E).
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Thus we proved (1) of Theorem 1.

Proposition 1,8. The family (a, (T,0)) is complete at any point
of T sufficiently close to o.

Proof. We may assume that 7 is so small that the map
D*A* (End E),.,2v— E*[—)M,‘)ve D*A*1(End E), is topologicall isomor-
phism for any t,€T, where D,o= Do+ [a,u].

Let (@, (S,0)) be any local family of deformations of a"(ﬁ)’ ie.
o’ is a local analytic map (S,0)—(P7'(0), a(t,)), where § is an
analytic subspace of DcC",

Let F: DX D*A*'(End E),,, — D*A**(End E), be a local analytic
map given by F(s, g) =D*(e(g) o’ (s) oe(g) +e(g) oD (e(g))) where
we denote idz+¢g by e(g). Since dFy qp®) =D*Daqyr, dFy 0 is 2
topological linear isomorphism between Banach spaces. Hence, by
the implicit mapping theorem in Banach manifolds, we have an
analytic map g: D—D*4°'(End E),,, such that g(0)=0 and
D* (e (g) tow’(s)oe(g) +e(g) oD (e(g))) =0. g(s) is of class C~ on X X D

2
because g satisfies an elliptic partial differential equation aigs +

D*Dg+D*R (o' (s), g +D*0’ (s) =0, where R (uo’, ug) =u*R’(v’, g, u) for
a real parameter u, with R’(®’, g,u) depending differentiably on «’, g
and u for small u. If we set @(s) =e¢(g(s)) low (s)oe(g(s)) +e(g(s)) ™
oD (e(g(5))), then P(w(s)) =e(g(s)) 0P (@’'(s))oe(g(s)). Hence we
have a local family (@, (§,0)) equivalent to (@', (S,0)). Because
D*w(s) =0,  is a local analytic map from (D,0) into (Q,a(t,))
which maps (§,0) into (7T,a(f)). Thus we have a holomorphic
map o:(S,0)— (T, a(t)) such that (¢*a, (S,0))~ (@, (5,0)).
Q.E.D.

This completes the proof of Theorem 1.

§2. Equivalence of Deformations of Holomorphic Structures
and Those of Holomorphic Vector Bundles

In this section, we will show that the family obtained in Theorem 1
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induces the semi-universal family of vector bundles (cf. [F-K]).
In order to compare local families of holomorphic structures and
those of holomorphic vector bundles, we discuss at first another
description of local families of holomorphic structures.

Let (T,0) be a germ of an analytic subspace of a neighbourhood
of the origin in C" and £, be its ideal. Because analytic maps
from (C",0) into a Banach space F correspond bijectively to con-
vergent power series in (¢;,...,%,) with coefficients in F, we have
the following description of Definitions 1.2 and 1.3. Where (¢,...,
t,) denotes a coordinate function of C” and we abbreviate it as simply
(¢) in the rest of this section.

Proposition 2.1. Let w(t) be in A (End E),{t,,...,t,} and @ be
an analytic map from (C™ 0) into A" (End E), corresponding to ().
Then (o, (T,0)) is a local family of deformations of 0 if and only if
w(t) satisfies the following conditions.

(1) (0)=0,
(2) o) is of class C= on XX D for some neighbourhood D of 0 in C™,
B) Pw@))cIr A 2(End E)y_1{tyy.- ytn}.

Proof. If w(t) satisfies (1)~ (3), then <{P(w(¥)), f(t)>EI, for
all f(t) eL(A**(EndE),_,,C) {t;,...,t,}. Hence w induces an analytic
map from (7,0) into (P71(0),0).

Conversely, let (o, (T,0)) be a local family of deformations of o.
We will show P(w())ess, A (End E), {t,...,t,} by applying
the Grauert division theorem (cf. [Gra] or [F-K]). Let D=
ford(f) | f€Fr.} and 4 be the reducing system of D. Then we
have a system of generators {f;};c, of £, with the form f;=t*+4,
satisfying ord (h;) >2. By the Grauert division theorem, there exists a
unique 7 = X ,epft’ in A"2(End E) 4, {ty,...,t,} such that P(@(?))
—r(t) €I, A2 (End E),_ {t,,...,t.}. Since <P(w(®)), f)>E L,
for all f(t) eL(A**(End E),_,,C) {¢,,...,t.}, we have r(¢) =0.

Q.E.D.

Proposition 2.2, Let o(t), o' () be in A% (End E),{t;,...,t.} and
satisfy the conditions in Proposition 2.1, and let (w, (T,0)), (o', (T,0))
be corresponding local families of deformations of 0. Then (o, (T,0)) is
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equivalent to (o', (T,0)) if and only if there exists a g(t) in
GL(E) 11 {t1, <« »tn} satisfying the following conditions.

(1) g(0) =idg,

(2) g is of class C= on XX D for some neighbourhood D of 0 in C™,
(3) go(t)—o' (t)glt) —Dg(t) € L1, A (End E)  {t;y ... tin}.

This is proved by the same argument of the proof of Proposition
2. 1.

Hence, in the rest of this section, we call w(¢) € A% (End E),
{t15...,t,) satisfying (1)~(3) in Proposition 2.1 a local family of
deformations of d and their equivalence is defined by the existence of
g(t) €GL(E) i {t;5- .., t,} satisfying (1)~ (3) in Proposition 2. 2.

Next we consider two local deformation functors given by
Fu((T,0)) ={o@t) €4 (End E)  {t,,...,t,} satisfying (1)~ (3) in
Proposition 2.1} /~, where the equivalence is defined as Proposition
2.2, and F,((T,0))={6—->XX(T,0)| a vector bundle with i: Ex
€ 1xx0} /~, where &~ &’ if there exists a bundle isomorphism yx: &
— & with y-i=i’.

Remark. When E is a simple vector bundle, the following local
deformation functors are equivalent to %, and %, respectively:
Fu((T,0)) = {o@®) € A (End E),{t;,..., t,} |0 +©(0) ~0 and o(t)
satisfies (2) and (3) in Proposition 2.1}/~, where o(t)~o’(#) if
there exists g(¢) satisfying (2) and (3) in Proposition 2.2. F((T,0))
={&—->Xx (T,0)| a vector bundle} /~, where &~ &’ if there exists
a bundle isomorphism & =~ ¢&".

Theorem 2. %, and %, are isomorphic to each other.

Proof. Both families correspond to each other via differentiable
trivializations of families of holomorphic vector bundles, i.e. a differ-
entiable isomorphism s: EXT— & with s,=1.

Let & > XX (T, o) be a vector bundle and {e,5(t)} be a system
of its transition matrices with respect to a Stein covering X=U,V,.
We may assume that {e,;(0)} gives a system of transition matrices of
E. A differentiable trivialization of & 1is represented by {s,(¢)} with
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the following properties;
2.1) s, €d°V,, GL(,C))sur{tis...,t,)} and is of class C= on
V,x D for some neighbourhood D of 0 in C™,

(2.2) 5, (8)eqp(t) —eap(0)55(2)
E'/JT.a AOIO(VQ m Vﬂa GL(T, C))k*l {tly ceey tm}a

where r=rank E.

A local family @(¢) of deformations of ¢ corresponding to the local
family of vector bundles & —X X (T,0) is characterized by

2.3) 95, () +oW)s. () €Iy, AV, GL(r, C)y{ty, -, 1),

Proposition 2.3. (1) Let & be a vector bundle over XX (T, o).
Then there exists a differentiable trivialization which induces a local family
of deformations of .

(2) Conuversely, let (t) be a local family of deformations of o. Then
there exists a vector bundle over X X (T, 0) and a differentiable trivialization
which induces w(t).

(3) Let w(t) (resp. o’ (¢)) be a local family of deformations of 0 induced
from a vector bundle & (resp. €') over XX (T,0) via a differentiable
trivialization s: & =EXT (resp. s': &'=EXT). Then &~&" if and
only if o(t)~w’ ().

Proof. (1) If we set s,(t) =3,6,,(0)p,e,,(t), then s,(¢) satisfies
(2.1), where {p,} is a partition of unity subordinate to the covering
(V). Since s,()ews (1) —eus (0355 (1) = 50, (0) 9, ey (1) s (1) —e,5(1))
and e,,(t) e3(t) —e, ) EIr, 'V NV, Ox) {t;,...,1t,}, we infer
that s, (¢) satisfies (2.2).

Let o) = {X,0,64,(0) (ds,(2)) (5,(t)) '¢,,(0)},. Then w(t) satisfies
(1) and (2) in Proposition 2.1. We infer from (2.2) that o(f)
satisfies (2.3). We will show that w(¢) satisfies (3) in Proposition
2.1. Since o)y, — (05, (2)) (5 () 1E I gy A2 (V,, End E))f{t1yeev,
ta}, we have P(o(8)) v € 1, A*2(V,, End E)y_;{t,,...,tn}. We infer

from this that P(w(t)) €I 7 , A% (End E) y_, {t1, ..., tn}.

(2) (Due to H. Flenner.) It is enough to prove the assertion for
a semi-universal family (a(¢), (7,0)) obtained in Theorem I.

Let (&, (S,0)) be a semi-universal family of vector bundles with
€ xxo=E (cf. [F-K]). By (1), we have an inducing morphism o:
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(8,0)— (T, 0). Itis enough to show that ¢ induces isomorphisms (S, , 0)
~ (T,,0) between every infinitesimal neighbourhoods. This will be
achieved by showing the equivalence of functors over Artinian bases.

Clearly & ((T,0))—>Z y((T,0)) is injective, it is enough to show
the surjectivity. We will show it by induction on n. If n=1 then
it is clear by the Dolbeault isomorphism. Let (7,0) be a small
extension of an infinitesimal neighbourhood (77, 0) such that
Ker(0;— 0;)~C. Let &’ be a vector bundle over XX (T”,0). Then
we have a vector bundle &€ over XX (T,0) with & xxqr.0= &’ by
the following exact diagram:

0 0 0 0

J

0— £o—>  A(E) —>  AUE) — AV(E)

|

0——¢ — A(E)Q:O0r —> A" (E)YRe O7 —> A" (E)Rc O 1

1

06" — A (E)Qc O —> ANE) R 07 —> A (E)Qe O 1

0 0 0

where the horizontal arrows are induced from a () €% ,((T,0)).

(3) Suppose y= {x.(¢)} represents a bundle isomorphism & =~ &’
i.e. it satisfies

(2' 4) Xa (t)eaﬂ(t) ~e;ﬂ (t)xﬁ(t) EJT.OF(VQ m VB, @) {tlr e e 9tm})

where {¢,5(t)} is a system of transition matrices of &’ with respect
to the covering X=U,V,. We may assume that ¢,5(0) =¢,5(0). If
we set g, (t) =5, (1) 2. (¢) (s, (1)) 7! then g (t) €4*°(V,, GL(r, C)) st
..,t,} and we infer from (2.4) that

(2.5)  €ap(0)85 (1) —2, (1) €as (0)
ejT,DAO‘O(Va n Vﬁs GL (r, C) )k+1 {tla cs ey tm} k)

(2.6) 08, (2) —o' (1) g, (1) +8. ()@ (2)
EJT,aAO'l(Vas GL (T5 C))k {tly ceey tm} °

If we set g(¢) =3,0,64,(0)g, (t)e,,(0), then g(¢) satisfies (1)~(3) of
Proposition 2.2 because of (2.5) and (2.6).
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Conversely, suppose that g(¢) EGL(E) . {t1,...,t,} satisfies (1)~
(3) in Proposition 2.2. If we set 2,(t) = (s,(2)) g(®)s. () then
7. () €4%°(V,,GL(r,C)) 411 {t1y-..,ts} and it satisfies
2.7) 9 () eap(t) —eas(t)1s(2)

EeﬁT,o AO.D(T/_'aﬂ Vﬁa GL(T, C))k+1{t1s oo ,tm}a

(2- 8) 377:1 (t) e*ﬂfT.o Ao‘l(va) GL (T’ C))k+1 {tlv L ] tm} .
If we take a smaller Stein covering X= U, U, with U,€V, and set
% () = (I — 3*N,0) 9, (t), then 3, (1) € A% (U,, GL (r,C)); {t1, -, tu}
and we infer from (2.7) and (2.8) that
(2.9) Xa () €ap(t) —eap(t) xa (1)

EVJT.OAO'O(UOLO Uﬁa GL(” C))k{tly LA ytm}9
(2.10) 0y, (1) =0,
where N, is the I?-Neumann operator over U,. This implies that
%) ET(WNUp) XD, 07) and (1) eus(®) — s O 1) €T (U Up)
XD, 'ﬁT.o®0X@XxD) for a sufficiently small neighbourhood D of 0 in
C". Thus we have a bundle isomorphism = {3, ()}. Q.E.D.

This completes the proof of Theorem 2.

§3. Comparison of Three Kinds of Moduli Spaces of
Simple Structures on a Vector Bundle
over a Projective Algebraic Manifold

Let E be a differentiable complex vector bundle over a projective
algebraic manifold X.

Definition 3.1. A semi-connection - is simple if Ker (EA'IAO-%M"E))

= {0}, where by End’ E we denote the subbundle of End E consisting
of endomorphisms with trace 0.

Remark. A holomorphic structure is simple if and only if its
associated holomorphic bundle is simple i.e. every holomorphic endo-

morphism is constant.

Let .#°(E) be the moduli space of simple holomorphic structures
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on E. By [Ko] or [L-O] together with the arguments in §1, we can
see that #°(E) is a finite dimensional (non-reduced) complex space.
Let 43, and 45, be the moduli spaces of holomorphic simple vector
bundles and of algebraic simple vector bundles on X respectively.
In this section, we will prove that they are isomorphic to each other
as not necessarily reduced complex spaces.

Let FS,: (An) —(Sets) be a functor given by F3,(T)={&—->XX
T| a T-simple holomorphic vector bundle such that & x.; is diffe-
rentiably equivalent to E for any t&€T}/~, where §~¢' if &=
p*ZR &’ for some invertible sheaf £ on T, and F5;,: (Sch/C)— (Sets)
be a functor given by F5,(T)={&—>XXT| a T-simple algebraic
vector bundle}/~, where £ ~¢& "' if & =p*LQ &’ for some invertible
sheaf & over T.

Existence Theorem. (1) (¢f. [N], [K-0] and [F-S1) The shea-
fified functor (FS,)* is representable by a locally Hausdorf] complex space
Mo (E).

(2) (¢f. [A-K]) The sheafified functor (F5,.)*" under the étale topology
is representable by an algebraic space M3,.

Theorem 3. AS(E) ~M5,(E) = (M3),) ., (E), where by (M) . (E)
we denote the open part of the underlying complex space of M35y, consisting
of simple vector bundles differentiably equivalent to E.

Proof. At first, we will show the isomorphism #°(E)=~5,(E).
By & (E), we denote the set of all simple holomorphic structures on
E. As is shown in [L-O], #5(E)=%(E)/G where G=GL(E)/C*,
is a Banach C-analytic space whose local model is given by a slice of
a principal G,,,-bundle #,: & (E),—>M5(E) =S (E)/Gyir, Vare= {04
+alacA* (End E),, ||la|y<le, Di-a=0, Dya+aA\Na=0} for 6, €5 (E).
Hence #5(E) represents a local universal family of simple holo-
morphic structures on E at each point. By Theorem 2, we have
an open covering #°5(E)=U,S; such that

(i) there exists a S;-simple holomorphic vector bundle &; over
XX,
(ii) éai!s‘.nsj"'ésnsinsj;

(i) (&, S;) is universal at any point of S;.
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From this, we infer that #5(E) represents (F5,)%. Hence we
have #5(E)~=3,(E).

Next we will show the second isomorphism 3, (E) = (M3y) .. (E).
By the definition of algebraic space, we have an étale covering (U))
—M35, by affine schemes U; with an algebraic vector bundle &;,—~
X XS§; such that

1) &, is U;-simple,

(ii) o}&;~0F&; where o; and o, are the projections of U; XU,
onto each components respectively,

(i) (&;,U;) is formally universal at any point of U; (cf. [Ar],
Théoréme 5. 2).

By [GAGA] and [S], (iii) means
Gii)" (&, U;) is universal for analytic families at any point of U.,.

Therefore (A3,)., has an open covering (A3,),,= U;V; such that

(i) there exists a V;-simple holomorphic vector bundle &,->XXV;,
(i) éailViﬂVjNéaleian,
Gii)" (&, V;) is universal at any point of V..

Thus we proved that (#£5,),,(E) represents (F5,)!. Hence we

have (M3,) 0u(E) = M3, (E). Q.E.D.

§4. Moduli Space of Irreducible Einstein-Hermitian
Connections

Let (E,h) be a differentiable hermitian vector bundle over a
compact Kihler manifold X with a Kghler form @.

Definition 4.1. An A-connection on E is a C-linear map d,:
A'(E) > A (E) satisfying
do(f +8) =dfQs+ f+ (dys) for fEeC™(X) and s€A°(E).
and d(h(s, 1)) =h(ds,t) +h(s,dug) for s,t€A4A°(E).

Every h-connection extends to a unique C-linear map d,: A’(E)
—A?*1(E) and induces a unique R-linear map D,: A?(End (E,h))
— A" (End(E, b)) where by End(E,h) we denote the bundle of h-
skew-hermitian endomorphisms of E.
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Definition 4.2, An k-connection d, is called k-Einstein if
(i) its curvature form F, is of type (1,1),
(i) AF,=2-1id; for a 1ER,
where by 4 we denote the trace operator with respect to the Kéahler
form 9.

For an h-Einstein connection d4, we have the following elliptic
complex (B*) (cf. [Ko] Ch. VII): Set B’=A’(End (E,h)), B*'=
A**(End(E,k)) and B%=B?N (B*°+B*?2+B°@). Then we have an
elliptic complex,

+ 2
D, D, DY Dy

(B*) 0 B B B B*3

where Di=p* - D,, D4=D, - p®?, and by p* and p©®? we denote
the projection operators B*—B% and B%—B"? respectively.

Let 9(E,h) be the set of all i-connections on E. Then the
following proposition is well known (cf. [Ko] Ch. VII).

Proposition 4.1. (1) For any d, €2 (E,h), 2 (E,h) =d, + A
(End(E, R)).
(2) Let d, be an h-Einstein connection on E. Then d,+a is h-Einstein
if and only if Dja+ p*(aN\a)=0.

Definition 4.3. An A-Einstein connection d, is irreducible if
Ker (D41 a0 m) = {0} .

Remark. If d, is an irreducible h-Einstein connection, then the
semi-connection d,- induced from d, is simple.

Let & (E, k) be the set of all irreducible /i-Einstein connections
on E.

Proposition 4.2. (cf. [F-S].) (1) The moduli space Myz=

é (E, h) /U(E, k) of irreducible h-Einstein connections is a finite dimensional
Hausdorff (non-reduced) real analytic space.

(2) The natural assignment d,—> 0,- induces an injection M yz— M°(E),
which is a local isomorphism of not necessarily reduced real analytic
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Spaces.

Proof. We fix an integer A>dimpX+1.

(1) Because A-Einstein condition is preserved under U(E, h)-
actions, we have an E-Banach analytic space £y by glueing together
slices Uy . ={d,+a| acA (End (E, h)),, |la|l, e, Dia+p*(aA\a) =0,
D}a=0} for d,e é (E, k). By the same argument in §l, we can see
that #yz is a finite dimensional realanalytic space.

(2) Local models of Az and A5(E) are given by slices U,,
as above and V- .= {0, +a”| a" €A% (End E),, !|a||,<&’, Dya”+a"
a’=0, Dj.a" =0} respectively. We will show that the natural assign-
ment dy+a—d,-+a” gives a real analytic isomorphism Uy — V- e
via an intermediate slice

Ve = {04+ | €4 (End E),, ||lally<e’, Dya’+a’ N’ =0,
ﬁ}a"—%/l(a’/\a"—{-a"/\a’) =0, a’=—"'a"} introduced in [F-S].

At first, we note that the A-Einstein condition Dja-+p*(aAa) =0 is
divided into the following two conditions; A(Dsa+a/\a) =0 and
Dya"+a"\a”=0, and will show the isomorphism U, ,~V, .. Let

U= {di+al acA (End(E, b)), ||la|li<e, A(Dsa+a/\a) =0,
D%-(Dya"+a" Na") =0, D3a=0} and

V1= {0 +a'| €4 (End E),, ||&'[<e’, Di- (Do’ +a” Aa") =0,
Dy’ — 4 A \e’ +a' \a') =0}

Lemma 4.3. (1) U, is a finite dimensional real analytic direct
submanifold of a neighbourhood of 0 in A'(End(E, h)),.
2) V., is a finite dimensional real analptic direct submanifold of a
neighbourhood of 0 in A*'(End E),.

Proof. (1) Let f,: A'(End(E, h)),—DiA (End(E, h)),+D4A (End
(E,h)),+DjA**(End E),_,+ H} be a real analytic map given by f;(a)
=(Dia, A(Da+a/Na), Di (Dya’+a’\&"), pha) where we denote
by «” the (0,1)-component of a and by p} the projection onto the
harmonic space H} in B! Note that A(Da+aAa) €D5A (End(E, b)),
because 4D o | HY, Tr(a Aa) =0 and d, is irreducible. Since (dfy),
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(v) = (D%, AD 4w, D%D,v, o), (df), is a topological isomorphism.
We will show the surjectivity of (df1),, its injectivity is clear because
D*v=ADy=D,v"=0 means ve Hy. Take (uy, u,, us, uy) €D}A* (End
(E, h)), +D%5A (End (E, b)), +D% A"*(End E),_,+HY. Let v,=D,Gu
+D;*G,(u,®) where by G, we denote the Green operator for the
complex (B*). Then Dj»,=u, and AD}v,=u, because D} (u,®) =0 and
u,® | H?2 where we denote by H% the harmonic space in B%. Next,
set vp=G, (W5—D%D4v]) and v,= —'ty+v;, where we denote by G,-
the Green operator for the End E-valued Doubault complex. If we
set v=v,+v,+1u,, then we have (df)),®) = (uy, up, us,u). Hence, by
the inverse mapping theorem in Banach manifolds, f; is a locally
real analytic isomorphism. Since U,=jf7! (0X0x0XH}) locally
around 0, U, is a finite dimensional real analytic direct submani-
fold of a neighbourhood of 0 in A'(End(E,h)),.

(2) Let f;: A% (End E),— D% A" (End E), +D}A"*(End E) 4, +
HY%! be a real analytic map given by f;(¢") = (ljj.a"—%/l(a'/\a”—l-a"
Na'), Di(Dya’+a"Na"), p%la”) where we denote by p% the pro-
jection onto the harmonic space H%! in A®'(End E). Note that
A(a’ Na"+a" Na') € DA (End E), because Tr (a’Aa” +a”"Aa’) =0
and D, is simple. Since (dfy),@) = (D', D&Dav", o%%"), (dfy)e
is topologically isomorphism. Indeed, (dfy)q'(uf, uy, us) =G4 (D4t
+u,) +ug. Hence, by the inverse mapping theorem in Banach mani-
folds, f, is a locally real analytic isomorphism. Since V,= f7!(0X
0 X H%}) locally around 0, V;, is a finite dimensional real analytic
direct submanifold of a neighbourhood of 0 in A*!(End E),.

Q.E.D.

Because the assignment d,+a—d, +a” gives a real linear isomor-
phism T,U, = Hy~ H*! (End E) =T,V, (cf. [Ko] Ch. VII, Theorem
2.21), by the inverse mapping theorem, we have a real analytic
local isomorphism U,~V,. Because both of U, and V.. are defined
by the same equation D,-a”+a”Aa’=0 in their ambients U; and V,
respectively, we have U,.~V, . as not necessarily reduced real
analytic spaces.

Next, let V,= {3, +a’| '€ AL (End E),, || |li<e’, Ej-a"—%/l
(@'Na"+a’Na') =0} and V,={0,-+a’| a’€A4° (End E),, ||&'|[,<¢,
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D}-a"=0}. Then they are R-Banach analytic direct submanifolds of
A% (End E), and transformed to each other by GL (E),,,-actions.
Because V, . and V.. are R-Banach analytic subspaces of V, and
V, respectively defined by the same equation D4.a’+a”/\a”=0, which
is preserved under GL(E),,,~actions, V, . and V, 3 are transformed
to each other by GL(E),,,—actions. Thus Vo=V, . as not neces-
sarily reduced real analytic spaces. Q.E.D.

Corollary. Ay is realized as an open Hausdorfl (non-reduced) com-
plex subspace of M5(E).

See [Ko], Ch. VII, Theorem (4.21) and Proposition (1.19) for
openness and Hausdorffness respectively.

Note added in Proof. After submitting this paper, Professor D. Sundararaman informed
me that he had independently proved Theorems 1,2 and 3.
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