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Kuranishi Family of Vector Bundles and
Algebraic Description of the Moduli

Space of Einstein-Hermitian Connections

By

Kimio MiYAJIMA*

Introduction

There are two different ways of defining complex structures of the
moduli space of irreducible Einstein-Hermitian connections (cf. [Don
1], [Don2]5 [U-Y]) ; i.e. a differential geometric way (cf. [I], [Ko],
[L-O]) and an algebro-geometric way (cf. [Ma]). It has been
unclear whether these two complex structures are isomorphic when
they are non-reduced i.e. their structure sheaves have nilpotent
elements. A main reason for this is that the deformation theory of
Kuranishi type for vector bundles (e.g. [Ak]) has not been fully
generalized so that we can hardly deal with non-reduced structures
in differential geometric arguments.

Main purposes of this paper are to give a complete generalisation
of the deformation theory of Kuranishi type for vector bundles and
to prove that the above two complex structures are isomorphic to
each other.

In §§1 and 2, we will give a generalisation of the local deformation
theory of Kuranishi type for vector bundles. In §1, we will show the
existence of semi-universal local family of holomorphic structures
(Theorem 1) using Banach analytic space argument in [Dou]. By
[Ko], Ch. VII or [L-O] together with the arguments of §1, the
moduli space of simple holomorphic structures will be a (non-
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reduced) complex space. In §2, by a power series argument, we will
show that the semi-universal local family of holomorphic structures
induces that of holomorphic vector bundles (Theorem 2). In §3, we
will prove that, over a projective algebraic manifold, the analytic
moduli space of simple holomorphic structures (cf. [Ko], [L-O]) and
the algebraic one of simple vector bundles (cf0 [A-K]) are isomorphic
to each other as not necessarily reduced complex spaces (Theorem 3).
By Theorem 3 together with the theorems of S. Donaldson, K.
Uhlenbeck and S. T. Yau, we will obtain the isomorphism between
the two complex structures of the moduli space of irreducible Einstein-
Hermitian connections. Finally in §4, we will prove along [F-S] that
the forgetful map from the moduli space of irreducible Einstein-
Hermitian connections into that of simple holomorphic structures is
an open embedding as not necessarily reduced real analytic spaces
(Proposition 4.2). This implies that the two complex structures
considered above are natural.

This work was done during my stay at SFB 170 and was announced
in [Mi]. I would like to thank Prof. Dr. H. Grauert, Prof. Dr. H.
Flenner and SFB 170 for their hospitality. Prof. Dr. H. Flenner
showed me his simpler proof than my original one for Proposition 2. 3
(2). I would also like to thank Prof. Dr. M. Maruyama for helpful
discussions with me during this work and Prof. Dr. M. Llibke and
Prof. Dr. C. Okonek, whose lectures at Gottingen introduced me to
this problem. Finally, I would like to thank the referee for a valuable
suggestion.

§ 1. Kuranishi Family of Holomorphic Structures

In this section, we will prove the existence of semi-universal family
of holomorphic structures, using the Banach analytic space argument
in [Dou]. The following notion of a Banach analytic space is due
to A. Douady (cf. [Dou]).

Let E and F be Banach spaces over C (resp. R) and 0 : EuU
—>F be a C- (resp0 R-} analytic map from an open neighbourhood
U of 0 in E into F with 0(0) =0. C- (resp. R-) analytic functions
h on an open neighbourhood in U with the form h(u)=(0(u), f(u)\
where f is a C- (resp. /Z-) analytic map from the same neighbourhood
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into a Banach space L(F, C) (resp. L(F, J?)), the space of bounded

linear forms on F, forms an ideal of the sheaf 0 Ua We consider a

ringed space (^(O), &u/^e) a local model of a Banach analytic

space.

Definition 1. 1. A Banach analytic space is a ringed space

(X, 0 x) which is locally isomorphic to a local model of the above

type.

Remark. If E is, in particular, finite dimensional, then a Banach

analytic space is an analytic space in usual sense, because 0 n is a

sheaf of noetherian rings.

A ringed space (X, 0 x) which is locally isomorphic to local

models of the above type with $ = 0 is called a Banach analytic

manifold. A ringed subspace (Y, 0 7) of a Banach analytic manifold

X is called a direct submanifold if, for each point j^Y3 there exists a

local chart (p: t/->W^cF of X with a direct sum decomposition E =

Fl + F2 by closed Banach subspaces such that £>(Yn If) =Wn (^ + 0)

and @Y\YKU— &w/^p2-> where p2\ F = F1 + F2->F2 is the projection op-

erator. A direct submanifold (Y, 0 y) with local models as above

induces a Banach manifold (Y, 0?) with local charts (Yfl t/5

Proposition 1.1. (Y, 0 y )~ (Y, 0?) 0j rm^rf spaces.

Proof. We infer from the following lemma that Ke r (0£

Lemma 1. 2. L££ J5 <27z<i G 6^ Banach spaces with a direct sum

decomposition E = Fl + F2. If a local analytic mapping h from E into G

vanishes identically on F2, then there exists a local analytic mapping f from

E into L(F2,G) such that h(t, s) =</(*, j), 5>0

Proof. Let h = ^n>Qhn be an expansion of A into a sum of polyno-

mial maps and un be a symmetric ?2-form on Fx X F2 with values in

G associated with hn. Let a1? a2 be non-negative integers with
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ai-{-a2 = n and ua ifl be a (flba2)-form induced from un. Then /zn(#)

= E"=o «C* ttflfll_a (* , • • • ,* ) . Since A(f , 0)=0, we have uniQ = Q. If
<2<X let M a ,n_ f l be a (<2, n — a — l)-form with values in L(F2,G)

induced from M a . n _ a s Because | |w f l i n_J|H|wa ,n_J|5 En>oE"=o nCJI^.n-alk"'1

is convergent for some r>0. Hence we have a local analytic map
/: F1XF2-^L(F2,G) by /=S.«/,, where /.(*) = Z»iJ nCaua,n-a(x9 . . . f
*). It is clear that A (f, j) = </(*, j) , ̂ > by the construction of /.

a K D.
Throughout this paper except §3, by "analytic" we mean "C-

analytic".
Let E be a differentiable complex vector bundle over a compact

complex manifold X.

Definition 1. 2B A semi-connection on E1 is a C-linear map 3A- :
»A*'l(E) satisfying the Leibnitz-rule dA.(f ° s) = (5/) ®J +
) for eC~(Z) and

A semi-connection induces a first order differential operator

Definition 1. 38 A semi-connection 8A- is called a holomorphic
structure if it satisfies 3A'°dA' = Qe

Definition 1. 48 A semiconnection dA° is isomorphic to dA- if

there exists a g^GL(E) such that g-5 ' = 5A'9^ holds.

By @(E) we denote the set of all semi-connections on Ee The
following proposition is well known (cf. [Ko] Ch. VII).

Proposition 1. 30 (1) For any 3A-e^(jE), 3 (E) =dA.+A°'l(End

E).
(2) Let 3A- be a holomorphic structure. Then (3A--{-a)o ($A.+a)

= 0 if and only if PA> (a) =DA.a + a/\a = Q, where DA-a = ldA^ a],
(3) Let gE^GL(E). Then (3A.+a2) - g=g * (9^+a^ if and only

if g* «i-«2 '^-5^=0.
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Let £ be a holomorphic vector bundle over a compact complex
manifold X and 8: A°'°(E)-^AQ'1(E) be the canonical holomorphic
structure.

We fix an integer k^>dimRX + 1 and denote the Sobolev completion
of order A: by a subscript k.

Let P be an analytic map AQ'l(End E)k-*A°'2(End E)k^ defined
by P(a)=Da + a/\a where Da = [3, a].

Definition 1. 5. By a local family of deformations of 5, we mean
a pair (<w, (71, 0)) of a germ of an analytic space (T7, 0) and an
analytic map o) from (7\ 0) into a germ of a Banach analytic space
(P"x(0), 0), which is of class C°° on XxD where D is an ambiant
space of T.

Definition 1.6. Two local families (<o, (7») and (a)', (7»)
are equivalent if there exists an analytic map g: (T, o) -> (GL (E)k+l9 idE)

such that it is of class C°° and the map t-*g(t}<o(t) — <*>'(OgOO — Dg(t}
is a 0-map from (T, 0) into A0-1 (End E)k.

For a local family (cw, (T1, 0)) and a holomorphic map 0". (5,0)
-^(T, 0), we denote by ((7*<w, (5,0)) the family given by OJQO-: (5,0)

Definition 1.7. A local family (01, (T1, o)) is complete at o if for
any local family (o/5 (5,0)) there exists a holomorphic map 01: (5,0)
— >(jf, 0) such that (0-*ft>5 (5,0)) is equivalent to (a/, (5,0)).

Let (w, (T1, 0) ) be a local family of deformations of 3. For
yeT0T we have D(da)(v}} =0 because <5(rfa)(z;)),/> = z;«P(<y),/» -0
for any f^L(A0>2(End £")*_!, C). Thus we define ^fe infinitesimal

deformation map p: T0T-*H°-l(End E) by ^ (y) = [<to (&) ] .

Theorem 1. There exists a local family (a, (T, 0)) JMC/Z
(1) the infinitesimal deformation map p: T0T-*H°'l(End E} is bijective,

and
(2) it is complete at any point of T,

Proof. Let Q,= [a ̂  A0-1 (End E)k\ ||a||4<e,
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= 0}. Then Qc.A°-1(EndE) because a satisfies an elliptic partial

differential equation Hja + D*(a/\oi) =0.

Lemma 1.40 Q is a direct submanifold of a neighbourhood of 0 in

A0tl(End E)k for sufficiently small e^> 0, whose local chart is (Q,pi\d),

where by pl we denote the projection onto the harmonic space H°-l(End E).

In particular, Q is finite dimensional.

Proof, Let q : A0'1 (End £) k -> H°-l (End E) + D * A°-l (End E) k +

D*A°'2(EndE^k^ be an analytic map defined by q (a) = (^a, D*o:,

Z)*(Z)a + a/\a)). Since dq(Q} (v) =- (piV, D*v^ D*Dy), dq(Q} is a topologi-

cal linear isomorphism,, Indeed, dq~^ (MO , Ml5 MZ) = w0 + G-D^ + Gu2.

Hence, by the inverse mapping theorem in Banach analytic manifolds,

q is a local analytic isomorphism at 0. Since Q = q~l(H°'l(End E} XO

X 0) locally around 0? Q is a direct submanifold for a sufficiently small

£>0 and pi\ Q->H°'l(EndE) gives its local chart. Q. E, D,

Remark, On Q^, /?x coincides with the Kuranishi map K(a) =a

Let P: AQ-l(EndE}k-^AQ-2(EndE)k^ be a local analytic map

defined by the integrability condition P(OL) =Da4-a/\aa Then we

have a local family (or, (T3 o) ) of deformations of 9 parametrized by

a germ of an analytic space T=PlQ~l(0),

Remark. T is isomorphic to a Banach analytic space {«e

Since Q^ is finite dimensional, J^P is finitely generated. We will find

a canonical generator of J^p0

Let F={(a,0)(EQxA°-2(End E)k^ ||a|4<e, il^U-^s, 5*ff = 0,

Lemma 1. 50 F is a finite dimensional direct submanifold of a

neighbourhood of (0,0) in QxA0>2(End E)^ for sufficiently small £> 0,

whose local chart is (F, (/?iX/?2)|F) where p{ is the projection onto the

harmonic space H0> * (End E) for i — 1 , 20
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Proof. Let/: Qx AQ-2 (End E} k^-> d X A0'2 (End E) k.3 be an ana-

lytic map given by /(a, 0) = (a, p20 + DD*0+ D*(DO-26 f\a)}. Since

df(0.®(vi,V2) = (vl,p2v2 + DD*v2
Jr D*Dv2), dfM is a topologicall linear

isomorphism. Indeed df^Q) (MX , M2) = (M: , p2u2 + Gw2). Hence, by the

inverse mapping theorem in Banach manifolds, / is a local isomor-

phism at (0,0). Since F = f-1 (Qx H°'2 (End E» locally around (0,0),

F is a direct submanifold of a neighbourhood of (0, 0) in Q X

A0'2(End £)*-!• Since /F induces a local isomorphism from F onto

a neighbourhood of (0,0) in Q, X H°'2(End E)k_ly (ft X/>2) ,F : F-*

H°-l(EndE) xH°-2(EndE) is a local chart of F. Q. E. D.

Let 0' be the expression of an analytic map 0=pr2lF: F—»

AQ>2(EndF)fe_! with respect to the local chart (F, ( p i X p 2 } ] F ) , where

/?r2 is the projection onto the second factor.

Lemma 1.6. ^ / (^ 5 0)=0.

Proof. Let (a, 0) <EF and p20 = 0. Then 0 = GD*D0 = 2GD*(0/\a).

Since | !^ | | fe- i<^i l l^A a : l ! fe-2^ c2ll^l l fe- i l l a lk f°r some constants c1 and c2,
we have 0 = Q if |H|4<1A2. Q. E. D.

Lemma 1.7. Jr
P = ̂ paP.

Proof. It is clear that J^^pCJ^p.

Let ^ be a local analytic map from Q^ into F defined by %(OL) =

(a, Da + a/\a). If 1' is the expression of 1 with respect to the local

charts (Q,,/>1IO) and (F, (AX^ 2) j F) , then i'(0 - (*,/>2oP(a(*)))• Since
P(a) =0o2(a), we infer from Lemma 1.2 that the expression P7 of P

with respect to the chart (Q,,/>HF) has the form P'(t) =0'(t, p2°

Therefore we have J^F

Q.E.D.

By Lemma 1.7, hlfa..9hr is a system of generators of J^P if

p2°P(a (0) — AI (0 ^i + • • • + hr(t)er where * l f . . . , * r is a base of

Since /?2°P(«(0) has no linear terms, we have T0T~H0>1(EndE).
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Thus we proved (1) of Theorem 1.

Proposition 1. 80 The family (a, (T, 0)) is complete at any point

of T sufficiently close to o,

Proof, We may assume that T is so small that the map
D*AQ-l(EndE}k^v^D*Da(tjV^D*AQ'l(EndE}k is topologicall isomor-

phism for any ^eT9 where Dav = Dv + [a, v\ .

Let (a/, (5, o)) be any local family of deformations of da(t^ i.e.

<o' is a local analytic map (S9 0)— »(P~ l(0) 9
 a (^ i ) ) j where 5 is an

analytic subspace of DdCm
a

Let F: Dx D*A°'l(End E)k+2 -> D*A^l(EndE}k be a local analytic
map given by F(J, g) = D* 0 (g) -1o G/ (5) o ̂  (g) -j-# (g) ~lo£) (e (g) ) ) where

we denote idE+g by e(g). Since dFfi(0i0>(v) =D*Da^v9 dFgi(QiQ} is a

topological linear isomorphism between Banach spaces. Hence, by
the implicit mapping theorem in Banach manifolds, we have an
analytic map g: D-*D*A°'1 (EndE)k+2 such that g(0) = 0 and

D*(e(grlow'(s)oe(g)+e(grl°D(e(g))')=Q. g(s) is of class C°° on XxD

because g satisfies an elliptic partial differential equation

D*Dg+D*R(o>'(s)9g) +D*o>'(s) =0, where R(ua>'9 ug) =u2R'(co', g, u) for
a real parameter w, with R'(o)f

9g9u) depending differentiably on G/, g
and u for small u. If we set w(s) =e(g(s))~l°<o'(s) ° e ( g ( s ) ) +e(g(s))~l

°JD(«(g(j))) , then POO)) =*(g(j))~ l oP (*»'(*)) °^(gW). Hence we
have a local family (<o, ( S , o ) ) equivalent to (a>\ (5, o)). Because

D*(t)(s)=Q,, a) is a local analytic map from (D, 0) into (Q,, a(O)
which maps (5, o) into (^aC^)). Thus we have a holomorphic
map <7:GS»->(:r, a(O) such that (a*a, (5, o)) — « (5, o)) 0

Q.E.D.

This completes the proof of Theorem 1.

§28 Equivalence of Deformations of Holomorphic Structures
Those of Holomorphic Vector Bundles

In this section, we will show that the family obtained in Theorem 1
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induces the semi-universal family of vector bundles (cf. [F-K]).
In order to compare local families of holomorphic structures and
those of holomorphic vector bundles, we discuss at first another
description of local families of holomorphic structures.

Let (T, 6) be a germ of an analytic subspace of a neighbourhood
of the origin in Cm and J Tt0 be its ideal. Because analytic maps
from (Cm, 0) into a Banach space F correspond bijectively to con-
vergent power series in (tl , . . . , tm) with coefficients in F, we have
the following description of Definitions 1. 2 and 1. 3. Where (tl9... ,
O denotes a coordinate function of Cm and we abbreviate it as simply

(0 in the rest of this section.

Proposition 2.1. Let w(f) be in AQ-l(EndE) k [ t l 9 . . . ,tm] and CD be
an analytic map from (Cm, 0) into A0>1(EndE)k corresponding to a>(t).
Then (o>, (7*, o)) is a local family of deformations of d if and only if

tt)(t) satisfies the following conditions.
(1) oi(O) = 0,
(2) a)(t) is of class C°° on XxD for some neighbourhood D of 0 in Cm,

(3) P(oi(0) ^^

Proof. If o>(0 satisfies (1)~(3), then <PO(0), /(0>^^r,0 for
all /(O ^L(A°'2(EndE)k.lt C) [tl9 . . . ,tm}. Hence o> induces an analytic
map from (T, 0) into (P-1 (0) , 0) .

Conversely, let (a), (7^,0)) be a local family of deformations of 9.
We will show P(<w(0) ^^T.O AQ-2(End E^k^{tl9 . . . ,tm] by applying
the Grauert division theorem (cf. [Gra] or [F-K]). Let D =

[ord(f) \f^J^Ti0} and A be the reducing system of D. Then we
have a system of generators [f^}^A of ^T.O with the form f* = t* + hi
satisfying ord(h^)^>2. By the Grauert division theorem, there exists a
unique r = ̂ v^Drvt

v in A0'2 (End E) ̂  [tl9 . . . ,tm} such that PO(0)

-r(Oe^T > 0 A™ (End E)^*!, • • - , * * } • Since <P(oi(0), /(0> e J^r.0
for a l l /COeLC^^CEnrf^^^Ofr^ . - .^J , we have r(0=0.

a E. D.

Proposition 2.2. Let a>(t)9 a*'(t) be in A°-l(EndE) k{tl9 . . . ,tm] and
satisfy the conditions in Proposition 2. 15 and let (o>, (T3o)), (a/, (T, 0))
^^ corresponding local families of deformations of 3. T/z^w («, (T1, 0)) u
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equivalent to (w\ (T, 0)) if and only if there exists a g(t} in
GL(E)k+l {Jl5 . . . , tm} satisfying the following conditions.

(1) g(0)=idE9

(2) g is of class C°° on XxD for some neighbourhood D of 0 in Cm,

(3)

This is proved by the same argument of the proof of Proposition
2.1.

Hence, in the rest of this section, we call co (/) e A0> l (End E) k

[ti,...,tm] satisfying (1) — (3) in Proposition 2.1 a local family of
deformations of 9 and their equivalence is defined by the existence of
g(f)^GL(E)k+1[tl9...ftm} satisfying (1)^(3) in Proposition 2.2.

Next we consider two local deformation functors given by
^H((T,o))={w(t)^AQ'1(EndE)k{tl9...,tm] satisfying (1) - (3) in
Proposition 2. I}/—, where the equivalence is denned as Proposition
2.2, and ^V((T9 0)) = [tf-^Xx (T, 0) | a vector bundle with i: E~

^ixxo}/^, where & ~~ & " if there exists a bundle isomorphism %: <?
-># 7 with i - i=i'.

Remark. When E is a simple vector bundle, the following local
deformation functors are equivalent to & 'H and ^v respectively:

-^((7>)) = KO ^AQ'i (End E) ,&,..., tm} |3 + fli(0)-3 and oi(0
satisfies (2) and (3) in Proposition 2. l}/~5 where cw(0^^'(0 if
there exists g(f) satisfying (2) and (3) in Proposition 2.2. &"V((T, o))
= {<;f-»Zx (r, o) | a vector bundle}/—, where <? — (f ' if there exists
a bundle isomorphism ^ 2± <g '.

Theorem 2. J5"^ and ^v are isomorphic to each other.

Proof. Both families correspond to each other via diflferentiable
trivializations of families of holomorphic vector bundles, i.e. a difFer-
entiable isomorphism s: ExT-*£ with slExo = i.

Let <f->Zx(T, 0) be a vector bundle and {ea0(t}} be a system
of its transition matrices with respect to a Stein covering X=DaVa.
We may assume that {eafl(o)} gives a system of transition matrices of
E. A differentiate trivialization of £ is represented by (sa(t)} with
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the following properties ;

(2.1) s^(t}^A°-°(Va, GL(r,O) i+1{f !,..., /J and is of class C°° on
Va X D for some neighbourhood D of 0 in Cm,

(2.2) Ja(0««/.(0-«««(0

where r = rank E.

A local family o>(0 of deformations of 3 corresponding to the local
family of vector bundles #-^>Xx(T, o) is characterized by

(2. 3) 3ja(0 +a>(0*«(0 e^r.0 ^(F,, GL(r, C)4 fc, . ..,*„}.

Proposition 2a 30 (1) Let £ be a vector bundle over Xx(T,o).

Then there exists a differ entiable trivialization which induces a local family
of deformations of 5.
(2) Conversely, let <y(0 be a local family of deformations of 3. Then
there exists a vector bundle over XX (T, 0) and a differ entiable trivialization
which induces w(t).

(3) Let ctf(0 (resp. <y'(0) be a local family of deformations of 3 induced
from a vector bundle $ (resp. $ ') over Xx(T,o) via a differentiate
trivialization s: £ ~ExT (resp. s': £'~ExT). Then «? — g ' if and

only if (D(t}~~(*)'(t).

Proof. (1) If we set sa(t) =^7ear(Q)prera(t)9 then sa(t) satisfies
(2. 1), where [pr] is a partition of unity subordinate to the covering

{Vr}. Since s a ( t ) e a 0 ( t ) -^(0)^(0 =TLreaT(Q)pT(era(t)eaB (0 -^,(0)
and e r a ( t ) e a f l ( t ) - c r P ( f ) ^J?T,0 r (Van VB, G x} { f l f . . . , U , we infer
that sa(t) satisfies (2.2).

Let a>(0 = E7^a7(0)(3j7(0)(Jr(0)"V(°)}- Then ai(0 satisfies
(1) and (2) in Proposition 2.1. We infer from (2.2) that <w(0
satisfies (2.3). We will show that o)(t) satisfies (3) in Proposition

2.1. Since a>(0 wa~ 0^(0) (JaCO)"1^ J^r>0 ^'H^, EndE»k{tl9 . . . ,

U9 we haveP(a)(0) ,F aee/ r i 0^ 0 - 2 (F a ?£^£) ,_ 1^ 1 ,B 8 e ,U. We infer

from this that P(o>(0) ^JfT,oAQ'2(End E)^^, . . . , U-
(2) (Due to H. Flenner.) It is enough to prove the assertion for

a semi-universal family (a(0> (T,o)) obtained in Theorem 1.
Let ( <f , (5, 0) ) be a semi-universal family of vector bundles with

$ >xxo— E (cf. [F-K]). By (1), we have an inducing morphism o\
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(51, 0) -> (Ty 0). It is enough to show that a induces isomorphisms (Sn 9 0)
~ (Tn, 0) between every infinitesimal neighbourhoods. This will be
achieved by showing the equivalence of functors over Artinian bases.

Clearly ^V((T^ 0))->Jr
H((T, 0)) is injective, it is enough to show

the surjectivity. We will show it by induction on n. If n = l then
it is clear by the Dolbeault isomorphism. Let (T9 0) be a small
extension of an infinitesimal neighbourhood (T", 0) such that
Ker (0 r ->0 r )~ C. Let £ ' be a vector bundle over XX (T\ 0). Then
we have a vector bundle ff over XX (T9 0) with g ixxcr .o)— &' by
the following exact diagram:

0 0 0 0

0-1- ,

I
0 »«f —

i i i i
jc w T > /i— ̂ &) k6;c c/ r

0 0 0

where the horizontal arrows are induced from a(t) ̂ ^H((T9 0)).
(3) Suppose X={%a(0} represents a bundle isomorphism $~

i.e. it satisfies

(2.4) X

where {e^CO} is a system of transition matrices of £' with respect
to the covering X=\JaVa. We may assume that ea^(0) =e^(0). If
we set &(0=^(OZ.(0(J«(0)~1 then &(0 e^0'°(Fa, GL(r,
. . . , tm} and we infer from (2. 4) that

(2.5) «

(2.6)

If we set 5(0=S7^ar(0)ft(0^a(0), then g(t} satisfies (1)^(3) of
Proposition 2.2 because of (2.5) and (2.6).
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Conversely, suppose that g(t) ̂ GL(E)k+l[tlfm.. 9tm] satisfies (1) —

(3) in Proposition 2.2. If we set ?a(0 = (^(O)'^(O^(O then
??a(0 ^A°'°(Va, GL(r, C))k+1[ti,... ,tm] and it satisfies

(2.7) ija(t)ea0(t) -

(2.8) 9?«(

If we take a smaller Stein covering X=\JaUa with Ua^Va and set

&(0=(/-3*#«3)?«(0, then £,(0 e^°-°(C7a? GL(r,C) ) ,{*!, . . . ,*«}
and we infer from (2. 7) and (2. 8) that

(2.9) ^(0^(0-^(0^(0 _
^STiQA°-°(Uan Uft9 GL(r, O)^, . ..,*„},

(2.10) 3^(0=0,

where JVa is the L2-Neumann operator over Ua. This implies that

T,o®ox^ XXD) for a sufficiently small neighbourhood Z> of 0 in

Cm. Thus we have a bundle isomorphism %={% a (0}- Q,. E. D.

This completes the proof of Theorem 2.

§ 3. Comparison of Three Kinds of Moduli Spaces of

Simple Structures on a Vector Bundle

over a Projective Algebraic Manifold

Let E be a differentiable complex vector bundle over a projective

algebraic manifold X,

Definition 3. 1. A semi-connection 5A- is simple if Ker(Z)A- 00 0 )A A ' (.End E)

= {0} , where by End0 E we denote the subbundle of End E consisting

of endomorphisms with trace 0.

Remark. A holomorphic structure is simple if and only if its

associated holomorphic bundle is simple i.e. every holomorphic endo-

morphism is constant.

Let ^(E1) be the moduli space of simple holomorphic structures
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on E. By [Ko] or [L-O] together with the arguments in §15 we can
see that Jts(E) is a finite dimensional (non-reduced) complex space.

Let Jis
an and J£s

alg be the moduli spaces of holomorphic simple vector

bundles and of algebraic simple vector bundles on X respectively.

In this section, we will prove that they are isomorphic to each other

as not necessarily reduced complex spaces,

Let Fs
an: (An)-* (Sets) be a functor given by Fs

an(T) = {<T->XX

T\ a T-simple holomorphic vector bundle such that $ \x*t is diffe-
rentiably equivalent to E for any t^T}/^, where < f ~ < f ' if £ ~

/>*J?(g)<? ' for some invertible sheaf & on T, and Fs
alg: (Sch/C)-*(Sets)

be a functor given by Flig(T) = [£->X xT\ a T-simple algebraic

vector bundle} /~, where g — £ ' if ff ~p*&® £ ' for some invertible

sheaf J£? over T.

Existence Theorem. (1) (cf. [W], [#-0] and [F-S]) The shea-

fified functor (FfJ* is representable by a locally Hausdorff complex space

^s
an(E).

(2) (cf. [A-K]) The sheajified functor (Fs
alg)

M> under the etale topology

is representable by an algebraic space Jis
aig.

Theorem 3. Jis (E) ~ uT£, (£) =: (uffj „ (E) , where by (J!s
alg) an (E)

we denote the open part of the underlying complex space of ^lig consisting

of simple vector bundles differentially equivalent to E.

Proof. At first, we will show the isomorphism Jts(E)~Jts
an(E),

By ^(£), we denote the set of all simple holomorphic structures on

E. As is shown in [L-O], Jis (E) = ¥ (E) /G where G = GL(E)/C*9

is a Banach C7-analytic space whose local model is given by a slice of

a principal G,+1-bundle nk: &>(E)k-*Jfs
k (E) =& (E)k/Gk+l9 VA-.B= {3A.

+ a\a^A°'1(EndE)k9\\a\\k<e9D^a = 09DA'a + a/\a = 0} for 8A. &&(£).

Hence Jts(E) represents a local universal family of simple holo-

morphic structures on E at each point,, By Theorem 2, we have

an open covering Jts (E) = U ,•£,• such that

(i) there exists a ^--simple holomorphic vector bundle $ { over

(ii) & i\s.nsj.~~& j\s.r\Sj>

(Hi) ( $ f, S{) is universal at any point of 51,- B
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From this, we infer that Jts(E) represents (FfJ*. Hence we

have Jls(E)~Jts
an(E).

Next we will show the second isomorphism Jts
an (E) ~ (Jts

a lg) an (E) .

By the definition of algebraic space, we have an etale covering ([/,-)
—>^aig by affine schemes U{ with an algebraic vector bundle $ {-+

XxSi such that
(i) £ ; is £/t--simple,

(ii) fff / i^ff* $ j where o{ and ffj are the projections of UfXpUj

onto each components respectively,
(iii) (ffi9Ui) is formally universal at any point of U{ (cf. [Ar],

Theoreme 5.2).
By [GAGA] and [S], (iii) means

(iii)' (<? f - ,C/ ,0 is universal for analytic families at any point of [/,-.
Therefore (^f^)an has an open covering (Jls

a ig) an = U £ V{ such that
(i) there exists a Ft-simple holomorphic vector bundle <? l-->Arx7£,

(ii) $ i\v^v^ $ j\v.nVj9

(iii)' ((?,-, Vf) is universal at any point of V{.

Thus we proved that (J£s
alg) an(E) represents (Ffj*. Hence we

have (Jts
alg) an (£) - uTf . (£) . Q, E. D.

§4. Moduli Space of Irreducible Einstein-Hermitian
Connections

Let (E, /z) be a differentiable hermitian vector bundle over a
compact Kahler manifold X with a Kahler form 0.

Definition 4.1. An /z-connection on E1 is a C-linear map c/A:
A\E)-*Al(E) satisfying

dA(f 8 ̂ ) =df®*+f • (^) for /eC-(JQ and

and d(h(s,t"))=h(dAs,t)+h(s,dAt) for j,

Every A-connection extends to a unique C-linear map <fA: AP(E)
->Ap+l(E) and induces a unique U-linear map DA: Ap(End(E,h))

-*Ap+l(End(E,h}} where by End(E,h} we denote the bundle of h-
skew-hermitian endomorphisms of E,
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Definition 4S 28 An A-connection dA is called /z-Einstein if
(i) its curvature form FA is of type (ly 1),

(ii) AFA = 1 e idE for a 2eJS,
where by A we denote the trace operator with respect to the Kahler
form 0e

For an /z-Einstein connection dA, we have the following elliptic
complex (jB*) (cf. [Ko] Ch. VII) : Set B*=A*(End(E,h))9 Bp-q =
Ap'q(End(E,h)} and B2

+=B2n (B2'° + B°'2 + B°0)a Then we have an
elliptic complex,

DA DA DA SA'(5*) o > B° —^ B1 —^ B2, —^ 5°-3 —^-* ...

where D^=p+ • DA, D2
A=DA. * p(0-2\ and by /?+ and />(0-2) we denote

the projection operators B2->B2
+ and B2

+-*B°-2 respectively,,
Let ^ (£", A) be the set of all /z-connections on E. Then the

following proposition is well known (cf. [Ko] Gh. VII).

Proposition 4e 1. (1) For any dA<=® (E, K), 3 (E, h) =dA + A1

(End(E,h».
(2) Let dA be an h-Einstein connection on E, Then dA + a is h-Einstein
if and only if D+

Aa + p+(a/\a) =0,

Definition 4038 An /z-Einstein connection dA is irreducible if

Remark. If dA is an irreducible /z-Einstein connection, then the
semi-connection 5A' induced from dA is simple,,

Let S (E, h) be the set of all irreducible /z-Einstein connections

on E.

Proposition 4020 (cf. [F-S].) (1) The moduli space JtHE =

$ (jE, h)/U(E, /z) of irreducible h-Einstein connections is a finite dimensional

Hausdorff (non-reduced) real analytic spaceB

(2) The natural assignment dA-*dA- induces an injection JiHE-> Jts(E),
which is a local isomorphism of not necessarily reduced real analytic
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spaces.

Proof. We fix an integer k^>dimRX+l.
(1) Because A-Einstein condition is preserved under U(E,h)-

actions, we have an JS-Banach analytic space JtHE by glueing together
slices UA.t=[dA+a\ a^A1 (End (E, A ) ) 4 , \\a\\k<e, D\a + p+(af\a) = 0,

DAa = Q] for dAE^ $ (E,ti). By the same argument in §1, we can see
that JtRE is a finite dimensional realanalytic space.

(2) Local models of JtHE and Jts(E) are given by slices C/Ai6

as above and VA*iE*= {3A*+a" \ a" ̂  A0-1 (End E)k9 !|a||t<e*5 DA.a" + a"/\

a// = 0? DA>a" = Q] respectively. We will show that the natural assign-
ment dA-\-a->dA'-ra" gives a real analytic isomorphism UAiB->VA~ie-

via an intermediate slice

}k, \\a\\k<e\ DA*a" + a" /\a" = Q,

')=Q,a'=-ta''} introduced in [F-S].

At first, we note that the /z-Einstein condition DAa + p+(a/\a) =0 is
divided into the following two conditions; A(DAa + a/\a} =0 and
DA'df -\-a" f\a" ^ = 0, and will show the isomorphism UAte~VA-ie>. Let

= Q] and

Lemma 4B 3e (1) Ul is a finite dimensional real analytic direct

submanifold of a neighbourhood of 0 in A1 (End (£, h) ) k .
(2) Vl is a finite dimensional real analytic direct submanifold of a

neighbourhood of 0 in AQ>l(End E)k.

Proof. (1) Let/i: Al(End(E, h^k-*DAAl(End(E, h

(E, K)")k+DA'AQ'2(EndE")k^ + Hl
A be a real analytic map given by f^a)

= (DAa, A(DAa + a/\a)9 DA~(DA-a" -\-a /\a")9 p\a) where we denote
by a" the (0, 1) -component of a and by p\ the projection onto the
harmonic space H\ in B1. Note that A(DAa + a/\a) ^D*AAl(End(E, h))k

because ADAaJiHA, Tfr(a/\o:)=0 and dA is irreducible,, Since (4/i)o
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is a topological isomorphism0

We will show the surjectivity of (4/i)o3 its injectivity is clear because
=Q means v^H\. Take (M I S M2, %, MO) eD^1 (End

nd £).., + H\. Let v^D^u,

+ DA*GA(u2@) where by GA we denote the Green operator for the

complex (5*). Then DAvl = u1 and AD\v± = u2 because D\ (u20) = 0 and

M20j_f/+ where we denote by H2+ the harmonic space in B2
+a Next,

set vff
2 = GA'(vl—D'A'DA'v(} and v2= —^-{-vl, where we denote by GA>

the Green operator for the End E-valued Doubault complex. If we

set v = vl + v2-\-uQ, then we have (rf/i)0(z>) = (ul9 u2, z4'5 M O ) - Hence, by
the inverse mapping theorem in Banach manifolds, /: is a locally

real analytic isomorphism. Since f/1 = /f1 ( O x O x O x H i ) locally

around 0, Ul is a finite dimensional real analytic direct submani-

fold of a neighbourhood of 0 in Al(End(E^h}}k,

(2) Let / : A0-1 (End E)k-*DA~A°-l(End E)k +DA*AQ'2(End E)k.2 +

//V1 be a real analytic map given by fi(a") = (DA>a"— ^- A(af /\a" + a"

Aa /)3 DA'(DA'a" + a" /\a"), P°A^a//) where we denote by ff£ the pro-
jection onto the harmonic space H°Al in A0'1 (End E). Note that

A(a'/\a* + af\a')^Dl-A^(EndE)k because Tr (a' f\a + a /\a') =Q

and DA- is simple. Since (rf/i)o(^) = (DA-vf\ DH>DA'V, pA
}v"}, (4/i)o

is topologically isomorphism0 Indeed, (d/1)Q
l(ui^uf

2^uff
0) =GA-(DA'u[

+ ufl
2) -\-UQ. Hence, by the inverse mapping theorem in Banach mani-

folds, /! is a locally real analytic isomorphism. Since Vl = fil(Qx

0 X H°Aty locally around 0, Vl is a finite dimensional real analytic

direct submanifold of a neighbourhood of 0 in AQil(End E}ka

Q, E. B.

Because the assignment dA + a->dA>+aff gives a real linear isomor-

phism T0Ul = Hl
A~H°'l(EndE)=T0Vl(cf. [Ko] Ch. VII, Theorem

2 0 21) , by the inverse mapping theorem, we have a real analytic

local isomorphism U1^Vla Because both of UAiB and F^iE- are defined

by the same equation /5A.a* + a"/\a* = 0 in their ambients Ul and Vl

respectively, we have UAi&~VA-^> as not necessarily reduced real
analytic spaces.

Next, let t^Rr + a"! aff^A°'l(End E)h, \\aT\\k<e', D^cf - A

\a')=Q} and 72= {3A-+ a \ a" G A0-1 (End E ) k , ||a"|L<e',
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DA>O" = 0}. Then they are U-Banach analytic direct sub manifolds of

AQ>l(EndE)k and transformed to each other by GL (E1) fe+1-actions.
Because t^- E< and VA>iE- are 12-Banach analytic subspaces of V2 and

V2 respectively defined by the same equation D A-a" + a" /\a" = 0, which

is preserved under GLCE^^-actions, F^-.e- and FA-,E» are transformed

to each other by GL (£) ^-actions. Thus VA-^ ~FA- iE- as not neces-

sarily reduced real analytic spaces. Q,. E. D.

Corollary. ^HE is realized as an open Hausdorff (non-reduced) com-

plex subspace of

See [Ko], Ch. VII, Theorem (4.21) and Proposition (1.19) for

openness and Hausdorffness respectively.

Note added in Proof. After submitting this paper, Professor D. Sundararaman informed
me that he had independently proved Theorems 1, 2 and 3.
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