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Orbital Stability of the Periodic Solutions of
Autonomous Systems with Impulse Effect

By

Pavel S. SIMEONOV* and Drumi D. BAINOV*

Abstract

In the present paper the orbital asymptotic stability of the periodic solutions of autonomous
systems with impulse effect is investigated. An analogue of the theorem of Andronov-Vitt is proved.

§ 1. Introduction

In the recent years still more works have been published dedicated to
systems with impulse effect [l]-[9].

These systems describe evolution processes which in certain moments
change rapidly their state. In the mathematical simulation of such processes it
is convenient to neglect the duration of this rapid change and to assume that the
system changes its state by jumps.

Processes with such a character are studied in numerous fields of science
and techniques such as control theory, impulse techniques, populational
dynamics, mass service, control of the reserves, etc.

Systems with impulse effect are defined by a system of ordinary differential
equations x =f(t, x) and conditions which determine the moments and the
magnitude of the impulse effect. The determination of the moments of impulse
effect can be realized in various ways.

For instance, the moments of impulse effect for the system

dx
^=/M,

(a)

occur when the mapping point (t, x(t)) of the extended phase space meets some
of the hypersurfaces ak defined by the equations t = Tfc(x), k = 1, 2,....

The moments of impulse effect of the system
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I=/(,»,,
(b)

Ax\t=^k = lfc(x), k = 1, 2,...

are t = Tfe, /c = 1, 2,... and are fixed.
The moments of impulse effect of the system

dx / ^ -1,— = 0(x), xeM,
at

(c)

occur when the point x(t) of the phase space X meets the set M c X.
The solutions x(t) of systems (a, b, c) are piecewise continuous

functions. At the moment t = ik of impulse effect the solution x(t) has a
discontinuity of first type and we assume that the following equalities hold

x(rfc - 0) = x(ik), X(T& + 0) = x(ik) + Ax(ik).

Between two consecutive moments of impulse effect (te(tk9 Tk+1]) the
solution x(t) of system (a) coincides with the solution £(t) of the initial value
problem

— =/(£, £), £(Tk) = x(Tk + 0).

The solutions of systems (b) and (c) for £e(ik, Tk + 1] are defined analogously.
We shall note that the moments of impulse effect of the different solutions of

systems (a) and (c) are different. That is why in the investigation of such
systems there are some additional difficulties which do not occur when we study
system (b).

Up to the present moment systems of type (a) and (b) have been profoundly
studied [l]-[9] while systems of type (c) have been almost not studied.

Note that in the case when/(£, x) does not depend on t (i.e. f ( t 9 x) = #(x)),
systems (a) and (b) do not possess the property of autonomy. System (c) has
this property. On the other hand, in practice the most frequently one meets
autonomous systems with impulse effect. That is why the investigation of
systems of type (c) represents an undoubted interest.

In the present paper the orbital asymptotical stability of a periodic solution
of system (c) is investigated and an analogue of the theorem of Andronov-Vitt is
proved [10], [11].

§2. Preliminary Notes

Consider the autonomous system with impulse effect
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— = g(x), xeM,

(1)
^*LeM = /(*),

where t e R; g, I: Q -> R"; £2 is a domain contained in the rc-dimensional
Euclidean space R" with elements x = col(xl5..., xn), scalar product (x, y) = xlyi

+ •- + xnyn
 an<i norm |x| = (x, x)1/2; M is an (n — l)-dimensional manifold

contained in Q.

Further on we shall use the following notations: \A\ = sup \Ax\ — norm of
|x| = l

the
(n x ??)-matrix A; diag(v4l5 A2) — a block-diagonal matrix with blocks A^ and
A2l Em — the unit (m x m)-matrix; Om — the zero (m x m)-matrix; BE(x0) =
{xeR": |x — x0 < e} — s-neighbourhood of the point x0eR"; G — the closure of

the set G c R"; p(x, L) = inf |x — y\ — the distance from the point xeR" to
yeL

S f f d f - \ n

the set L c Rn; -^- = ( -^M —the Jacobian matrix of the function /: Rn -> R";
5x \dXjJi

[a; b] — the interval [a, b] if a < b or the interval [b, a] if b < a; x(t; t0, x0) — the
solution of system (1) satisfying the initial condition x(t0 + 0; t0, x0) = x0 and
J + ( t o , X o ) — the maximal interval of the form (t0, CD) in which the solution
x(t; t0, x0) is continuable to the right.

Let cp(t) ( teR+ = [0, oo)) be a solution of system (1) with moments of
impulse effect {tfc}:

0 < i1 < T2 < • • - , lim Tfc = oo and
k->oo

L= {xeR": x = <p(t), teR + }.

Definition \e The solution cp(t) of system (1) is called:

1.1. orbitally stable if

( V £ > 0 ) ( V * 7 > 0 ) ( V t 0 e R + , \t0 - *k\ > l) (3(5 > 0)

(Vx 0 eO, p(x0, L ) < ^ 5 x0eS^(Tfc))U S,(cp(Tk + 0)))(Vte J+(t0, x0))

p(x(t; t0, x0), L) < e;

1.2. orbitally attractive if

, p(x0, L) < A, x0eB,(cp(Tfc))U S,(9(Tk + 0)))(Ve > 0) (3cr > 0)

+(t0, x0))
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1.3. orbitally asymptotically stable if it is orbitally stable and orbitally
attractive.

Definition 2, We shall say that the solution cp(t) of system (1) has the
property asymptotic phase if

( V i y > 0)(W0eR+J \t0 - ik\ > i/)(3 A > 0)

(Vx0eO, x0 - <p(t0)\ < A)(3ceR)(Ve

t0 + ere J+(t0, x 0 ) (Vf > t0 + °> teJ+(t0, x0), |r -

Remark 1. Let the functions 0(x) and /(x) be differentiable, the manifold M
be smooth and the normal vectors nk to M at the points <p(Tk) be such that (nk,

))) ¥= 0, fc= 1, 2,.... Then a straightforward verification shows that the

function £(t) = -r- (0 satisfies the following linear system with impulse effect at
at

fixed moments of time

(2)
\ t = X k = Nku, k= 1,2,...,

where

0)) -

System (2) is called system in variations (of system (1) with respect to the
solution cp(t)).

We shall say that conditions (A) hold if the following conditions are
satisfied:

Al. System (1) has a T-periodic solution p(t) with moments of impulse
effect rfc (rfc < T f c + l 5 k = 0, ±1, ± 2, ... ) and the positive integer q be such that

T0 < 0 < T! < ••• < iq < T< iq + l,

^k + q = ^k+ T, k = Q, ± 1, ±2,.. . .

A2. ^ ( f )^0 for t ^ t f c 3

A3. There exists a constant H > 0 such that:
g

A3. 1. The function g: Q -» E" is differentiable in the set D = |J Dk(H) c O
fc = i

and is continuous in D where
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Dk(H) = {xeR": \x - y\ < H, ye/;},

rt = {xeR": x = p(t), te^, T,]}U {P(T,_! + 0)}.

q

A3. 2. The function 7: Q -> R" is differentiable in the set (J BH(p(ik)) c Q.
k=l

A3. 3. The set Mn BH(p(x^), k = l,...,q coincides with the set of solutions
of the equation (f)(x) = 0 where the function <p: BH(p(tk)) -> R is difFerentiable in

A4. The following relations hold

0, fc = 1 , . . . , 0.

A5. For any h e (0, H) there exists y > 0 such that p(x, M) > y for k = l,...,q

and xErk\Bh(p(tk))-
A6. P! = 1 and |pk| < 1, k = 2,...,n where pfe, k=l,...,n are the

multiplicators of the T-periodic linear system with fixed moments of impulse
effect

(4)
\t^k = Nky, fc = 0, ± 1, ±2,.. .

and

dl
Nky = (

d(b

0)) -

X

Remark 2. Let conditions A1-A4 hold. Then, by Remark 1, the function
dp

y = — is a T-periodic solution of system (4). In view of condition A2 we
at

conclude that the linear T-periodic system (4) has a multiplicator equal to one.
System (4) coincides with the system in variations of system (1) with respect

to the solution p(t).

Remark 3. Condition (3) means that the trajectories of system (1) are not
tangent to the manifold M in some neighbourhood of the point p(rfc).
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§3. Main Results

Before we go to the proof of the main theorem we shall prove some
auxiliary assertions.

Denote by z(t ; £0, z0) the solution of the initial value problem

Lemma 1. Let conditions A1-A4 hold.
Then there exists a number /ie(0, H) such that for any k = 1,..., q there exists

a unique differentiate function Tk: Bh(p(ik)) -» R, w -> Tk(w) so that

0(z(7»; Tb w)) = 0,

flT. fir
i; T* w) I = o

for

Proof. Lemma 1 follows immediately from the implicit function theorem
applied to the function

cpk: (Tfc - H5 Tk + H) x BH(p(ik)) -> R, (t, w) -* ̂ t, w)

= 0(z(t; rfc, w)) and the system <pfc(t, w) = 0.

Corollary 1. There exists a constant T > 0 such that

|7i(w) - rfc(u)| < T|W - u| for fc = l,...,q and w,

Let n > 0 and m > 0 be integers and D a R. Denote by PC(D, Rnxm) the
space of (n x m)-matrix- valued functions which are defined for t e D, continuous
in t E D, t ^ Tfc, at the points rk they have discontinuities of first type and are left
continuous.

The following two lemmas are related to the system

^ = P(t)y, t * ife?

(6)
Ay\t=Tk=Pky, k = 0, ±1, ±2,... ,

where P(t) and Pk (teR, k = Q, ±1, ± 2,...) are (w x n)-matrices.
Introduce the following conditions (C):
Cl. P(-)ePC(#, ,R«X") and P(t + T) = P(t) for teR.
C2. There exists an integer q > 0 such that
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?k + q = *k+ T, Pk+q = Pk, fc = 0, ±1, ±2,....

C3. P! = 1, \pk\ < 1, k = 2,..., n,

where pk, fc = 1,..., n are the multiplicators of system (6).

Lemma 2. Le£ conditions (C)
system (6) AOS a fundamental matrix of the form

Y(t) = m diag(Ei, ec<), (7)

where the matrix i^(-) e PC(R, Rnx") w non-singular and 2T -periodic and C is a real
(n — 1) x (n — l)-matrix with eigenvalues which have negative real parts:

Re^-CC) < 0, j = 1,..., n- 1. (8)

Proof. Let 7(0 be the fundamental matrix of system (6) for which 7(0)
= En. From the T-periodicity of system (6) it follows that

Y(t+T)= Y(t)Y(T) for teR. (9)

From condition C3 it follows that the monodromy matrix Y(T) has eigenvalues

P! = 1 and \pk < 1, k = 2,..., n.

Hence there exists a non-singular matrix S such that

= diag(£l5 BJ = B, (10)

where Bl is a real (n — 1) x (w — l)-matrix with eigenvalues which are in
modulus less than one:

\1J(B1)\<1, ;=!,..., n-1. (11)

Set

C = - In B19 (12)

A=^ln ^ = diag(0l5 C),

7(0 - Y(t)S. (13)

Since from (13), (9) and (10) it follows that

Y(t+T)= Y(t +T)S= Y(t)Y(T)S = Y^SS'^^S = Y(t)B

then by the representation of Floquet the fundamental matrix l^t) has the form

7(t) = t(t)eAt = MOdiag^, ect\

where the matrix ^(-)ePC(R, Rnx") is non-singular and 2T-periodic.
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From (11) and (12) there follows (8) which proves Lemma 2.

Lemma 3. Let conditions (C) hold, the fundamental matrix Y(t) of system (6)
have the form (7) and

i, t > s
(14)

Y(t)diag(£ls Q.-1)Y-1(s), t < s.
W, s) =

Then:
1) The matrix G(t, s) satisfies the relations

G(t, t - 0) - G(t, t + 0) = £„, t eR, (15)

dG
t, s) = P(t)G(t, s), t * Tb (16)

G(rt + 0, s) = (£„ + Pt)G(Tk, s), tfc / s, (17)

G(T, + 0, Tt) = (£„ + P,)G(Tft, Tj + £„, fe = 0, ± 1, ± 2, . . . , (18)

Ke-2"(t~s\ t > s
\G(t,

K , t < s,

where a > 0 and K > 1 are constants.
2) IfbkeRn,fePC(R + , R"xl), aeR", e± = col(l, 0,..., 0) and

r
Jo

(19)

JO k=l

(a, ej = 0 (20)

then the function

|*°o oo

y(t, a) = Y(t)a + G(t, s)f(s)ds + X G(t, ik)bk (reE+) (21)
Jo fc=i

is a solution of the system

t**k' (22)

and

3) /£ moreover,

\f(t)\ < re~*\ \bk\ < re-™*, t eR + 5 T f ceR+ , (24)
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then the function

u(t) = pG(r, s)f(s)ds + f G(t, xk)bk
Jo * = i

satisfies the estimate

\u(t)\<Qre-«',teR + , (25)

where the constant Q > 0 is independent of r, f(t) and bk.

Proof. Equalities (15)— (18) follows immediately from formula (14).
From representation (7) and formula (14) it follows that

' - W w , t > s
G(t, s) = (26)

O^WrHs), t<s.

By Lemma 2 there exists a number a > 0 such that

ReA/C) < - 2a < 0, 7 = 1,..., n - 1 (27)

and the matrices \l/(t) and \l*~l(t) are bounded on R (since they are periodic and
belong to PC(R, Rnxn)). Then (26) and (27) imply estimate (19).

2) Since \G(t, s)\ < K for t, s > 0, then

r\G(t, s)f(s)\ds + £ |G(t, Tfc)6k| < K r\f(s)\ds + K f |bk| < oo,
Jo fc = i Jo fc=i

hence the improper integral and the series in (21) are absolutely convergent.
Write (21) in the form

y(t, a) = Y(t)a
o

f°°G(r,
Jt

After a differentiation with respect to t ^ rk, in view of (15) and (16), we
obtain

, t - 0) - G(t, t

I vx -v-» ^—( w •«_»

+ -£-{*, s)/(s)rfs + X -=-(*,
Jo »r t=i ot

= P(t)j<t, a) +/(t).

The differentiation is possible since the improper integral and the sum
obtained as a result of the formal differentiation are convergent uniformly with
respect to t belonging to any finite subinterval of R + .
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Applying (17) and (18), we find that

y(ct + 0, a) = Y(it + 0, a) + G(it + 0, s)f(s)ds
Jo

oo

+ Z G(T; + °> T^)^fc + G(Ti + °» Ti)^i

= (£„ + Pi)y(ti, a) + &£.

Hence y(t, a) is a solution of (22).
In view of the structure of Y(t) and of (20), we obtain that for

\Y(t)a\<K\ae~2M. (28)

Moreover,

0< f°°G(ts
Jo

't/2

|G(t,
0 Jt /2

Z |G(t, TjUfrjtl
0 < T k < f / 2

K\f(s)\ds
t/2

+
0<t k <t /2

f/2

+ K^- a tf \bk\+K X |^fc ->0 a s t - ^ o o . (29)
k = l t k >f /2

Hence from (21), (28) and (29) it follows that relation (23) is fulfilled.
3) Let f(t) and bk satisfy estimates (24),

min(Tfc - Tk_!) = 9 and TB < t < tn+1.
fe

Then the estimates

ff f°N(t)|< Ke-2a(f-s)re-as^ +
Jo Jt

Kre~*sds
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£-2at

n f1"
L0Ji ,

""
J

fla.8

+1

imply estimate (25) with Q = — -(uO + 9 + 1).
ac/

This completes the proof of Lemma 3.

Theorem 1. Let conditions (A) hold.
Then the T-periodic solution p(i) of system (1) is orbitally asymptotically

stable and has the property asymptotic phase.

Proof. Let in system (1) the change of the variables be realized

x = Sz + p(0),

where the non-singular matrix 5 is chosen so that

S-^t(Q) = e1=col(l, 0,..., 0).

As a result of this change we obtain a new system which has a Aperiodic
solution n(t) = S~1(p(t) — p(0)). An immediate verification shows that the new
system and the solution n(t) satisfy conditions (A). Moreover, 7i(0) = 0,

— (0) = ev That is why, without loss of generality, we assume that the solution
at
p(t) of system (1) satisfies the conditions

°' S(°) = e" (30)
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For the system in variations (4) the conditions of Lemma 2 hold with P(t)

= —(p(t)) and Pk = Nk. Hence system (4) has a fundamental matrix of the form
ox

Y(t) = <KOdiag(£l5 ec<), (31)

where the matrix ^(-)ePC(R, R"x") is 2T-periodic non-singular and Re/l/C) < 0,
j= 1,..., n—1.

From (31) we obtain that the first column of Y(t) is a 2T-periodic solution of
system (4). But from conditions A2 and A6 it follows that this solution is

proportional to the Aperiodic solution — (t) of system (4). Hence we can

assume that

Y(t) =

where Y^t) is an n x (n — l)-matrix. Moreover, (30) implies

Let

diag(0l5 Et-JY-1®, t>s
G(t, s) = (33)

-Y(t) diag^, On_,)Y-\s), t<s.

By Lemma 3 G(t, s) satisfies estimate (19) and Y(t) satisfies estimate (28) if
", (a, eJ = Q.
Choose successively /ze(0, H) by Lemma 1 and y > 0 by condition A5.
First we shall prove that there exist constants rj0 > 0 and B > 0 such that

for any a e D(ri0) = {a e Rn: (a, ei) = Q9\a\ <rj0} system (1) has a solution x(t)
= x(t, a) which is defined for t eR + ? has points of discontinuity tk = tk(a) and
satisfies the estimates

\tk-rk\<B\a\e-^ = 6k, (34)

\x(t) - p(t)|< B\a\e-a for \t - xk\ > dk. (35)

For this purpose we construct the sequences

wM = wn(t, a) and tn
k = tn

k(a), n = 0, 1, 2,...

setting for te.R and k = 1, 2,...

W0(t) = P(0, t°k = xk

after which we successively define

= p(t) + 7(t)a + r G(t9 s)fn(s)ds + f
J O k = l

(36)
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where

/„(£) = F(wn(t), t) = g(wn(t)) — g(p(t)) — -^-(p(t))(wn(t) — p(t)), (37)

&Z = &(wn(Tfc)) - I(z(tn
k', Tfc, WnTfc))) - J(p(Tk))

+ I \g(z(s- ik, wn(ik + 0))) - g(z(s- Tk5 wn(rk)))]rfs (38)
k

tk
+ 1we determine as the unique solution with respect to t of the system

Let \a\ <—-min(/z, 7). Then for n = Q from (37), (38), (36) and (28) it

follows that

lK\a\e-2«\ t>0. (40)

Moreover, since | w^rj — p(ik)| < K\a\ < h, then by Lemma 1 and Corollary 1
there exists a unique solution t£ = 7fc(wi(Tfc)) °f the system 0(z(i:; rk, WJL^^)) = 0
and the following estimate holds

< TK(Tfc) - p(Tfc)| < TK|a|e-2^. (41)

Let jUE(0, /z). The analysis shows that the functions F(w, t) and /?k(w)
satisfy the inequalities

|F(w, t) - F(u, t)\ < L(^)|w - u\ for |w - p(OI < ̂  u - p(t)\ < p (42)

and

-u\ (43)

for |w — p(rk)| < fiy \u — p(rk)| < ^ where lim L(ju) = 0.

Choose Afe(0, — ) and rj0 > 0 so that
K

^K 1
— (afl + 0 + 1) < -, 2K^0 < M. (44)

Then by induction with respect to n we prove that the members of the
sequences wn(t), t\ can be determined successively and the following estimates
hold
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\wn(t)-™n-M<K\a\2i-»e-«t, (45)

\wn(t)-p(t)\<2K\a\e-*t, (46)

\tn
k- t n

k ~ l \ <iK\a\2l-ne-™*, (47)

|*J-Tk | <2iKe~^k (48)

for n = 1, 2,..., m.

In fact, from (40) and (41) It follows that estimates (45)-(48) hold for n
= 1. Let these estimates hold for w = l , . . . , m. Then wk(t) — p(t) \ < n, k
= 1,..., m and from (42), (43) and (45) we find

and

After this, by assertion 3 of Lemma 3, in view of (36) and (44), we obtain

e~«t. (49)

From (49) it follows immediately that

|wm+1(t) - wm(t)| < "xVxO - ^-iWI
J = l

2"2 + •••)^"a t = 2K\a e'**.

In particular, wm + 1(tfe) - p(rk)\ < 2K\a <h and by Lemma 1 equation (39)
has a unique solution £™ + 1 = Tfe(wm + 1(tfc)) for which by corollary 1 we have

| t f e
m+1 - t»| = |Tfe(wm+1(Tfc)) - Tfe(wm(Tfe))| < T|wm+1(T f c) - Wm(tfc)|

Then

Thus estimates (45)-(48) hold for n = m + 1, hence for each n = 1,2,....
From (45) and (47) it follows that the sequences wn(t) and tn

k are convergent
uniformly on tsR and & = 1, 2,.... Let w(t) = w(t, a) and tfc = tk(a) be their
limits. Then
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\w(t)-p(t)\<2K\a\e-«<, (50)

\tk-Tk\<2TK\a\e-""< (51)

and

where

= p(t) + Y(t)a + G(t, s)f(s, a)ds + £ G& **)**(«). (52)
o fc = i

f(t, a) = g(w(t)) - g(p(t)) - ~(p(t))(w(t) - p(t)) (53)

and

bk(a) = I(z(tk; Tto

rJtt

0))) - g(z(s; tk, fc

In view of assertion 2 of Lemma 3 we obtain that w(t) is a solution of the
system with impulse effect in fixed moments of time

dw
— = g(w), t ± Tfc,

rk, w(tfc))) (55)

Define the function x(t) = x(t, a) by the formula

i<Tk + 0)) if tk < t < rfc, (56)

x(tk) = x(tk — 0). ,?-.

From (55H57) it follows that the function x(t) is differentiate for t ^ xk and
satisfies the system

dx
*-«*>-<***

Moreover,
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Ax(tk) =

z(tk; tk, w(ik + 0)) - wfe) if tk < Tk,

W(tk) - Z(tkl Tk, W(tfc)) if tk > Tk, (58)

) if tk = Tk.

Let £k < tk. Then

= z(tk; tk, w(tfc + 0)) - w(tk)

z(tk; tk, w(tk + 0)) - w(tk + 0) 4- w(Tk) - w(tk)

fTk
= J(z(tk; tk, w(tk))) + [#(z(s; tk, w(tk + 0))) - 0(z(s; tk,

Jtk

- rs, tk, w t k + s-\gzs,

By analogous calculations it is proved that in the cases tk > tk and tk = rk

the following equality holds as well:

dx(tk) = I(x(tk)).

Taking into account z(tk: Tk, w(tk)) = x(tk) and passing to the limit in the
equality 0(z(tk; Tk, ww(tk))) = 0, we get </>(x(tk)) = 0, i.e. tk are moments of
impulse effect for x(t). Moreover, in view of condition A5, from (50) and (56) it
follows that x(t) has no other moments of impulse effect.

Hence the function x(t) is a solution of system (1) with moments of impulse
effect tk. By (56), (50) and (51) the solution x(t) and the moments tk satisfy (34)
and (35).

We shall find a relation between the initial values x° = col(x?,..., x°) = x(0,
a) of the solutions x(t, a) and the parameter aeZ%0). Put t = 0 into (56) and,
in view of (52) and (30), obtain

foo ao

x° = Y(0)a + G(0, s)/(s, a)ds + Y G(0, tk)fck(a), (59)
Jo * = i

where f(t, a) and bk(d) are given by formulae (53) and (54).
From equality (32) it follows that

7(0) diag(£l5 ()„-!) = diag(£l5 O^J. (60)

Let c^ and Ctj (i,j= 1,..., n) be respectively the elements of the matrix 7(0)
and their cofactors.

Taking into account (60) and (33), we conclude that equation (59) has the
form

.., aj, (61)
7 = 2
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Z'fA (* = 2,..., n), (62)
j=2

where

rr°° £f(a2,..., aj = G(0, s)/(s, a)rfs + £ G(0,
LJo fc=i

(Here [x]x denotes the first coordinate of the vector x).
Since the determinant A of system (62) is equal to

A = Cn =det 7(0)^0

then system (62) is solvable with respect to a2,..., an-> i.e.

(63)

where dyfc are constants.
Substitute the result obtained into (61) and obtain

VU \ Zi VO I £/vO v(h //C/l\
Xi — 2_j "fc-X'k ' SV-X :2j-"5 ^nJJ W^1)

where /zk are constants and £(x2,...9 xj) = ^(a25...J ««)•
In view of (53), (54) and estimates (50), (51) we conclude that the function

£(a29...9 an) is differentiable in some neighbourhood of the point OeD(*70) and
£(a2,..., an) = o(\a\) as |a|->0.

Then, in virtue of (63), the function £(x29...9 xj) is differentiable in some
neighbourhood (x2)

2 + ••• 4- (x°)2 < r2 and

as (65)

This enables us to formulate the following assertions:
I. The graph of the function

" ~

defines in R" a smooth hypersurface S and OeS.
II. The function

is differentiable in the neighbourhood |x| < r and by (64), (65) and (30) we have

9(0) = 0,
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III. For any pe(0, r) there exists Pie(0, p) such that if weR", |w| < pl9

then the equation

<p(z(t; 05 w)) = 0

has a unique solution t = i(w) e [ — r, r] and

\z(t\ 0, w)| <p for te[0; f].

Note that in the proof of Assertion III the arguments are as in the proof of
Lemma 1.

Now let s > 0 and rj > 0 be given and t 0 eM + , |t0 — rk| > 77.
Choose successively the numbers:

^6(0, ri0) so that 2iKr\l < r\Q\

pe(0, min(r, s)) so that if (x^)2 + ••• + (x°)2 < p2, then for the numbers a,
defined by (63), we should have

Pie(05 p) so that Assertion III should hold.
Let IT- T< t0 < iT. Then 0 < T0 = zT- r0 < T and

P(^o + r0) = p(iT) = p(0) = 0. (66)

From Remark 3 and the continuous dependence of the solution of system
(1) on the initial data it follows that there exists A > 0 such that for any x0 eRn,
l*o -P( fo)l < A we have

p(x(f, t0, x0), L) < s for te [t0, t0 + T0] (67)

and

\x(f, r09 x0) - p(t)\ <p1 < £ for te [t0? ^o + 7J,], |t - rk| > rj. (68)

In particular, for w = x(t0 + T0; tQ, x0), in view of (68) and (66), we have |w|
< pj. Then by Assertion III there exists a unique fe[ — r, r] such that

z(t- 0,

and

z(t; 0, w)| < p for te [0; f]. (69)

Since system (1) is autonomous, then

*i = *(to + T0 + f; t0, x0) = x(tQ + r0 + f; *0 + T0, x(t0 + T0; t0, x0))

= x(t0 + r0 4- f; r0 + T0, w) = x(f; 0, w) = z(f; 0, w).
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Hence x1eS and |xx | < p and to xl by (63) corresponds fl*eD(?71). Then the
solution x(t; 0, xt) = x(t, a*) of system (1) and its moments of impulse effect t*k

satisfy the estimates

\tl - Tk| < 8k =

\x(t; 0, Xl) - p(t)\ < 2K|fl*|£Ta< for t>0,\t- rk\ > 5k.

Having taken into account p(t) = p(t + t0 + T0),

X(t; 0, Xj = X(t + t0 + TQ + f; t0, X0), Tfc + t0 + TO = Tk + fc

and setting s = t + t0 + T0, we obtain

|x(s + f; t0, x0) - p(s)| < 2K|a*|e-
a(s-to-ro) (70)

for s>t0+ r0, |5 - T fe+£, | > 2TK|a*|e-«fc.

For se [Tfc + £9 — ̂ fc, tfe + ^ 4- ̂ fc] there holds either the estimate

\x(s + f; t0, x0) - P(?k + iq - dk)\ < 2X|a*|((l + T^2a^ + rdOc"^"'0"™ (71)

or the estimate

\x(s + f; t0, t0) - P(*k + iq + 4)1 < 2X|a*|(l + id + T^a^~a(s~to"To)
5 (72)

where d = sup|^(x)|.
xeD

Then from (70) it follows that the solution p(t) has the property asymptotic
phase, from (70H72) it follows that p(t) is orbitally attractive and (69)-{72) and
(67) imply that p(t) is orbitally stable, i.e. it is orbitally asymptotically stable.

Remark 4. Let the manifold M divide the domain Q into q disjoint parts:

Q = Q^ • • • U O , ? U M,

QtnQj = 09 O f n M = 0, 1 , 7 = 1 , . . . , g, iV7

and

r k c^ k u M, fe= i,..., q.
Let the function #k: O-^R", fc= 1,..., ^f be differentiate in Dk(H) and

continuous in Dk(H).
Then Theorem 1 holds if

g(x) = gfc) for xeQk(}Dk(H)

or if condition A5 is replaced by the following condition A5'. For any /ze(0, H)
there exists y > 0 such that:

p(x, M) > y for k = 1,..., q and xerfc\(5,(p(Tfc))U ^Wi,^ + 0))).
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x + I(x)e®kU M for x e M n

(Pfa-i + WgWtk-i + 0)) * 0, fc = 1,..., q.

Consider the case n = 2. Assume that system (1) has a T-periodIc solution

^ 0 1 and in the interval (0, T] the solution p(t) has q moments of
dt J

impulse effect. Let Y(t) be the normalized for t = 0 fundamental matrix of the
system in variations (4).

Then the multiplicators pl9 p2 of system (4) satisfy the equation

det(7(T) - pE2) = 0

or

p2 - pTr Y(T) + det Y(T) = 0. (73)

Since system (4) has a non-trivial Aperiodic solution — , then one of its
at

multiplicators is pl = 1. From (73) and Viete's formulae it follows that

P2

or, in detail,

o TrSP2 = l det(£2 + Nk) o rp (74)
fc=l

Let system (1), in scalar notation, have the form

i f (x ,y) iM,

(75)

Ax = a(x,y)

Ay = b(x, y) if (x, y)<=M,

the set M is defined by the equation

and p(t) = «"dt
Then system (4) assumes the form
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= (S(t\ n(t))u +
(76)

= m n(t]]u + d~
Au\t=rk = Aku 4- Bkv, k = 1, 2,...,

, k=l, 2,...,

where the constants Ak, Bk, Ck and Dk have been calculated according to formula
(5).

Then from (74) and (76) we obtain

(Tir^)' ^(t)) + ir^ ri(t))~\dt
Jo }Jx dy JA ir ' irp2= Y\4ke Jo }Jx dy J (77)

fe = l

where Ak = det(£2 + Nk) = 1 + Ak + Dk + AkDk - BkCk.
After detailed calculations we find that

da_ d^_ _ da dcf) d(f>\
^~dy^ + ~fy)

f (78)

da da db db dd) dd)
— , — , — , — , — , —

and P+ - P(«Tk + 0), tfTk + 0)),

where P, Q, — , — , — , — , — , — have been calculated at the point (f(Tk), rj(ik))

Thus for n = 2 the following corollary holds.

Corollary 2 (Analogue of Poincare's criterion).
The solution p(t) = col(£(t), rj(t)) of system (75) is orbitally asymptotically

stable and has the property asymptotic phase if the multiplicator p2 calculated by
formula (77) satisfies the condition \p2\ < 1.

Example 1. Consider the second order equation

Jc + 2/zx + co2x = 0 ( 0 < f c < o > ) . (79)

Let the solution x(t) be subject to impulse effect at the moment t = ik.

X(lk + 0) = x(Tfc), X(lk + 0) = X(tfc) + b(x(lk\ X(lfc)), (80)

where ifc is a moment of impulse effect if

x(Tk) = 0, x(ik)>0. (81)

The equation with impulse effect (79)-(81) represents the simplest
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mathematical model of a clock-work [12].
Set x = j; and write down equations (79)-(81) in the form of a system:

x = y

y = — co2 x — 2hy if (x, y) E M

(82)

Ay = b(x, y} if (x,

where M is defined by the conditions

0(jc, y) = x = 0, y > 0. (83)

System (82)-{83) has a non-trivial T-periodic solution x = £(t\ y = rj(t) which
coincides with the T-periodic continuation of the solution

= y0e-ht(cospt - -sinjSt)

of (82) for £e(0, T], where y0 is chosen so that

y0e~kT + ft(x(n XT)) = y0

and r= 27C/?-1, /? = ^/co2 - /i2.

In our case q = l, T1 = T, x(T) = 0, x(T+ 0) = 0,

y(T) = y0e~hT, y(T+ 0) = y0e'hT + b(x(T\ y(T)) = y0,

da _ da _ a0 _ d<j) _ dP _ dQ_
__ _ — - _ — — _ y? — — _ i5 — — _ y9 _— _ — ^fl?

ox 03; 03; ox ox cy

i) Let b(x, y) = p > 0.

db db
Then — = — = 0,

ox ay

= P+ = y(T+ 0) = y0 hj
1 P y(T) y0e-hT *

ii) Let b(x, y) = Jy2 + e — y (e> 0).
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Then

i.rr. I ^ <•• I. T t,T U U

and

y(T+ 0) y(T)
y(T)

Hence p2 = e= ~2hT

In the case (i) and (ii) p2e(Q, 1). Hence, by Corollary 2, the solution x
= £(t)9 y = rj(t) of the system (82) is orbitally asymptotically stable. It is to this
solution that the normal work of the clock corresponds.

Example 2. The linear system with impulse effect

dx_
~dt

kry
i f W < f

-kry, if

dy ( x ry
~^ ~ krLC + L(krS - 1)'

2Sr V
Ax= - 2Skrx, Ay = x, if \x\ = —,

JLi 2,

models the work of the electronic scheme given on (Fig. 1) ([13], ch. V. § 17).

Fig.l
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Here k is the amplification factor which depends on the parameters of the
tube T2 and on the anode resistance R, x = eg = kri is the lattice tension of the

tube 7\; y = —; 5 = — is the obliquity of the lattice characteristic of the tube Ti;
at Vs

Is and Vs are respectively the current intensity and tension of satiation of the
tube TI, krS - 1 > 0.

Cr2

In [13] it is proved that in the cases when Lis small (L« ) or Lis large

Cr2

(L» ——) system (84) has a unique non-zero periodic solution p(t) and the period

T of this solution is estimated:

n
for L» —-

4
fLC ' 4L2

Cr2

2 — ln(2Skr - 1) for L«

The phase trajectory of p(t) is given on Fig. 2 f for L» —— ) and on Fig. 3

Cr2

for L«
4

The motion of the mapping point (x(t), y(t)) is realized in the set defined by
V

the inequality \x\ > y. This motion is continuous from point A2 to point A3

and from point A± to point Al and by jumps from point A± into point A2 and
from point A3 into point A4 (Fig. 2, Fig. 3).

^i(xiJi)

AA^^y*)

Fig.2 Fig.3
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Using the above notations we obtain

x ry
P(x, y)= - kry, Q(x, y) =

krLC L'

a(x, y)= - 2Skrx, b(x, y) = -- -Ax, fax, y) = \x\ - -~,
-Lt 2,

<g - n
 8P - ,„ 8Q

 =
 1 8Q r

dx ' dy ' dx krLC dy ~ L'

da db 2Sr Bb

dx2' ' dx

Then

L'

2Sr

A 1 = — - — = — — - =

2Sr_

L

Cr2 Cr2

In the cases when L» -— or L« —— , the condition 0 < p2 < 1 is

satisfied. Then the periodic solution of system (84) is orbitally asymptotically
stable.
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