A Remark on the Decomposition of Abelian Fiber Spaces over Curves

By

Yoshio FUJIMOTO*,**

§0. Introduction

By an Abelian fiber space $f: X \to Y$, we mean that f is a proper surjective morphism from a complex manifold X to a complex manifold Y whose general fibers are Abelian varieties. If $g: X \to Y$ is a surjective meromorphic map of complex varieties with irreducible general fibers, g is called a meromorphic fiber space. Using his Hodge theory with degenerating coefficients, Zucker [3] proved the theorem of the fixed part of Abelian varieties. ([3] Corollary 10.2) Inspired by his result, we consider the decomposition of Abelian fiber spaces over curves.

The purpose of this note is to prove the following Theorem A.

Theorem (A).

Let $f: X \to C$ be a surjective morphism of a projective manifold X to a nonsingular curve C such that the general fibers of f are Abelian varieties. Then we have the following diagram

which enjoys the following properties.

(1) g: $X \to Y$ (resp. h: $Y \to C$) is a meromorphic fiber space (resp. a fiber space) whose general fibers are Abelian varieties and the period map associated to h is constant.

(For the definition of a fiber space, a meromorphic fiber space and a period map, see notations below.)

(2) Suppose that there exists a commutative diagram

Communicated by K. Saito, July 1, 1988. Revised December 1, 1988.

^{*} Department of Mathematics, Kyoto University, Kyoto 606, Japan.

Current address: Department of Mathematics, Shizuoka University, Ohya, Shizuoka, Japan. ** Supported by the JSPS Fellowships for Japanese Junior Scientists

where $\psi: X \to Z$ (resp. $\beta: Z \to C$) is a meromorphic fiber space (resp. a fiber space) whose general fibers are Abelian varieties and the period map associated to β is constant. Then there exists a unique meromorphic map $\varphi: Y \to Z$ such that we obtain the following commutative diagram. Moreover we have dim $H^1(X, \mathcal{O}_X) = \dim H^1(Y, \mathcal{O}_Y)$.

The author wishes to express his thanks to Professor K. Ueno for useful suggestions.

Notations. We use the following convention and terminology.

q(X): = dim $H^1(X, \mathcal{O}_X)$: the irregularity of X.

A fiber space is a proper surjective morphism of complex spaces with irreducible general fibers.

Let $f: X \to Y$ be a meromorphic map of complex varieties, $\Gamma \subset X \times Y$ be the graph of $f, p': \Gamma \to Y$ be the natural projection. If p' is a fiber space, we say that g is a meromorphic fiber space.

Let $f: X \to C$ be an Abelian fiber space over the curve C and let $f^{-1}(p) = \sum_{i=1}^{\lambda} m_i D_i$ be the irreducible decomposition of the singular fiber over a point $p \in C$. If the greatest common divisor m of $(m_1, \dots, m_{\lambda})$ is greater than one, we say that X has multiple fibers of multiplicity m at $p \in C$.

Let $\varphi: X \to Y$ be a projective family of g-dimensional Abelian varieties and $U \subset Y$ be a Zariski open subset over which φ is smooth. Then by integrating a relative holomorphic one-form of X along a continuous family of homology basis of $H_1(\varphi^{-1}(u), \mathbb{Z}), u \in U$, we can define a multi-valued holomorphic mapping (called the multi-valued *period mapping*) $T: U \to \mathfrak{S}_g$ into the Siegel upper half-plane of degree g. For the precise definition of a period mapping, see Ueno [2], p.4-8.

§1. Preliminaries

To prove Theorem A, we need the following propositions.

Proposition 1.1. Let $f: X \to C$ be an Abelian fiber space over a smooth curve C and define q(f):=q(X)-q(C). Then we have the inequality $q(f) \le \dim(X) - 1$.

Proposition 1.2. Let $f: X \to C$ be a proper surjective morphism of a projective manifold X to a smooth curve C such that the general fibers are Abelian varieties. Then we have the following diagram

which satisfies the following properties.

(1) g: $X \to Y$ and h: $Y \to C$ are Abelian fiber spaces. Moreover we have q(X) = q(Y) and h: $Y \to C$ is a Seifert fiber space, that is, a fiber space with constant moduli which has only multiple singular fibers.

(2) Suppose that there exists a commutative diagram

such that $\psi: X \to Z$ and $\beta: Z \to C$ are Abelian fiber spaces with q(X) = q(Z). Then there exists a unique morphism $\varphi: Z \to Y$ with the following commutative diagram.

Proof of Proposition 1.1 and Proposition 1.2.

Let α_X be the Albanese map of X and consider the following commutative diagram:

where $\mu \circ g$ is the Stein factorization of α_x .

The Albanese map $\alpha_X: X \to Alb(X)$, when restricted to the general fiber of f, is a Lie group homomorphism, hence each fiber of π and the general fiber of g are Abelian varieties. And it is easy to see that the general fibers of h are Abelian varieties.

As $\alpha_X(X)$ generates Alb(X), for a general point $p \in C$, $\alpha_X(f^{-1}(p))$ is equal to the connected component of ker $\{\gamma: Alb(X) \to Jac(C)\}$. Hence we have dim(Y) $= \dim(\alpha_X(X)) = 1 + q(X) - q(C)$. This proves Proposition 1.1. Moreover we have q(X) = q(Y), since $q(X) \ge q(Y) \ge q(\alpha(X)) = q(X)$. Each fiber of h contains no rational curve and the ramification locus of μ are at most multiple fibers of h. Hence $h: Y \to C$ is a Seifert fiber space.

Universality. Suppose that there exists a commutative diagram

with q(X) = q(Z). Then we have the following commutative diagram:

Since q(X) = q(Y) = q(Z), we have $\alpha_X(X) \simeq \alpha_Y(Y) \simeq \alpha_Z(Z)$. Hence for each fiber $X_p := \psi^{-1}(p)$ of ψ , $\mu \circ g(X_p) = \alpha_X(X_p)$ consists of one point. Since μ is finite and X_p is connected, $g(X_p)$ is also a point. Hence there exists a holomorphic map $\varphi: Z \to Y$ such that g is isomorphic to $\varphi \circ \psi$.

q.e.d.

Lemma 1.3. Let

be a commutative diagram of Abelian fiber spaces over a smooth curve, where the Albanese map of Z is generically finite to its image. And let

350

be a commutative diagram of Abelian fiber spaces as in Proposition 1.2.

Then there exists a surjective meromorphic map φ : $Y \rightarrow Z$ with the following commutative diagram.

Proof. There is a commutative diagram.

For a general fiber $X_p := g^{-1}(p) \ (p \in Y)$ of g, we have

$$\alpha_{Z^{\circ}}\psi(X_{p}) = \sigma \circ \alpha_{X}(X_{p}) = \sigma \circ \mu(p) = \{\text{one point}\}.$$

Since α_Z is generically finite and X_p is connected, $\psi(X_p)$ is a point for general $p \in Y$. Hence there exists a meromorphic map $\varphi: Y \dashrightarrow Z$ such that $\varphi \circ g$ is bimeromorphically equivalent to ψ and (*) holds.

q.e.d.

§2. Proof of Theorem A

Now we shall prove Theorem A.

Construction. There exists a finite Galois covering $\pi: \tilde{C} \to C$ and an Abelian fiber space $\tilde{f}: \tilde{X} \to \tilde{C}$ over \tilde{C} which satisfies the following conditions.

- 1) The fiber space $\tilde{f}: \tilde{X} \to \tilde{C}$ is bimeromorphically equivalent to $X \underset{c}{\times} \tilde{C} \to \tilde{C}$.
- 2) \tilde{X} is a smooth projective manifold and \tilde{f} is projective.
- 3) $\tilde{f}: \tilde{X} \to \tilde{C}$ has a section. (So it is free from multile fibers.)

4) $q(\tilde{f})$ is maximal among all finite Galois coverings $\tilde{C} \to C$ of C. (In general we have $q(\tilde{f}) \leq \dim(X)$.)

Let

be the decomposition of Abelian fiber spaces as in Proposition 1.2.. From the construction of \tilde{Y} , $\operatorname{Aut}(\tilde{X})$ induces $\operatorname{Aut}(\tilde{Y})$. Then if we put $G = \operatorname{Gal}(\tilde{X}/X)$, we have the following commutative diagram:

Taking a non-singular model of them, we obtain the commutative diagram

such that g: $X \rightarrow Y$ and h: $Y \rightarrow C$ are Abelian fiber spaces and the period map associated to h is constant.

Universality. Suppose that there exists a commutative diagram such that the period map associated to β is constant.

Then by Fujiki [1], Proposition 13.3, there exists a finite Galois covering $\tilde{C} \to \tilde{C}$ of \tilde{C} and by pulling-back $X \to Z \to C$ and taking a suitable bimeromorphic model, we obtain

352

where $\tilde{Z} \to \tilde{C}$ is bimeromorphic to $\tilde{C} \times B$ (*B* is an Abelian variety) and $\tilde{\Psi}$, $\tilde{\Psi}$ are morphisms. Then from the maximality of $q(\tilde{f})$, we have $q(\tilde{f}) = q(\tilde{f})$. And clearly we have $q(\tilde{f}) \ge q(\tilde{h}) \ge q(\tilde{h}) = q(\tilde{f})$, where the last equality holds from Proposition 1.2. Therefore we have $q(\tilde{f}) = q(\tilde{f})$ and $q(\tilde{X}) = q(\tilde{Y})$. Next we show that

is obtained from the Stein factorization of the Albanese map of $\widetilde{\tilde{X}}$. Let

be the factorization as in Proposition 1.2. Then from the universality of W, there exists a unique morphism $\tilde{\tilde{Y}} \to W$ such that the following diagram is commutative.

We have dim $(\tilde{\tilde{Y}}) = \dim(\tilde{\tilde{Y}}) = 1 + q(\tilde{f}) = 1 + q(\tilde{f}) = \dim(W)$ from Proposition 1.2. Hence $\tilde{\tilde{Y}} \to W$ is a generically finite morphism. Since both $\tilde{\tilde{X}} \to \tilde{\tilde{Y}}$ and $\tilde{\tilde{X}} \to W$ have connected fibers, $\tilde{\tilde{Y}}$ is bimeromorphic to W and the claim has been proved.

By our construction, the Albanese map of \tilde{Z} is birational to its image. So it follows from Lemma 1.3 that there exists a meromorphic map $\tilde{\varphi}: \tilde{\tilde{Y}} \longrightarrow \tilde{Z}$ with the following commutative diagram.

By the universality, the meromorphic map is compatible with the action of $G := \text{Gal}(\tilde{X}/X)$. Hence $\tilde{\phi}$ descends to a meromorphic map $\phi : Y \longrightarrow Z$ with the following commutative diagram.

Уозню Fилиото

and the universality has been proved. Let

be a commutative diagam of Abelian fiber spaces as in Proposition 1.2. Then we have q(V) = q(X) and $V \rightarrow C$ is a Seifert fiber space. Hence from the universality of Y, there exists a meromorphic map $Y \rightarrow V$ with the commutative diagram.

Clearly we have $q(X) \ge q(Y) \ge q(V)$. Since q(X) = q(V), we have q(X) = q(Y). q.e.d.

References.

- Fujiki, A., On the structure of compact complex manifolds in *C. Advanced studies in Pure Math.* Algebraic varieties and analytic varieties, 231–302, Kinokuniya, Tokyo (1983).
- [2] Ueno, K., On algebraic fiber spaces of Abelian varieties. Math. Ann. 237 (1978), 1-22
- [3] Zucker, S., Hodge theory with degenerating coefficients: L²-cohomology in the Poincare metric. Annals of Math. 109 (1979), 415-476.

354