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Proofs and Programs:
A Naive Approach to Program Extraction

By

Hayao NAKAHARA*

Abstract

In this paper, we examine a naive but precise relation between verification proofs of iterative
programs with recursions and proofs in a predicate logic. For that purpose, a logic of total
correctness of programs is introduced, which is an extension of a predicate logic and a variant of
Pratt's dynamic logic equipped with program variables. Then it is shown that correctnes proofs of
programs are regarded as proofs in a predicate logic. Conversely we show how programs and their
correctness proofs can be obtained from proofs of their specifications.

These methods provide means to examine how difference among algorithms reflects difference
among proofs and vice verse. Using them, we can replace processes of programming by processes of
proving specifications. Our method does not depend on specific concrete theories, so we can use
our method to problem solving on abstract domain.

§ I. Introduction

1.1 Programming by proving specifications

In order to obtain reliability of programs, programming is roughly summed up
as the following process:

(i) Describing a problem to be solved;
(ii) Constructing a program to solve the problem;
(iii) Demonstrating that the program solves the problem.

The third step is essential to guarantee the reliability of the program. For
the sake of simplicity, we only consider problems to find results satisfying given
properties under some conditions. In order to demonstrate that a program
solves a problem rigorously, we need follow the above process in a formal
way. The above process is reformulated as follows:

(i) Describing a formal specification for an informal problem;
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(ii) Constructing a program for the specification;
(iii) Verifying formally that the program satisfies the specification.

To conduct this process, we must specify a formal system to describe
specifications and specify a logic to describe how the specification language and
programs are interrelated. We call the former the underlying logic and the latter
the program analysis logic. Using the predicate logic as the underlying logic, a
typical specification can be described as follows:

This expresses that:

For each input x satisfying the condition (p[x]9 find a result y satisfying the
property ^[x, j;].

In general, we cannot construct any program without understanding a
problem. We usually analyze what properties are derived from the specification
before constructing a program. However this analysis is closely related to a
proof of correctness of the program obtained as a result of the analysis.

On the other hand, it is well-known that there is a close relation between a
program and a constructive proof of its specification. If we can obtain a
program from a proof of its specification, the above process is again
reformulated as follows:

( i ) Translating an informal problem to a formal specification;
(ii) Proving the specification;
(iii) Extracting a program from the proof.

In this approach, the correctness of the program with respect to its
specification is guaranteed in the second step, and we need no separated
verification proof. Moreover the third step may be easily mechanizable.

It seems unrealistic that we need a proof before constructing a
program. However intensive analysis of a specification seems to be unavoid-
able, and if we need rigorous reliability of a program, a correctness proof is
required in any case. Thereby this approach seems to be a shortcut to
construct a flawless program, and it is important to establish the method for
constructing a proof of a specification as easily as constructing a program.

1.2. Program analysis logic

It is desirable to treat specifications not only on specific concrete domains, but
also on any abstract domains (or theories). Moreover it will ease a task of
describing specification to utilize ordinary mathematics such as set theory,
inductive definition and so forth. So the restriction on the underlying theory
should be as small as possible. Hence we choose a usual first-order many
sorted classical logic for our underlying logic.
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In order to verify correctness of programs with respect to their specification,
we must utilize some formal system. Our program analysis logic is a kind of
logic of programs. We formulate it as an extension of our underlying logic. It
has its root in Igarashi [11], Pratt's dynamic logic [16] and several variants of
them [7], which originate in Hoare's system [10].

We shall describe some features of our logic.
For each program, we explicitly designate variables on which the program

execution depends, and divide them into two classes, left variables and right
variables. The pair of these two classes of variables is called the p-type of the
program. Left variables of a program are the variables whose values may be
changed during execution of the program. Right variables of a program are the
variables whose values may be referred by the program. Using our program
analysis logic, a specification for a swap program can be described as follows:

x = x0Ay = y0=>(swap: (x, y\ x, y)y(x = y0^y = Xo)

where swap: (x, y; x, y) means swap has x and y as both left and right variables.
We have a new kind of formulas: for a program a and a formula cp, <a>(p is

a formula which express that a always terminates and (p always holds after the
execution of a terminates. Thus our logic is a logic of total correctness.

Semantically, <a>cp implies the existence of a state which satisfies q>. Thus
<oe> acts like an existential quantifier. Actually if <piD<a>^ can be proved in a
suitable subsystem of our program analysis logic, called a construction part, we
can obtain a proof of cp=>3y.\l/ in the underlying logic where y are the left
variables of a.

Moreover our logic permits use of variables ranging over programs (called
program variables). These program variables enable us to treat recursive
programs and they play the essential role in program extraction as described in
the next section.

1.3. Program extraction

It is a well-known fact that mathematical proofs which are regarded as
constructive in a certain sense relate to programs. In particular, existential
quantifiers correspond to programs. For example, when a formula 3x.q> is
proved by introducing 3 quantifier, that is,

we know T is a value of x which satisfies cp. Thus we can extract a program
fragment x : = T, and cp holds after the execution of x : = T. This fact is expressed
by <x : = T><p in our language. That is, from a proof of (*) we can extract a
proof of the following:

In this point of view, it is sufficient to proving this specification in
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constructive way In order to obtain a program from a specification
However If we will correspond a program to every constructive proof, we

should handle higher-order programs, in which functions and procedures are
regarded as first class objects. Among previous works, Takasu [18] and Sato
[17] use Godel's functionals of finite types, T, and dialectica interpretation [6],
Beeson [1], Playashi [9] and Tatsuta [21] use Feferman's type free system and
g-realizability Interpretation [2, 4] , Cornell [3] and Goteborg [8] groups use
Martin-Lofs type theory [14].

These systems are based on the constructive logic, and not only existential
quantifiers but also all of the other logical connectives, including disjunctions
and Implications, have a computational meaning. This is too complicated and
hard to understand for novice programmers. It Is desirable to treat proofs in a
usual (non-constructive) theory and to give a computational meaning to only
existential quantifiers.

However not all of the existential quantifiers are regarded as computable.
Usual specifications have a lot of existential quantifiers not corresponding to
programs. So we need to specify whether an existential quantifier correspond to
a program or not. Lifschitz [12] proposes a logic which has both constructive
and non-constructive existential quantifiers, but we take another approach.

All the systems listed above treat only functional programs, which have
mathematically good properties. On the other hand, iterative programs play an
Important part In realistic programs. Hence It is also Important to take usual
iterative programs into consideration. So, in this paper, we establish a naive
but precise relationship between proofs and Iterative programs. We only focus
on first-order iterative programs with recursion. First-order means there is no
facility to pass a program to another program through a parameter In execution
time. As a result, the class of proofs which can be handled by our method Is
restricted. However most of realistic programs lie in this category, and the
relation between proofs and programs becomes straightforward and easily
understandable. So we can establish naive method to extract a program from a
proof of its specification.

Our extraction process of a program is as follows:

( I ) We mark existential quantifiers corresponding to programs, denoted by
3;

(II) From a proof of

we find a program a using a program variable £ and construct a proof
of

in our program analysis logic.
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Thus we not only extract a program but also construct a correctness proof of the
program from the original proof.

Manna and Waldinger [13] also extract first-order programs in a classical
logic framework. They however consider only functional programs and do not
have non-constructive existential quantifiers. Our approach can handle a wider
class of proofs than their approach and provide clearer insight into relationaship
between proofs and programs.

Takasu [19, 20] extracts iterative programs from constructive
proofs. However they can only handle well-behaved proofs which are built up
from several templates of inference each of which is specific to a program
construct.

In Section 2, we introduce a logical system ULO for describing specifications and
conducting mathematical proofs. ULO is a usual first-order many sorted
classical logic. We use a natural deduction style formulation, and ULO is
essentially same as NK of Gentzen [5, 15]. However ULO treats partial terms
as Beeson's EON [2]. Next, we modify ULO and obtain UL1 so that we can
easily extend it to a logic of programs.

In Section 3, we introduce a logic of programs PL5, the program analysis
logic for iterative programs. PLI is presented as an extension of UL1. In this
paper, we only describe a formal system of PLi, and formal semantics of PLi is
not described. We also discuss that some class of proofs in PLI can be regarded
as proofs in an underlying logic.

In Section 4, we show Hoare Logic can be simulated in PLI naturally.
Hence PLi has sufficient power to verify correctness of programs.

In Section 5, we state our main result, the program extraction theorem.
Since not all the existential quantifiers are necessarily translated into programs,
we introduce an auxiliary formal system 3-UL1 as an extension of UL1. 3-UL1
has a marked existential quantifier, 3, to indicate which existential quantifier is
to be translated into a program. In order to use ULO as the underlying logic,
we also give a formal system 3-ULO and show how proofs in 3-ULO can be
transformed into proofs in PLi.

In Section 6, we extend our main theorem in order to naturally produce
while programs. Then we discuss how while programs can be extracted and
what programs can be extracted from proofs using ordinary mathematical
induction.

In Section 7, We discuss some possible extensions of our method and give
concluding remarks.

We write $ for the sequence of expressions g 1?..., $n. We also
write $ for the finite set of expressions <^ 1 9 . . . , $n. In the context where a
sequence notation $ appears, $t denotes an element of $. We shall freely use
overline notation to denote sequences and finite sets. For example, f(f) stands
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for f(T l 9 . . . , rj; for 2n-ary Infix predicate symbol -<, a -< f stands for (cr1?..., crn)

-<(TI,. . . , TW); f(f) stands for f i (T l f l J . . . , T l j m i) , . . . , fn(Tn.i,..., Tn>mJ; xej; means

x occurs in a sequence or a finite set y; the phrase "variables x do not occur in S3"
means no variable in a sequence or a finite set of variables x occurs in $.

We use = for the syntactic equality and write X — Ffor the set difference of
two sets X and Y.

§2o Underlying Logic

In this section, we Introduce two underlying logic ULO and UL1, both of which
are many sorted first-order classical predicate logic with partial terms.

2.L Uedleriyliig logic ULO

Is essentially same as Gentzen's NK [5, 15].

Given a set of sorts £f. An arity in ^ Is a pair of sequences of
sorts s and s' in 5f, denoted by (s-»s')? such that length(sf) < 1.

We call s (resp. s) the domain (resp. the range) of an arity of (s-»s'). An
arity (s -» s') Is said to be an object arity, a function arity or a predicate arity If
the domain s Is empty, if both the domain s and range f are not empty or If the
range sr Is empty, respectively.

A language 5£ of ULO consists of a nonempty set of sorts £fy

and a set of nonlogical symbols with each of which an arity In &># Is associated.

A nonlogical symbol with an object arity is called an object constant, a
nonlogical symbol with a function arity is called a function constant and a
nonlogical symbol with a predicate arity is called a predicate constant of &. <&#
(resp. J«>, ^) denotes the set of object constants (resp. function constants,
predicate constants) of ^. We assume that for each sort s e £f& a predicate
constant = with arity (s, s ->) belongs to ^. We use = as an infix operator
and = represents the equality relation.

UM is designed to describe specifications of programs. For that purpose,
we divide sorts (resp. nonlogical symbols) into two classes, executable and
nonexecutable sorts (resp. symbols). Moreover, an executable part of a language
^ must form another language e^ , the executable part of <£ . This implies the
arity of each executable symbol lies in £f g&, namely executable sorts. Only the
executable symbols are allowed to appear in programs.

From now on, we fix a language ££ and we shall often omit a subscript &.
We assume a countable set of variable symbols Is given. We divide variable

symbols into two classes: marked and unmarked variable symbols. Our
intention of marked and unmarked variables is that marked variables may occur
In programs but unmarked variables may not.
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A variable (or object variable] with arity (-> s) is a pair of a
variable symbol x and arity (-»s), denoted by x:( -> s) such that x is marked if
and only if s is an executable sort. A variable with a marked (resp. unmarked)
symbol is called marked (resp. unmarked) variable.

Later we simply write x or x: s for x: (-> s) unless it is necessary to indicate
the sort of x explicitly. If we use a sequence notation x for variables, we assume
all the variable symbol occurring in x are distinct. From now on, we assume all
the variables having the same variable symbol have the same arity in terms,
formulas, proofs and so on.

Definition,, Terms of & and their associated sort in «9^ are inductively
defined as follows:

o a variable or a constant symbol with arity (->s) is a term of sort s;
0 if f is a function constant with arity (s l9...9 sn-+s0) and T 1 9 . . . 9 in are

terms of sort s l9..., sn respectively, then f(T l 9 . . . 9 rn) is a term of sort s0.

Definition, Sequences of terms f and a are compatible if length^)
= length(o) and for each z, i{ and cr£. have the same sort.

Definition. Formulas of .3? are inductively defined as follows:

O -L is an (atomic) formula;
0 for each term T, AT is an (atomic) formula;
O if p is a predicate constant with arity (s l s...9 sn-+) and T l 9 . . . 9 Tn are

terms of sort s l9..., sn respectively, then p(t l5..., in) is an (atomic)
formula;

O if -< is a predicate constant with arity (s1?..., sn, s l 9 . . . 9 sn->), x l 9 . . . , xn

are distinct variables of sort s l 9 . . . 9 sn, respectively, and j is a formula
then TI«, Ax l 5 . . . , xn.%) is an (atomic) formula;

0 if < p l 9 . . . 9 <pn are formulas, then ^ =5 cp2, cpi A ... A <pn and ^! v.. . v <pn

are formulas;
© if cp is a formula and x is a sequence of distinct variables, then Vx. (p and

3x.cp are formulas.

An atomic formula A T means that T is defined or the computation of T
terminates. TI( -< , Ax.^) means that the relation -< admits transfinite induction
or is a well-founded relation on {x | %}.

We introduce several abbreviations: A tcpt stands for cp1 A . . .A cpn; V^
stands for cp1 A ... A cpn; f = (j stands for A fr£ = cr£; cp =3 c= s/f stands for (<JP
=> \j/) A (i// => cp)'9 ~i (p stands for (p =D _L; T ^ a stands for ~~i (T = cr); T stands for
_L => ±; TI(-<) stands for TI( •<, Ax. T); for a set of formulas F= ( < p l 9 . . . 9 ()9n}9

A /" stands for A f(p£.
Free and bound occurrences of variables in a formula are defined as

usual. All the occurrences of variables occurring in a term are free in the
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term. For a term or a formula $, FW denotes the set of free variables
occurring in $.

An executable term is a term such that all the sorts and
nonlogical symbols occurring in it are executable. A boolean expression is a
quantifier free formula such that all the sorts and nonlogical symbols in it are
executable.

Terms t are said to be substitutible for x in cp if the following
conditions hold:

(i) f and x are compatible;

(ii) each variable y occurring in f is not bound at each free occurrence of

xt in cp;

(iii) if xf is marked then it is executable.

In this case, we write <pj£f] for the expression obtained from cp by replacing
each free occurrence of xt by i{ simultaneously.

Let (f be a term or a formula, x and u be sequences of
variables. We say that x are renamable to u in $ if the following hold:

(i) x and u are compatible;

(ii) ut is substitutible for x£ in g\

(iii) if w£eFY<f then utex;

(iv) xf is marked if and only if ut is marked.

If x and u are compatible variables, we write $\ to designate the expression
obtained from a term or a formula $ by replacing each free occurrence of xt by
HI simultaneously. When we write <ff, we assume x are renamable to u in <f.

We define FVa, 0>[f] and cr^ for a term cr in the same way as formulas.
Now we describe the logical axioms and the inference rules in ULCD. We

adopt Gentzen's natural deduction style to describe our formal system
[5, 15]. ULO is a classical logic and contains the law of excluded middle as an
axiom scheme.

2.1. Axioms of ULO: Law of excluded middle, equality
and definedness.

EM (pv~\q>

Eq x = x
x = y^>y = x
x = y A y = z =3 x = z
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A Ac

Ax

T)=D AT
C7 = T=3 AT

Axioms aed 2,2, Inference rules of ULO are:

k)

V-I -*!-{for each k) V-E

V-E

Af
3-1 — — ̂  - (*) 3-E

(*): for V-E and 3-1, f must be substitutible for x in 9.
<a>: denotes that the ezg'^w variables a must satisfy the usual eigen variable

condition. That is, a must not occur free in the conclusion and in the
assumptions (above the minor premise in the case of elimination rules) except
explicitly mentioned formulas such as cp^. In this case, we say that a{ is the
eigen variable for xt or at is the eigen variable corresponding to xt. Note that we
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do not exclude the case an eigen variable a{ corresponding to xt Is just xf.

A bracketed formula occurring in a inference rule such as \_<p] In =3-1 Is
discharged from assumptions when the rule is applied. A discharged formula is
also designated by a label attached on It. The attached label Indicates which
rule discharge the formula.

We remark the following points:

(I) In V-E and 3-1, if xt is marked then it is_executable;
(ii) In V-I, 3-E and Ind ( -< , /Uc.#), <p% and #J are subject to the tacit

condition: x are renamable to a In cp and %;
(iii) In particular, in V-I, 3-E and Ind( -< , Ax. %), xt is marked if and only if

at Is marked.

We also remark that bracketed formulas need not be discharged. For
example, in =3-1, (p^>\/s can be inferred from \l/ without discharging any <p from
assumptions. In such a case we say that the discharged formula <p is not
used. On the other hand, in the case where some occurrences of cp are actually
discharged, we say that the discharged formula cp Is actually used.

For each elimination rule, the premise which contains the logical symbol
which is eliminated is called a major premise of the inference and the other
premises are called minor premises of the Inference.

A sequent is a pair of a set of formulas F and a formula <p,
denoted by F^xp. When I is a proof of <p from assumptions F in ULO then
we write Z hULO F-xp. In this case, we say F-xp is the sequent for Z. A
constituent sequent of a proof Z Is the sequent of a subproof of Z.

If <p has a proof from assumptions F, then we write hULO F-xp, and we
simply write hULO cp when F is empty. When H-ULO<p -> \l/ and KULO i// -+ <p hold,
we write hULO <p<r+\j/. We also write

<P

for * huLo r-xp, where {^19..., i//n} c F.

Equality axioms have somewhat restricted form in UM), but a usual
substitution property holds:

Proposition 23. (SubsdlMttloi Lemma)

(i) Suppose f are substitutible for x in cp, and a are fresh variables, then

(II) Suppose r and f are substitutible for x in <p. Then
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Contexts are formula-like expressions, which are built up from
atomic formulas and special symbols *1?..., *n (n may be 0) and each *f has at
most one occurrence.

We use an expression like J/[*l5..., *„] to denote a context. For a context
<£/[*!,..., *J and formulas c p l 9 . . . 9 cpn, «S/[<PI,..., <?„] denotes the formula
obtained from j/[*l3..., *„] by replacing each *f by cp^. We also use a context
to specify occurrences in a formula. We say that a variable x is bound at *7- /« a
context =£/[*] if *7- lies in a scope of V or 3 which binds x. A variable x is bound
in a context ja/[*] if x is bound at some *. in <£/[*]. A term T is substitutible at
*j in a context j/[*] if the variables occurring free in T are not bound at *_,. in
,£/[*], and is substitutible in a context j/[*] if T is substitutible at some *j in
<£/[*]. We shall often write jtf simply for j/[*l5..., *n]. We adopt our
substitution and renaming notations to contexts as those of formulas.

We give an example of a proof in ULO. In this example and all the
examples described later, we assume that definedness of all terms holds and we
do not explicitly express such a formula as A (a — 1).

To exhibit formal proofs, we use the following notations:

9n

means \l/ is derived from (p l5 . . . , cpn using several steps of inferences, and

means <p = \j/.

le I. Let FACT be a set of axioms:

F(0, 1), Vn, m.(F(n, m)

Executable symbols are {0, 1, + , — , - , = } . We assume all the variables
occurring in this example are marked variables. We shall exhibit a proof of
FACT ^ Vx.3z.F(x, z) in Peano arithmetic with TI( < ) as an axiom (also
denoted by PA).

First we construct several subproofs.

FACT

1 = 0 F(0, 1)

-==^===^ Substitution Lemma

Bz.F(a, z)
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Vx.(x<a^3z.F(x, z))

i g-l<g
V-E

3z.F(a-l, z)

F(a-l ,f t)
-FACT

F(a-l-f 1, (a-l + l)-b)
Substitution Lemma

F(a, a-b)
3-1

3z.F(a, z)

(3-E)

I, Vx.(x<a=D3z.F(x, z)) a^O, F(a-l, ft)

3z.F(a-l, z) 3z.F(a, z)
3z.F(a, z).

Now let

7/f 4 Vx.(x<a^3z.F(x, z)).

Then a desired proof is the following:

(v-E) (v -E) (IND)

. n
F(a,

3z.F(a, z)

a = O V a ^ O 3z.F(a, z) 3z.F(a, z)
PA — • • —— — v E

<a>,IND
Vx.3z.F(x5 z).

2020 Uraderlyiinig logic UL1

The concept of substitution is used to describe UL(0>. However defining
substitution for programs is slightly difficult. For example, consider the
following program fragment;

(iff z > 0 then x: = y y: = x); z: = x.

It is easily seen that substitution for the first occurrence of x is impossible and
substitution for the second occurrence of x is possible, but we can not decide
whether substitution for the third occurrence of x is possible or not. Thus it is
hard to define the concept of substitution for programs.

In order to avoid this difficulty, we introduce a new quantifier let to UM,
and we obtain a formal system UL1. Inference rules which are described using
substitution in ULO, that is V-E and 3-1 rules, are redefined using let quantifiers
in UL1.
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BifiiiltloiL Formulas of UL1 are inductively defined as those of ULO with
the following new clause:

O if cp is a formula, x are variables, f are terms compatible with x, and it is
executable when xt is marked, then let x <- f Ira (p is a formula.

The meaning of let x<-f in cp is the meaning of cp under the condition that
the values of x are set to the values of f. In let x<-f In cp, we let x become
bound but the variables occurring in f be free.

Axioms Rules 2 A. Inference rules for let quantifiers are:

Af G>f v letx<-fina>
Iet-I - — = — £^ - <a> let-E - ^

letx<-Tin<p i/f

V-E and 3-1 become:

Af Vx.cp letx<-fin<p
V-Jc, - 1 — - - d-1 - - -

Proposition 2B§0 (Renaming Variables) Let cp be a UL1 formula, a and b be
sequences of distinct variables. If a are renamable to b in cp, then

Propositioe 2.6. (Substitution Lemma for UL1) Substitution Lemma for
(Proposition 2.3) also holds for UL1.

7w particular, if f ar£ substitutible for x in cp, then

hUL1

Proposition 2.7. UL1 is conservative over ULO. That is, for a set of ULO
formulas F and a ULO formula cp,

huLo r -^ cp if and only if huu r ^ cp.

By this proposition, in UL1, we can use ULO specific inference rules as
derived rules. In order to avoid confusion, V-E (resp. 3-1) of the form in ULO is
called V-E0 (resp. 3-I0).

We can extend the notion of renaming and substitution to proofs. We
write Y0c to denote the proof like figure obtained from 27 by replacing all the free
occurrences of x by a and write ^[T] to denote the proof like figure obtained
from 27 by substituting f for x.

Proposition 2.80 If 27 is a proof and a are variables not occurring in 27, then
]T| is also a proof.



428 HAYAO NAKAHARA

i 2o9o If Z is a proof, each variable in x does not occur as an eigen
variable in 27, and f are terms substitutible for all the free occurrences of x in 27,
then X*[d is also a proof.

We say that <p' is a variant of q> if <p' can be obtained from <p by
a sequence of replacements of the following type: replace a part htx^-fmij/
(resp. Vx. {//, 3x. i/f) by fletjM-f nm ̂ f (resp. Vj;. 0€3 3y. |̂)5 where y are variables not
free in \l/ and x are renamable to y in cp.

2010o (Variant Lemma) If cpr is a variant of cp, then

^ULI 9 «-» 9'-

A formula satisfies the condition for variables (CV) if

O No variables occur both free and bound;
O Any bound variable in a subformula must not be bound again.

A context j/[*] satisfies CV if j/[X] satisfies CV.

A sequent or a proof satisfies the condition for variables (CV) if
O No variables occur both free and bound;
O All the formulas occurring in it satisfy CV;
O For a proof, all the eigen variables are distinct.

If only marked variables are considered, they are said to satisfy CV for marked
variables.

For example, Vx.(<p =3 3x.il/) does not enjoy CV.
From Variant Lemma, there is no loss of generality by restricting proofs to

those satisfying CV ([15]).

UL1

( i ) For any formula (p there exists a formula \l/ satisfying CV and

h

(ii) //

then there exist variants F'(resp. <p') of F(resp. (p) and a proof
satisfying CV such that

We introduce a logic called a program analysis logic PL, to analyze programs9
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behavior. We construct PL as an extension of an underlying logic ULO or
UL1. In particular, we introduce a logic for Iterative programs (or Algol-like
programs). We call this logic program analysis logic for iterative programs with
recursion PL!.

We do not pursue expressibility and completeness Issues of our formal
system, but we pay attention to the following points:

O straightforward relationship between programs and proofs;
O easiness of verifying programs.

In this paper, we do not present the formal semantics of our programming
language and our logic PLI. The intuitive meaning of programs and formulas
of PLI is considerably obvious. We only mention that our axioms and rules are
sound to an Intuitive semantics of our system.

30lo Program analysis logic

Let x and y be finite sets of marked variables of executable
sorts. A program type, simply called a p-type, Is a pair of x and y, (x; y).

For a p-type (x; y), each element of x (resp. y) is called a left variable
(resp. a right variable]. Later we shall define a p-type for each program
a. Then we let LVa (resp. RVa) denote the set of left variables
(resp. right variables) of the p-type of a. A right variable of a program a Is a
variable whose value may affect an execution of a, and a left variable of a Is a
variable whose value may be affected by the execution of a.

A left variable which Is not a rigth variable is called a pure left variable, and
denotes the set of the pure left variables of a.

Two p-types (x; y) and (u; v) are said to be compatible if the
(M; v) Is obtained by renaming of variable symbols from (x; y).

We assume a countable set of program variable symbols Is given.

A program variable consists of a program variable symbol c,
and a p-type (x; y), denoted by £:(x; y).

Two program variables with the same program variable
symbol, ^:(x; y) and £:(M; v), are said to be compatible If (x; y) and (M; v) are
compatible.

DeffiiitioEo Programs and their associated p-type are defined as follows:

O a program variable £:(x; y) is an (atomic) program with p-type (x; y);
O If x ^ y then nielli: (x; y) is an (atomic) program with p-type (x; y);
O if x are marked variables and f are executable terms compatible with x,

then x := f is an (atomic) program with p-type (x l 9 . . . , xn;U
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O if a and /? are programs, then a; /? is a program with p-type (LVa U
LV# RVaU (MV£ - LVa));

O if TC !,..., 7cn are boolean expressions and a1? . . .5 an are programs, then
(rc i -KXi l - ' - l r cn -KxJ is a program with p-type ( U t LVa^; (J f FV^ U (J;

O if <J: (x; y) is a program variable and a is a program with p-type (x; y) in
which all the occurrences of program variables with the program
variable symbol £ are compatible with {:(x; y), then ju<|;:(x; y).a is a
program with p-type (x; y);

O if x are marked variables, f are executable terms compatible with x and
a is a program, then kit x «- f m oc is a program with p-type (LVa

O if x are marked variables and a is a program, then local x inn a is a
program with p-type (LVa — (x1?...? xn}', RVa — {x l9..., xn});

O if x are marked variables and a is a program, then var x in a is a
program with p-type (LVaU {x l9..., xn}; IVa - (x l5...xj).

A program variable symbol £ is bound in ju£:(x; y).a. Free and bound
occurrences of program variables are defined as usual. We shall often omit the
p-type (x; y) of £:(x; y) and write simply ^.

We briefly explain the meanings of each program construct:

( i ) Etififl: (x; y) is a program which has no effects;
( ii ) x: = f is an assignment statement;
( i i i ) a; /? is a sequential composition of a and fa
(iv ) (n1 -^oL1\"-\nn -> aw) is a nondeterministic choice statement;
( v ) /j£:(x; y).a introduces a recursion;
( vi) let x <- f Sm a makes x local in a and initial values of x is set to the

values of f;
(vii) local x m a makes x local in a, but initial values of x are not

specified;
(viii) var x Sun a initializes x before the execution of a, but the values of x

are not specified.

For let x <— f Sm a and local x nun a, variables x (said to be local variables) are
invisible after execution of these statements, but x are visible after execution of
var x Sm a, hence x are bound in let and local programs. We however consider x
in var x Ira a are not bound in the program. A var construct is not essential but
is included by a technical reason.

We write a:(x; y) if a has p-type (x; y).

Example 20 The following fact is a factorial program which computes the
factorial of x and return its value in z.
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The p-types of subprograms of fact are:

O z : = l : (z;)
O (let x «- x — 1 im £: (z; x)) : (z; x)
O z: = z • x : (z; x, z)

O ((let x <- x — 1 Im £: (z; x)); z: = z • x) : (z; x)
O (x = 0-^z: = 1 | x ̂  0->(Ietx<-x - lin£(z; x));z:= z-x) : (z; x).

Hence the p-type of fact Is (z; x).

We need to substitute programs for program variables to describe PLI.

A program a with p-type (u; v) is substitutible for a program
variable £: (x; y) If u <= x and i; c: j;.

Let a be a program with p-type (x; y), M be compatible with x,
and v be compatible with j;. Moreover we assume that xt is identical to j^- if
and only If the corresponding ui is identical to vjf Then we write a^.y [w; v} for
the program obtained from a by renaming x and y to u and t;, respectively.

Let a program a be substitutible for a program variable
£:(x; y). We can extend the p-type of a to (x; y) by composing program
with appropriate p-type to a, and let a' be such a program, rafll; a. Then /^[a]
Is the program obtained from a program /? by replacing each free occurrence of
£(M; t;) by a'^Cw; £].

We are now in the position to state formulas, axioms and Inference rules for
PL5.

First we assume that our language has a constant symbol is for each sort s.

Formulas of PLI are inductively defined as those of UL1 with
the following new clauses:

O if n Is a boolean expression, then ATI is a formula;
O If a Is a program and cp is a formula, then <a>cp Is a formula.

Our Intention of <a>cp differs from one of Pratt's [16]. We interpret this
formula as follows: a always terminates and cp always holds after the execution of
a terminates. That Is, PLS is a logic of total correctness.

A formula Is said to be program-free If no subformulas of the form <a>^
occur In it. For program variables we Impose the following condition: all the
program variables having the same program variable symbol must be compatible
In every formula.

In programs, we consider that an (object) variable is bound only by let and
tocaifl quantifiers. Hence F Y < a > c p = FYcp U LVaU EYa. We also define FYa
= LVa U MYa.
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We now describe axioms and inference rules of PLi. The axioms and
inference rules of U3L1 are also those of PLI. The axioms and inference rules
specific to PLi are listed below. An asterisk (*) which is attached to names of
some rules indicates the rule is not included in the construction part which is
defined in the Section 3.2.

Axioms ami 3.1. Renaming rule and axioms for boolean expressions:

_ a = b CD .„ _ .
Rename - = — if a is renamable to b in (p

<Pa

Boolean A A^- =3 c: /\iAni

A V^i =3 c= A^AT^
A (71 =5 TC') =3 cz ATI; A ATC'
A _L

3020 General rules for programs:

<a>-rule *^> where x = LYa

In <oc>-rules the premise <a>(p is called the major premise and i//^ is called the
minor premise just like the case for elimination rules. The eigen variable
condition for <a>-rule is slightly different from one for other rules: the eigen
variables a may occur in the assumptions above the major premise and also in a.

<a>-E ^^- if LYa n
cp

if x e

Exch /ol / I9 tf LYaH MVj5 = 0, LV£ n M Va =

If we have no program variables, then these rules are derived from other
axioms and rules for each program construct (described below). However if
program variables are presented, these rules are essential

Axioms amd Manfles 3.3. Axioms and rules for each program construct:
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a> <let>-Ex

<let * *~ nn aX(? /i iv -c Af <Iocal * i
<IocaI>-E

<Iocal x in a>(p <let x<- i m

let x<- Tin <a>(^ <var x in a>
*<var>-I

let x<- T in (p
\ :==/-l 7Z =v~I

<var x In a>cp let x «- z in

Choice-I
<7C! ->a! -~\nn-

Choice-E* n* (ni~**i\'''\n»~

A jATT^ A V j7C£

where f are executable terms and TI/S are boolean expressions.

Just like formulas, we also impose the following condition for program
variables: all the program variables having the same program variable symbol
must be compatible in each proof. We can substitute programs to program
variables through a proof:

Proposition 3.4 If a are substitutible for I and

then

According to V-<a> rule, pure left variables satisfy the following property:

Proposition 3.5. Let x be pure left variables of a, then
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Substitution Lemma for PLi can be stated as follows:

Proposition 3.6. (Substitution Lemma for PLI) Suppose cp is program-free, f
are substitutible for x in cp and a are fresh variables compatible with x, then

( i ) if x are unmarked, then

l~ PLJ let x <- f in <a>cp «-> Af A <a><^[f],

( ii ) if x are marked, then

h-pL.a = f A «a><p)f <-» a = f A <let x <- f in a><?j[t]

hpL.Iet x <- f in <a>cp <-> Af A (let x <- f in

(iii) if x are marked but x n (LVa U RVa) = 0,

hpL.a = f, «a»f <-> a = f, <a

hpL.kt x <- f In <a>cp <-> ATA <«></>£ [f].

3.2. Construction part PLIC

In <a)(/9, <a) indicates how to obtain a state (of variables) satisfying cp. So <a>
plays like an existential quantifier. Hence, given a program a together with a
verification proof Z \- <a><p, we may construct a proof of 3x.<p in the underlying
logic from 27. This is not always the case, but we can construct such a proof for
every proof in a subsystem of PLI described below.

Now we describe a formal systems PLIC which is a subsystem of PLi PLic
is called a construction part of PLI.

Axioms and 3=?0 Choice-Ec rule is similar to Choice-E except all the
left variables of af's are equal.

Definition. PLIC is a formal system obtained from PLI by omitting
inference rules indicated by (*), that is, <a>-=>*9 <a>-A*, <a>-V*, <var>-E*,
<nu!I)-E*, <: = >-E* and Choice-E* and adding Choice-Ec.

Definition. We associate each formula cp with a formula <p* as follows:

( i ) if cp is an atomic formula, then cpt is <p;
( ii ) (A^,)t is A ;((#);
( i i i ) (V£^)t is v^D;
( iv ) (q) ID \I/Y is ((pt) ZD (|/,t);

( v ) (let x <— f in (p)f is let x <- f In (<p*)\
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( vi ) (Vx.cp)t is Vjc.(cpt);
(vii) (3x.(p)t is 3x.((^t);
(viii) if LVoc is x then «oc><p)t is 3x.((pt).

If r is <?!,..., <pB, Tt denotes q>\,...9 n.

The following theorem shows that we can construct a proof in the
underlying logic from every PLic proof.

Theorem 3.8. If

then

§4. Relation to Hoare Logic

PLI is not complete but have practically sufficient power to demonstrate
verification proofs. In particular, we can simulate Hoare style verification in
PLi. We first define a while statement in our framework.

4.1. While programs

Definition. We define a while program construct as the following
abbreviation:

while 7i do a 4 M£:(X; y).(n -> a; £ \ —\n-+ null)

where x = LVa, y = RVa U ¥Vn.

Proposition 4.1. For a while program while n do a, the following holds:

hpLi<while TT do a>^ ID c: (71 -> a; while TT do a —\n-+ null><p.

Corollary 4.2. For while, the following derived rules hold'.

7i ATC <a><while n do a)cp ~~i TT ATT cp
< while)

{while TC do a>(p <while TC do a

Thus we can treat while programs in PLi. On the other hand, we can build
a program analysis logic for while programs, PLw, by regarding while as a
primitive program construct and <while> rules as its logical inference rules.

4.2. Total Hoare logic

Definition. Let (p and \j/ be UL1 formulas and a be a program. The
following expression is called an H-formula:
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We now define the total Hoare Logic (tHL).

Definition,, Formulas of tHL are formulas of UL1 or H-formulas.

Axioms and 4.3. Axioms and inference rules of tHL are those of
UL1 and the following:

{miififl} {cp} null {cp}

{: = } { A f A <p*[f]}x: = f{<p}
where f are executable.

where LVa do not occur in the assumptions of

V f7i t- A j A T C j Uj A < p « i " - ^ » , A <?

TI( X , ix-x)
let x <- f in /

ATI

{a = fA A T U A T I A cp

{<p} while TI do a{cp A — 1 71}

where LVa do not occur in the assumptions above the H-formula

a = fA A T I A T T A <p

Conseq

where LVa do not occur in the assumptions above \j/'

Deieitioe0 We associate each tHL formula €> with a PLI formula €>§ as
follows:

0 if <P is a UL1 formula <p, then <^§ is </>;
0 if €> is a H-formula {(^>}a{^}5 then <1>§ is 9=3<a>^.

If F is O19...9 On, F^ denotes €>|,..., O,}.

The following theorem shows that tHL is contained in PLfic.

Theorem 4040 If

i-«. r - *,
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Theorem 4.4 together with Theorem 3.8 yields:

Corollary 4.5. If F is a set of UL1 formulas and

then

hULl r -> 9

where x = LVa.

§5. Program Extraction

In this section, we shall state a method to extract a program from a proof of its
specification.

For the simplicity, we shall restrict occurrences of existential quantifiers
which bind marked variables, that is, occurrences of existential quantifiers which
are supposed to correspond to programs.

5.1. Underlying logic 3-UL1

We now define an auxiliary formal system 3-UL1. In 3-UL1, occurrences of
variables bound by existential quantifiers are restricted. In 3x.<p, all the
variables in x are entirely marked or all are entirely unmarked. We write 3x.<p
when x are marked variables.

Definition. Formulas of 3-UL1 are inductively defined as those of UL1 but
the following exceptions:

0 if TT is a boolean expression, A n is a fejmula;
• if (p is a formula and x are distinct unmarked variables, then 3x.<p is a

formula;
® if (p is a formula and x are distinct marked variables, then 3x.<p is a

formula.

Axioms and Rules 5.1. We need axioms for An: that is the Boolean axioms
for PLi. Inference rules for a ? quantifier are:

~ let x <- f in (p ~ 3x.<p ^
3-1 - - 3-E - - - <a>

Bx.<p V

where f are executable and a are marked.

v-E rule is also modified as follows:

® If its minor premise \fj contains positive occurrences of 3 quantifiers,
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then the major premise must be a boolean expression and the rule is
of the following form:

@ Otherwise, v-E is the same as in UL1.

502o Program Extraction Theorem

Definition,, An SP-context and an SN-context are defined as follows:

• If cp is a *-free formula, then <p is an SP-context and SN-context;
• *f is an SP-context;
® If <£/!,..., jtfn are SP-context (SN-context), then so are A ̂  and V t^{,
e If <£/ is an SP-context (SN-context), then so are let x «- f in j/, Vx.j?/,

3x.j2/ and 3x.«s/;
© If cp is a *-free formula and s& is an SP-contexts, then cp ID ,s/ is an SP-

context;
• If sf is an SP-context and $ is an SN-context, then j?/ ID J* is an SN-

context.

An occurrence of subformula expressed by an SP-context is said to be an SP
occurrence or simply a positive occurrence. An SN or negative occurrence is
similarly defined.

Definition, An SP-context (SN-context) ja/[*] is said to be an SSP-context
(resp. SSN-contexi) if each *. does not occur in any scope of v or 3. An
occurrence represented by an SP(resp. SN, SSP, SSN)-context is said to be SP
(resp. SN, SSP, SSN). An SNP-context (resp. S SNP-context) is a context in
which each occurrence of *.9s is SP or SN (resp. SSP or SSN).

Definition,, An occurrence of subformula expressed by an SP-context is
said to be an SP occurrence or simply a positive occurrence. An SN or negative
occurrence is similarly defined.

An SP-context (SN-context) j/[*] is said to be an SSP-context (resp. SSN-
contexf) if each *^ does not occur in any scope of v or 3. An occurrence
represented by an SP (resp. SN, SSP, SSN)-context is said to be SP (resp. SN,
SSP, SSN). An SNP-context (resp. SSNP-contexf) is a context in which each
occurrence of *£'s is SP or SN (resp. SSP or SSN).

Definition. A ^-formula is a formula which contains 3 quantifiers.
Especially for a 3-free formula (p, 3x1..3xn.cp is said to be ^-prefixedformula and
3xlt..3xn is called the ^-prefix of the formula.
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A 3-SP formula is a formula obtained from a 3-free SP-context ja/[*] by
substituting 3-prefixed formulas to *f's. A 3-S7V, 3-SSP or 3-SNP formula is
similarly defined.

A 3-SNP sequent is a sequent F-xp such that all the formula in 7"1 are 3-SP
and cp is 3-SNP. A 3-SNP proof Z is a proof such that all the sequents for the
subproofs of E are 3-SNP.

We weaken CV for 3-SNP formulas, sequents and proofs.

Definition. A 5-SNP formula satisfies ^-condition for variables (?-CV) if

• No marked variables occur both free and bound.
• For every 3-prefix ^x^...^xn occurring in it, x/s are mutually disjoint.

m It is obtained from an SNP context <£/[*] enjoying (strong) CV for
marked variables and none of the variables occurring in the 3-prefixes
are bound in «s/[*].

A 3-SNP sequent or proof satisfies ^-condition for variables (3-CV) if

• No marked variables occur both free and bound.
® All the formulas occurring in it satisfy 3-CV.
® In a proof, all the marked eigen variables are distinct.

For example, \/y.(F(y) n> 3x.(G(x, y) A Vy.H(x, y))) enjoys 3-CV even if y is a
marked variable, but Vx.(F(x, y) =) (3x.G(x, y))) does not.

If a proof 27 of F —»cp does not satisfy ?-CV, then by Proposition 2.11 we
can construct a proof Z,' of a variant of F-* cp such that Z' satisfies CV (hence
satisfies 3-CV because a proof satisfying CV also satisfies 3-CV). We can
therefore consider only the proofs satisfying 3-CV without loss of generality.

Definition. For each occurrence of ^-formula in a ?-SNP formula, we
define the p-type of the occurrence.

• Let j/[*] be an SNP-context expressing the occurrence of ^-prefixed
formula 3x1 ...3xn.<p, y be all the marked variables which are bound in
the context, z be all the marked variables which occur free in cp but do
not belong to x. Then the p-type of the occurrence is (x l 9 . . . , xn; y() z).

We next define the p-type of each occurrence of 3-formula in a 3-SNP sequent F
-xp.

@ For an SP occurrence of 3-formula in the conclusion cp, the p-type is
that of the corresponding occurrence in the universal closure of AT
=) cp.

® For an SN occurrence of ^-formula in the conclusion cp, the p-type is
that in the formula cp.

® For an SP occurrence of 3-formula in a formula \jj in F9 the p-type is
that in the formula \l/
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Example 3. Consider the following sequents.

(i) -» Vn3m.F (n, m) (n, m: marked);
(ii) a 7^0, Vx.(x < a =) 3z.F (x, z)) -> 3z.F(a — 1, z) (a, n, z: marked);
(iii) Vx.(x < a =3 3z.F (x, z)) -» Vx.(x < a => 3z.F (x, z)) (a, n, z: marked);
(iv) a 7^0, F(a — 1, z) -> 3z.F(a, z) (a, z: marked);
(v) -> 3z.(Vx.((p[x] iD3j;.^[x, j;, z])) (z:unmarked, x, y: marked);
(vi) -> Mf.(formula(f)^(^q.proof(qJ)^3p.proof(pJ)})

(q: unmarked, /, p, g: marked).

The p-types of 3-prefixed formulas in these sequences are:

(i) the p-type of 3m.jp (n, m) is (m; n);
(ii) the p-type of 3z.F(x, z) is (z; x) and the p-type of 3z.F(a — 1, z) is (z; a);
(iii) the p-type of 3z.F (x, z) in the left hand side is (z; x) and the p-type of

3z.F(x, z) in the right hand side is (z; x, a);
(iv) the p-type of 3z.F(x, z) is (z; a, z);
(v) the p-type of 3y.i//[x, y, z] is (y; x);
(vi) the p-type of 3p: proof (p, /) is (p;/).

Now we are in the position to state our main theorem.

Theorem 5,2, (Program Extraction Theorem) Let /"[*] be a set of 3-SP
contexts and j/[*] be a 3-SP context. Suppose

W I^f-uu rE ^...Bx^ ] -> j/[ ^i-^m^ ],

and Z satisfies the following conditions:

( i ) 3-CV holds for Z;
( ii ) Every formula occurring in Z is 3-SP;
(iii) Every minor premise in v -E or B-E is B-SSP.

Then for distinct program variables | corresponding to the occurrences of ?-

prefixed formulas in F\_ 3x1..3xn.cp ], there exist a proof Z' and programs a

such that

where each of E, and a /za^ £/ze p-type of its corresponding ^-prefixed formula in the
sequent, and all the program variables occurring in each a,- belong to £.

Moreover, this theorem holds even if we augment the right variables of ^s as
follows:

Let &[3x1...3xn.<p'] be the formula corresponding to £, then we may add
arbitrary number of free marked variables occurring in ^ to the right variables of
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Condition (ii) of the theorem implies that each instance of Axiom EM,
cp v ~n cp, has no 3 quantifiers. Hence J7 is considered as a constructive proof
with respect to ?. We can omit the condition (iii) of this theorem and shall
discuss it in Section 5.4.

In the rest of this paper, every context is assumed to be an SNP-context,
unless we explicitly mention otherwise.

5.3. Proof of the Program Extraction Theorem

We prove the theorem by induction on the length of proofs. We only
demonstrate typical cases. Other cases are similar or straightforward. In this
section, y stands for yl9...9 ym and z stands for z l 5 . . . , zn.

In what follows, we shall construct a proof Z' from (1) such that it satisfies
the following additional property:

(A) if a is a free variable occurring in Z which is not an eigen variable in 27,
then a does not occur as a bound variable nor an eigen variable in Z'.

Since we replace the part of the form Sx.cp by <a)cp for some program a, x
in the latter become free though they are bound in the former. But 3-CV
guarantees that x are pure left variables. By Proposition 3.5 they can be bound
after transformation. Hence the eigen variable condition of the obtained proof
is guaranteed and renaming variables (occurring in V-I rule and so forth) causes
no problem.

Lemma 5.3. We can add any new right variables to a program without
changing its meaning. That is, for programs a and given marked variables a, we
can find programs a' whose right variables are a and EVa, such that

Proof. Let (u; v) be the p-type of a and a be the added right
variables. Take null:(u; v, a); a as a'.

Lemma 5.4. Suppose

and a are marked variables which do not occur as left variables, bound variables
nor as eigen variables in Z. Let <f be program variables which is obtained by
adding right variables a to £, a' (resp. Z') be a program (resp. a proof) obtained
from a (resp. Z) by adding a as right variables to each E, occurring in it. Then

Lemma 5.5. Suppose that <£/[*] is an SSP context and
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hpLi

we c<2?2 reduce superfluous right variables from the p-type of a. That is, if
xeRVa, x does not occur free in F, (p nor <£/[*], and x does not bound at <£/[*],
then x can be omitted from the right variables of a as follows:

(i) I/x^LVa, then

\~PUF -» j/[ (local x In a><p].

(ii) J/xeLVa, tften

hPL. F -> «£/[<local x In a><p].

In this case x can occur free in var cp.

5.3.1. case If the proof solely consists of an assumption, the assumption

and the conclusion are the same formula, say j^[3j;1...3j;m.(j9]. We must find

af-'s such that

For the p-types of ^ and a,-, the following must hold:

LV^£ = LVa£ and

Obviously,

If the right variables of af are the same as those of the £f, then we can take ^- as
af. If there are right variables of a£ which are not those of £is then we can apply
Lemma 5.3 to obtain a,-.

Now we consider each inference rule. If either a formula appearing as the
conclusion or all the discharged formulas have no 3-quantifier, this case is
straightforward from its induction hypothesis. Therefore we only consider the
cases that the conclusion or at least one of discharged formulas contains some 3-
quantifiers.

5o3.20 v-I Consider the following simple case:

Z

From the induction hypothesis, we have
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r

Then we obtain the following proof:

where null's have appropriate p-types.

5.3.3. v-E Consider the following proof:

rio rii
V ( jc, A B l . . .

^C 3^1...3^-9 ]•

From the induction hypothesis we have the following proofs:

n'o ni
' jTCi, A T C ! . . . and

Lemma 5.6. #"««/[*] w a« 55P context, none of the free variables occurring
in HI'S is bound in the context J/[*]5 then the following derived rule holds:

ATC,.. .

3-CV guarantees the conditions of this lemma. Since nt is discharged, the
p-type of each 3-formula in the conclusion may have less right variables of the
corresponding p-type in the premise. In this case we can decrease the right
variables of a£ by Lemma 5.5. Thus this lemma establishes the v -E case.

5.3.4. let-E We only consider the case where all the variables bound by the let
quantifier are marked. Moreover we assume that both the major and the minor
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premises are 3 formulas. Now the proof to be considered is of the following
form:

Set x<-i in st\_^yi..3ym.q>] ^[ 3z j. . . .

From the induction hypothesis, we have

r
Set x<- f In j/[ <a>cp] and #

Here af's and the corresponding ^'s may have different p-types. But this
discrepancy comes from the discrepancy of free variables occurring assumptions
above the major premise. In view of (A) and by Lemma 5.4, we can however
regard af's and £/s have the same p-type.

Since a are marked variables, eigen variables a may occur in /?, in the right
hand side proof 27. Hence we must bind a in ft before applying let-E rule to
these two subproofs. The following lemma shows how a can be bound in ft.

Lemma 5.70 If x are marked and not bound in ,£/[*], and f are substitutible
in a context <£/[*], then the following derived rule holds:

Af

Jc«-f n

From this lemma and by paying attention to names of variables, we have
the following proof:
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(1) (let-E)

fl = f B = f (let-E)

(1) - ........ - - Rename

Z'fM
(let-E)

TT> Af
^=========^ <o> (1) LemmaS.7(**)

let x<^f in ̂ [<a>(p] 0[ <Iet fi«-f in($
_____________ <6>lel-E

where b are fresh variables; ut is as follows:

a{ if xtez
xt otherwise.

(*): We take u such that u do not conflict with z. Hence these two formulas are
identical.
(**): From 3-C'V, f is substitutible in ^[*]. Hence Lemma 5.7 can be applied.

Just like v -E rule, some extra right variables may occur in ft, because a = f
is discharged. These extra right variables are deleted from the p-types of the
finally obtained program by Lemma 5.5.

5.3.5, 3-E The proof to be considered is of the following form:

n

From the induction hypothesis, we have

(2) IT
and

Using Lemma 5.4, we can assume both a and | have the same p-types. Since a
are unmarked, they do not occur in jS/s, hence also in ^[<jS>i^]. So we can
simply apply 3-E to (2) and obtain:
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rr

5o3«,60 3-1 In general, the proof to be considered is of the following form:

I
Set x <- r In §3/1 . . . ?ym.<p

where f are executable. From the induction hypothesis, we have

F
let x <- T in <a><p.

In a, x occur as right variables.

Lemma 5.8. 77ze following derived rule holds:

let x <- f In <a><p

We note that even if x may appear as right variables in a, x are (pure) left
variables in x: = f; a.

From this lemma, this case is established.

503o7o 3-E This case is slightly complicated. We assume that both the major
and the minor premises are ^-prefixed formulas. Other cases are easily
established. Now the proof to be considered is of the following form:

From the induction hypothesis, we have

<a>(? and

By Lemma 5.4, we can augment RV£ in 27 by fresh variables b compatible
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with y.
We now state several lemmas used in transformation of ?-E rule.

Lemma 5.9 0 If x are marked,

Lemma 5.10, We can rename left variables in programs: if ja/[*] is a
context, x c LVa, x' ^ pLVa, xfl x' = (/) and x, x' are renamable to u, u in <a>(p,
then

<a>-rule is generalized as follows:

Lemma Soil. If j/[*] M fl# SSP context and x = LVa, then the following
derived rule holds:

providing that

Q RVa are not bound in <£/[*];
© a satisfy the condition like the eigen variable condition for <a>-rw/e; that

is, a do not occur in s$[*] nor the assumptions of <s/[ \l/% ] except cpj.

Lemma 5.12. We can hide left variables of a program which are not referred
after Us execution. That is, if <£/[*] is a context, x s= LVa, y c: pLVa and (x U
y) n FVcp = </),

l~PLi «£/[<«>(?] <->«fl/[<let Jc <- x in local j; in a><p].

Let y be null: (;(?); y: = b, where u = RV<^. Then y has the same p-type as
£. We also define w such that

ffl; if X.-GZ
u.- = <

(xf otherwise.

Then w are renamable to a in /?; so

By the above lemmas and (4), we can construct the following proof:
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fr>*>b
<Px,y

Lemma 5.9and<nuII>

Lemma 5.10

<fl ,&>(l)Lemma5.11

: Lemma 5.12

j*[<local M, 5 in (ag;

The extra right variables may occur in the finally obtained program due to
the discharged assumption, but they can be deleted by Lemma 5.5.

5.3o80 IND( -< , Ax.%) Consider the following proof:

A x -< a => s/\_ 3y,... 3ym.cp

z

Here we may assume the p-type of each 3-formula in the premise agrees
with the corresponding p-type in the induction hypothesis except x and a which

are renamed each other. The reason is as follows: If there is discrepancy
between them, it comes from marked free variables, say b, occurring in the

assumptions; b occur as extra right variables in the premise. In this case, it is

sufficient replacing 3f[3y1...3ym.cp'] by j/i3y1..3ym,((p A b =

From the induction hypothesis, we can obtain

0'
TI(-<,/bc.x) and

From </^> rule, the following holds:

Lemma 5.13=
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Using this lemma, we have the following proof:

(IND) (IND)

T Ptnma S 1 1

5.4. Deterministic programs

If we consider only deterministic programs, <a> and v (or 3 x) becomes
commutable, and Choice-I and Choice-E should be replaced by DChoice-I and
DChoice-E described below, respectively. In this section, we describe a formal
system for deterministic programs, PLi^, but only the difference from PLi is
presented.

We need to express disjointness of boolean expressions in order to describe
DChoice-I and DChoice-E rules.

Disj(nl9...,nn) & A^.-i fa A TC,).

Then new inference rules are:

Axioms and Mules 5.14.

Det- V , i9i

Det-3 - if -

DChoice-I

T^rn, ' rr* k i i ••• nDChoice-E* - - — - - (/br each k)

A f A 71^ A V jTTj

The premise Disj(n) in DChoice-I and DChoice-E does not impose extra
constraints, because every boolean expression V ̂  can be transformed into an
equivalent boolean expression for which disjointness holds:



450 HAYAO NAKAHARA

Proposition 5.15. Given quantifier free formulas nl9...,nn, there exist
quantifier free formulas n'i,...9n'n such that

hULODis/(7i'),

^uuX ~* nk (for each k).

For PLSD, Program Extraction Theorem 5.2 can be strengthened as follows:

Theorem 50160 (Program Extraction Theorem — deterministic program
version)

If we use PLiD instead of PLi, then we can omit the condition (iii) of Program
Extraction Theorem 5.2.

Here we make several remarks for the proof of this theorem. In the proof
in the previous section, the condition (iii) is actually used only in Lemma 5.5,
Lemma 5.6 and Lemma 5.11. Lemma 5.5 and Lemma 5.11 also hold for SP
contexts in PLiD. Moreover Lemma 5.6 holds in the following form:

Lemma 5.17. If £t{*\ is an SP context, none of the free variables occurring
in UiS is bound in the context «s/[*] and ¥Vnt n y = & the following derived rule
holds in PLtD:

Disj(n) V.-TC;

Hence the proof described in Section 5.3 can similarly be applied for
deterministic programs.

§.5o Underlying logic 3-ULO

We often use ULO as underlying logic. So it is convenient to define 3-ULd just
like 3-UL1. In 3-ULO, 3-1 is of the following form:

Axioms Mufies 5=18=

3 j A^ ^PxW
ZJ-10 ~T2

3x.<p

where f are executable and substitutible for x in cp.

Since 3-UL1 is an extension of 3-ULO, every proof in 3-ULO can be
transformed into a proof in 3-UL1, and then we can apply Program Extraction
Theorem to them. Hence Theorem 5.2 also holds for 3-ULO. In this section,
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we examine how proofs in 3-ULO can be translated into PLi.
3-ULO is different from 3-UL1 in V-E, 3-1 and 3-1. First we consider V-E0

rule.

5.5.1. V-E0 Consider the following proof in 3-ULO:

n s
Af VJe.j/[ 3y...3ym.<p ]

(6) - - V-Eo

From the induction hypothesis, we have

n' r
AT and

We note that, instead of (6), we can construct the following proof in 3-UL1:

I I — - - - (let-E) Cet-E)

- — Substitution Lemma

11! ™ f <o>iet-E

where a are fresh variables.
Since x do not occur in any 3-prefix ^y1 __ .3 j ; m in view of 3-CV,

We extend Substitution Lemma for PLi:

Lemma 5.19. Suppose that x are marked variables and that a are fresh
variables compatible with x, then the following hold:

(i) If x are not bound in j/[*] and f are substitutible for x in J/[*] and <p,
then

hpL. a = T A j2/[ <a>(p ]| <-> ATA ^[T] [ <Ieix <- T In a>

(ii) If x are bound at each *,- /« J3/[*] ««^/ f ar^ substitutible for x in

hpLi a = f A j^[ <a>9 ]| ^ A f A

Hence, we have
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n i (let-E)

-V-E Lemma 5.19(*)

<fl>Iet-E

(*): x are not bound in =£/[*] by 3-CV and f are substitutible for x in <*/[*] and
<p by the condition of V-I rule.

5.5o20 3-I0 For 3-I0 rule, consider the following proof in 5-ULO:

n i
m Af (3j;1...3j;yn.^[f]
I f) - 5^3^ - ^n - ^o

3x3y1...3ym.(p.

Since

we have, from the induction hypothesis,

n' r
AT and <a><pjcM-

We note that (7) can be transformed into 3-UL1 as follows:

n a = f (3y1...3ym.(v ^1 ^m
Substitution Lemma

_

3x3ylm.3ym.(p.

where a are fresh variables. Hence we have

.«,. r
Q> — T ^#^<j0jc[T]

Substitution Lemma for PLi(*)

0' <g>^ .

(*): Since x are not left variables of a from 3-CV, Proposition 3.6 (iii) can be
applied.
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The proof of Program Extraction Theorem for 3-LJLO is now completed.

5.53. V-EV We can extract a simpler program from V-E0 if some additional
condition is satisfied.

Consider the following simpler form of V-Erule which is often used:

According to the above discussion for V-E, the following is obtained:

But the following lemma shows a sufficient condition for replacing let x <- a in a
simply with of. However the following lemma holds:

Lemma 5.20. If x are not bound in <£/[*], then

K». V

So it is convenient to separate the following special case from general V-E
and to add this to 3-ULO and 3-UL1.

Axioms and Rules 5.21.

V-EV -^

For V-EV, by 3-CV, x are not bound in j/[*], x n y = </>, and

•*[ 3y i . - - 3ym-<? ]f =

So we can use Lemma 5.20 and obtain the desired program af.

Example 4. (Factorial) We consider the proof given in Example 1. In the
proof we consider all the variable are marked, hence all the existential quantifiers
occurring in it are marked. Thus it is a proof in 3-ULO. In the sequel, we omit
to present null programs explicitly.

First we construct subproofs corresponding to 77, Zl and Z2:

FACT
a = Q F(0, 1)

= Substitution Lemman f

F (a, 1)
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a ̂ 0 Vx.(x < a 13 <£:(z; x)>F(x, z))
:PA =

a — l < a a— l<a=3<Ietx<-a — lin{>F(a — 1, z)
<Ietx<-a-lin£>F(a-l, z)

F(a-lb)
= PA V FACT

Substitution Lemma

F(a, a-

, z).

Then the proof Z' corresponding to Z becomes:

V'Ll
-a— lin£:(z; x)>F(a — 1, z) 2^2
================================ Lemma 5.10

z)
:<;>, Lemma 5.12

a-lln^:(5; x)); z: = a-b)yF(a, z).

Now we let:

oc ^ z:- 1

0 ^ locafi 6 lii (Set x < - x - 1 in ^:(fe; x)); z : = x - Z ?

7 A ^:fe ^)-(^ = 0-*a | x ^ 0 -> j8)

i.e. /^^: (z; x).

(x = 0 -> z: = 1 | x ^ O - ^ local 5 in ((let x <- x - 1 In £.(b\ x)); z: = x • b))

IH & Vx.(x < a n <7>F(x, z)).

Then we obtain the following proof:

(V 'E) (v-E) (IND)

-EM ^
i, z) <(/^M>F(a, z)

z)

, z).
'a,z)— <a>,IND
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5.6. Simplifying extracted programs

In the above example, undersirable renaming of variables occurs in the obtained
program. In fact, it is desirable to obtain

(8) JJL£:(Z; x).(x = 0 -» z:= 1 x ^ 0 -> (let x <- x - 1 in £(z; x)); z:=x-z)

instead of

:(z; x). (x = 0 — » z: = 1 | x ^ 0 -» local u in (let x <— x — 1 in £: (w; x)); z: = x • u).

This redundancy arises from our treatment of 3-E rule.
We now consider a special case of (3) in Section 5.3.7. Suppose that z = x,

j; = 0 in (3) and j*[ <jS>^ ] in (4) is:

(9) <x:=a

Then we obtain the following program by the second method described in that
section.

local u in (a"; x := u + 1).

But what we really desire is:

(10) a; x :=x + 1.

To obtain this program, we first rename x to a in (9) and get

and then we use <a>-rule to obtain

<a; x := x

This is just (10). However x is not renamable to a as in (9) in general. We
must find the condition that such renaming is possible.

Definition. If z and w are compatible and z ^ x u y, we simply write a^£w]
instead of a^.^w; v] where u and v are such that:

(i) ut (resp. vt) is w£ if the corresponding xt (resp. yt) is z£;
(ii) u{ (resp. v£) is xt (resp. yt) if xf (resp. y^ does not occur in z.

Definition. Let x and a be compatible variables and a be a program. We
say x is identifiable to a in a if x^RVa, a^LVa and one of the following holds:

( i ) x or a does not occur in a;
( ii ) a is y: = f ;
( iii ) a is null:(y; z);
( i v ) a is £:(j;; z) and either x£y or 0^z;
( v ) a is /?; /?', x is identifiable to a in both ft and /?', and either x$£LV/? or
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( v i ) a is 7C! -» /?! ... |7cn-> j5n, x does not occur in any TC,-, and x Is
Identifiable to a In any ft;

(vii) a is /^:(y; z).)8 and x is identifiable to a in /?;
(viii) if a is let j; 4- e So ft or local j; in /?, one of the following holds:

(a) xey;
(b) x is identifiable to a in /?;

( i x ) if a is var y in /?, the following hold:
(a) if xey then a<£WVfc
(b) x is identifiable to a in /?.

Lemma 5.22. Suppose each xt is identifiable to at in a and a are substitutible
to x in <p. Then the following derived rule holds:

Now we consider the case where programs occurring in (4) in Section 5.3.7
satisfy the following conditions:

( I ) z are identical to x, y;
(ii) for each i, x£ is identifiable to a in /^[y:= fc];
(iii) for each j, yj is identifiable to a in P$[y:= fc].

Then we can extract a desired program as follows:

— Lemma 5- 9

Lemma 5.2 2

<fl,b)(l)Lemma5.11

where £' are
(*): This is easily derived from <null>-rule.

Example 5. (Factorial revisited) We consider the proof given in Example 1
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again. Let J"]', ^ and £'2 be the same as Example 4. In '̂2,
 z *s identifiable

to a in z: = a • b. So Lemma 5.22 is applicable.
Now let £' be

«a>-rule)

(a-l, b)

Identifyztob

b)

Now we let:

a ^ z := 1
/3 & (let x <- x — 1 in £:(z; x)); z: = x • z
7 ^ A*£fe x).(x = 0 ->a | x ^ 0 -> /?)

i.e.n£:(z', x).(x = 0->z: = 1 | x ^ 0 ->(let x <- x - 1 in ^:(z; x)); z := x -z )
H ^ Vx. (x < a ID <7> F(x, z)).

Then we obtain the following proof:

(v-E) (v-E) (IND)

a = 0 a 7^ 0 ///

FT' Z'PA ' " ~ a z) ar) r i>F(fl z)
' f_I ! v-E

= , Z )

fl. z)
, z).

Thus we obtain the program (8).

§6. Extension of Program Extraction Theorem

6.1. Extending the Program Extraction Theorem

We extracted two factorial programs from the same proof: programs in
Examples 4 and 5. But the program obtained in Section 5.6 does not
correspond to the original proof straightforwardly. So we consider what kind
of proof directly corresponds to the program (8).

In (8), z occurs as both a left variable and a right variable in the portion of
z: = x • z. If we keep the requirement of 3-CV, this cannot happen. Hence it is
necessary to extend Program Extraction Theorem by allowing formulas and
sequents such that
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(11) Vx. (<p =3 3x. J/0 and r[x]->3x.^.

However, this causes another problem. As a result of this modification, left
variables occurring in the extracted programs may occur as right variables. In
(11), the p-types corresponding to 3x. \j/ have x as left and right variables; hence x
are not pure left variables any longer.

In the proof described in Section 5, we use the fact x corresponding 3x. \l/
are pure left variables in the following points:

@ Since pure left variables can be considered as bound variables by)
Lemma 3.5, the eigen variable conditions for the original proof inherits
to the transformed one.

© If renaming or substitution is used to describe the original proof, the
same renaming or substitution can be applied to the transformed
one. For example, if «s/f[<a><p] corresponds to «s/[3x.<p]f ( = j/J
[3x. <p]), j/[<a><p] can be considered to correspond to «s/[3x. <p}.

9 For the rules in which 3-formulas may be discharged (let-E, 3-E and
Ind(-<9 Ax. x)rules), we adjust the p-types of the programs in the
discharged formulas by Lemma 5.4.

Therefore special conditions are required for the rules to which the eigen
variable conditions for marked variables are associated, for the rules in which
renaming of marked variables occurs and for the rules in which some 3-formulas
may be discharged. The extended version of Program Extraction Theorem is as
follows:

Theorem 6.1. (Program Extraction Theorem—Revised) Program Extraction
Theorem 5.2 also holds for the following changes:

Delete the condition (i).
Add the following conditions for marked variables: (in the following,

variables xt and a{ range over only marked variables)

(iv ) For each rule with which the eigen variable condition is associated. If a are
the eigen variables corresponding to x, and at is in x, then a{ must be just the
corresponding x{.

( v ) For v-E: If ^-formulas occur in the minor premise, V^ is the major

premise and ^[3}^ ...3>>m. <?] is the conclusion, then

(a) all the variables occurring free in V ̂  must not be bound in j/[*].

( vi ) For Iet-I: If let x <- i in ^^3y1 ..3ym.<p~\ is the conclusion and <£/[*] has
at least one *, then

(a) if there is *j such that xf is not bound at *j in <£/[*], then xt does not
occur free in any assumption (including the discharged one);
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(b) if there is *;- such that x{ is bound at *j in J/[*], then the eigen variable
at corresponding to xt must be just x{,

(c) if the eigen variable a{ corresponding to xt is bound at some *j in &?[*]
and a{ =£xi9 then

(vii) For let-E: If let x «- T In ^[3}^ ...3.ym. (p~\ is the major premise,

^[ 3z\ . . . 3zn. ̂  ] is the minor premise, and £#[_*] has at least one *, then

(a) for each variable u occurring free in f or in the assumptions above the
major premise, if u is not bound at *,. in let x <- f In <£/[*], f/zew
weFV(j/[*]) or for 3-prefix formula 3ylm..3ym.<p corresponding *J9

(b) if xt is not bound at *7- z>z «£/[*], £/ze« ^eFV(j2/[*]) or for ^-prefix
formula ^yl . . . 3ym. cp corresponding *7-, w e FV(3y x . . . 3ym. c^);

(c) z/«n eigen variable at is not bound at *7- /« ^[*], r/z^« ^/ze corresponding
it must be substitutible at * in £%[_*].

(viii) For V-I: T/" Vx. j/[ 3^! . . . 3j;m. (p ] w the conclusion and £#[_*] has at least one
*, then

(a) if there is *7- such that xt is not bound at *^ in J/[*], then x{ does not
occur free in any assumption',

(b) if there is *j such that xt is bound at *7- in .£/[*], then the eigen variable
at corresponding to xt must be just x{,

(c) if the eigen variable at corresponding to xt is bound at some *7- in j/[*]
and at^xh then x£

( ix ) For V-EV: If Vx.jtf[3yi ...3j;m. <p~\ is the premise, a are the variables

substituted for x and j/[*] has at least one *, then

(a) if xiey1 U ... U yn or xt occurs free in the assumptions, then a{ = xt.

(x) For 3-E and 3-E: If 3 x. 3y1 • • • 3ym. cp (or 3x. 3y^ . . . 3j;m. cp) is the major

premise, stf\_ 3zj ..3zn.ij/ ] is the minor premise and <£/[*] has at least one

(a) all the free variables occurring in the assumptions above the major
premise must occur free in ^yl ..3ym. cp.

( xi ) For Ind(-<? Ax. %): If ^[3^! ...3ym. <p] w //ze premise other than
/Ix. %), /" w //ze .yez4 of assumptions above the ^/[^y^ ...3j;m. <p],

*, then

(a) /or eac/z variable u occurring free in F, if u is not bound at *7- in ^/[*],
then weFV(j/[*]) or for ^-prefix formula ^yl..3ym.q> corresponding *7-,
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(b) for each xi9 xt does not occur free in F\
(c) for each x£, xt and the corresponding eigen variable at are not bound in

-*[*].

We note that this theorem includes Theorem 5.2, because the conditions (iv),
(vi), (vii), (viii), (x) and (xi) are derived from the condition 3-CV and we can
obtain the equivalent formula of cp with additional free variables u as u = u A cp.

The conditions for Set-I and let-E are slightly strong. For example, the
proof in 5-UL1 corresponding to

l, y] __
Ho

, y\

(which uses Iet-I) may satisfy the condition (vi), but the proof in 5-UL1
corresponding to

l, y]
(12)

, y]

need not satisfy the condition, because it uses the following instance of Iet-I:

(13) ~ :

3y.(p[a, y]

which violates the condition (vi-a). Hence if we need the derivation
corresponding to (12), we must include 3-I0 in the primitive rules of 3-UL1. By
the same reason, we include V-E0 in our consideration.

Now we consider the following condition 3-wCV:

A 3-SNP formula satisfies weak 3-CV (denoted by 3-wCV) if

O it is obtained from an SNP-context <£/[*] which satisfies (strong) CV for
marked variables, and

© for every 3-prefix 3x1..3xn occurring in it, x/s are mutually disjoint.

A 3-SNP sequent satisfies 3-wCV if the universal closure of A F ID <p satisfies 3-
wCV. A 3-SNP proof satisfies 3-wCV if all the constituent sequents of it satisfy
3-wCV.

For example, Vx, y.(F(x, y) =3 (3x. G(x, y))) satisfies 3-wCV.
It is obvious that 3-wCV admits formulas and sequents of the form

(11). On the other hand, the proof of the form (13) does not satisfy 3-wCV, but
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we already know that it is excluded from our consideration. So the class of 3-
wCV proofs is not so restrictive in our purpose. If we restrict proofs to 3-wCV,
then the conditions (vi-c) and (viii-c) are automatically satisfied. The condition
(v-a) is also satisfied if the discharged assumptions TC/S are actually used.

6,2. Proof of Extended Theorem

Suppose

In what follows, we shall construct a proof Z' of PLi from (14) such that it
satisfies the following additional property:

(B) if eS/fSjCi ,.3xn. <p] occurs as an assumption in 27 and is transformed

into j3/[ <O<P ] m £', and x in '5xl..3xn occurs as a right variable of

some ££'s, then x occurs free in

So if x is an eigen variable of some inference which has j/[3xx ..3xn. cp^ as an

assumption, then x is not free in £#\_^xl..3xn.(p^ hence x is a pure left variable

in «s/[ <O<P ]• Thus x can be regarded as a bound variable. So our
transformation does not violate eigen variable conditions as far as assumptions
are concerned.

We prove the theorem by induction on the length of proofs in the same way
as in Section 5.3. Base case is proved in the same way as 5.3.1.

We here consider only the typical rules for which an eigen variable
condition is associated, substitution occurs (for ULO specific rules), or renaming
occurs. Moreover we only consider the case where marked variables are
essential. The other case are easily established. For the simplicity, we shall
omit to mention that we use Lemma 5.5 to reduce right variables of the obtained
program when it has extra right variables. We shall also omit to mention that
we use Lemma 5.4 in order to adjust the p-type of the obtained program.

6o20lo let-I Assume that the proof is of the following form:

[« = T]

n z
AT

letx <- Tin j/[3y. cp].

From 17 part, using the induction hypothesis, we have

rr
AT.
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First we consider the simple case where a = x: Since jtf[3y. <pYx = J/[3y. <p], we
have, from the induction hypothesis,

x = T

I'
Hence we have the following proof:

[x = t

r
- <*> let-I

If xeMVa, then a has the desired p-type. If x^MVoe, then x is added as a right
variable at follows:

Ietx«-Tinja/[<nuH:(;x);a><p],

where nu!!:(;x);a has the desired p-type.
Next we assume a ^x. We consider the following five cases:

( I ) x is bound in j/[*];
(I I ) x is not bound in J2/[*], and a is bound in j/[*];
(III) x is not bound in j/[*], a is not bound in J/[*], x^FV(ja/[3y. cp]\

and
the discharged assumption a — i is not used;

(IV) x is not bound in j/[*], a is not bound in <£/[*], either
x6FV(j2/[3y. cp]) or the discharged assumption a = i is actually used,
and x^yi

(V) x is not bound in ««/[*], a is not bound in <£/[*], either
xeFV(j^[3y. (p]) or the discharged assumption a = T is actually used,
and xey.

Ad. (I): From the condition (vi-b), the eigen variable a must be just x;
hence this case does not occur.

Ad. (II): By the condition (vi-c), x^FY(j/[*]). Moreover, from the
condition for renaming, x^FV(3y. cp); so &/[3y. (p]a

x = j/[3y. cp]. Hence from the
induction hypothesis, we have

a = T

By (vi-a), X^M; so if xej;, x is a pure left variables, hence x is regarded as a
bound variable. Hence
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and

^[<«><p]x - J*[<null:G x); «

So we have,

r
-<a>Iet-I

Ad. (Ill): Clearly «s/[3y. (pYx = <^[3y. <?]; so from the induction hypothesis we
have

^Z'
We also have a^FV(j/[<oc>(p]), especially a^EVa. By (vi-a), x^MVa, hence

and

So we have,

r

Ad. (IV): In this case, ja/[3y, (?]£ = j2/J[3j;. c?J]; so from the induction
hypothesis, we have

* '•
^[<a: (y; a, «)><].

By (vi-a), X^M; so

: (3?; x, u

Thus we have
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/W. (V): In this case, j/[3j;. cp]J = j/£[3;y.<p]. Let j> = x, y', then from the
induction hypothesis, we have

where x^i* by the condition (vi-a). Since both x and a occur in a, we cannot
rewrite a as (a*)*; so we cannot apply let-I straightforwardly. Here it suffices to
consider the case where a =£x.

In this case, x is a pure left variable in the program a: (x, y'\ a, w); so we can
rename x in a. That is, let w be a variable not occurring in <a><p, then

(15) ^[<a: (x, /; a, fi)>p] «-> ,<[«: (w,

Here we remark the following lemma:

Lemma 6820 If

By this lemma,

(16) <<[«: (w,y';a,^)>^] « ^[<^: (w, /; a, fi); *: =

Now let jS be aj7; a:= w, then wepLV& and
Lemma 5.12,

(17) <<[<£><?*] - j*j[<local w in

Thus we have

using(15),(16)and(17)

We note that the p-types of local w in jSJ is (x, j; x, i/) as desired.

602020 let-E Assume that the proof is of the following form:
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(let-E)

(I8) n i
W
•^-<a>fet-E

Let F be the assumptions of 77 and (y; x, u) be the p-type of 3y. <p in the
conclusion let x <- T In jtf[3y. cp] of 77.

For each utEu,

9 if uf = a, then a ^x and, from the condition (vii-a), a is bound in =£/[*];
hence a is bound in .£/[*]£;

9 if M; ^0 and M,- is bound in =£/[*], the wf is bound in J/[*]£;
• if ut ^a and wf is not bound in <£/[*], then ute¥\r U F¥T; hence from

the condition (vii-a), ute¥V(^l3y. cp})\ so Mf

® if M feFV<j9 and ut £y, then u

From this consideration, we know that, for the assumption <£/[3j;.(p]" of ^, we
can choose a program variable £ corresponding to 3y.cp such that w^

Now from the induction hypothesis, we have

let x «- t in

First we assume that we could obtain the following proof:

(19)

Let b be a fresh variable, and w be follows:

fa if xez U v
w = \ i[x otherwise,

then ^[a] = ((ff)^[a])^. Hence if a is not bound in ^[*], we have

(1)

a = i

( i)

fe = T

0' ~AT (1) Lemma5.7(*)
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(*): since a is the eigen variable in the original proof, a£¥Vi// U FV((/?")5[a]), and
T is substitutible by the condition (vii-c); hence Lemma 5.7 can be applied.

When a is bound in ^[*], a appears as a right variable of the extracted
program. So the following simple proof is sufficient:

(let-E)

IT

Thus we obtain the proof corresponding to (18).
To complete the proof for the let-E case, it still remains to construct a proof

Z" and a program /? satisfying (19). We consider the following five cases:

( I ) x is bound in j/[*];
( I I ) x is not bound in j/[*], and a is bound in j/[*];
(III) x is not bound in <£/[*], a is not bound in <£/[*], and

(IV) x is not bound in J/[*], a is not bound in <£/[*], x eFV(j2/ [3 j;. </>]),
and x^j;;

(V) x is not bound in ,*/[*], a is not bound in <*/[*], xeFV(ja/[3j;.(j9]),
and xej;.

Ad. (I): Since jaf[3j.(p]J = ^*[3y.<p], from the induction hypothesis, we
have

a = i J2/;[<»

I"
We also have

^xC<^/: (y; ̂  «
Hence we let ft = [^] and Z" be

Ad. (II): By the condition for renaming, x£FV(3j;.(p). So ^\^y.(p\a
x =

^xL^y-91- The rest can be handled in the same way as the case (I).
Ad. (Ill): By the condition (vii-b), this case cannot happen.
Ad. (IV): In this case, ^[3j;.<p]* = ja/£[3j?.<p£]; so, from the induction

hypothesis, we have
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Z"

We also have

j/;[<fj: (y; «, u)><?£] = j/IXtf: (y; x, «

Hence we let 0' = j8,[ga and Z" be

^rf. (V): In this case, j/[3y.(p]" = j/°[3y.<p]. Let j; = x, y', then from the
induction hypothesis, we have

a = * ̂ "[^(x,

Z"
^[<^:(z;v

We proceed by separating cases depending on whether a = x or not.
When a = x,

Hence we can simply let ft = ^[fl and Z' be ^[^]-
When a ^x,

(20)

Here we need the following lemma.

Lemma 6.3. If w£FV« a >(/?),

From this lemma,

.

Using (20),

: x, ; x, u c p x <-* ^ x : = a; x, ; x, w

Since the p-type of x: = a\ £ is (x, y'\ a, w) that is the p-type of Y\, we can let /? be
^tx:=a; f] and 27' be
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V-I This case is quite similar to let-I, so we omit the detailed proof.

602o4o V-EV Consider the following proof:

From the induction hypothesis, we have

r
Now we consider the following three cases:

( I ) x is bound in <£/[*];
(II) x is not bound in <*/[*], and x£y;
(III) x is not bound in <£/[*], and xey.

Ad. (I): Since

^[3ĵ ]; = <<[3)^] and

We have

Z'
V-EV

/Id. (II): Since

jf&y-VTSc^Jtyly-V® and

we have

r
V'EV

^ld. (Ill): By the condition (ix-a), a = x; so

^[3^.<pE = ^[3^<p] and

Hence we have
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r
-V-EV

6.2.5. 3-1 Consider the following proof:

£
let X < - T in a^.

The argument in Section 5.3.6 is completely applicable in this case. We
however treat the case where f = x separately, because this case produces
simpler programs. From the induction hypothesis, we have

i;
let x<- x In <a>cp.

Then we have

r
let x<- x in(oc><p.

(null: (x; x); a><p.

6.2.6. 3-E Assume that the proof is of the following form:

.0 ?
3x.3y.cp

Let x' be the sequence of xf's not occurring in y but occurring free in the
assumptions above the major premise, and x" be the sequence of x,-'s not
occurring in y and not occurring free in the assumptions above the major
premise. By the condition (x-a), x' ^ ¥V(3y.(p). So, from the induction
hypothesis, we have

FT r
, j;; jc', v)> and -*/[<# (z;

where a' (resp. a") are fl-s corresponding to x' (resp. x"). By Lemma 5.4 we can
augment the right variables of £ in Z' by fresh variables S compatible to y. Let
7 be null: (; v');y: = b, where v' = RV <J. Then 7 has the same p-type as ^. We
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also define u as follows:

\i if xtEz,
_ or xt occurs free in the assumptions above the minor premise,

U'' ~ or xt is bound in j/[*]
x£ otherwise,

and let u' (resp. u") be %'s corresponding to x' (resp. x"). Then if xt

RV/?, ut = at; so u are renamable to a in /?; hence

Thus we have

«a>-rule)

lemma 5.9and<nuU>

= lemma5.10(*) _ =

.. <a>,5>/,6"> lemma 5 .11

<;>

- Lemma 5.12 (*)

^^Slnfii^^af;^^^ ].

(*): When a' = x',

/,7'. _ v'- /y«
7»«7/.S"\ fJ*',u»,b

\U .— X , OC^/.^/.y/^x/.x'/,}?

can be replaced by

and

Inpfll ?7' i7" f> in fi7'- — v'- /y"''""'^- ($*•*"&lOCai W, W , L? Ill ( W . — X, %/,jc^,5rj IPa/.av.&

can be replaced by

local u\ b in (og$ (/J£)5M).

6o2.7o Ind This case is easily established just like 5.3.8 using the subcases used
in Set-I, so we omit the detailed proof. Here we only remark that if the

conclusion of the inference is of the form Vx. (x ^ j/[3y1...3j;m.(p]), then x do
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not occur free in the assumptions by the condition (xi-b).

6.2.8. V-E0 Consider the following proof:

n i
Af

From the induction hypothesis, we have

IT I'
AT and Vx.j2/[<a><p].

Note that xeEVa whether x is bound in ja/[*] or not.
Now we consider the following three cases:

( I ) x is bound in ««/[*];
(II) x is not bound in .£/[*], and x£y;
(III) x is not bound in <£/[*], and xey.
Ad. (I): We have

Then by Lemma 5.19,

a = T A

Hence

AT
-V-E =Lemma5.19

< a > let-E

. (II): We have

Then by Lemma 5.19,

a = T A =£/[<oc>cp]" -» ^x[T][<let x <- T in

Hence

11 2-f' (let-E) (let-E)

AT Vx.
: Lemma 5.19

- <a>kt-E
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Ad. (Ill): In this case,

From Proposition 3.6, the following lemma holds:

Lemma 6.4. If x are marked variables which are not bound in <£/[*], f are
substitutible for x in <£/[*], and a are fresh variables compatible with x, then

hpL.a = f A J3/[<a>(?]f <-> ATA ^ [f] [ <x: = f;

Using this lemma, we have

2L (fcr-JE) (let-E)

AT V
Lemma 6.4

<a>Let-E

We note here that xeEVa but x^EV(x:= T; a) unless xeFVT. If x occurs free
in the assumption of 77 or Z, then x must occur as a right variable of the finally
obtained program. Hence, if the p-type of x := T; a is not the desirable one, we
must augment x as a right variable as follows:

J/^T] [null :(;x);x: = r;a] .

60289o 3-I0 Consider the following proof:

n
AT

-Ho

3x.3y.cp.

We note that x and y may be overlapped. Let x' be x/s not in j? and f be T/S
corresponding to x', then

So, from the induction hypothesis, we have

n' r
AT and <a: (j;;

Hence we have
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0'
(let-I) «a>-rule)

= Substitution Lemma
Af'

,letx «-T m<p

<y><a>-rule

where a' be fresh variables compatible with x'.
In case f = x, we can use null: (x'; x') instead of x'\ = f.

Example 6. In Example 1, we can use z for the eigen variable b in $\ This
change does not violate the condition of Theorem 6.1. For subproofs
corresponding to f|, ^ and £2> IT anc* Z'i are t^ie same as Example 4, but £'2
becomes as follows:

F(a-l,z)
= PA =FACT

a- =a a- ,-
} - Substitution Lemma

^ F(a, a-z)

(a, z).

Then the proof £' corresponding to Z becomes:

«a>-rule)

c, z)) a7^0 ,F(a— 1, z)

a — 1, z) <z: = a-z>F(fl, z)

<Iet;c<-a— lin<^:(z; x);z: = a-z>F(a, z).

From this X' and fl'» we can extract tne desired program

^:(z;x).(x = 0^z:= 1 | x =£ 0->(Ietx^x - 1 in £ (z; x)); z: = x • z)

just like Example 5.

6.3. Extracting while programs

Takasu [19, 20] showed that a while program can be extracted from a proof
using templates of inference. Using PLi, his result can be applied to our
framework. For example, a while statement can be extracted from the following
form of inference.

Proposition 6.5. Suppose

0*~i-uLî ' ^ = ^ ATI, TT, cp -» 3j;.((let x « - f i n % ) A f X < 2 A ATI A cp)
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where a are fresh variables and a and x are unmarked, then

KULir, TI(-<, Ax, %\ letx «- f in & Arc, cp -> 3y.(cp A ~i rc).

That is, the following derived rule holds:

[a = f, ATT, 71,9]

(22) ;
TI«,Ax.x) letx<-finx ATT (? 3j;.((Ietx <- tin/) A f -< a A Arc A
- ~~; - :

3>\ (cp A — i TT).

Proof. By renaming variables3 we may assume that xf) (FVfU
FVcp) = 0. Let

O 4x Ax<a^V};.(x = f A JTT A (p^> 3y.(<p A — i TC))

//f ^ Vx. €>.

Then we have ^ and £2
 such tnat

^i h g.UL1Iet x ̂  f In x, f X fl, 5 = f, ATI, O| -> <JD ^ 3j?.((jo A ~i TI)

^2h 3.UL1letx *- f In ^ ATT, Vx.fa =3 (Vy.(x = TA ATC A <p =3 3y.(<p A ~i TC))))

(/) =5 3j?.((/) A -~l 7l).

Now let 27 be

(,et-E) (*B) ™^V_EV

3, ft = f, ATT, o|

m . Zi
Vx.<D G? 9 =3 3j;.((» A —i rc)

. V-E _X _,.E

letx 4-f in €> ____ §>.(<? A ̂ TC) <&->let,E

~
3j;.((!etx«-finy)AT-<flA AjcAcp) 3y.(<p A — i TC)

—i TC).

Then (22) is derived as follows:
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<=>-!) (=-I) (v-E) (=,-i) (IND)

a = f, ATI, TT, cp, IH

(D

.(<p A — i TC)

-i ft)

Set x <- f in ̂ , A n, Vx.(x =^ (V>?.( x ^fAATcAcpiDgy.^A-i TT))))

_E,
i TC)

=>-£

This proof satisfies 3-wCV and the conditions of Theorem 6.1. So we can
apply the theorem to this proof, then (22) becomes the following derived rule in
PLi:

[a = f, A 7i, 7i, cp]

TI(-<,Ax.x) le tx<-f inx ATT 9 <a>((letx <- im^) A f -< a A ATI A 9)
<^.(TC -> a | —i TC -» nuU)>(<p A —i TC)

where a is the program obtained from fj. Thus we obtained the desired while
program:

while 7i do a.

This derived rule just corresponds to {while} rule in tHL.
We usually use Proposition 6.5 in the following form:

Corollary 6.6. (While Rule) Suppose

(i) nhi-uLir -* 3M*et x <- f in /) A ATI A 9),

(") Z^i-uLi^'5^ = f' A71,71,9 -» 3y.((letx<-finx) A f -<a A ATT A 9)

<2 «r^ /re5/z variables and a and x are unmarked, then

'"I-ULI^' r/' T1 .̂ ^ x. x) -> 3^-(^ A -i TT).

w, //z^ following derived rule holds'.

[a = f, ATT, 7i, 9]

(23) _ :
A ATI A 9) 3
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I
Ax.x) (letx<-Tin/)A ArcAcp 3j;.((letx^fln^) Af<a A ATT A(p)

=<o>Prop.6.5

n
3j;.((!et x <- f in y) A A TI A q>) 3j;.(cp A — i n)

From this proof, if a and /? are programs obtained from f] and £, respectively,
then, by Theorem 6.1, we have the following program:

a; while n do /?.

Example 7. (Integer square root program) The specification for a square
root program on integers is described as follows:

Goal 4 Vx. (0 < x ID By. Sqrt(x, y))

where Sqrt(x9 y) is a predicate expressing y is the square root of x, that is y is the
largest number satisfying y2 < x, as follows:

y)^Q<y/\y2<x/\ Vz.(z2 <x^> z <y).

First we let P and Q be as follows:

P ^ y 2 < X A O < ) ; < z

Q^P /\x<z2.

Suppose we are given

XQI >-0 < x -> 3y, z.(0 < z - y A Q)

X<22 l-fl = z - j ; A } ; + l ^ z A g -> 3y, z. (0 < z - 3; < a A

^ Q 3 h } ; + l = z A e -> ^rt(x, y),

then we can construct a proof for Goa/ as follows:

CD (i) (i)
0<x a = z-y,y+l^z,Q

y,z.(y+l=zAQ)
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where ^T^ is

y+1 = 2
V.

Si

l = z A Q ) ~^~

Hence, when we obtain programs a and /? from £Q1 and £Q2» respectively, we
have the following program satisfying the specification Goal:

local z in
(a; while y + 1 ^ z do /?).

Now we establish Xei> X<22 and X<23-
^4d. ^Q1: Since

0 < x -> (0 < 2-(x + 1) - z A P)y,2[05 1],

we have

^Pil-0 <x -> 3j;5 z.(0 < 2-(x + 1)-z A P).

Since

a = 2-(x + l ) - z A z < x A P -^ ( 0 < 2 - ( x + l ) - z < a A P)y,z[j;5 2 • z],

we have

^P2ha = 2 - ( x + l ) - z A z < x A P -> 3y, z.(0 < 2 - ( x + 1) - z < a A P).

Hence by While rule with £pl and ^p25

0 < x -+ 3y, z.(P A -i (z < jc)).

Moreover we have

^ULI^ A - I ( Z < X ) -» Q<z-y A g.

Thus ^Q1 is obtained. The program corresponding to £Q1 is

3;, z:= 0, 1; while z < x do z:= 2-z.

^4J. ^]Q2: We use an auxiliary predicate R:

R ^ a = z — y/\y+l^z/\Q/\y<w<z.

We have
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Assume R and consider separate cases according to w2 < x A x < w2, then we
have

w 2 < j c - » ( 0 < z - j ; < f l A g)y[w]

x < w 2 - » ( 0 < z - j ; < a A g)z[w].

Hence we have

Y,R2 I- Vw.(K =3 3j;, z.(0 < z - j; < a A Q)).

Then 2 can be constructed as follows:

z-y<at\Q))
V-Eo

z — y<a/\Q)
=-E

Since V-E0 and V-E are used, the corresponding program is

Set w <- y+z in
2

(w2 < x -* j;: = w | x < w2 -> z: = w).

>4d. ^Q3: This case is straightforward.
So we finally obtained the following program:

local z in (
y, z:= 0, 1; while z < x do z:= 2-z;

while y + 1 7^ z do

let w<-z±£ in

(w2 < x - > j : = w x < w 2 - > z : = w)).

6A Mathematical induction

Our system is not based on the usual mathematical induction but on the
transfinite induction. We think the mathematical induction does not specify the
algorithm explicitly. To a proof using the mathematical induction, we may
associate two types of programs

(i) a program using counting down recursion;

(ii) a program using counting up loop.

Since we often use the mathematical induction rather than the transfinite
induction, it is useful to examine how a program is extracted from a proof using
the mathematical induction.

We now consider the following proof using the mathematical induction.
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(24) _/ra- n
- <a> mathematical induction

6.4.1. Counting down program From (24), we can obtain the following proof
using the transfmite induction,

(v-E) (IND)

a =£ 0 Vx.(x < a => jf[ly.(p])
• V-EO

a—l<a a— 1 < a n> .

n/_E) 11

(v-E)

v-E

<a> IND

Now we transform this proof into a proof in PLi. From n part, we have

(26) ^[0][<a>^[0]]

for some program a, and from £fl[0 — 1]> we have

(27)
for some program /?[??]. Let y be

(x = 0^a x ^ O - ^ j8n[Ietx <- x - 1 in

and the induction hypothesis be

From V-E0 and =>-E parts in (25),

^[fl - l][<Ietx ̂  a - 1 In ^.y>^[fl - 1]].

Then from (27),

^MC<^[Ietx 4- a - 1 in /*£

From this, (26) and v-E,
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By <ju> axiom,

Hence by induction

6.4.2. Counting up program If j/[3j;.<p] in (25) is simply of the form i// ^>3y.q>
such that x and y do not occur free in ij/9 we can extract a while program, which
computes values of y satisfying <px[i] from i = 0 to x successively.

We use Corollary 6.6 (While rule) to extract a while program. Let T be x
— i, n be i < x, -< be < and % be T. We now check the condition (i) and (ii).

Ad. (i): We show

This is obtained as follows:

From this, we obtain a program

a ;i : = 0

where a is a program extracted from 77.
Ad. (ii): it is sufficient to show the following:

r',il/,a = x- i, i < x, <px[f\ -> 3i, y. (x - i < a A

This is obtained as follows:

3y.<px[f]

(3-E)

3i,y.(x — i < a A cpx[G)-

From this we can obtain
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where /?[£] is a program extracted from X«H-
Then, by While rule, we obtain

(28) r, r, $ —» 3i, y. (<px[q A / = x)
and a program

a; i := 0; while i < x do (/^[null:(>;; y)]; i := i + 1).

Hence we have

and finally we obtain

local i In (a; i : = 0;

while i < x do (^[imll:(j;; j;)]; i := j + 1)).

6.5. Or elimination

In our method, main drawback is found on the restriction of v -E rule. We can
only use boolean expressions as major premises if the minor premise has §
quantifiers. If we prove a specification using a case analysis by
prime(x) v —i prime(x) but prime is not executable predicate symbol, we must
transform this proof into another one in which the major premise of the v -E is
a boolean expression.

In this section, we briefly sketch how to convert such a proof. Now
consider the following:

DM
I IL

(29) —

where each \l/t is 3-free.
It is already well-known that v connective can be deleted using other

logical connective if, for example, natural numbers are defined. We here assume
the boolean sort which consists of two elements, true and false. Then we can
replace V ̂  in ̂  by

(30) 35. ((V fa = true)) A A fa = true :
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because the following proposition holds.

Proposition 6.7.

h V^- ^ 35.((V^, = true)) A /\i(bi = true ^

The following corollary corresponds to v-I and v-E;

Corollary 6*8= The following derived rules hold:

_

3b.(( Vjbt = true)) A ^i(bi = true

and

55.(( V,(b, = true)) A A,(fr t- = true ID ̂ ,)) <p ...

9

Let 0 4 ( V f(b f = true)) A A£(6£ = ID i/^). If V^ does not occur as a
subformula in any assumption of ]T nor any Instance of the axiom EM used in
X3 then we replace all the occurrences of V^- by 0 in £ with suitable renaming
of variables using the above corollary. Let £' be the proof of 0 obtained by
this replacement. Then we can construct the following proof from (29), in which
V^£ does not occur as the major premise of v -E.

(5-E)

A, (bt = true =>t^)
(v-E)

__ ,

V^fe—true) A, A (bt = true)
- __ - (v-E)

If we introduce a sort for ^-element sets, say Sn then we can use only one
variable for b in (30):

where c£ is the i-th element of Sn. In particular, when n = 2, (30) is simplified:

3b:boolean. ((b = n> ̂ t) A (b = ZD i^2)).

Example 80 (Prime predicate) We shall demonstrate how a proof of
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(31) 2 < x -> prime(x) A ~i prime(x)

is transformed when we replace

prime(x) A —i prime(x)

by

3fr. ((fr = true ID prime(x)) /\ (b = false =3 —i prime(x))).

Suppose prime is defined as follows:

P(u, v) £ Vz. (2 < z < v ID -i &XZ» u))

prime(u) & P(u, u)

where div(z,u) is the predicate representing w is divisible by z. Then the
following hold:

PI h-P(x, 2)

P2 h -i &X0, *), P(x, a - 1) -> P(x, a)
P3. h dw(a, x) -> ~i P(x, a)

P4 h—i P(x, a) -» -i P(x, a + 1).

Let IH be

7/f 4 Vy. (2 < 3; A y < a => P(x, y) v ~i P(x, 3;)).

Now we consider the following proof of (31)

(v-E) (v-E) (IND)

a = 2 2<a, IH
(IND) PI ^

2<a P(x,a) f 2,
a = v 2 < a P(x, a) v —i P(x, a) P(x, a) v —i P(x, a)

T I( < ,Aw.(2 < w)) P(x, a)v~iP(x, a)
- — <a>,IND

9 <r" v" 9 <" Y —^ Pfv v^ \/—i Pdc Y^Z, ^v A ^-j^ A—' JL \^A, Ay V II ^A, -xy
3-E

P(x, x)v~iP(x5 x)

prime(x) v —\prime(x)

where is

(v-E) (v-E)

2<a,/// 2<a, P(x,a-l) 2<a, —iP(x,a-l)

Zo Zi ^2
P(x, a - 1) v -i P(x, a - 1) P(x, a) v -n P(x, a) P(x, g) v -i P(x, a)

P(x, a)v^P(x, fl)
 V"E
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and ]T0, ̂ x and £2 are

So

IH
V 2<a Vy.(2 < y A y < a ̂  P(x, y) v -i P(x, y))

1Aa- l<a 2 < a — IA a—l<a:DP(x, a-l)v~nP(x3 a-1)
=>-E

P(x, a-

(v-E)

2<a -^div(a, x) P(x, a-1)

rfiu(fl, x) v —i div(a, x) P(x, a) v —i P(x, a) P(x, a) v —i P(x, a)
. : v-E

c, a)

= =P4
V ~~iP(x, a)

P(x, a)v-iP(x, a).

Next we transform these proofs. We introduce several abbreviations:

T(b) ^b = true
F(b)^b = false

Q(b, u, v) & (T(b) =5 P(u, v)) A (F(b) ^ —i P(u, v))

where b is a variable of sort boolean. Then the following hold:

Ql h T(b\ Q(b, x, a - 1) -^ P(x, a-1)
Q2 ^F(b\ Q(b, x, a - 1) -> -i P(x, a - 1).

The sequents corresponding to Corollary 6.8 are:

Rl h-P(x9 a) -> 3ft. Q(b, x, a)
R2 h- —i P(x, a) -> 36. Q(b, x? a).

Rl and R2 correspond to A-I rules and these produce the following program:

Rl: b:= true
R2: 6 : =

Let 7/f be

/JFT 6 Vy. (2 < 3; A y < a =3 36. Q(6, x, y)),

then the proof for (31) is transformed as follows:
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<V-E) (v-E) (IND)

a = 2 2<a,IH'
(IND) ===== PI

2<a P(x, a) £'

g = 2 V 2 < a 6.Q(fr, x, a) b.Q(&, x, a)

(32)

.Q(fe, x, x)

3b.Q(b, x, x)
(x)) A (F(b) => ~\prime(x)))

where Z,' is

(v-E) (?E) (v -E) (j-E)

F(fc) Q(b,x,a-\)

2<a, P(x,a-l) 2<a,

Z'o
, x, a-1) &.Q(fr, x, a)

where Xo> Z'i and ^'2 are:

V ' 2<a Vy.(2 < y A y < a => 3b.Q(b, x,
/ .,0 ' - •

2<a — 1 Aa— 1 <a

n

2 < a — 1 A a - l < a

3b.Q(b,x,a-l)

div(a, x) 2<a ~

132

V-EO
^>3b.Q(b, x, a— 1)

~""E

T(b) Q(b, x, a— 1)

~\div(a, x) F(x, a— 1)

P(x, a). . R j
3&.e(fr,x,f l) . _.

Qi

P3

}.Q(b, x, a)

• ,x,a-l)

2<a

-|P(x, a)
R2

.Q(b, x, a).
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Now we extract programs from these proof fragments. First we use a program
variable £:(ft; x, y) for 3ft. in IH'. Then we can extract the following programs
from X'o, Zi and £'2:

let y <- a — 1 In £,
(div(a, x) -> b := false | —i div(a, x) -> ft : = true)

and b : = false.

Moreover we can optimize £2 as follows:

F(ft)
Q2

2<a

F(ft) -iP(x, a)

Q(b,x,a) ~
3-1

3ft.Q(ft, x, a).

From this, we obtain the following simple program:

null :(ft; &).

Then from ]T', we have

Set y <- a — 1 in £;

(ft = true -> (dzi;(a» x) -> ft : = false | —i ^ft?(a, x) -» ft : = true)|
ft = false-*null:(ft; ft))

and from (32), we finally obtain the following program which has the p-type
(ft;*):

let y+-x in/*£(&; x, y).(
y = 2 -» ft : = true |
2 < y -> let 3; <- 3; — 1 In ^;

(ft = true -> (rfiu(j^, x) -»• ft : = false | ~n Jiu(};, x) -> ft : = true) |

& = false-> null: (fe; ft))).

If div is not executable, then we continue convert the proof 77 in order to
replace div(a, x) v ~~i div(a, x) by another 3 formula.

§7. Concluding Remarks

In the present section, we shall give several remarks on our approach.
Our approach is strongly motivated by the following points:

(A) If an extracted program can be reduced to a simpler program, there
should be a proof corresponding to the latter.
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So we carefully pay attention to names of variables (in fact, variable names used
in a proof and those in an extracted program do in most cases coincide). We
also adopt transfinite induction as an induction scheme, because we think it
reflects the structure of recursion. As explained in 6.4, we consider that usual
mathematical induction and structural induction are not suitable for representing
loop or recursion structures.

(B) We can specify variables which we do not want to appear in
extracted programs.

We have two kinds of variables, marked and unmarked ones. If some variables
are not desirable to appear in the extracted program, it is sufficient to use
unmarked variables for them.

Due to (A) and (B), it may be possible to transform

a proof which is easily understandable but produces an inefficient
program

into

a proof which is hard to understand but uses less variables and produces
an efficient program.

So it is important to study such a transformation technique.

(C) Programming (or problem solving) in abstract domains is important.

Programming in an abstract domain and then realizing it in another (low
level) abstract domain or some concrete domain is an important methodology to
develop reliable programs. Specifications and proofs in abstract theories
correspond to programming in abstract domain. In our approach, requirements
for base theories are almost nothing except that the induction principle to affect
program execution must be the transfinite induction. So, for example, we can
use a set theory as an underlying logic providing that some executable set
operation are specified.

Next we state some possibilities of extensions of our approach.
In Program Extraction Theorem, the condition (ii) is not so

restrictive. From normalization theorem, the following proposition holds.

Proposition 7.L For every proof in 3-ULO, if all the formulas in the
assumptions, induction formulas and instances of axioms are 3-SP, then we can
find a proof which has the same assumptions and conclusion but all the formulas
occurring in it are 3-SP.

However it is convenient if we can use formulas of the form 3x. cp ^ 3y. ̂  as
lemmas. So we extend Program Extraction Theorem to SSNP (or SNP) proofs
by allowing SSNP (or SNP) formulas as conclusions. Since formulas in
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assumptions remain to be SSP (or SP), in the rules which have the same formula
as an assumption and a premise, such as let-E and Ind«, Ax./), only the SSP
(or SP) formula can occur as the major premise (in let-E) or the conclusion (in
Ind). As a result, we can not use V-E for SNP formulas essentially. However
V-EV can be used. By the similar reason considered for Theorem 6.1, we add V-
E0 and 3-I0 with some restrictions to 3-UL1 in SNP cases. Restrictions are
roughly as follows: if a term is substituted for a variable occurring in 3-formula
in a negative position, then the term must be a variable.

As a program language, PLi only has fundamental constructs, which is
necessary to extract programs from proofs. In order to use PLS to analyze
various kinds of programs, we need to extend PLi for function and procedure
constructs.

For example, a Pascal like procedure fact can be defined as follows:

fact(x, var z) ^ JLI£: (z; x). (x = 0 -> z: = 1 \ (let x «- x — 1 in £: (z;x)); z: = x • z).

Here let x <- x — 1 In £:(z; x) corresponds to a procedure call fact(x — 1, z) in
Pascal.

ULO is an ordinary first-order predicate logic and our approach does not
much depend on a specific logic and can be applied to most of usual
logic. Moreover we can easily extend our approach to handle programs which
accept functions as arguments. Note that this does not mean programs can be
passed through parameters. We now discuss several possibilities of extensions.

In actual proofs of specifications, we need to prove various relations satisfy
the well-foundedness. That is, we need to prove TI(-<, Ax./), when we use
Ind(-<3 Ax./) rule unless it is an axiom. To do this, we extend the underlying
logic UL to a second-order logic UL2. In UL2, TI(-<, Ax./) can be expressed as
follows:

TI« Ax./)^ Vp.(Vx.(/ A Vj;.(/| A y -< x ID p(y)) ID p(x)) ID Vx.(/ ID p(x)))

For example, transfinite induction for natural numbers is proved in the second-
order Peano arithmetic.

We may also want to use a co-logic to formalize data structures
completely. If we restrict CD rules only for 3-free formulas, our approach can be
straightforwardly applied to UL60, UL with co rules, too.
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