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Introduction

A topological space which has the homotopy type of a finite CW-complex is
called p-regular if its localization at a prime p is homotopy equivalent to a
product of a certain number of spheres localized at p. We note that, if X is p-
regular, the rational cohomology of X determines the number and dimensions of
spheres which appear in the decomposition into the product. J.-P. Serre gave,
in one of his celebrated papers ([19]), a necessary and sufficient condition for the
p-regularity of classical Lie groups. For example, U(n) (resp. Sp(n)) is p-regular
if and only if n < p (resp. 2n < p). The purpose of this paper is to generalize the
result of Serre to complex and quaternionic Stiefel manifolds. The p-regularity
of Stiefel manifolds was also studied by Y. Hemmi ([6]) from the H-space
theoretical point of view. He showed that, for an odd prime p, there are
infinitely many complex and quaternionic Stiefel manifolds which are p-regular
(see [6] Theorem 3.3 for details). Our result is somewhat stronger than his in
the sense that, for an odd prime p, we determine whether a complex
(quaternionic) Stiefel manifold is p-regular or not except for finitely many
undecided cases, and we also deal with the case p = 2. In particular, we settle
the p-regularity problem on complex Stiefel manifolds for p = 2 and 3, and there
are still two (resp. six) undecided cases for p = 5 (resp. p = 7) (see Example 4.10).

Following James ([8]), we denote by V,,, W,, and X, , the real, complex
and quaternionic Stiefel manifolds O(n)/O(n — k), U(n)/U(n — k) and Sp(n)/Sp(n
— k) respectively. For an odd prime p, by examining the action of the Steenrod
operation P! on H¥(W,,,,; F,) and H¥(X,,,,; F,), we easily derive a necessary
condition that the p-regularity of W, ., ,(resp. X,,,) impliesk <p—1,ork=p
and p|n (resp. k = (p — 1)/2, or k= (p + 1)/2 and p{2n + 1).

The main results of this paper are as follows.

Theorem 2.17. W, ., , is not 2-regular unless n =0 or 2, and X, ., , is not
2-regular for any n = 0.
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We define sets of integers C, ., (F) (F = C or H) and Il(n; p) (p: odd prime)
by C, 1 iF) = {ieZl|i= szlsj(dn +dji—1),e;=00r 1}, where d =2 if F =C
and d=4 if F=H, I(n; p)={icZli=2pn+2j(p—1) for j =1, or i=2(r,
+0)p—-1)+2pm—1 if r,>0}, where r, is defined by —n—1=pq,
+r, 0=r,<p. Note that Il(n; p) = {ieZ|i =2pn + 2j(p — 1) for j = 1}
in the case r, = 0.

Theorem 4.7. i) For k<p—1, W,y Iis pregular if [(J§Z§
(Chsrp—i(©) (\I(n + j; p)) is empty. In particular, it is p-regular if n = (k? —2p
+ 3)/(2p — 2k). For k=p, Wy,.p, is p-regular if m = (p — 1)/2.

i) For k<(p—1)/2, Xpirs is pregular if | )25 (Cpirp—;(H) (20 + 2j
+ 1;p)) is empty. In particular, it is p-regular if n = (2k* + k — 4p + 3)/(4p
—4k). For k=p, Xpip+1y2.p+1y2 8 p-regular if p|2n + 1.

If follows from the above theorem that, for each odd prime p, almost all (
= except for finitely many undecided cases) W, ., , and X, ., , are p-regular if the
necessary condition we mentioned above is satisfied. And as a corollary of
Theorem 2.17, we show that the attaching maps of the top cells of W, ., , and
X, +2., produce two families of infinite number of elements of the 2-components
of the unstable homotopy groups of spheres, and that the loop space QW,, , ,
(resp. 2X,.,,) has an exotic loop space structure if n is even and greater than
two (resp. n = 6 modulo 8). We also discuss the non-2-regularity of real Stiefel
manifolds in the appendix and prove an analogous theorem.

We prove the non-2-regularity of W,,,, and X,,,, by showing that the
classifying maps of spherical fibrations S*"*!— W,,,,—S?>"*3 and S$**3
> X,42,—8"*7 are non-trivial. For this end, we examine the J-
homomorphism in the unstable range. On the other hand, we prove the p-
regularity for odd prime p under the condition of the above theorem by showing
that spherical fibrations S*"*2*' S W, . > W, ,—;—; and S¥THF3
= Xpiik-j— Xyirx—j—1 are fiber homotopy equivalent to product fibrations
for j=0, 1,..., k— 1. To show this, we demonstrate the existence of left
homotopy inverses of the canonical inclusions S$*"*%*! W, ., . _ . and
S4n*4i+3 5 X, k-, by using obstruction theory.

In Section 1, we give a necessary and sufficient condition for the splitting of
a quasiprojective space into a wedge of spheres at a prime p. In fact, we prove
the following three conditions are equivalent; a) k < p — 1, or k = p and p|n. b)
0+ 1ik(C) = Z(CP"**~1/CP""!) is homotopy equivalent to V¥ _, §2"*2i~1 gt
prime p. c) QW,.,, is homotopy equivalent to Q(J[f-,S*"**~!) at prime
p. A similar result is also obtained for the quaternionic case. In Section 2, we
discuss the non-2-regularity of W,,,, and X,,,,. We reduce the problem on
the unstable J-homomorphism, which is examined by applying theorems of Toda
([21], Theorem 11.7) and Mahowald-Milgram ([10] Theorem A, [14] Theorem
8.5, 8.21). Section 3 is a preparation for Section 4. We compute some p-
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localized homotopy groups of the homotopy fiber of the natural inclusion $2"*?
— QS?"*1 We apply the Adams-Novikov spectral sequence based on the BP-
homology theory to the computation, and determine the necessary and sufficient
condition for the vanishing of “obstruction groups” =(QS?*"*!, S2"*1!) for
sufficiently many i’s. In Section 4, we first show the existence of maps
f:(VVrH—k,k’ S2"+1)—>(QS2"+1, SZn+1) and g:(Xan,kz S‘*"”)—»(QS“"”, S4n+3)
such that the restrictions to $2"*! and S*"*3 are maps of degree 1 if n and k
satisfy the necessary condition. And by applying obstruction theory, we see that
these maps can be deformed to left homotopy inverses of the canonical
inclusions. We prove in the appendix that the real Stiefel manifold V., , is not
2-regular unless n =0, 2 or 6.

The author would like to thank Jeff Smith, Jack Morava, Steve Wilson and
Masana Harada for invaluable conversations, and thank Jean-Pierre Meyer for
informing him of R.J. Milgram’s work [14]. And he wishes to express his
gratitude to all the faculty and staff of the Mathematics Department of
University of Osaka Prefecture for their support to him during his visit to the
Johns Hopkins University.

Notations and Terminology

When we use the term “at prime p” in a statement, this means that the
statement is valid if we localize spaces and groups in the statement. We denote
the mod p homology (resp. cohomology) of X by H,(X) (resp. H*(X)) when the
prime p is clear from the context. Otherwise, we denote by H,(X; R)
(resp. H¥(X ; R)) the homology (resp. cohomology) of X with coefficients in
R. We list some notations which are frequently used in this paper.

Voo Woi and X, ,: the real, complex and quaternionic Stiefel manifolds
O(n)/O(n—k), U(n)/U(n—k) and Sp(n)/Sp(n— k) respectively.

R{x,x,,....}: the free R-module generated by x,x,,... .

F,[x,X5,....]: the polynomial algebra over F, generated by x,x,,... .

E(xy,X5,...): the exterior algebra over F, generated by x;,x,,....

M ,: the localization at prime p of an abelian group M.

[x]: the Gauss symbol of xeR, that is, the largest integer that does
not exceed x.

kin (k, neZ); k divides n.

0, (F): the quasiprojective space over field F (F =R, C or H).

Pr: the stunted real projective space RP™/RP"™ 1.

F(n): the homotopy fiber of the natural inclusion $"— QS".

n3(X): the stable homotopy group of a space (spectrum) X.
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§1. Splitting of Quasiprojective Spaces

Let Q,(F) be the quasiprojective space over a field F(F =R, C, or H)
defined in [7](see also [8], [20]). We identify Q, (R), Q,.(C) and Q, ,(H) with
subcomplexes of V, ,, W, , and X, , respectively, then the pair of CW-complexes
(Wosrp> Cnrii(C)) (resp. (Xpiips Qurin(H))) is (4n + 3)-connected (resp. (8n
+ 9)-connected), and the pair (Vi Qn+ix(R)) is 2n-connected at prime
2. Thus quasiprojective spaces are approximations of Stiefel manifolds in the
stable range. The mod p cohomology of Q, ., .(F)(F = C or H) and the action
of the Steenrod operations are given by the following.

Lemma 1.1. i) H*(ka,k(c)) = Fp{Xont 15 X2n 430> Xont 20— 15000 X2n4 26— 1>

. s n+i—1 : s -
degx; = i. Px2n+2i—1=< s >x2n+2i+25(p—1)—1 (We put P°=Sq* if p
=2).
ii) H*(Qn+k,k(H))=Fp{x4n+3a Xant7r--er Xantdivtrees Xantak—1)> d€gX; = L

2n +2i—1
PX4ntai-1= ( s >x4n+4i+25(p—1)—1 (If p=2, we put P°=S8q* as

above, and x; =0 if i £ 3 modulo 4).

Proof. Since Q,.,,(C) is a suspension of a stunted complex projective
space CP"**~1/CP" "1, i) follows from the action of P on H*(CP®) ([20], Chap.
I, VI). For ii), there is a map c"Q, i (H) = Qs+ 21,2(C) induced by the
canonical inclusion Sp(n) —» U(2n) and c'*: H*(Q,,. 2k,z,((C))—»FI*(Q,,HC’,((I-}I))
maps Xgpiai—1 tO Xanrai—1, and X4,,4;—5 to zero. Hence ii) follows from i).

In particular, we have P'x,, -3 =@+i— 1)Xpi064p-1)-1 IN
H¥Qu414(C)) and  Plxg, 41 = (2n + 2i — le4n+4i+2(p—1)—1 for p>2,
Sq*X4ntai-1 = +i— D)xgpigi43 for p=2in H(Q,.(H)). Therefore

Corollary 1.2. The action of the Steenrod operations on H*(Q, . (F)) is
trivial in the following cases and non-trivial otherwise;
For F=C,k=<p—1, or k=p and p|n.
ForF=H,k=(p—1/2,or k=(p+1)/2 and p|2n+ 1 if p> 2. In the case p
=2, k=1, or k=2 and 2|n.

We consider the case p = k = 2 first. Let d¢: 7y, 582" 3) » 75, 5(S2" 1)
and Ay 74,4 (S*Y7) > 74,4 6(S*" T 3) be the connecting homomorphisms of the
long exact sequence associated with the spherical fibrations S*"*! > W,,,,
— §2*3 §4t3 X i 00— ST respectively.  We denote by i, #,, V', v, the
generators of w(S"), 7,..(S"), 7(S®) and =,,3(S™) (n = 4) respectively. Then
0n+2.2(C) and Q,.,,(H) are cofibers of maps Aciz,+s: S"*2—S*"*! and
Agis, o7 S0 5 $4*3  Since Sq? determines whether A¢1,,, 5 is trivial or not,
we have
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Theorem 1.3. Q, ., ,(C) is homotopy equivalent to S**** V S*"*3 at prime 2
if and only if n is even. And if n is even, Q,.,,(C) is (globally) homotopy
equivalent to S*"*1V §2"*3,

In the quaternionic case, the condition of Corollary 1.2 does not necessarily
imply the splitting of Q,,,,(H) at prime 2, because Sq* cannot detect all
elements of m,,.«S***3). We need the following result of James.

v for n=0

Theorem 1.4 ([7], [8]). Adglan+7 =
(n+2v4e3 for nzl

Since v,,,3; has order 24, the above immediately implies

Theorem 1.5. Q, ., ,(H) is homotopy equivalent to S*"*3 V S*"*7 at prime 2
if and only if n = 6 modulo 8, and it is homotopy equivalent to S*"*3 V §*"*7 qat
prime 3 if and only if n = 1 modulo 3. Moreover, if n = 22 modulo 24, Q, . , »,(H)
is globally homotopy equivalent to S*"*3V S4+7,

And also Theorem 1.4 implies

Theorem 1.6. X, ., , is not 2-regular if n % 6 modulo 8.

Proof. In fact, if X, , , is 2-regular, T, . (X ,+2.2)2) = Tan+6(S*" 3 X S 7) 4,
= Z/8. On the other hand, 74, + 6(X,+2.2)2) = (Tan+6(S*3)/Im dp)o) = Z/(8,n+2)
which is not isomorphic to Z/8 if n & 6 modulo 8.

We therefore consider the following conditions (C), (H) on p, k, n instead of
those of Corollary 1.2.

C) k=p—1,0r k=p and p|n
H) k=@—-1/2,or k={p+1)/2 and p|2n+ 1 if p> 2,
k=2 and n=6 modulo 8 if p=2.

Lemma 1.7. Let p be an odd prime and let X be a space of finite type.
Suppose that X is 2n-connected at prime p and H,,. ,(X; F,)=0 for i<p—1,
then Ty, 42(X), =0 for i<p—1

Proof. We may assme that m,,, (X), # 0 for some j < 2(p — 1), otherwise
there is nothing to prove. Then, by the assumption, min{j|7,,., (X)) # 0} is
odd, and we define an integer i(X) by 2i(X) + 1 = min{j|n,,+(X), # 0}. We
prove the assertion by induction on [ = p — 2 — i(X). First we note that [ =0
by the above assumption and that the assertion holds if / = 0. Considering the
universal coefficient theorem, it follows from the assumption that H,, ;. (X;
Z,) is torsion free for i < p — 2. Hence so is the lowest non-trivial homotopy
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gIoup Ty, 42 +1(X)p)- Applying the killing method to X, we have a fibering
X —> X - K(Z', 2n + 2i(X) + 1) (r = the rank of 7,,, 3;x)+1(X),) such that f:
Tan+ 200+ 1K) = Tan+2i«1(K(Z", 2n + 2i(X) + 1)), is an isomorphism.
Then, the standard argument on the Serre spectral sequence associated with this
fibering shows that X’ is (2n + 2i(X) + 2)-connected at prime p and H,,., ,{(X;
F,)=0forj<p—1 Thus i(X")>iX)and p—2—i(X") <, and the inductive
assuption applies to X'.

Let f,: §?"*272 Qn+i-1,-1(C) and g, S#F4T2 5 Qi1 1(H) be the
attaching maps of (2n + 2i — 1)-cell and (4n + 4i — 1)-cell. Note that quasi-
projective spaces Q,;-1,;-1(C) and Q,.;_ ;- 1(H) satisfy the assumptions of the
preceding lemma. It follows that f,; ~0 if i<p and g,; ~0 if i <(p + 1)/2,
when we localize spaces at prime p.

Theorem 1.8. Let p be an odd prime. Q, ., .(C) is homotopy equivalent to
VE 82271 gt prime p if k<p, or k=p and p|n. Q.. (H) is homotopy
equivalent to V¥ _,S*"T*"1 qar prime p if k<@ -+ 1)/2, or k=(p+ 1)/2
and p|2n + 1.

Proof. In the case F=C, k<p or F=H, k< (p + 1)/2, the assertion
follows by induction of k since attaching maps are all null homotopic at prime
p. We consider the case F =C, k=p and p|n. Ifn=0, Q,,(C)=Z(CP""',)
which is homotopy equivalent to S' V ZCPP~ 1. Since TCPi~! is 2-connected
and satisfies the assumptions of Lemma 1.7, it follows that each attaching map
§?' 5 ¥CP'"! is null homotopic at prime p if i<p. Hence TCP?~! is
homotopy equivalent to V?_,8%~! at prime p. If n>0, then n=p since
pln. Hence homotopy group ma,42,-2(@n+p-1,,-1(C)) is in the stable
range. By the homotopy equivalence Q, ., ,—:(C) >~ VFZ§>"*?'~1 at prime
p, we have 75,45, 2(Qnsp-1,p-1(0))p) = Z?=—117T2n+2p—2(‘s2n+2i-1)(11) = TMan+2p-2
(S*"* Y = Z/p), which implies that attaching map f,, can be factorized as

samr2e=2 L, g1 _ g (€)> Qs po1p-1(C) at prime p. Let C,, be the

cofiber of f’, then we have the following homotopy commutative diagram whose
horizontal rows are cofiberings

smrw-2 S, Qn+14(C) —— Cr
| l lo
SZn+2p—2ﬁ_> Qn+p—1,p—l(c)_—~) Qn+p,p(C)

&*: H(Q,+,,,(0); F,) > H(C,,; F,) is an isomorphism for s =2n + 1, 2n + 2p
— 1. Thus P! acts on H¥(C,; F,) trivially by Corollary 1.2. It follows f* ~ 0,
hence f,,~0 at prime p. This proves the assertion in the case F =C, k
= p. Noting that the assumption pl2n+1 implies that
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Tan+200@n+p—1)2,-1y2(H)) is in the stable range, we can prove the assertion
similarly in the case F =H, k= (p + 1)/2 and p|2n + 1.

Remark 1.9. If the condition (C) or (H) is not satisfied, it follows from
Corollary 1.2 and Theorem 1.4 that neither Q, ., (C) nor Q, ., (H) splits into a
wedge of spheres at prime p, even stably.

After localizing at prime p (if necessary), we have maps ¢
VL SHT 2 0, (€)= Wiy and @t VL, ST S 0 (H)

— X, ixx for n, k satisfying (C), (H) in each case. Using the loop space
structures of QW,.,, and QX,,,,, we can extend the compositions
Vlg_lgszn+2i—1

___)Q(vlic=lszn+2i—1) 'Qd’c Qm+k,k and vlic=1954n+4i—1_’9(vl:zls4n+4i—1)
L%, QX, wx to maps e[, QSIS QW,,,, and Py

k_ QS84 5 QX v Since the Pontrijagin rings H,(QW,.,,) and
H,(Q2X,,,,) are commutative, . and ¢y induce algebra homomorphisms
between homologies. By the construction of ¢c and Py  Pcy

L H(@S™ 2 ) S H QW) and $uy @K, H (@S2
- H,(2X,4,,) map each polynomial generator of H,(Q2S*>"**~!) and
H, (QS*"*%~1) to a polynomial generator of H, (QW,,,,) and H, (Q2X,..)
respectively. Thus @, and @y, are isomorphisms, and hence they are
homotopy equivalences.

Proposition 1.10. i) QW, ., , is homotopy equivalent to [[f=,QS*" "2~ ! at
prime p if and only if the condition (C) is satisfied. And QW, ., , is globally
homotopy equivalent to QS*"*1 x QS*"*3 if 2|n.

il) QX,, ., is homotopy equivalent to | |5~ QS*"**'~! at prime p if and only if
the condition (H) is satisfied. And QX, ., , is globally homotopy equivalent to
QS4*3 x QS*"7 if n = 22 modulo 24.

Proof. We already showed the homotopy equivalence if (C) or (H) is
satisfied. The converse is easily proved by examining the action of the Steenrod
operations on H_(QW,,,,) and H (2X,,,,) and by comparing the homotopy
group Ty +s(R2X,42.2)2 With 74, 5(Q8* "3 x Q5***7),, (See the proof of
Theorem 1.6).

Corollary 1.11. 7 (W,1 ), S isomorphic to m( f=182”+2"1)(p) if (C) is
satisfied and 7, (X, 11,y is isomorphic to m ([ [f=,S*" 471, if (H) is satisfied.

Thus the homotopy groups cannot distinguish W, from [, S22 71,
nor X, ., from [ S*"*# ! for n, k satisfying (C) and (H) respectively, if we
localize these spaces at prime p.
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§2. The Metastable J-Homomorphism and the Non-2-Regularity

We first note that Corollary 1.2 implies,

Proposition 2.1. Neither W, ., nor X, ., can be 2-regular if k= 3, or k
=2 and 2 fn.

Let f: S*""3 > BU(m+ 1) and g, S*"*7 —» BSp(n + 1) be the classifying
maps of sphere bundles $>"*' > W, ,,—> S>3 and S**3* > X,,,,—>S*""7
respectively. We begin with the following exceptional cases.

Proposition 2.2. W, , = U(2) is homeomorphic to S' x S* and W,, is
homeomorphic to S° x S”.

Proof. The first part is obvious. For the second part, consider the
composite S’ EER BU(3) - BSO(6). There is an isomorphism of Lie groups

Spin(6) =~ SU4). Hence n,(BSO(6)) = n,(BSpin(6)) = n,(BSU(4)) = ns(SU(4))
=0. Thus the above composition is null homotopic and S° - W, , > S’ is a
trivial bundle with structure group SO(6).

We therefore concentrate on W, , , forevenn =4, and on X,,,,forn=6
modulo 8 (Recall Theorem 1.6). For the rest of this section, we localize all
spaces and groups at prime 2.

Theorem 2.3. ([5]) 1) 73,+3(BUMm + 1)) = 75,4 ,(U(n + 1)) = Z,)/(n + 1)},
and f, generates m,,,s(BU(n + 1)).
i) 7 7(BSp(n + 1)) = 74,4 6(Sp (n + 1)) = Z5)/2(2n + 3)!  for even n,
= Zy2/2n + 3)! for odd n, and g, generates m,,,,;(BSp(n + 1)).

We also denote by f,, g, the generator of n,,.,(U® + 1)), 74,+6(Sp(n + 1))
which correspond to f,, g, respectively by the natural isomorphisms. Consider
the following commutative diagrams.

Tans ASO/SO (20 + 1)) L25 m,. . (50/S0@n + 2) L 7y, (U/U( + 1))
24 0| q| 4|

T aSOQn+ 1) L5 ny S0@n+2) L ny UGB+ 1))

Tan(SO/SOUn + 3) L5 1, 1(SO/S0Un + 4)) T 70y (Sp/Sp(n + 1)
(2.5) Ql aj A'l

Tano(SO@n +3) L5 m, (S0@n+4) L g, (Sp(n+ 1)),
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where 0, 4, A’ are connecting homomorphisms, r, r, j are inclusions U(n
+1)5 S0@2n + 2), Sp(n + 1) 5 SO (dn + 4), SO(m) s SO(m + 1), and 7, 7, j are
the maps induced by r, ¥/, j respectively. Note that 4, 4" and both J’s in (2.5)
are surjective by the Bott periodicity. We choose elements f,en,,,;(U/U(n
+1)) and §,€my,.+(Sp/Sp(n + 1)) such that A(f,) = f,, 4'(Gs) = Gn

Let k: PP —»S0/SO(m) be the canonical inclusion. Since the pair
(SO/SO(m), Py) is 2m-connected, k,: n(Py)— n(SO/SO(m)) is an isomorphism
for i < 2m.

Lemma 2.6. 1) k,: 75,1 3(P5,+:) = 72,+3(SO/SO (2n + i) is an isomorphism

for i=1,2. If n is even, we have m,,, s(PS,+1) = Z/8 and 7y, ;(P3,,,) =
Z/4. Moreover, the mod 2 Hurewicz homomorphism h: 7,, 3(P3,.)
- H,, . 3(P%, . 5F,) (i =1, 2) maps an element x to a non-zero element if and only
if x generates Tpns3(P5sy).
i) kg Tans7(PE+i) = Tan+2(SO/SO(4n + i) is an isomorphism for i=3,4. If
n is even, we have T4, ,(P3,.3) =X Z/16 and 74, (P3,.4) = Z/16 D Z/4.
Moreover, the mod 2 Hurewicz homomorphism h: 74, (P, ;) = Hype /(P51 is
F,)(i = 3, 4) maps an element x to a non-zero element if and only if the order of x
is 16.

Proof. Consider the Adams spectral sequence E3* = Ext§(F,, H,(Py))
=m_(Pyr), where A, = F,[¢;, &,,..., &;...] is the dual of the mod 2 Steenrod
algebra. The E,-terms we need are given as follows (See [10] Chapter III, and
[11]);

m=2n+1: E5*>" 375 = F,{h§x,,,3} for s=0,1,2,

ES2r+3%s =0 for s =3

m=2n+ 2: ES**3*s = F,{h{x,,,3} for s=0, 1,
E2"*3+s = for s =2

.7) m=4n+3: E5*TTT = Folhyxy,.,) for s=0,1,2,3,

Es*"*7*s =0 for s =2 4

m=4n+ 4: E5*"*77 = Fy{h§x4,.,} for s=0, 3,
ES* 7% = Foy{hiXgns 7 Wy ‘hyXan. s} for s=1,2,
E54*7*s = 0 for s = 4,

where h;e Extyy*(F,, F,) is the element represented by [£17] in the cobar complex
of 4,([1]). Tt is also easy to see that x,,,;€E2?""3 and x,,,,€ ES*"*3 are
permanent cycles in each spectral sequence and that hix,,,; and hjx,,., are
not zero in the E_-terms if they are not zero in the E,-terms. Noting that
Tans3(Poned) = 13,4 3(PH ) =1, 2) and 7y, 7(PF ) = 73,4 ,(P5,. )0 = 3, 4),

the result follows.
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Lemma 28. i) In diagram (24), 7, and j, are surjective. And 7.(f,)
generates T,, . 3(SO/SO(2n + 2)).
ii) In diagram (2.5), 7,(g,) generates the images of j, and F, if n =6 modulo
8. And j, is a split monomorphism.

Proof. Wenotethat 7y H,,.3(U/U(n+1);F3)— Hy, 3(S0/SO(2n + 2); F,)
and 7,: Hy,1+(Sp/Sp(n + 1); ;) » Hy, . 7(SO/SO(4n + 4); F,) are isomorphisms,
and that the mod 2 Hurewicz homomorphisms h: 7,,, 3(U/Un + 1))
= Hy, 1 3(U/U(n + 1); ¥,) and h: 74,4 4(Sp/Sp(n + 1)) = H oy 5(Sp/Sp(n + 1); F)
mabp f,, g, to each generator. It follows from the preceding lemma that 7 (f,) is
a generator of 7,,, 3(SO/SO(2n + 2)) and that 7i(g,) is an element of order 16.
induces a map from a sphere bundle S**3 — Sp/Sp(n) — Sp/Sp(n + 1) to a
sphere bundle $*"*3 — SO/SO(4n + 3)— SO/SO(4n + 4). Then we have the
following commutative diagram:

Tan+7(SP/SP(1 + 1)) S Ty o(S*+7)
1'7'* \ l 4y

Tans o(SO/SO(@n + 4)) L 140, o(5*3)

By Theorem 1.4, 44 = 0 if n = 6 modulo 8, hence d°7, = 4” = 0 and the image
of 7, is contained in the image of j,. The preceding lemma implies that j, in
(2.4) is surjective and that j, in (2.5) is a split monomorphism. This completes
the proof.

We put H(n) = {f: S" ! - S"~!|f:homotopy equivalence} and SH(n) = {f:
S"~' - S""!|degree f=1} and give them the compact-open topology. We
denote by Jgy: SO(n) — SH(n) and j: SH(n) —» H(n) the canonical inclusions, and
put Jy =joJgy: SO(n) — H(n). H(n) and SH(n) are topological monoids with
respect to compositions of maps, and Jgy, j° and J, are maps of topological
monoids. Let e: SH(n) —» S"~! be the evaluation map at the base point. We
denote by ©77'S""! the component of Q" 'S"~! which contains the identity
map. Then Q718" ! is contained in SH(n) and we have a fibration Q718" !

— SH(n) -5 "1, Jgy induces J: SO(n — 1) —» Q7" 18"~ 1 and J.: n(SO(n — 1))

- (218" Y >~ 7, ,—1(S" ) coincides with the J-homomorphism ([23], [21]
Chapter XI) up to sign. So, we rather denote J, by J.

By the construction of Dold-Lashof, H(n) and SH(n) have classifying spaces
BH(n) and BSH(n). The following is a special case of Theorem 7.5 of [3].

Theorem 2.9. Let S" ' — E — B be an (n — 1)-sphere bundle with structure
group SO(n) and let f: B — BSO(n) be the classifying map. Then S"~' - E — B is
fiber homotopy equivalent to a trivial bundle if and only if the composition BJg°f:
B — BSO(n) —» BH(n) is null homotopic.



THE p-REGULARITY OF STIEFEL MANIFOLDS 365

We also need the following fact.

Proposition 2.10 ([8], Corollary 4.5). The sphere bundle S*™*V™1 > 0, .,
— O, 4y -1 IS fiber homotopy equivalent to a trivial bundle if and only if O, is
homotopy equvalent to S*"* V71 x 0, 1, where O,y = Voirio Wasri OF
X and d =1, 2 or 4, respectively.

Now we reduce the problem to a problem on the J-homomorphism.

Lemma 2.11. i) For even n, W,.,, is not 2-regular if the image of J:
Ton+2(SOQ2n + 1)) = 7,5, (2211822 1)) contains an element of order four.
i) For n=6 modulo 8, X,,.,, is not 2-regular if J: 7,,,¢S0(4n + 3))
- g4 6(Q4" 384" 3) is non-trivial.

Proof. By the exactness of 7y, 3(S2""1) - my,. (@20 182041 Jay 1

(SH(2n + 2)), the order of the kernel of ji: 75,4 ,(Q3""1S*"*Y) > 1y, o(SH(?2n
+ 2)) is at most two. Hence the assumption of i) implies that Jgg.: 75, (SO(2n
+ 2)) = 75, 2(SH(2n + 2)) is non-trivial. ~ Since f, generates n,,., ,(U(n + 1)) and
ryl Tonio(Um + 1)) = 15,1 5(SO(2n + 2)) is surjective by Lemma 2.8, it follows
that Jyeorof, is non-trivial in n,,, ,(H(2n + 2)). Therefore BJy° Bref, is non-
trivial in 7,,,3(BH(2n + 2)), and the result follows from Theorem 2.9 and
Proposition 2.10. For the partii), note that jj: m,,,R7""38*"*3) >
Tan+6(SH(4n + 4)) is injective since 74, ,(S*"*3) = 0. Then, the assumption of
ii) implies the non-triviality of Jggor' °g,. In fact, by the commutativity of (2.5)
and Lemma 2.8, there exists a generator y, of m,,.,(SO/SO@n + 3)) such that
PG =Fur) and we have Jguory(g,) = Joue©0°0°Fu(Gn) = Jsueojso 00,)
= jioJ°d(y,) # O since 0 is surjective and j,, oJ % 0. Therefore BJy°Br'og, =0
in 7m,,.,(BH@n + 4)).

In order to examine the J-homomorphisms, we use the relative J-
homomorphisms constructed by Toda ([21]). We briefly review the
construction.

For a pair (X, A) of topological spaces with base point *e€ 4, we denote by
Q(X, A) a topological space {I: [0, 1] — X|I: continuous, [(0)€ 4, (1) = =} with
compact-open topology. Let e: Q(X, A)— A be the evaluation map at
0. Then (X, A) is the homotopy fiber of inclusion map 4 — X and

QX i>.Q(X , A) 2,4 X is a fiber sequence, where d is the natural inclusion.

The natural inclusion i: X —» QXX is extended to a map i: X |JCA4 - Q(ZX,
T A) defined by i'([a, t])(s) =[a, st + 1 —t] on CA, where X |JCA = (X 1I(4
x 1))/ ~, and ~ is an equivalence relation generated by a ~ (a, 1), (a, 0) ~ *
~ (%, t) for ac A4, te[0, 1]. We denote by [a, t] the element of X () CA (or ZA)
represented by (a, t)eA x I
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The map J: SO(m) — Q7 S™ induces the stable J-map J%: SO — Q,8° and let
J: Z"SO(m) — S™ and J3: £™SO — QS™ be the adjoint maps of J and J5. We
put F(m) = Q(QS™, S™, then J' and J3 induce JX Q(Z™SO, Z"SO(m))
— F(m). We define the relative J-map J': " P2 o F(m) to be the
composition

g1 po M, smoype ) cpr-1y L, oEmpe, srpr-1) X, oemso, sms0(m)

L, Fm),

where inv is the (m — 1)-fold suspension of the homotopy inverse of the
collapsing map P® | CP™" ! — P2 (P" = RP"), and k' is induced by the canonical
inclusion P* g SO.

Let p: SO - SO/SO(m) be the projection, then (Z™p).: m;(Z™S0O, T"SO(m))
- 7;(Z™(S0/SO(m))) is an isomorphism for j<3m. In fact, let Y be the
homotopy fiber of Z™p, then there is a map {: £"SO(m) — Y such that the

composition Z"SO(m) Lyo Z™S0 is homotopic to inclusion Z"SO(m) c Z"SO.

By an easy argument on the Serre spectral sequence associated with fibering Y
— Z"S0 — Z"(SO/SO(m)), we see that {,: H;(Z"SO(m)) — H;(Y) is an isomorph-
ism for j < 3m and an epimorphism for j < 3m. Thus {,: m;(Z™SO(m)) — n;(Y)
is an isomorphism for j < 3m and the above assertion follows from the five-
lemma.

We denote by k: P* () CP™~! - 50/SO(m) the composition P () CP™!

k
- Py — S0/S0(m). For j<2m—1, we have the following commutative

diagram

41 (P® () CP™7Y) SLIEN 7+ 1(SO/SO(m)) PN 7;+1(S0, SO(m))
LEm—l 1Em—1
sy (E" PP CP™ ) — 754, (Z™H(SO/SO(m))) £ Tjsm+1(ZM(SO/SO(m))) | E™
2 \E" o)

T QE"P2, TP 1Y) S 754 (BPRLEPY) s 1 (2SO, ZSO(m))

K, /
\ 7+ m(2(E™SO, Z"SO(m)))

By the definition of the relative J-map and the commutativity of the above
diagram, the following diagram commutes for j < 2m — 1.
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ra®2) — s n(50/500m) —Z—  m(SOMm)

2.12) [Em I

rel
7rj+m(2'"‘1P,‘;°)—Ji* Tm(FOM) %> 7, ,(S™) = 7(Q7 S™)

Theorem 2.13 ([21], Theorem 11.7). Ji: n(Z" 'Pyr) > n(F(m)) is an
isomorphism for j < 4m — 3.

In the case m=2n+1, j=2n+2 (n:even) or m=4n+3, j=4n+6
(n = 6 modulo 8), k,, E™"! and J}* are isomorphisms and ¢ is an epimorphism
in the diagram (2.12). Consider the exact sequence associated with fiber

sequence QS™~1! i>F (m) £, 8™ Then the following lemma is obvious since

Tans3(FCn+1)=2Z/8 if n is even by Lemma 28 and the above
theorem. (mg,, o(F(4n + 3)) is a cyclic group of order sixteen.)

Lemma 2.14. i) For even n, the image of J: m,,.,(SO2n + 1))—
Ton+2(Q3" 118274 Y) contains an element of order four, if the order of the image of
Oy Tant3(QS®) > myy43(F(2n + 1)) is at most two.

i) For n= 6 modulo 8, J: 14, s(SO@n + 3)) = nt4, . o(Q4" 354" 3) is non-trivial
if 040 Tgnro(@S*72) » mg, 4 o(F(dn + 3)) is not surjective.

Thus it suffices to examine J,: nj(QS'"‘l) — n(F(m)) in the above
cases. We apply the following theorem which was first given by Mahowald
([10], Theorem A), and later it was reformulated by Milgram ([14], Part II)
using a kind of unstable Adams spectral sequence. For a space X, we denote by
{E$'(X), d,} a certain unstable Adams spectral sequence constructed in [14],
Part II. It converges to (X)) &® Z; for “good” X (X = XY, for example), and
in the stable range, it coincides with the stable Adams spectral sequence. Thus
E5'(X) =~ Exts(F,, H (X)) for t —s < 2n — 1 if X is (n — 1)-connected. In fact,
there is a map of spectral sequences E'(X) —» ES**'(£X) and let {E>'(Z* X), d,}

be the spectral sequence defined by ES'(Z®X)=LmE?"*(Z*X), then

{E}*(Z*X), d,} is the stable Adams spectral sequence (See [14], §6 for
details). Note that F(m) is (2m — 2)-connected and it is homotopy equivalent to
X7~ 1P* through dimension 4m — 4 by Theorem 2.13. Hence {E'(F(m)), d,}
converges to m,_(F(m) ® Z; and E$'(F(m)) = Ext}(F,, H,/(F(m))) =
Exty! ™™ Y(F,, H(PX)) for t —s < 4m — 3,

Theorem 2.15 ([10] Theorem A, [14] Theorem 8.5 and Theorem 8.21).
There is a map of spectral sequences §,: EX'(£®S™ 1) — E;~ V'~ 1(F(m)) which
converges to 8, my_(S" ) = m,_(QS"TY) > m,_(F(m)) for t —s<3m—1. In
the E,-term, &, is identified with a homomorphism Ext}(F,, H,(S™ 1Y)
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— Bxts, VTR, H (E"1PR)) for t —s<3m— 1.

Lemma 2.16 i) If n is even and greater than 2, the order of the image of 6
Tan+3(0S?) = 74,4 3(F(2n + 1)) is at most 2.
ii) If n is even and positive, 8,: Tg,+o(QS***?) — Tg, .+ o(F(4n + 3)) is not surjective.

Proof. We denote by FS{(Z®S™~ 1), F*(F(m)) the filtrations on n (QS™™ 1)
and 7 (F(m)) associated with the corresponding spectral sequences in Theorem
2.15. Since ESFti(Z°S™ 1) =0for s =0, 1,2 if j and m are odd and j + m, m
+2, m+ 6 ([1] for s = 1, [11] for s = 2), it follows that 7(QS™*) = nf(S™ 1)
= F3i*3(z®$m~1) Hence, by Theorem 2.15, we see that J,(ms,3(QS*")
c F2*"+5(F(2n + 1)) if n > 2 and that (g, +o(QS***2)) = F28"*11(F(4n + 3))
if n>0. On the other hand, since E$'(F(m))= Extj "*1(F,, H(PY)), it
follows from (2.7) that F2*"*5(F(2n + 1)) = Z/2 and F*8"*1Y(F(4n + 3)) = Z/4
if n is even. This completes the proof.

Thus, by Lemmas 2.11, 2.14 and 2.16, we have proved

Theorem 2.17. W, ., , is not 2-regular unless n =0 or 2, and X, , , is not
2-regular for any n = 0.

Let ¢: S*"*3 > 0, ., ,(C) be the attaching map of the top cell of W,,,,. If
n is even, we have a collapsing map c¢: Q,,, ,(C) = §2"*1 vV §2"*3  §2n+1 py
Theorem 1.3. Proposition 2.10 and Theorem 2.17 imply that the composition

gen+3 P, Qn+2.2(C)— S**1 is not null homotopic if n = 4. Otherwise, we can

extend ¢ to ¢: W,,,, — S**! which is a left homotopy inverse of the canonical
inclusion $*"*' - W,,,,. Then, fibration $*"*!'—-W,,,,— S*"*® becomes
retractible in the sense of James ([8]), it is fiber homotopy equivalent to the
trivial bundle ([8], Corollary 4.3). This contradicts Theorem 2.17. Hence we
have a family of non-trivial elements ¢; in the 2-component of 7g;, 5(S**!) (j
= 2). Similarly, the attaching maps of the top cell of X, , , define a family of
non-trivial elements y; in the 2-component of 74y 57(S**/*27)(j = 0).

Corollary 2.18. The attaching maps of the top cells of W, ., and X, 5,
define non-trivial elements ¢; (j=2) and §; (j=0) in the 2-components of
Tgj+3(S¥ 1Y) and Teaj451(S?¥27).  Moreover, ¢; is in the kernel of E*
Tgj+3(SYTY) o g4 6(SY ) = 134 ,(S°) and has order at most eight, \y; is in the
kernel of E®: Teq;s54(S>2427) > gaj462(S3H32) = 13,4 30(S°) and has order at

most sixteen.

Proof. The assertion that ¢;eKerE*® and y;eKerE®> is shown in
Appendix (See the proof of Corollary A.10.). By the exactness of n(F(m))

ﬁ”i»n,,:(S’")i*—» 1.(QS™), ¢;eKerE® and Y eKerE> imply that ¢;elm[e,:
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Tgjr3(F(4j + 1)) = mg;45(S¥ )] and ;e Im[e,: Mgy 57(F(32) + 27)) > Teajr 57
(S32*27)]. Then the assertion 8¢); = 16y; = 0 follows from g, 5(F(4j + 1)) =
Mg+ 3(EPH 1) =Z/8  and  Te;059(F(32) + 27)) = me s 57(232]+26P§°2j+27)
x> 7Z/16.

Remark 2.19. If n is even and greater than two, Theorem 2.17 implies that
spaces QW,,,, and Q(S*"*! x §?"*3) are different as loop spaces (with the
natural loop space structures), although they have same homotopy type by
Proposition 1.10. Therefore both QW,,,, and (S***! x §2"*3) have at least
two different loop space structures. One is the natural one and the other is
induced by the homotopy equivalence QW,,,, ~ Q(S*"*! x §2"*3) in Propo-
sition 1.10. Hence, if we deloop QW,, , and Q(S*"*! x $2"*3) with respect to
the exotic loop space structures, we have homotopy equivalences BQW,,, ,
~ §2+1 % §2"*3 and BQ(S*"*! x §*"3) ~ W,,,, Similarly, if n =6 modulo
8, QX,,,, and Q(S*"*3 x §*"*7) have exotic loop space structures.

We also remark that 3W,, , , (resp. X°X,,,,) is homotopy equivalent to
T3(§2+L x S2"*3) (resp. T3(S*"*3 x §4"*7)) for n as above since the attaching of
the top cell suspends to zero in the stable range. Details are left to readers.

§3. On the Homotopy Fiber of $?"*! - Q§?"*!

Throughout this section, p is a fixed odd prime and all spaces, spectra and
groups are localized at prime p. As in the previous section, we denote by F(n)
the homotopy fiber of the canonical inclusion i: " — QS". The structure of
H,(QS"; F,) is described in [4] and [12]. We review briefly according to [12].

For a sequence I = (g4, sy,..., &, S;) of non-negative integers such that ¢; = 0
or 1 and s; = ¢, define the degree, length and excess of I by d(I) = Y- ;(2s(p
—1)—¢)), II) =k and e(I) = 2(ps, — &) — d(I) respectively. We denote by Q'
the iterated homology operation p*Q® --- f*Q%. I is said to be admissible if ps;
—¢;=s;_; for 2<j<k We also call the empty sequence I admissible and
assign d(I) = I(I) = 0, e(I) = oo, Q' = (identity operation).

Theorem 3.1. ([4], [12]). For a positive integer n, let 1,€ H (QS") be the
image of the canonical generator of H,(S") by i,: H,(S") - H,(QS"). And let A, be
the free commutative graded algebra over ¥, generated by T,= {Q'1,|I
admissible, e(I) = n}, that is, A, is the tensor product of an exterior algebra
E(Q"1,|I: admissible, e(I) = n, n + d(I): odd) and a polynomial algebra F,[Q"1,]I:
admissible, e(I) = n, n + d(I): even]. Let B, be an ideal of A, generated by {Q°x
— xP|xeT,, degx = 2s}. Then H,(QS") is isomorphic to A,/B, as an algebra and
each generator Q'1, is primitive.

Corollary 3.2. i n(S*"*') > n(QS?"*Y) is an isomorphism for t < 2pn
+ 2p — 3 and an epimorphism for t <2pn + 2p — 2. Hence F(2n + 1) is (2pn
+ 2p — 4)-connected.
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Proof. Since H(QS*>"*') =0 for 2n+ 1 <s <2pn +2p — 2, i,: H(S**!)
— H(QS?"*1) is an isomorphism for t < 2pn + 2p — 2.

Let us consider the following fibration in order to compute the mod p
homology of F(2n + 1).

(3.3) 052" 2, F(2n + 1) % g2+t

Note that the above fibration is a principal fibration, hence by applying the
Wang sequence we have

Lemma 3.4. J,: H,(QS*)— H,(F(2n + 1)) is surjective and its kernel is an
ideal generated by 1,,. Therefore H, (F(2n + 1)) = H (0S*")/(15,).

Since F(2n + 1) has homotopy type of a simply connected CW-complex, we
may replace F(2n + 1) by a homotopy equivalent normal CW-complex F(2n
+ 1). Thus the inclusion map of the (2np + 2p? — 4)-skeleton of F(2n + 1)
induces isomorphism of homology groups through dimension 2np + 2p? — 4.
Define a (— 1)-connected suspension spectrum L, to be T2~ 2P+3F(2p
+ 1)2mP+2r°=4 Let y,z;eH,(L,) be the elements corresponding to
8,(BQ" " 1 1y,) and 6,(Q" 1 1,,) in H(F(2n + 1)). Hence degy; = 2i(p — 1),
degz; = 2i(p — 1) + 1 and {yo, zo, Y1, Z15...Yp—1> Zp—1} is @ basis of H(L,) if n
=p—1. So, from now on, we assume n = p — 1 for simplicity unless otherwise
stated. Let A, be the dual mod p Steenrod algebra, then A,
= E(t9, 71,...) @ F,[&;, £5,...] as an algebra ([16]).

Lemma 3.5. The coaction y: H, (L) —> A, @ H,(L,) is given by
; n+i+ 1\,
W(}’i)=2j=o< j )fl ®yi—j

U(z) = 2(”; ’)@; Rz + 2( T8l @ yi-;

. n+i .
- Z3’=1<j_ 1)7151 ! ®yi—j'

Proof. The Nishida relations ([17], see also [12]) determine the action of
P{ on y, z; as follows.

n+i+1>

P{kzi =(- l)j((n i _j;_ D = 1)>Z,-—j and Bz;=y;

The result easily follows from the above and congruences
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(— 1),-<(m ~J')(P'— 1) — 1) _ <m>
j j

(— 1)j<(m_j)j(p B 1)) = <m}— 1) modulo p for 0<j<p— 1.

Let P, = F,[£,, £,,...] be the Hopf subalgebra of 4, generated by &;, &,,...
and put E, = A,//P, = E(tq, 7,...). Then P,— A, > E, is an extension of
Hopf algebras. To compute the BP-homology of L,, we use the Adams spectral
sequence ES' = Ext§(F,, H(BP A L,))=BP,_(L,). First note that
H (BP AL,)=P,®H,L, is isomorphic to A,z H.(L,) as an A,-
comodule. In fact, define f: P,&@ H.(L,)—> A, H,(L,) by flea® x)
=X0a; ® x; where Y(x) =20, ®x;, then f lifts to f: P, ® HL,)
— A, g H,(L, which is an isomorphism of A,-comodules. We apply the
Change-of-Rings isomorphism and have

(3.6) Ext, (F,, H(BP A L,)) = Ext . (F,, A, O g H.L,)
= Extg (F,, H(L,)
Lemma 3.5 gives the coaction xz: H. (L, - E,® H,L,) as follows

3.7) Vo) =1®yu¥z)=1Qz+1®yi— 1, ® yi1
(Put y_, =0)

Hence we may regard H,(L,) as an E(t, Tq)-comodule. Put E' = E(t,, 13,...),
then E, = E(ty, 7;) ® E". By the Kiinneth theorem, it is easy to see that the
external pairing

(3.8) ExtyegoyFp Hy(L,) Q Extp(F,, F,) — Extg (F,, H.(L,))
is an isomorphism. Since each t; is primitive in E,, we have
(3.9) Extp (F,, F,))=F,[v,0s,..., v,...], bideg v;=(1, 2p' — 1)

v; is represented by [t;] in the cobar complex.

To compute Extgg, .,(F, H.(L,), we apply the Cartan-Eilenberg spectral
sequence ([18], p. 331) to an extension of Hopf algebras E(t,) — E(tq, 7,)
— E(t,). Clearly, H(L,) is a free E(to)-comodule with basis in degrees 2i(p
—1)@E=0,1,..., p—1). Therefore

F, s=0,t=2i(p—1) 0=<i<p-—1

p
(3.10) Extgf,,(F,, Hy (L)) =

QO otherwise
By dimensional reason, coaction Extgg,(F,, H.(L,)— E(t,) ® Extpq,, (Fp,
H,(L,)) is trivial. Thus the E,-term of the Cartan-Eilenberg spectral sequence is

given by
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(311) E;J = EXt;f(n)(Fpa Eth(to)(Fpa H*(Ln)))
= Ethti‘(ru)(Fm H*(Ln)) ® EthE(n)(Fp’ Fp)

Therefore E5* = 0 if ¢t + 0 and we see that this spectral sequence collapses. We
also denote by y; the element of Ext;2?T"(F, H,(L,) represented by
vi€ Hyy,—1y(L,) in the cobar complex. As in (3.9), we have

(312) EXtE(n)(Fp: Fp) = Fpl:vl:la EXtE(to,n)(Fpﬁ ]Fp) = Fp[UOa Ul]
Hence the E_-term is given by

(313) Eoo =Fp{y03 Yis-ees yp—l} ®Fp[01]

The second formula of (3.7) settles the extension problem on the
Ext geo.er)(Fp» Fp)-module structure of Extpgg,.,)(F, H,(L,), namely, relations
voyi =01yi—; (=0,1,...,p — 1) hold in Extg, .,,(F,, H,(L,)). By iso-morphisms
(3.6) and (3.8), we see that the E,-term of the Adams spectral sequence is
generated by  y,eExt}**~Y(F, H (BPAL,) over Ext,(F, H,(BP))
= F,[vo, vy,...,0;...] with relations wvoy;=vyy,-,(=0,1,..,p—1 y_,
=0). Since E5'=0 if t—s is odd, the Adams spectral sequence
collapses. Thus we have shown

Lemma 3.14. BP.(L,) is generated by y;e BPy;,_;\(L,) i=0,1,..., p—1)
over BP, with relations py, =0, py;=v,y;—, (i=1,2,...,p— 1) and we can
choose y; such that it is mapped to y,e H,(L,) by the Thom map BP,(L,)
~ H,(L,).

Remark 3.15. In BP,(L,), equality pBP(L,) = v;BP,_,,_;,(L,) holds for t
< 2p(p — 1) and the above y;’s are determined uniquely modulo pBP(L,) so that
relations py; = v;y;—; (0 <i<p—1) hold. These relations imply that p‘*!y,
=0 (but p'y; + 0).

Recall that the Thom map BP,BP — A, sends t; to the conjugate of ¢&;
([24]). Tt follows from Lemma 3.5 and the relations that there exists 4; ;€ Z,
such that the coaction y: BP(L,) > BP,BP ) gp BP,(L,) is of the following
form

n+i+1

(3.16) V() =Yj-o{(— l)j( j

) + pAi}t @ yi;

We note that, since p'* 'y, = 0, we may regard 4,; as an element of Z/p'~/,
and that each 4, ;€ Z/p'~/ does not depend on the choice of generators yo, yy,...,
¥p—1 which have the properties of Lemma 3.14. We do not need explicit values
of 4;;s for our purpose, so we only remark that 4, =0 modulo p' by the
existence of counit, and that A, ,; determines every other 4;; by the
coassociativity and the BP -linearity of .

i,j
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Define a filtration of BP,(L,) by putting F, = BP,{yo, y1,..., J:}, then 0
=F cFycF,c...cF,_; =BPL,) and the associated graded comodule
E§{BP(L,) is isomorphic to BP (£*®~YM ) as a BP,BP-comodule where M, is
the mod p Moore spectrum. We also filter the cobar complex Q*BP,(L,)) by
F,,= BP _BP® ) pp F,. Consider the spectral sequence associated with this
filtration. Then, we have E{"* = Extjp gp(BP,, EtGBP,(L,)) and d,: E}**—
Esttt=r4 - Note that this spectral sequence has an Extgp gp(BP,, BP,)-module
structure. Let a, € ExtyZ%: V(BP,, BP,) be the element represented by [¢,] in
the cobar complex. The E,-term is easily obtained by the following results of
Miller-Ravenel-Wilson.

Theorem 3.17. ([15],seealso[18] p.157) Ext3p, zp(BP,, BP,(Mp)) = F,[v,],
EXt%};*BP(BP*s BP*(Mp)) = Fp[ul] 'alfor *< 2p(p - l)a andEXt%;*BP (BP*a BP*(Mp))
=0 for s=z2 and u—s<2pp—1)—2.

Zpu=2p—-1,j=t

.18, EPM
Lemma 3.18 1 { 0  otherwise

prows J2Pu=250p -1, t+1<j<p+t
Y T 0 otherwise for u<2(p + t)(p — 1)

ES'™ =0 for s=2, u—s<2t+p)p—1)—2 Moreover, E"20*t0P~1) jg
generated by vy, and E}"2090~1 s generated by ovi 'y, (i < p).

The first differential is given by (3.16).
(3.19) di@y)=m+i+t+ Daviy,_, for i+t <p.

Put —n—1=pq,+r, 0=r,<p), then dy(viy) = +i+1t+ Dayviy,_,
+0ifi+t+r,i+t<pandt>0 d,0viy)=0ifi+t=r,ort=0 This
implies

Lemma 3.20. EJ"™ =0 if u+2rp—1), u<2plp—1) and 0<t<p.
E}*=0ifu+2rp—1)u<2plp—1) and 0<t<p— 1. On the other hand,
EY02r~D ~ Z/p for 0 < i< p, and E}™ "2~V ~ 7/ for 1 <iZr, if r,>0.

Define a filtration on Ext §p gp(BP,, BP(L,)) by F*"** =1Im
[Ext$p gp(BP,, F,) > Ext}s gp(BP,, BP,(L,))]. Then 0= F% ! c Fs0*c |
< F¥ < .. < F*P~ 1% = Exts pp(BP,, BP,(L,)) and F&"*/F%~\* = S,

Lemma 3.21. For j <2p(p — 1) — 2, n§(L,) %= 0 if and only if one of the
following conditions is satisfied ,
i) j=2p—1) for 0Zi<p.
iy j=2rp—1)—1 and r,>0.

Proof. Consider the Adams-Novikov spectral sequence E$*(L,) =
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Ext§s gp(BP,, BP,(L,))=>n}_(L,). By Lemma 3.18 and Lemma 3.20, E** =0
if u % 0modulo 2(p — 1), and EL*™ =0,ifu=0o0ru + 2r,(p — 1), u < 2p(p — 1).
Hence we have ExtJy pp(BP,, BP,(L,) =0 if u%0 modulo 2(p — 1), and
Extgp gp(BP,, BP(L,)) =0 if u=0 or u=+2r(p—1), u<2plp—1). Since
Ey*=EP*=0 for s=2, u—s<2pp—1)—2, we also have
Ext}p,pp(BP,, BP (L)) =0 for s=2, u—s<2p(p—1)—2. It follows that
n3(L,) =0 (j < 2p(p — 1) — 2) if neither i) nor ii) is satisfied. Conversely, since
EQ02p— 1) = ERO2P=D £ (0 for 0<i<p, we see that Ext§2i& -V
(BP,,BP(L,))*0 for 0<i<p By Lemma 318 and Lemma 3.20,
E}rn=12me=D L 0 if r, £ 0, EJ*2P~ D =0 if t >r,, and E2"* =0 if u < 2p(p
—1). Therefore elements of Ej}"™~12m(P~1 guryive and EL™ 12n~1 4,
thus Extj75%~Y(BP,, BP,(L,) +0 if r, + 0. Recalling that
Ext}p,pp(BP,, BP(L,)) =0 for s=2, u—s<2p(p—1)—2, it follows that
EO2p-D(L )= EQ?P-D(LY+0 for O0<i<p and EL2®-1(L)
= E}?me=I(L Y+ 0 if r,+ 0. This completes the proof.

Theorem 3.22. For i <2pn+2p* —4 andn=p — 1, n(QS?"*!, §>"* 1) £ 0
if and only if one of the following conditions is satisfied,
) i=2pn+2jlp—1) for 1=j=<p.
i) i=2r,+1)p—1)+2pn—1and r,>0.

Proof. =(QS?"*1, §2"*1) is isomorphic to =;_,(F(2n + 1))and, by Corollary
3.2, m;_(F(2n + 1)) is isomorphic to the stable homotopy group #;_, (F(2n + 1))
if i <4pn + 4p — 6. By the definition of L, n}_;(F2n + 1)) = 7f_,,m—2,+2(Ly)
for i <2pn+ 2p* — 4. Note that 2pn + 2p> —4 <4pn +4p — 6 since n=p
— 1, and we have an isomorphism 7(QS***!, $*"*Y) =7} ,,,_,,.2(L,) for i
< 2pn + 2p?> — 4. Then, the assertion follows from the previous lemma.

In the case n<p—1, we put m=[(np+p—2)/(p — 1)] and define a
spectrum L, to be X 2P-20+3F(Qp 4 1)**4r=6 instead of L, Then
{Y0s Z0> Y15 Z1>+-+> Ym> Zm) is @ basis of H(L,), and as in Lemma 3.14, BP (L,) is
generated by y,e BP,(L,), we can compute Extgp gp(BP,, BP(L,)) in the same
way. Thus we have

Theorem 3.23. For i<4pn+4p —6 and n <p — 1, n{QS*"*1, §2"*1) % 0
if and only if one of the following conditions is satisfied,
) i=2pn+2jp—1) for 1<j<[(np+p—2/p—1]
i) i=2r,+—1)+2pn—1and r,>0.

We also need to know whether n,(QS?"*!, $2"*1) is zero or not in the low
dimensional unstable range. The following result is due to Toda (see also [2]).

Theorem 3.24. ([22]). For 1<n<p-—1,
Zp i=2pn+2(p—-1),1=j<p—n
2n+1 2n+1)y ~
QST §7T) = {0 otherwise for i<2n+2p(p—1)
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Summarizing Theorem 3.22, 3.23 and 3.24,

(325) For i<min{2pn+2p*—4, max{dpn+4p—6, 2n+2p(p—1)}},
n(QS?+1, S2"*1) £ 0 if and only if one of the following conditions is satisfied.
1) i=2pn+2p—-1) for j= 1.

i) i=2r,+D)—1)+2pn—1 and r,>0, where —n—1=pq,+r,, 0=r,
<p.

Remark 3.26. For an integer i which satisfies the condition i) above, the
Hurewicz map =;_(F(2n + 1)) » PBP;_(F(2n + 1)) is an isomorphism, where
PBP,(X) is the set of primitive elements {xe BP (X)|y(x) =1 & x}.

§4. The p-Regularity for an Odd Prime p

As in the previous section, p is a fixed odd prime and all spaces and groups
are localized at p throughout this section. First, we note the following fact
which is easily obtained by Corollary 1.2.

Proposition 4.1. W, ., , is not p-regular if k > p,ork=pandptn. X,
is not p-regular if k> (p + 1)/2, or k=(p + 1)/2 and p ¥2n + 1.

We recall the conditions (C) and (H) in Section 1.

QO k=p—1l ork=pand pin. H)k=Z({p-—1)/2, or k=(p+ 1)/2 and
pl2n + 1.

The following result of James is the starting point of our argument.

Theorem 4.2. ([8]) Corollary 7. 11) Q, ., (F) is a stable retract of O, (F),
where O, (F) is V, iy Warin 08 Xoipi for F =R, C or H respectively.

The combination of the above theorem and Theorem 1.8 implies

Lemma 4.3. i) If (C) is satisfied, there exists a map f: (W11 S*°1)
— (082", §2"* 1) sych that f|S*"*1: §2r+1 5 §2F 1 s degree 1.
il) If (H) is satisfied, there exists a map g: (X, S = (QS*"*3, S***3) such
that g|S*"+3: §4*3 , §4n*3 s degree 1.

Proof. By Theorem 1.8, there exist maps g: Q,.,(C)—>S*** and g"-

QuriixH) — S*"73 such that the compositions S*"*! g Q, ., (C) L, s2n+1 and

$**3 5 QM) 9, §4n+3 are degree 1. Let f": Z° W, ) = Z° Q,4,4(C) and

9" Z° X, k= Z° Qi (H) be stable retractions. Define f and g to be the
adjoints of stable maps Z®f" of": Z° W, ., , > X8> "1 and Z®g'og" T X,
— X° 8§43 respectively. Then f and g satisfy the conditions.

We define sets of integers as follows
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(44) CoopF)={icZ|i=)% 1e{dn+dj—1), e=0 or 1}, where d=2 if F
=Cand d=4 if F=H.

4.5) In; p)={icZli=2pn+2jp—1)forj=1,0ori =2r,+ 1)(p—1)+ 2pn
—1 if r,>0} where r, is defined by —n—1=pq,+r, 0=r,<p (See
Introduction.).

Note  that CoriidC) = {ieZ|H (W, ,,4) * 0} and Cpiii(H)
= {ie Z|H(X ++,) = 0}. We also note that obstructions to deform f(resp. g) to
SZn+ 1 (resp. S4n+3) lie in Hi(w/;l+k,k7 S2n+ 1; ni(Q52n+ 1’ S2n+ 1)) (resp. Hi(XrH-k,ka
S4n + 3; Tfi(QS4" + 3, S4n + 3)))

Theorem 4.6. i) Assume k<p—1, or k=p and p|n, then W, is
homotopy equivalent to S*"*' x W, ;-1 if CoiriCO)NI(n; p) is empty.
ii) Assume k < (p — 1)/2, or k= (p + 1)/2 and p|2n + 1, then X, ., is homotopy
equivalent to S*"*3 x X, vi—1 if Corr ) NTII2n + 1; p) is empty.

Proof. First note that dim W,,, , = max C,, (C) = 2nk + k* < min {2pn
+2p*—4, max{dpn+4p—6, 2n+2p(p—1)}} if k<p—1, or k=p and
pln. Hence, by (3.25), the condition of i) is equivalent to vanishing of H(W,
211 m(QS*n 1, §2"*1) for any ieZ. Therefore there exists a left homotopy
inverse of the inclusion $>"*!' ¢ W, ,,,, and fibration S*"*' > W, ., . > W, 11—
is fiber homotopy equivalent to the product fibration $2"** — §2"*1 x W, .,
— W,rrx-1 ([8], Corollary 4.3). Proof of ii) is similar.

Ifn=k*—2p+3)/(2p —2k)(k<p—1),dim W, < 2pn + 2p — 3. Hence
Cosii-AC)NII(n + j;p)isempty forj=0,1,...,k— 1. Andifm = (p — 1)/2, it is
easy to verify that C,,,, (C)\II(mp; p) is empty. Similarly, if n = 2k* + k
—4p +3)/(4p — 4k) (k = (p — 1)/2), Cprpep—H) N II(2n + 2j + 1; p) is empty for
j=0, 1,..,k—1, and if p[2n+1 (hence n = (p — 1)/2), Coi(p+1y2.0+12(H)
NII(2n + 1; p) is empty. Thus the preceding theorem implies

Theorem 4.7. i) For k<p—1, W,y is p-regular if J423(Cpirs-;(C)

N(n + j; p)) is empty. In particular, it is p-regular if n = (k> — 2p+ + 3)/(2p
—2k). And W,p.,, is p-regular if m = (p — 1)/2.
ii) For k< (p — 1)/2, Xysns is p-regular if USZ4(Cos s ) T2 + 2j + 1 )
is empty. In particular, it is p-regular if n = (2k*> + k — 4p + 3)/(dp — 4k). And
Xt p+1y2.p+1y2 I8 p-regular if p|2n + 1.

The fact that n,,,,(BU(n)) (resp. m4,+3(BSp(n))) is a trivial group if n < p

(resp. n < (p — 1)/2) easily implies the p-regularity of W, ., (tesp. X, ;) for n
+ k=p(esp.n+ k= (p— 1)/2).

Proposition 4.8 ([6]). W,..x is p-regular if n +k <p, and X,y is p-
regular if n+ k= (p — 1)/2.
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Proof. Consider the fiber bundle W, _ 1,1 = W4, — S?"*2¥71 which is
associated with the principal bundle U(n + k — 1) » U(n + k) » S?"*2¥~1, Then
the classifying map is an element of 7,,,,_(BUm+k—1)). If n+k=<Zp,
Ton+ak—1BUm +k — 1) = Z,/(n + k—1)! =0. Therefore the above fiber
bundle is trivial and W, ., is homotopy equivalent to W, _ -, x S?*2k~1,
Inductively, we can show the p-regularity of W,,,,. Proof of the second
statement is similar.

Remark 4.9. i) It follows from Theorem 4.7 and Proposition 4.8 that W, ., ,

is p-regular for any n if k < [(2 — ﬁ)p] + 1 and that X, ., , is p-regular for any
nif k<(p—1)/2 for p=3,57,11, and k = [(3 — \/g)p/Z] + 1 for p = 13.
ii) Since the obstruction group .+ 2ip-1(@S*"* Y, S 1Y) = Typmi2ip-1)-1
(F(2n 4+ 1)) (i = 1) maps isomorphically onto PBP,,,, 5, 1,-1(F(2n + 1)) by the
BP-Hurewicz map as we noted in Remark 3.26, we may be able to know
whether the obstruction in this dimension vanishes or not, if we can describe the
map fi: BPAW, i) = BP.(QS*"* 1) explicitly (for this, f: W, ,,, — QS*"*! should
be constructed explicitly). We also remark that if n > (k2 — 4p + 4)/(4p — 2k),
we may assume that the image of f is contained in the (p + 1)-th May filtration
F,.1Co8*"*1 of C,8%"*!~QS**! ([13]) and BPJF,,;C,S*"*!) can be
computed in the same way as we computed BP.(L,).

Examples 4.10. i) For p =3, W, ,,, is 3-regular if and only if k <2, or k
=3 and 3|n. Assume that k<p—1, or k=p and p|n. W,,,, is p-regular
except for the following undecided cases;

For p =35, (n,k) =(4,4), (5,5)
For p=17, (n,k) =(2,6), (3,6), (6,6), (12,6), (7,7), (14,7)
For p =11, (n,k) = (4,8), (;,9) for 3<i=<10, (1,10) for 2 <i < 12,
(40,10), (114,11) for i =1,2,3,4
For p=13, (n, k) = (5,9), (i, 10) for i =4,5,6,7, (i,11) for 3 <i < 16, (i, 12)
for 2 <i <18, (12i,12) for i =2,3,4,5,
(13i,13) for 1 i < 5.
ii) For p=3,57,11,17,X,,,, is p-regular if and only if k < (p — 1)/2,
or k=(p+ 1)/2 and p|2n + 1.
Assume that k< (p — 1)/2, or k=(p + 1)/2 and p|2n + 1. X, is p-regular
except for the following undecided cases.
For p =13, (n,k) = (1,6)
For p=19, (n,k)=(1,9)
For p =23, (n,k) = (1,11), (2,11), (3,11).

Appendix. The Non-2-Regularity of Real Stiefel Manifolds

Recall that real quasiprojective space Q,.,.R) is in fact real stunted
projective space P"**~!. To begin with we state the following facts without
proofs.



378 ATSUSHI YAMAGUCHI

o e i ]
Lemma Ad. H(QurihR)) = Fo{Xp Xpi1, s Xnsi—1} S¢°X; = (z> Xig j

Thus the action of the Steenrod operations in trivial if and only if k =1, or k=2
and 2|n.

Proposition A.2. The following three conditions are equivalent.
) k=1lork=2and2|n i) Q,..R) is homotopy equivalent to V¥  S"*'"1
at prime 2. iii) QV,,,, is homotopy equivalent to []f_,QS"*'" at prime 2.
Moreover, if n is even, Q, , , »(R) is globally homotopy equivalent to S" V S"*! and
QV, . 4., is globally homotopy equivalent to Q(S" x S"*1).

Proposition A. 3. V., , cannot be 2-regular unless k = 1, or k = 2 and 2|n.

Let k,; S"*' — BSO(n + 1) be the classifying map of sphere bundle S"
> V,12,—>8""Y, and we also denote by k,en,(SO(n+ 1)) the element
corresponding to k,em,,(BSO(n + 1)) by the natural isomorphism. The
following fact is due to Kervaire ([9]).

Lemma A.4. Consider principal bundle SO(n) — SO(n + 1) L,8"  Then
n,(S") for n=1,3,7

Im[p« 7, (SO(n + 1)) » n(S"] ={ 27,(S") for odd n,n &+ 1,3,7
0 for even n

Hence we see that k, and kg are null homotopic. This implies

Proposition A. 5. There are homeomorphisms V, , =~ S* x S* and Vg , =~ S°
x S7.

Note that k,en,(SO(n + 1)) is the image of generator 1,,, of n,,(S"*1) by
A: Ty (8" = 1, (SO(n + 1))

Lemma A.6. For even n, there exists k,emn,(SO/SO(n)) which maps to

k,en,(SO(n + 1)) by composition =, (SO/SO(n)) i»n,,(SO(n)) I, 1,(SO(n + 1)).

Proof. By Lemma A4, j,.: n,(50(n)) — n,(SO(n + 1)) is surjective. Choose
k, € m,(SO(n)) which maps to k,. Since k, = A4(1,,,) is in the kernel of 7,(SO(n
+ 1)) » 7,(SO(n + 2)) = n,(SO), it is easy to see that k, is in the image of o:
T, +1(80/S0(n)) - m,(SO(n)).

A proof of the following lemma is similar to that of Lemma 2.16.
Lemma A.7. 6,: n,,(0S"" 1) > n,,(F (n)) is trivial for even n, n + 2,6.

Lemma A.8. For even n, n = 2, 6: ky = d(k,)en,(SO(n)) is mapped by J:
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n,(SO(n)) —» n,(218S") to an element which is not in the image of the connecting
homomorphism 6': w, . 1(S") - n,(Q" S") associated with fibration 218" — SH(n + 1)

- S
Proof. By the commutativity of (2.12) and the above lemma, composition
7,4 1(SO/SO(m)) -2 m,(SO(m)) > m,(21 5™) is injective. Suppose J(k2) = &'(x) for
some xem,,,(S"). Let j: S"— SO/ SO(n) be the canonical inclusion, then 4:
T, +1(8™) — 7,(SO(n)) factors as «,,  ,(S™) J+n,,+1(SO/SO(n)) n ASO(n)). Also &
factors as Jod =J°0¢j,. Therefore Jeod(k,) = J(k;)=d'(x) =J°d°j,(x) and
we have k, =j,(x) which maps to zero by composition =, ,(SO/SO(n))
- 7,+1(80/S0(n + 1)) N 7n(SO(n + 1)). This contradicts the choice of k since

k, is not zero.
Theorem A.9. Except for the cases n =0, 2, 6, V,,,, is not 2-regular.

Proof. By the preceding lemma, k,en,(SO(n + 1)) maps to a non-zero
element by Juo w,(SO(n + 1))—> n,(H(n + 1)). Then the result follows from
Theorem 2.9 and Proposition 2.10.

An analogue of Corollary 2.18 holds.

Corollary A.10. The attaching map of the top cell of V,,,, (n=2j,j%0, 1,
3) defines a non-trivial element &; in the 2-component of m,(S*). &; is in the
kernel of E*: m4{(S*) > m4;4o(S*72) = 75 (S°) and has order 2 if j is even and at
most 4 if j is odd.

Proof. Recall that Q. (R) is a stable summand of V,., , (Theorem 4.2)
and Q,,,,(R) = v st Hence there exists a map hi(V, .5, S")—(QS", §")
such that h|S™ S”—»S" is degree 1. In fact, h is an extension of composition

Q,,”,Z(R)L»S"—"»Qs". Thus i¢; = icco& =0 where & $"— Q,,,,(R) is

the attaching map and k: Q, ., ,(R) = V., , is the inclusion map. This means
that ¢£; suspends to zero in the stable range. The last assertion follows from the
fact that 7,,(F(2))) (= n3;., P%})) is isomorphic to Z/2 @ Z/2 if j is even and to
Z/4 if j is odd.
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