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Introduction

A topological space which has the homotopy type of a finite CW-complex is
called p-regular if its localization at a prime p is homotopy equivalent to a
product of a certain number of spheres localized at p. We note that, if X is p-
regular, the rational cohomology of X determines the number and dimensions of
spheres which appear in the decomposition into the product. J.-P. Serre gave,
in one of his celebrated papers ([19]), a necessary and sufficient condition for the
p-regularity of classical Lie groups. For example, U(ri) (resp. Sp(n)) is p-regular
if and only if n ;g p (resp. 2n ^ p). The purpose of this paper is to generalize the
result of Serre to complex and quaternionic Stiefel manifolds. The p-regularity
of Stiefel manifolds was also studied by Y. Hemmi ([6]) from the H-space
theoretical point of view. He showed that, for an odd prime p, there are
infinitely many complex and quaternionic Stiefel manifolds which are p-regular
(see [6] Theorem 3.3 for details). Our result is somewhat stronger than his in
the sense that, for an odd prime p, we determine whether a complex
(quaternionic) Stiefel manifold is p-regular or not except for finitely many
undecided cases, and we also deal with the case p = 2. In particular, we settle
the p-regularity problem on complex Stiefel manifolds for p = 2 and 3, and there
are still two (resp. six) undecided cases for p = 5 (resp. p = 7) (see Example 4.10).

Following James ([8]), we denote by Fnfe, Wntk and Xn^k the real, complex
and quaternionic Stiefel manifolds O(ri)/0(n — k), U(n)/U(n — k) and Sp(ri)/Sp(n
— k) respectively. For an odd prime p, by examining the action of the Steenrod
operation P1 on H*(Wn+ktk; ¥p) and H*(Xn+ktk; Fp), we easily derive a necessary
condition that the p-regularity of F^+fcfc(resp. Xn+k^k) implies / c r g p — 1, or k = p
and p\n (resp. k g (p - l)/2, or k = (p + l)/2 and p\2n + 1).

The main results of this paper are as follows.

Theorem 2,17, Wn + 2,2
 is not 2-regular unless n = 0 or 2, and Xn^2,2

 is not

2-regular for any n ^ 0.
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We define sets of integers Cn+ktk(W) (F = C or H) and II(n; p) (p: odd prime)
by Cn+hik(¥) = {ieZ\i = Yj=1£j(dn + dj - 1), &j = 0 or 1}, where d = 2 if F = C
and d = 4 if F = H, U(n; p) = { ieZj i = 2pn + 2j(p - 1) for j ^ 1, or i = 2(rn

+ l)(p — 1) + 2pn — 1 if rn > 0}, where rn is defined by — n — I = pgn

+ rns 0 ^ rn < p. Note that II(w; p) = {ieZ|i = 2pn + 2j(p - 1) for 7 ̂  1}
in the case rM = 0.

Theorem 4.7. i) For k ^ p — 1, Wn+kyk is p-regular if UJ=o
(Cn + k>k_J-(C) P) n(n +7; p)) is empty. In particular, it is p-regular ifn^ (k2 — 2p
+ 3)/(2p - 2k). For k = p, Wmp + p,p is p-regular if m ̂  (p - l)/2.
ii) For lc^(p-l)/2, Xn+ktk is p-regular if (J^1 (CB+kifc_/H)f)n(2n + 2;
+ 1 ;p)) w empty. In particular, it is p-regular if n^ (2k2 + k — 4p + 3)/(4p
- 4fc). For k = p, Xn + (p+1)/2t(p+1)/2 is p-regular if p\2n + 1.

If follows from the above theorem that, for each odd prime p, almost all (
= except for finitely many undecided cases) Wn+ktk and Xn+k^k are p-regular if the
necessary condition we mentioned above is satisfied. And as a corollary of
Theorem 2.17, we show that the attaching maps of the top cells of Wn + 2)2 and
^n + 2,2 produce two families of infinite number of elements of the 2-components
of the unstable homotopy groups of spheres, and that the loop space QWn + 2j2

(resp. QXn + 2^2) has an exotic loop space structure if n is even and greater than
two (resp. n = 6 modulo 8). We also discuss the non-2-regularity of real Stiefel
manifolds in the appendix and prove an analogous theorem.

We prove the non-2-regularity of Wn + 2t2 and Xn+2j2 by showing that the
classifying maps of spherical fibrations S2n+1 -» Wn + 2j2 -> S'2" + 3 and S4n + 3

-^n + 2,2 -»S4n + 1 are non-trivial. For this end, we examine the J-
homomorphism in the unstable range. On the other hand, we prove the p-
regularity for odd prime p under the condition of the above theorem by showing
that spherical fibrations S2n + 2j+l -> Wn+kik-j -> Wn+kik-j-i and S4n^4j+3

-> Xn+k>k_j-^> Xn+kjk_j_1 are fiber homotopy equivalent to product fibrations
for 7 = 0, 1,..., k — 1. To show this, we demonstrate the existence of left
homotopy inverses of the canonical inclusions s2n + 2j+1 - »W n + k t k - j and
g4« + 4 /+3 _^ xn+ktk_j by using obstruction theory.

In Section 1, we give a necessary and sufficient condition for the splitting of
a quasiprojective space into a wedge of spheres at a prime p. In fact, we prove
the following three conditions are equivalent; a) k ^ p — 1, or k = p and p\n. b)
6n-h*,*(C) = 2(CPB+k~1/CPII~1) is homotopy equivalent to V1}=1S

2n+2i'1 at
prime p. c) OWn+ktk is homotopy equivalent to O(]Qf=15

2" + 2 i~ 1 ) at prime
p. A similar result is also obtained for the quaternionic case. In Section 2, we
discuss the non-2-regularity of Wn + 2^2 and Xn + 2 j 2 . We reduce the problem on
the unstable J-homomorphism, which is examined by applying theorems of Toda
([21], Theorem 11.7) and Mahowald-Milgram ([10] Theorem A, [14] Theorem
8.5, 8.21). Section 3 is a preparation for Section 4. We compute some p-
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localized homotopy groups of the homotopy fiber of the natural inclusion S2n +1

-^QS2n + 1. We apply the Adams-Novikov spectral sequence based on the BP-
homology theory to the computation, and determine the necessary and sufficient
condition for the vanishing of "obstruction groups" Ti^QS2"4"1, S2n+1) for
sufficiently many fs. In Section 4, we first show the existence of maps
f:(Wn+ktk, S2" + 1)-(eS2« + 1, S2"+1) and g:(Xn+k,k, S*n + *)-+(QS*n + \ S4« + 3)
such that the restrictions to S2n+1 and 54" + 3 are maps of degree 1 if n and k
satisfy the necessary condition. And by applying obstruction theory, we see that
these maps can be deformed to left homotopy inverses of the canonical
inclusions. We prove in the appendix that the real Stiefel manifold Vn + 2,2 is not

2-regular unless n = 0, 2 or 6.
The author would like to thank Jeff Smith, Jack Morava, Steve Wilson and

Masana Harada for invaluable conversations, and thank Jean-Pierre Meyer for
informing him of R. J. Milgram's work [14]. And he wishes to express his
gratitude to all the faculty and staff of the Mathematics Department of
University of Osaka Prefecture for their support to him during his visit to the
Johns Hopkins University.

Notations and Terminology

When we use the term "at prime p" in a statement, this means that the
statement is valid if we localize spaces and groups in the statement. We denote
the mod p homology (resp. cohomology) of X by H^(X) (resp. H*(X)) when the
prime p is clear from the context. Otherwise, we denote by H J ( X ; R)
(resp. H*(X; R)) the homology (resp. cohomology) of X with coefficients in
R. We list some notations which are frequently used in this paper.

Vnik, Wnjk and Xntk: the real, complex and quaternionic Stiefel manifolds
O(n)/O(n - ft), U(n)/U(n - k) and Sp(n)/Sp(n - k) respectively.

jR{x l9x2,....}: the free .R-module generated by x l5x2,... .
Fp[xl9x2,....]: the polynomial algebra over Fp generated by x1?x2,... .
£(x1,x2,...)" the exterior algebra over ¥p generated by x l5x2,
M(p): the localization at prime p of an abelian group M.

: the binomial coefficient n(n — 1) (n — k + l)//d.
k

[x]: the Gauss symbol of xeR, that is, the largest integer that does
not exceed x.

k|n (fc, neZ); fe divides n.
6n>k(F): the quasiprojective space over field F (F = R, C or H).
PJ: the stunted real projective space RPm/RP"~1.
F(ri): the homotopy fiber of the natural inclusion Sn -»QSn.
ns,(X): the stable homotopy group of a space (spectrum) X.
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§ 1. Splitting of Quasiprojeetive Spaces

Let 6n>k(F) be the quasiprojective space over a field F(F = R, C, or H)
defined in [7] (see also [8], [20]). We identify 2n,fc(R), Qn,k(Q and QBik(H) with
subcomplexes of Vn>k, Wn^k and XKtk respectively, then the pair of CfF-complexes
(Wn+ktk, Q»+k.k(C)) (resp. (XH+kik9 Qn+k,k(M))) is (4n + 3)-connected (resp. (8n
+ 9)-connected), and the pair (Vn+ktk, Qw+fc,fc(R)) is 2^-connected at prime
2. Thus quasiprojective spaces are approximations of Stiefel manifolds in the
stable range. The mod p cohomology of 2M+fc,fc(F)(F = C or H) and the action
of the Steenrod operations are given by the following.

Lemma 1.1. i) B*(Qa+

n * put Ps = Sq2s if p

_
ii) H*(gn+k)k(H)) = Fp{x4n + 3, x4n + 7,..., -x4n+4l-_ !,..., x4n+4fc_1},

l )x4» + 4i + 2S(p-l)-l (If P = 29 We put P* = Sq2* CIS
s /

above, and xt = 0 if i ^ 3 modulo 4).

Since 6n+fej/c(C) is a suspension of a stunted complex projective
space CP^-VCF1"1, i) follows from the action of Ps on ff*(CP°°) ([20], Chap.
I, VI). For ii), there is a map c':Qn+ktk(JR)->Q2n + 2kt2k(C) induced by the
canonical inclusion Sp(n) -* U(2n) and c'*: H*(Q2n + 2kj2k(C)) -» H*(gn+k>fc(H))
maps x4 n + 4 i_1 to x4n + 4 i_1 , and x4n+4l-_3 to zero. Hence ii) follows from i).

In particular, we have P1x2n + 2i-i = (n + i - l)*2n + 2( i+P - i ) - i in

H*(Qn+k,k(Q) and P1x4B+4£_1 = (2n + 2i - l^4n + 4, + 2 ( p _ 1 ) _ 1 for p > 2,
^4x4«+4i-i = (w + i - l)x4n+4£ + 3 for p = 2 in B+(Qn+ktk(tX)). Therefore

Corollary 1.20 T/ze action of the Steenrod operations on H*(j2B+kfk(F)) w
trivial in the following cases and non-trivial otherwise',
For F = C, k ^ p — 1, or k = p and p\n.
For F = H, k ^ (p - l)/2, or k = (p + l)/2 fl/irf p|2n + 1 if p > 2. In the case p

= 2, k = I, or k = 2 and 2\n.

We consider the case p = k = 2 first. Let zfc: 7c2w + 3(S
2" + 3) -> 7i2n^2(S2n+1)

and AH: n4n + 7(S
4n + 1) -^n4n + 6(S

4rn + 3) be the connecting homomorphisms of the
long exact sequence associated with the spherical fibrations S2n+1 -> Wn + 2,2
->52n + 3, S4n + 3^Xn + 2>2-»S4n + 1 respectively. We denote by /„, rjH9 v'9 vn the
generators of nn(S

n), nn + 1(S
n), n6(S

3) and nn + 3(S
n)(n^4) respectively. Then

6n + 2.2(C) and 2« + 2s2(H) are cofibers of maps Aci2n + z\ S2n + 2~>S2n+1 and
^Hhn + i'- S4n + 6 -> 5'4" + 3. Since Sq2 determines whether Aci2n + ?> is trivial or not,
we have
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Theorem 1.3. QB + 2f2(Q is homotopy equivalent to S2"+1 V S2" + 3 at prime 2
if and only if n is even. And if n is even, 2n + 2,2(Q is (globally) homotopy
equivalent to S2fl+1 V S2n + 3.

In the quaternionic case, the condition of Corollary 1.2 does not necessarily
imply the splitting of 2n + 2,2(H) at prime 2, because Sq4 cannot detect all
elements of 7i4n + 6(S'4n + 3). We need the following result of James.

f v' for n = 0
Theorem 1.4 ([7], [8]). AHi^n + 1 =

I (n + 2)v4n + 3 for n^ 1

Since v4n + 3 has order 24, the above immediately implies

Theorem 1.5. 2n + 2,2(H) is homotopy equivalent to S4n + 3 V S4" + 7 at prime 2
if and only if n = 6 modulo 8, and it is homotopy equivalent to S4n + 3 V S4n + 7 at
prime 3 if and only ifn=l modulo 3. Moreover, ifn = 22 modulo 24, Qn + 2,2(^-)
is globally homotopy equivalent to S4rj + 3 V S4n + 7.

And also Theorem 1.4 implies

Theorem 1.6. Xn + 2i2 is not 2-regular if n ^ 6 modulo 8.

Proof. In fact, if Xn+2,2 is 2-regular, 7r4n+6(Xn+2,2)(2)^7c4n + 6(S
4" + 3 x S4" + 7)(2)

^ Z/8. On the other hand, n^+6(XH + 2t2)(2} s (7T4n + 6(S
4"+ 3)/Im JH)(2) ^ Z/(8,n + 2)

which is not isomorphic to Z/8 if n ^ 6 modulo 8.

We therefore consider the following conditions (C), (H) on p, k, n instead of
those of Corollary 1.2.

(C) k -^ p — 1, or k = p and p\n

(H) k^(p- l)/2, or k = (p + l)/2 and p\2n + 1 if p > 2,

k = 2 and n = 6 modulo 8 if p = 2.

Lemma L7. Let p be an odd prime and let X be a space of finite type.
Suppose that X is 2n-connected at prime p and H2n + 2i(X:> ^P) = 0 for i < P — U
then n2n + 2i(X)(p} = 0 for i < p - L

Proof. We may assme that n2n+j(X}(p) ^ 0 for some j < 2(p — 1), otherwise
there is nothing to prove. Then, by the assumption, mm{j\n2n^j(X)(p) ^0} is
odd, and we define an integer i(X) by 2i(X) + 1 = mm{j\n2n+J{X\p) ^ 0}. We
prove the assertion by induction on / = p — 2 — i(X). First we note that / ^ 0
by the above assumption and that the assertion holds if / = 0. Considering the
universal coefficient theorem, it follows from the assumption that H2n + 2i + 1(X:,
Z(p)) is torsion free for i < p — 2. Hence so is the lowest non-trivial homotopy
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group n2n + 2i(X} + 1(X)(p). Applying the killing method to X, we have a fibering
X' -> X -» K(Zr, 2n + 2i(X) + 1) (r = the rank of 7c2n + 2iW + 1(X)(p)) such that /„:
^2« + 2iW + iW(p) -> ^2n + 2»w-i(^(Zr

3 2n + 2i(X) + l))(p) is an isomorphism.
Then, the standard argument on the Serre spectral sequence associated with this
fibering shows that X' is (2n + 2i(X) + 2)-connected at prime p and H2n + 2j(X

f;
Wp) = 0 for j < p - 1. Thus zpO > i(X) and p - 2 - i(JT) < /, and the inductive
assuption applies to X'.

Let/n,: S
2" + 2 '-2-*en + i-u-i(C) and gnti: S

4n+^2 -> e» + *-u-i(H) be the
attaching maps of (2n + 2i — l)-eell and (4n + 4z — l)-cell. Note that quasi-
projective spaces 2n + l-_ l j £_1(C) and Qn + i-i,i-i(H) satisfy the assumptions of the
preceding lemma. It follows that /M ~ 0 if i < p and grn >j ~ 0 if i < (p + l)/2,
when we localize spaces at prime p.

Theorem L80 Let p be an odd prime. Qn+k,k(^) is homotopy equivalent to
Vf= 1S2 n + 2 £~1 at prime p if k < p, or k = p and p\n. 2n+fejfc(I3) is homotopy
equivalent to V^S4"^"1 at prime p if k < (p + l)/2, or k = (p + l)/2

p\2n + 1.

In the case F = C, fe < p or F = H, fc < (p + l)/2, the assertion
follows by induction of Ic since attaching maps are all null homotopic at prime
p. We consider the case F = C, k = p and p\n. If n = 0, QP,P(C) = ^(CP17""^)
which is homotopy equivalent to S1 V ECPP~1. Since SCP'"1 is 2-connected
and satisfies the assumptions of Lemma 1.7, it follows that each attaching map
S2l '-^ECF~1 is null homotopic at prime p if i < p. Hence ZCP^'1 is
homotopy equivalent to Vf = 2 S 2 £ ~ 1 at prime p. If n > 0, then n^p since
p\n. Hence homotopy group 7r2n + 2p_2(2M+p_1)p_1(C)) is in the stable
range. By the homotopy equivalence Qn+p-i,p-i(C) ^ Vfr1

1S2n + 2 £ ~ 1 at prime
p, we have n2n + 2p.2(Qn+p_ltp_i(C))(p) ^ Yl=in2n + 2P-2(S2n"2i~1)(P) = n2n + 2P-2
(S2n + 1)(p)( ^ Z/p), which implies that attaching map /Btp can be factorized as

S2n + 2p-2 J^ S2« + i = QB + l i l(C)->e.+p-i.p-i(C) at prime p. Let Cft be the

cofiber of/', then we have the following homotopy commutative diagram whose
horizontal rows are cofiberings

$*: Hs(Qn+pfp(C); ¥p)-»Hs(Cff; ¥p) is an isomorphism for s = 2n + 1, 2n + 2p
- 1. Thus P1 acts on H*(Cft; Fp) trivially by Corollary 1.2. It follows/' ^ 0,
hence /n?p ̂  0 at prime p. This proves the assertion in the case F = C, k
= p. Noting that the assumption p\2n + 1 implies that
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^4n + 2p(2n + (p-i)/2,(p-i)/2(H)) is m tne stable range, we can prove the assertion
similarly in the case F = H, k = (p + l)/2 and p\2n + 1.

Remark 1.9. If the condition (C) or (H) is not satisfied, it follows from
Corollary 1.2 and Theorem 1.4 that neither 2n+fcjk(C) nor 2n+fc,fc(H) splits into a
wedge of spheres at prime p, even stably.

After localizing at prime p (if necessary), we have maps </)c:

-»Xn+kjk for n, k satisfying (C), (H) in each case. Using the loop space
structures of &Wn+k^k and QXn+kik, we can extend the compositions

- 5 - > QXn+k,k to maps 0C: n?-!^2"*2'"1 -+ QWH+ktk and ^H:

n*=i^54B + 4l '~1->^-x 'n+fc.k. Since the Pontrijagin rings H+(QWn + ktk) and
H^.(QXn+ktk) are commutative, 0C and <j)H induce algebra homomorphisms
between homologies. By the construction of 0C and (j)H (j)c^:
®k

i=1H*(QS2n+2i-i)^H*(QW2n+k,k) and ^: Stt^H^QS2*™-1)
-> H^(QXn+ktk) map each polynomial generator of H^(QS2n+2i~1) and
H^COS4"4"4^1) to a polynomial generator of HJDW;.^) and H+(QXn+htk)
respectively. Thus (pc^ and (/)H^ are isomorphisms, and hence they are
homotopy equivalences.

Proposition 1.10. i) QWn + kik is homotopy equivalent to Yl^i&S2"*21'1 a*
prime p if and only if the condition (C) is satisfied. And &Wn + 2,2 is globally
homotopy equivalent to QS2n+l x QS2n + 3 if 2\n.
ii) QXn+k^k is homotopy equivalent to ^=1OS4n + 4 l~1 at prime p if and only if
the condition (H) is satisfied. And QXn + 2t2 ^ globally homotopy equivalent to
&S*n + 3 x QS4n + 7 if n = 22 modulo 24.

Proof. We already showed the homotopy equivalence if (C) or (H) is
satisfied. The converse is easily proved by examining the action of the Steenrod
operations on H^.(QWn+ktk) and H^(QXn+kjk) and by comparing the homotopy
group n4n + 5(QXn + 2,2\2) with n4n + 5(QS4n + 3 x QS4n + 1\2) (See the proof of
Theorem 1.6).

Corollary 1.11. n*(Wn+k,k\p} is isomorphic to n^=lS
2n + 2i-\p) if (C) is

satisfied and n*(Xn+kjk)(p} is isomorphic to n^(Y\]i=iS4n + 4 l ~ l ) ( p ) z/(H) is satisfied.

Thus the homotopy groups cannot distinguish Wn+kik from f|?=iS2" + 2 l~1 ,
nor Xn+kjk from jQ^iS4"4"4'"1 for n, k satisfying (C) and (H) respectively, if we
localize these spaces at prime p.
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§2o The Metastable /-Homomorphisin and the Non-2-Regularity

We first note that Corollary 1.2 Implies,

Proposition 2.1. Neither Wn+ktk nor Xn+ktk can be 2-regular if k ^ 3, or k
= 2 and 2Jfn.

Let /„: S2n + 3^>BU(n + 1) and gn: S4n + 1 -> BSp(n + 1) be the classifying
maps of sphere bundles S2" + 1 -> Wn + 2t2 -> S2n + 3 and S4n + 3 -»^n + 2,2 -> S4n + 7

respectively. We begin with the following exceptional cases.

Proposition 2020 FF2>2 = 17(2) w homeomorphic to S1 x S3 and PF4j2 is
homeomorphic to S5 x S7.

Proof. The first part is obvious. For the second part, consider the

composite S7 -^-^ 517(3) -+ BSO(6). There is an isomorphism of Lie groups

Spin(6) ^ SU(4). Hence 7r7(^5O(6)) ̂  n7(BSpin(6)) ^ n7(BSU(4)) ^ 7U6(SC7(4))
= 0. Thus the above composition is null homotopic and S5 -» W4i2 -* S1 is a
trivial bundle with structure group SO (6).

We therefore concentrate on Wn + 2,2 f°
r even n ^ 4, and on ^n + 2,2 for « = 6

modulo 8 (Recall Theorem 1.6). For the rest of this section, we localize all
spaces and groups at prime 2.

Theorem 23. ([5]) i) n2n + 3(BU(n + 1)) s 7i2n + 2([/(n + 1)) ̂  Z(2)/(n + 1)1,
and fn generates n2n + 3(BU(n + 1)).
ii) n4n + 7(BSp(n + 1)) s 7i4n + 6(Sp (n + 1)) s Z(2)/2(2n + 3)! for even n,
= Z(2)/(2n + 3)1 /or 0dfa? n, and gn generates n4n + 7(BSp(n + 1)).

We also denote by /„, gn the generator of n2n + 2(U(n + 1)), n4n + 6(Sp(n + 1))
which correspond to /„, gn respectively by the natural isomorphisms. Consider
the following commutative diagrams.

n2n + 3(SO/SO(2n + 1)) - n2n + 3(SO/SO(2n + 2))^*. n2n + 3(U/U(n + 1))

(2.4)

n2n + 2(SO(2n + 1)) > 7i2n + 2(SO(2n + 2))^*- n2n + 2(U(n + 1))

+ 3)) ̂ > 7T4M + 7(50/JSO(4^ + 4))*^*- n4n + 7(Sp/Sp(n + 1))
(2-5) 4 4

+ 1)),
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where d, A, A' are connecting homomorphisms, r, r', j are inclusions U(n
+ 1) q; SO(2n + 2), Sp(n + 1) q; SO(4n + 4), 5O(m) c> SO(m + 1), and r, r', J are
the maps induced by r, r', j respectively. Note that A, A' and both d's in (2.5)
are surjective by the Bott periodicity. We choose elements fnen2n + 3(U/U(n
+ 1)) and gnen4n + 7(Sp/Sp(n + 1)) such that A(Jn) = fn, zl'(^) = gn.

Let fc: P^ -> SO /SO (m) be the canonical inclusion. Since the pair
(SO/SO(m), P£) is 2m-connected, &„: nt(P%) ->ni(SO/SO(m)) is an isomorphism
for i < 2m.

Lemma 2.6. i) k^\ n2n + 3(P™n + i) —» n2n + 3(SO/SO (2n + /)) ^ ^ isomorphism
for i =1,2. If n is even, we have 7i2n + 3(P%n+1) ^ Z/8 a«d 7C2« + 3(^ + 2) =
Z/4. Moreover, the mod 2 Hurewicz homomorphism h: n2n^3(P2n + i)
-> f/2n + 3(PJ)

w + j;F2) (i = 1, 2) mfl/w a« element x to a non-zero element if and only
if x generates n2n + 3(P%n + i).
ii) k+: 7i4n + 7(P^ + f) -> 7T4n + 7(SO/S'O(4« + 0) " «« isomorphism for i = 3,4. If
n is even, we have 7i4n + 7(P^ + 3) ̂  Z/16 onrf 7i4n + 7(P?n + 4) s Z/16 0 Z/4.
Moreover, the mod 2 Hurewicz homomorphism h: n4n + 1(P^n + i) -^ H4n + 1(P^n + i;
F2)(i = 3, 4) maps an element x to a non-zero element if and only if the order of x
is 16.

Proof. Consider the Adams spectral sequence £|'f = Ext^(F2, H^(P^))
=>7if_s(P£)5 where A+ = F2[£1? £2,...9 ££,...] is the dual of the mod 2 Steenrod
algebra. The £2-

terms we nee(i are given as follows (See [10] Chapter III, and
[ii]);

m = 2n+l: Esj2n + ̂ s = ¥2{hs
0x2n + 3} for s = 0, 1, 2,

0 for s = 3

m = In + 2: £j2« + 3+s = F2{/is
0x2n + 3} for s - 0, 1,

£s
2'

2M + 3+s = 0 for s^2

(2.7) m = 4n + 3: £5^ + 7 + , = F2{/is
0x4n + 7} for s = 0, 1, 2, 3,

EsAn + 7+s = Q for s^4

m = 4n 4- 4: £s/« + 7+s = F2{ftJx4n + 7} for s = 0, 3,

£S24M + 7+s = F2{/is
0x4n + 75 fc

s
0-

1M4» + 4} for s = 1, 2,

£5411 + 7+5 = 0 for 5^4 ,

where fc£ 6 Ext^2'(F2, F2) is the element represented by [£f] in the cobar complex

of 4*([1])- Jt is also easY to see that ^2n + 3e£2'27I + 3 and x4n + 7e£^'4n + 3 are
permanent cycles in each spectral sequence and that ^iX2n + 3 and h\x4n + 1 are
not zero in the E^-terms if they are not zero in the £2-terms. Noting that
«2.-H3(P£-i)S7i!ll + 3(PS1 + l)(i = l> 2) and 7r4n + 7(P£ + i)^7ti, + 7(P2U.)0- = 3, 4),
the result follows.
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Lemma 2«,80 i) In diagram (2.4), f^. and j^. are surjective. And f^(fn)
generates n2n + 3(SO/SO(2n + 2)).
ii) In diagram (2.5)3 f^(gn) generates the images of j^ and r^ if n = 6 modulo
8. And j^ is a split monomorphism.

Proof. Wenotethat f*: H2n + 3(U/U(n + l);¥2)-^H2n^3(SO/SO(2n + 2); F2)
and f- Htn + 7(Sp/Sp(n + 1); F2)->#4lI + 7(S0/S0(4n + 4); F2) are isomorphisms,
and that the mod 2 Hurewicz homomorphisms h: n2n + 3(U/U(n + 1))
-»H2_n + 2(U/U(n + 1); F2) and fc n4n + 7(Sp/Sp(n + 1)) -> H4n + 1(Sp/Sp(n + !);_ F2)
maP I™ 9n to each generator. It follows from the preceding lemma that f^(fn ) is
a generator of n2n+3(SO/SO(2n + 2)) and that f;(0J is an element of order 16. r'
induces a map from a sphere bundle S4n + 3 -» Sp/Sp(ri) -> Sp/Sp(n + 1) to a
sphere bundle 54n + 3 -> SO/SO(4n + 3) -» SO/SO(4n + 4). Then we have the
following commutative diagram:

+ 1)) «=_ ̂ 4n + 7(S
4" + 7)

U

By Theorem 1.4, AH = 0 if n = 6 modulo 8, hence d ° r'^. = A" = 0 and the image
of r^. is contained in the image of j^. The preceding lemma implies that j% in
(2.4) is surjective and that /^ in (2.5) is a split monomorphism. This completes
the proof.

We put H(n) = {/: S"'1 -> S^M/ihomotopy equivalence} and SH(n) = {/:
S""1 -> S""1 1 degree /= 1} and give them the compact-open topology. We
denote by JSH: SO(n) — > SH(n) and /: SH(n) -> H(n) the canonical inclusions, and
put JH = / ° JSH: SO(n) -> H(n). ff (w) and SH(n) are topological monoids with
respect to compositions of maps, and JSH, / and JH are maps of topological
monoids. Let e: SH(n)~^>Sn~1 be the evaluation map at the base point. We
denote by Q"1~

lSn~1 the component of Qn~1Sn~l which contains the identity
map. Then Qn

1~
lSn~l is contained in SH(n) and we have a fibration Qn

1~
1Sn~l

- S"'1. JSH induces J: SO(n - 1) -* Or'S"'1 and J*: 7i,(SO(n - 1))

-^Tc^"1^""1) ^ 7r i+B_1(5n~1) coincides with the J-homomorphism ([23], [21]
Chapter XI) up to sign. So, we rather denote J^ by J.

By the construction of Dold-Lashof, H(n) and SH(n) have classifying spaces
BH(n) and BSH(n). The following is a special case of Theorem 7.5 of [3].

Theorem 2.90 Let Sn~~l -> E -> .B Z?^ a?z (n — l)-sphere bundle with structure
group SO(n) and let f:B-+ BSO(n) be the classifying map. Then Sn~l -» E -» E w
yz^er hornotopy equivalent to a trivial bundle if and only if the composition BJH°f:
B -> BSO(n) -> BH(n) is null homotopic.
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We also need the following fact.

Proposition 2.10 ([8], Corollary 4.5). The sphere bundle Sd(n+l}~^ -» OB + k f k

-» O n + k j f c _ 1 is fiber homotopy equivalent to a trivial bundle if and only if On+k^k is

hornotopy equvalent to sd(n + 1)~l x On 4 .k > f c_1 ? where On + kik = Vn + ktk, Wn+ktk or

Xn + k,k and d= 1, 2 or 4, respectively.

Now we reduce the problem to a problem on the J-homomorphism.

Lemma 2.11. i) For even n, Wn + 2,2 *5 not 2-regular if the image of J:
n2n + 2(SO(2n + l))-*7i2n^2(OfI+1S:2n + 1)) contains an element of order four.
ii) For n = 6 modulo 8, Xn^2,2

 is not 2-regular if J: n4n + 6(SO(4n + 3))
is non-trivial.

Proof. By the exactness of 7i2n + 3(S
2n + 1) -> n2n + 2(Q\n + 1S2" + 1) n2n + 2

(SH(2n + 2)), the order of the kernel of jj: 7c2n + 2(Dfn+1S2n+1) -> n2n + 2(SH(2n
+ 2)) is at most two. Hence the assumption of i) implies that JSH*: n2n^2(SO(2n
+ 2)) -» n2n + 2(SH(2n + 2)) is non-trivial. Since /„ generates n2n + 2(U(n + 1)) and

r*: n2n + 2(U(n + l))-^7C2« + 2(5'^(2w + 2)) is surjective by Lemma 2.8, it follows
that J H ° r ° f n is non-trivial in n2n + 2(H(2n + 2)). Therefore BJH°Br°fn is non-
trivial in n2n + 3(BH(2n + 2)), and the result follows from Theorem 2.9 and
Proposition 2.10. For the part ii), note that j^ : n4n + 6(Q$n + 3S4n + 3) ->
n4.n^.6(SH(4n + 4)) is injective since n4n + 7(S

4n + 3) = 0. Then, the assumption of
ii) implies the non- triviality of JSH°r'°gn. In fact, by the commutativity of (2.5)
and Lemma 2.8, there exists a generator yn of 7i4n+7(1S'O/S1O(4^ + 3)) such that
r*(gn) = 7*(7n) and we have JSH, ° r'^(gn) = JSH* -d-d °r'*(gn} = JSH* ° j^ o d(yn)
= /i ° «/ ° 3(yn) =1= 0 since 8 is surjective and j'J ° J =|= 0. Therefore 5JH ° Br' ° gn 4= 0
in 7c4n

In order to examine the J-homomorphisms, we use the relative J-
homomorphisms constructed by Toda ([21]). We briefly review the
construction.

For a pair (X, A) of topological spaces with base point * e A, we denote by
Q(X, A) a topological space {/: [0, 1] -> X\l: continuous, 1(0) e A, 1(1) = *} with
compact-open topology. Let e : Q(X, A)-* A be the evaluation map at
0. Then Q(X, A) is the homotopy fiber of inclusion map A-+X and

6 e
QX — > Q(X, A) — > A -> X is a fiber sequence, where 6 is the natural inclusion.

The natural inclusion i: X -> Q1LX is extended to a map i': X (J CA — » Q(LX,
"LA) defined by f ([a, t])(s) = [a, st + 1 - t] on C^, where X(jCA = (X U(A
x /))/ ~, and ~ is an equivalence relation generated by a ~ (a, 1), (a, 0) ~ *
~ (*, 0 for aeA, te [0, 1]. We denote by [a, f] the element of X\J CA (or
represented by (a, t)e>4 x /.
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The map J: SO(m) -> Q^Sm induces the stable J-map Js: SO -» g^0, and let
J': EmSO(m) -» Sm and J* : EmSO -> QSm be the adjoint maps of J and Js. We
put F(m) = ®(QSm, Sm), then J' and Js

m induce JR: O(ZmSO, ZmSO(m))
-»F(m). We define the relative J-map Jrel: Zm~1P^)->F(m) to be the
composition

Sm-l poo J^ ^m-l^poo y Cpm-l) J

where inv is the (m — l)-fold suspension of the homotopy inverse of the
collapsing map P°° (J CPm'1 -» P£(Pn = RF1), and K is induced by the canonical
inclusion P°° c» SO.

Let p: SO-^SO/SO(m) be the projection, then (Smp)*: n^TTSO, ZmSO(m))
-+nj(?,m(SO/SO(m))) is an isomorphism for j < 3m. In fact, let 7 be the
homotopy fiber of Em/?9 then there is a map £: Em5O(m) -» 7 such that the

composition EmSO(m) -^ 7-> EmSO is homotopic to inclusion EmSO(m) c^ ZmSO.

By an easy argument on the Serre spectral sequence associated with fibering Y
-> EmSO -> %m(SO/SO(m)), we see that £*: Hj(I,mSO(m)) -> H/Y) is an isomorph-
ism for j < 3m and an epimorphism for j ^ 3m. Thus £* : 7ij(£mSO(m)) ->• ^^ Y)
is an isomorphism for j < 3m and the above assertion follows from the five-
lemma.

We denote by k\ P°° U CPm~1 -* SO/SO(m) the composition P^UCP'""1

/c
-> P^ — > SO/SO(m). For j < 2m - 1, we have the following commutative

diagram

SO(m))

By the definition of the relative J-map and the commutativity of the above
diagram, the following diagram commutes for j < 2m — 1.
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^•+i(P«) —^ nJ+1(SO/SO(m)) d > 7c/SO(m))

(2.12) JS"1-1 |J

7^m(£m~ *Pm) -^ nj+m(F(m)) -^ nj + m(Sm) ^ Tr/O? Sm)

Theorem 2.13 ([21], Theorem 11.7). J™1: nJ{T,m-1P%)-+nj(F(m)) is aw
isomorphism for j < 4m — 3.

In the case m = 2n + 1, 7 = 2n -h 2 (n: even) or m = 4w + 3, j = 4n + 6
(n = 6 modulo 8), k^, Em~l and J™1 are isomorphisms and 5 is an epimorphism
in the diagram (2.12). Consider the exact sequence associated with fiber

sequence QSm'1—>F(m)-^Sm. Then the following lemma is obvious since

n4n + 3(F(2n + 1)) ̂  Z/8 if n is even by Lemma 2.8 and the above
theorem. (nSn + 9(F(4n + 3)) is a cyclic group of order sixteen.)

Lemma 2.14, i) For even n, the image of J: n2n*2(50(2n + 1)) -»
7t2n-t-2(^in + 1'S2lI+1) contains an element of order four, if the order of the image of

ii) For n = 6 modulo 8, J: n4n^6(SO(4n + 3)) -»n4.n + 6(Q*n + 3S4n + 3) is non-trivial
if $*'- 7l8n + 9(QS4"~t~2) ->• 7i8w + 9(F(4n + 3)) w ?26>/ surjcctive.

Thus it suffices to examine (5^: Tr/g-S'""1) -> 7ij(F(m)) in the above
cases. We apply the following theorem which was first given by Mahowald
([10], Theorem A), and later it was reformulated by Milgram ([14], Part II)
using a kind of unstable Adams spectral sequence. For a space X, we denote by
[ES/(X), dr} a certain unstable Adams spectral sequence constructed in [14],
Part II. It converges to n^.(X) (§) Z2 for "good" X (X = 1LY, for example), and
in the stable range, it coincides with the stable Adams spectral sequence. Thus
ES2f(X) ^ Ext^(F2, B*(X)) for t - s < 2n - 1 if X is (n - l)-connected. In fact,
there is a map of spectral sequences E^(X) -> £r

s't+1(ZJQ and let (ES/^X), dr]

be the spectral sequence defined by ES/(^™X] = ljmE*>t+u(I,uX), then
u

(E^CZ^X), dr] is the stable Adams spectral sequence (See [14], §6 for
details). Note that F(m) is (2m — 2)-connected and it is homotopy equivalent to
^m-ipco through dimension 4m — 4 by Theorem 2.13. Hence {£*>f(F(m)), dr]
converges to 7rt_s(F(m)) (g) Z2 and £|'r(F(m)) ^ Ext%(F2, O^(F(m)))^
Ext^rm+1(F25 ^*(pm )) for t - s < 4m - 3.

Theorem 2,15 ([10] Theorem A, [14] Theorem 8.5 and Theorem 8.21).
There is a map of spectral sequences dr: E^'^E^S7""1) -> £^~1) f~1(F(m)) which

converges to 3^: ̂ (S1""1) ^ nt_s(QSm~l) -»7rt_s(F(m)) for t - s < 3m - 1. In
the E2-term, 32 is identified with a homomorphism Ext^(F2, H^S1™"1))
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^Exts
A-l>t-l(¥2, H^m~lP^)) for t - s < 3m - 1.

Lemma 2d6 i) If n is even and greater than 2, the order of the image of 6^:
n4n + 3(QS2n)-»n4n + 3(F(2n+ 1)) is at most 2.
ii) Ifn is even and positive, 5^. n8n + 9(QS4n + 2) -» n8n + 9(F(4n + 3)) is not surjective.

Proof We denote by F^S^S"1'1), Fs'r(F(m)) the filtrations on n4

and n^.(F(m)) associated with the corresponding spectral sequences in Theorem
2.15. Since £^s+j(E005m~1) = 0 for s = 0, 1, 2 if 7 and m are odd and j 4= m, m
+ 2, m + 6 ([1] for s = 1, [11] for s = 2), it follows that Tc/QS1""1) = ^(S1""1)
= F3'-/+3(SaoSm~1). Hence, by Theorem 2.15, we see that S^(n4n+3(QS2"))
a F2An + 5(F(2n 4- 1)) if n > 2 and that S*(n8n + 9(QS*n + 2)) c F2'8" + 11(F(4n + 3))
if n>0. On the other hand, since £f(F(m)) ^ Ex^~m+1(¥29 H*(P£)), it
follows from (2.7) that F2'4" + 5(F(2n + 1)) ̂  Z/2 and F2'8n+11(F(4« + 3)) ̂  Z/4
if n is even. This completes the proof.

Thus, by Lemmas 2.11, 2.14 and 2.16, we have proved

Theorem 20170 Wn + 2^2 is not 2-regular unless n = 0 or 2, and Xn + 2j2 is not
2-regular for any n^Q.

Let (/>: S4n + 3 -> Qn + 2,2(C) be the attaching map of the top cell of Wn + 2a. If
n is even, we have a collapsing map c: Qn + 2,2(C) ^ S2n+1 V S2n + 3 -» S2"+1 by
Theorem 1.3. Proposition 2.10 and Theorem 2.17 imply that the composition

£4n+3 _^ Qn + 2j2(C) -* S2n+i is not null homotopic if n ^ 4. Otherwise, we can

extend c to c: Wn+2t2 -> S2n+l which is a left homotopy inverse of the canonical
inclusion S2n + 1 -> PFn + 2)2. Then, fibration 52""4"1 -> PFM + 2>2 -> S2"""3 becomes
retractible in the sense of James ([8]), it is fiber homotopy equivalent to the
trivial bundle ([8], Corollary 4.3). This contradicts Theorem 2.17. Hence we
have a family of non-trivial elements ^ in the 2-component of n8j+3(S

4j+1) (j
^ 2). Similarly, the attaching maps of the top cell of Xn^.2j2 define a family of
non-trivial elements if/j in the 2-component of 7c64j-4.57(S

r32j + 27)(/^ 0).

Corollary 2.18. The attaching maps of the top cells of Wn + 2j2 and Xn + 2t2

define non-trivial elements </)j (J ^ 2) and i//j (j ^ 0) in the 2-components of
n8j+3(S

4'j+1) and 7t64/- + 57(S
32j + 27). Moreover, <pj is in the kernel of E3:

n8j+3(S
4j+i)-^n8j+6(S

4rj + 4) ^ nlj+2(S°) and has order at most eight, ij/j is in the
kernel of E5: n64j+51(S

32j+2'7) -> 7i64j + 62(S32^+32) ^ ns
32j + 30(S°) and has order at

most sixteen.

Proof. The assertion that ^-eKerE3 and i/^-eKerE5 is shown in
Appendix (See the proof of Corollary A. 10.). By the exactness of 7i^(F(m))

-^n^(Sm)^» n^(QSm), c^-eKerE3 and i/^-eKerE5 imply that c
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1)) ->7c8j.+ 3(5^+1)]and^Glm[^: n64j+57(F(32j + 27)) -+
(S32j"+27)]. Then the assertion 80,- - 16 -̂ = 0 follows from 7i8j.+3(F(4j + 1)) ̂
7c8j+3(S

4'P?^i) = Z/8 and n64j+51(F(32j + 27)) s 7i64j.+ 57(E32^26P3-2j.+27)
^ Z/16.

Remark 2.19. If n is even and greater than two, Theorem 2.17 implies that
spaces QWn + 2,2 and Q(S2n+l x S2" + 3) are different as loop spaces (with the
natural loop space structures), although they have same homotopy type by
Proposition 1.10. Therefore both QWn + 2^2 and Q(S2n + l x S2n + 3) have at least
two different loop space structures. One is the natural one and the other is
induced by the homotopy equivalence QWn+2^2 ~Q(S2n + 1 x S2" + 3) in Propo-
sition 1.10. Hence, if we deloop OWn + 2j2 and Q(S2n+l x S2n + 3) with respect to
the exotic loop space structures, we have homotopy equivalences BQWn + 2a

~S2n + 1 xS2n + 3 and BQ(S2n + 1 x S2""3) - Wn + 2t2. Similarly, if n = 6 modulo
8, QXn + 2t2 and Q(S4n + 3 x 54n + 7) have exotic loop space structures.

We also remark that £3F^ + 2,2 (resP- ^5^« + 2,2) *s homotopy equivalent to
£3(S2M + 1 x S2n + 3) (resp. H5(S4n+3 'x S4n + 7)) for n as above since the attaching of
the top cell suspends to zero in the stable range. Details are left to readers.

§ 3. On the Homotopy Fiber of S2n + 1 -» QS2^1

Throughout this section, p is a fixed odd prime and all spaces, spectra and
groups are localized at prime p. As in the previous section, we denote by F(n)
the homotopy fiber of the canonical inclusion i: Sn -> QSn. The structure of
H^(QSn; ¥p) is described in [4] and [12]. We review briefly according to [12],

For a sequence / = (el5 s1?..., ek, sk) of non-negative integers such that e,- = 0
or 1 and s7- ^ &p define the degree, length and excess of I by d(I) = YJ=I&SJ(P
- 1) - e,-), /(/) = k and e(I) = 2(psl — ej - d(I) respectively. We denote by Q1

the iterated homology operation /?£lgsi ••• /3EkQSk. I is said to be admissible if psj

— Sj ^ Sj-! for 2 g j ^ k. We also call the empty sequence / admissible and
assign d(I) = 1(1) = 0, e(I) =00 , Q1 = (identity operation).

Theorem 3.1. ([4], [12]). For a positive integer n, let ineHn(QS") be the
image of the canonical generator ofHn(S

n) by i^\ Hn(S
n) -> Hn(QSn). And let An be

the free commutative graded algebra over ¥p generated by Tn = {Q1 in\L
admissible, e(I) ^ n} , that is, An is the tensor product of an exterior algebra
E(QI in\I: admissible, e(I) ^ n, n + d(I)\ odd) and a polynomial algebra ^p\_QIin\I'-
admissible, e(I) ^ n, n + d(I): even}. Let Bn be an ideal of An generated by {Qsx
— xp xe Tn, deg x = 2s}. Then H^(QSn) is isomorphic to An/Bn as an algebra and
each generator Q*in is primitive.

Corollary 3.2, i+: nt(S
2n + 1) -> nt(QS2n+1) is an isomorphism for t < 2pn

+ 2p — 3 and an epimorphism for t < 2pn + 2p — 2. Hence F(2n +1) is (2pn
+ 2p — ^-connected.
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Proof. Since Hs(QS2n + l) = 0 for 2n + 1 < 5 < 2pn + 2p - 2, i+: Ht(S
2n+1)

-* Ht(QS2n + 1) is an isomorphism for f < 2pn + 2p - 2.

Let us consider the following fibration in order to compute the mod p
homology of F(2n + 1).

(3.3) QS2n -^»F(2n+l)-^S2n + 1

Note that the above fibration is a principal fibration, hence by applying the
Wang sequence we have

Lemma 3.4. 6^: H^(QS2n) — » H^.(F(2n + 1)) is surjective and its kernel is an
ideal generated by i2n. Therefore H*(F(2n + 1)) ̂  H*(QS2n)/(i2n).

Since F(2n + 1) has homotopy type of a simply connected decomplex, we
may replace F(2n + 1) by a homotopy equivalent normal decomplex F(2n
+ 1). Thus the inclusion map of the (2np + 2p2 — 4)-skeleton of F(2n + 1)
induces isomorphism of homology groups through dimension 2np + 2p2 — 4.
Define a ( — l)-connected suspension spectrum Ln to be %~2np~2p+3F(2n
+ l)2"p+2p2"4. Let yi9zteHt(L^ be the elements corresponding to
S*mn + i+1 hn) and d*(Q" + i+1i2n) in H*(F(2n + 1)). Hence degy, = 2i(p - 1),
degzz- = 2i(p - 1) + 1 and {y0, z0, ylt zl9...yp-l9 zp^^ is a basis of H+(LJ if n
^ p — 1. So, from now on, we assume n ^ p — I for simplicity unless otherwise
stated. Let ^ be the dual mod p Steenrod algebra, then A^

...JOF^, ^2,...] as an algebra ([16]).

Lemma 3.5. The coaction i/r: H^(Ln) -> A# & H^.(Ln) is given by

The Nishida relations ([17], see also [12]) determine the action of
Pi on yt, z{ as follows.

«-, and fc

The result easily follows from the above and congruences
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J

( - l ) ( m ~j)(P ~ = ~ modulo p for 0 ̂  p - 1.

Let P^ = FpKls £2,...] be the Hopf subalgebra of ^^ generated by £15 £ 2 5 - - -
and put E^ = AJ/P^ = E(IO, i l5...). Then P^-^A^^E^ Is an extension of
Hopf algebras. To compute the 5P-homology of Ln, we use the Adams spectral
sequence Ef = Ext%(Fp, H+(BP A LJ) => BPt_s(Ln). First note that
H^(BP A LB) ̂  P^ <g) H^(Ln) is isomorphic to ^ D Eit!H^(Ln) as an A^-
comodule. In fact, define /: P^ (x) H^(Ln) -> ̂ 4^ (x) H^(Ln) by /(a (x) x)
= Sfaa,- (x) xf where i//(x) = Sfaf (g) x/9 then / lifts to /: P^ ® H*(Ln)
-^-4*0 E^H*(Ln) which is an isomorphism of A^-comodules. We apply the
Change-of-Rings isomorphism and have

(3.6) Ext^(Fp, H*(BP A LJ) s

^ Ext£^(Fp, ff^LJ)

Lemma 3.5 gives the coaction ij/: H^(Ln) -* E^ (x) H^(L^) as follows

(3.7) 0ty£) = 1 (x) ^ $(zt) = 1 (x) z£ + T0 (X) y£ - T! (g) ^_ x

(Put y - i = 0 )

Hence we may regard H^(Ln) as an £(TO? i^-comodule. Put £' = £(r2, T3 , . . .),
then E^ = £(TO, T^ (x) £'. By the Kiinneth theorem, it is easy to see that the
external pairing

(3.8) Ext^^F,, H*(Ln)) (x) Ext£<Fp, F,) -> Ext^(Fp, HJLJ)

is an isomorphism. Since each T,- is primitive in E^., we have

(3.9) Ext£.(Fp, Vp) = Vp[v2,v3,...9 v i y . . . J , bideg vt = (l9 2pl - 1)

ft- is represented by [rj in the cobar complex.
To compute Ext£(T05Tl)(Fp, H^(LJ), we apply the Cartan-Eilenberg spectral

sequence ([18], p. 331) to an extension of Hopf algebras E(t<^ -> E(TO, T:)
-> £(TO). Clearly, H^(Ln) is a free £(T0)-comodule with basis in degrees
- l)(i = 0, 1,..., p - 1). Therefore

Wp s = 0, t = 2i(p-l) O^z^p-
(3.10)

0 otherwise

By dimensional reason, coaction Ext£(To)(Fp, H^(Ln)) -> £(1^ ®Ext£(to)(Fp,
H^(Ln)) is trivial. Thus the £2-

term °f the Cartan-Eilenberg spectral sequence is
given by
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(3.1 1) E? = Ext|(Tl)(Fp, Ex4(To)(Fp, H*(LJ))

S Ex4(ro)(Fp, HJLJ) (x) Ext|(Tl)(Fp, Fp)

Therefore Ef' = 0 if t + 0 and we see that this spectral sequence collapses. We
also denote by yt the element of Ext^^fJ^F^, H#(Ln)) represented by
yieH2i(p_1)(Ln) in the cobar complex. As in (3.9), we have

(3.12) Ext£(tl)(Fp, Fp) = F^OJ, Ext£(TO)tl)(Fp, Fp) = Fp[>0, uj

Hence the E^-term is given by

(3-13) Em = Wp{y0, yl9...9 yp^}®¥plvj

The second formula of (3.7) settles the extension problem on the
ExtJE(To>Tl)(Fp? Fp)-module structure of Ext£(TO>Tl)(Fjp5 JfJLJ), namely, relations
v0yi = fitt-i (i = 0, l,...,p - 1) hold inExtj^^F^tfJZJ). By iso-morphisms
(3.6) and (3.8), we see that the E2-term of the Adams spectral sequence is
generated by yf e Ext<£«>- D(FJ>> H^BP A Lj) over Ext^(Fp, H+(BP))

= FP[«o» t;l5...?i;£,...] with relations i^tt = fitt-i 0" = 0, 1 ,..., p - 1; j^_!
= 0). Since E*i* = 0 if t — s is odd, the Adams spectral sequence
collapses. Thus we have shown

.14. BP^(Ln) is generated by yieBP2i(p-i}(LJ (i = 0, 1,..., p - 1)
over BP^ with relations py0 = 0, pyt = v^i-^ (i = 1, 2,..., p — 1) a^ w^ ca?z
choose y{ such that it is mapped to ytEH^(L^ by the Thorn map BP^(Ln)

Remark 3.15. In BP^(Ln), equality pBPt(Ln) = v1BPt_2(p,l)(Ln) holds for t
< 2p(p — 1) and the above y/s are determined uniquely modulo pBP^(Ln) so that
relations pyt = Ui^i- i (0 rg i ^ p — 1) hold. These relations imply that pl + 1yt

= 0 (but plyt * 0).

Recall that the Thorn map BP^BP -^> A^ sends ti to the conjugate of £f

([24]). It follows from Lemma 3.5 and the relations that there exists /L£JeZ(p)

such that the coaction \l/: BP^(Ln) -* BP^BP (g) Bp^P^(Ln) is of the following
form

(3.16)

We note that, since p4"1"1^ = 0, we may regard AfJ as an element of
and that each ^iJEZl/p

i~j does not depend on the choice of generators y0, y l 5 . . . ,
3;^-! which have the properties of Lemma 3.14. We do not need explicit values
of A^/s for our purpose, so we only remark that A£>0 = 0 modulo p1 by the
existence of counit, and that A p _ i a determines every other ^tj by the
coassociativity and the BP^ -linearity of \j/.
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Define a filtration of BP*(Ln) by putting Ft = BP*{y0, yl9..., yt}, then 0
= F_1 c F0 c Fl G ... a Fp-1 = BP^(Ln) and the associated graded comodule
E&BP^LJ is isomorphic to BP^S^'^M,,) as a ^P^P-comodule where Mp is
the mod p Moore spectrum. We also filter the cobar complex Q*(BP^(Ln)) by
FStt = BP^.BP®S 0 Bp*Fr Consider the spectral sequence associated with this
filtration. Then, we* have £?•'•" = Exts^BP(BP^ Ef

0BP^Ln)) and dr: Es/ •" ->
£s+i,t-r,M N0te that this spectral sequence has an ExtBP^BP(BP^, BPJ-module
structure. Let a1eExtjB>2(jp"1)(5Ps|s, BPJ be the element represented by [tj in
the cobar complex. The jE^-term is easily obtained by the following results of
Miller-Ravenel- Wilson.

Theorem3.17. ([15], see also [18] p.157) Ext°B'^BP(BP^ BP^(MP)) = F^uJ,

BP(BP*, BP+(MP)) = F/^] • ajar * < 2p(p - 1), andExts^BP (BP*, BP*(MP))
= 0 for s ^ 2 and w — s < 2p(p — 1) — 2.

Lemma 3.18. ~, — ^ ^
0 otherwise

E-I.MI ^ J~/f w = 2j(p - 1), t + I <^j < p + t
1 = | 0 otherwise for u<2(p + t)(p - 1)

Es^'u =0 /or s ^ 2, u — s < 2(t + p)(p — 1) — 2. Moreover, E®'*'2^^

generated by v\yt and El't'2(l + t ) ( p ~ 1 ) is generated by oclv\~1yt (i < p).

The first differential is given by (3.16).

(3.19) d±(v\yd = (n + i + t + l)u>\v\yt-i for i + t < p.

Put -n-l=pqn + rn (Q^rn< p), then d^y,) = (n + i + t +
4= 0 if i + t 4= rn, i + t < p and t > 0. ^(uiy,) = 0 if i + t = rn or t = 0. This

implies

Lemma 3.20. £$•'•" = 0 z/ w 4= 2rn(p - 1), w < 2p(p - 1) and 0 < t < p.
Ei,t,u = Q i f u = ] F 2rn(p -l)u< 2p(p - 1) and 0 ̂  t < p - 1. Cto r/ze or/zer te/irf,
£o,o,2i(P-i) ^ z/p/or 0 ̂  i < p, ara? £i^-'.2rn(p-i) ^ z/p/or l^i^rnifrn> 0.

Define a filtration on Ext S^P(BP^ BP*(Ln)) by Fs'f>u = Im
Ft) -> Ext^BP(BpJ, BPJLJ)] . Then 0 = Fs' ~ x'" c

BP(Ln)) and FS^U/F^~^U

Lemma 3.21. For 7 < 2p(p — 1) — 2, n?(Ln) 4= 0 if and only if one of the
following conditions is satisfied ;
i) j = 2i(p - 1) for 0^i<p.

ii) j = 2rn(p - 1) - 1 and rn > 0.

Proof. Consider the Adams-No vikov spectral sequence £|'"(LJ =



374 ATSUSHI YAMAGUCHI

Exts^P(BP^ BP*(Ln)) => 7zf_s(Ln). By Lemma 3.18 and Lemma 3.20, E°'M = 0
if u ̂  0 modulo 2(p - 1), and E^u = 0, if u = 0 or u 4= 2rn(p - 1), u < 2p(p - 1).
Hence we have Extg^pCBP^, flP^LJ) = 0 if u ̂  0 modulo 2(p - 1), and
Ext^BP(BP^ BP^(Ln)) = Q i f u = Qoru3= 2rn(p - 1), u < 2p(p - 1). Since
E%-u = £?''" = 0 for s ̂  2, u - s < 2p(p - 1) - 2, we also have
Ext^gp^BP*, 5PJLJ) = 0 for s ̂  2, u - s < 2p(p - 1) - 2. It follows that
n*(Ln) = 0 (/ < 2p(p — 1) — 2) if neither i) nor ii) is satisfied. Conversely, since
£0,o,2i(p-i) = Eo.o,2i(p-i) + 0 for 0 ^ i < p , we see that Ext^jT1'
CBP*, BP*(ln)) 4= 0 for 0 ^ z < p . By Lemma 3.18 and Lemma * 3.20,
£i,rn-i,2rn(P-i) 4= o if rn ^ 0, £0^2rn(p-i) = Q if t > rn, and E|'r'" = 0 if u < 2p(p
-1). Therefore elements of E^-I^MP-D survive and E^'1'2^-^ 4= 0,
thus Exti^-^P*, BP*(LJ)*0 if rB 4= 0. Recalling that
E*tSBp*Bp(BP*> BP*(Ln)) = 0 for s ̂  2, w - s < 2p(p - 1) - 2, it follows that
Eo,2*(p-i)(Lj = £0.2£(p-i)(Lj + o for 0 ̂  i < /? and ^^^-^(LJ
= £2i'2rn(p-i)^Lj ̂  o if rn =|= 0. This completes the proof.

Theorem 3.22,, For i < 2pn + 2p2 - 4 and n ̂  p - 1, nt(QS2n+\ S2n + 1) 4= 0
// and only if one of the following conditions is satisfied;
i) i = 2pn + 2j(p - 1) for 1 ̂  j ^ p.

ii) i = 2(rn + l)(p - 1) + 2pn - 1 and rn > 0.

nt(QS2n + 1, S2n+l) is isomorphic to 7ci_1(F(2w + l))and, by Corollary
3.2, ni^1(F(2n + 1)) is isomorphic to the stable homotopy group n^1 (F(2n + 1))
if i < 4pn + 4p - 6. By the definition ofLn, 7if_1(F(2n + 1)) ̂  7cf_2ll l l_2j,+2(LII)
for i < 2pn + 2p2 — 4. Note that 2pn + 2p2 — 4 ^ 4pn + 4p — 6 since n ^ p
— 1, and we have an isomorphism ni(QS2n+1, S2n+1) ^ nf^2pn-2P-r2(^n) f°r ?>

+ 2p2 — 4. Then, the assertion follows from the previous lemma.

In the case n < p — 1, we put m = \_(np + p — 2)/(p — 1)] and define a
spectrum L'n to be z-2np-2p+3F(2n + l)+np+*p-« instead of Ln. Then
bo. zo> ;Vi> ^ i ? - - - 3 Jm? Zm] is a basis of H^(L'n), and as in Lemma 3.14, BP^(L'n) is
generated by yteBP^(L'n), we can compute Ext^p^p^P^, BP(L'n)) in the same
way. Thus we have

Theorem 3.23, For i < 4pn + 4p - 6 and n < p - 1, n£QS2n + 1, S2n + 1) 4= 0
if and only if one of the following conditions is satisfied;
i) i = 2pn + 2j(p - 1) for 1 ̂ j ^ [_(np + p - 2)/(p - 1)].

ii) i = 2(rn + l)(p - 1) + 2pn - 1 and rn > 0.

We also need to know whether n^QS2"*1, S2n + 1) is zero or not in the low
dimensional unstable range. The following result is due to Toda (see also [2]).

Theorem 3.24. ([22]). For 1 ̂  n < p - 1,

fZ/p i =
n+ » s n ) - ^ 0 otherwise for i < 2n + 2p(p - 1)



THE P-REGULARITY OF STIEFEL MANIFOLDS 375

Summarizing Theorem 3.22, 3.23 and 3.24,

(3.25) For i < min{2pn + 2p2 — 4, max{4pn + 4p - 6, In + 2p(p - 1)}},
ni(QS2n + l, S2n + l) =|= 0 if and only if one of the following conditions is satisfied.
i) i = 2pn + 2j(p - 1) for j ^ L

ii) i = 2(rn + l)(p — 1) + 2pn — 1 and rn > 0, where — n — 1 = pqn + rn, 0 ^ rn

Remark 3.26. For an integer i which satisfies the condition i) above, the
Hurewicz map 7cI-_1(F(2n+ 1)) -> PBPi^1(F(2n + 1)) is an isomorphism, where
PBP+(X) is the set of primitive elements {xEBP^(X)\\//(x) = 1 (g)*}.

§4. The /i-Regulariiy for an Odd Prime />

As in the previous section, p is a fixed odd prime and all spaces and groups
are localized at p throughout this section. First, we note the following fact
which is easily obtained by Corollary 1.2.

Proposition 4.1. Wn + kik is not p-regular ifk>p, or k = p and p^ n. Xn+k^k

is not p-regular if k > (p + l)/2, or k = (p + l)/2 and p)(2n + 1.

We recall the conditions (C) and (H) in Section 1.
(C) k ^ p - 1, or k = p and p\n. (H) k ^ (p - l)/2, or k = (p + l)/2 and

p|2n+ 1.
The following result of James is the starting point of our argument.

Theorem 4.2. ([8]) Corollary 7. 11) QB+kik(F) is a stable retract of 0n+fcffc(F),
where On+kik(¥) is Vn + kjk, Wn + k,k or Xn + k,k for F = R, C or H respectively.

The combination of the above theorem and Theorem 1.8 implies

Lemma 4.3. i) // (C) is satisfied, there exists a map f: (Wn+k^k, S2"^1)
->(QS2"+1, S2""1) such thatf\S2n+l: S2n+1-»S2n+1 is degree 1.
ii) //(H) is satisfied, there exists amapg: (Xn+ktk, S4" + 3) -> (2S4"+3, S4" + 3) swc/z

Froo/. By Theorem 1.8, there exist maps g': Qn+k,k(C) -> S2n+l and gf':

Gn + fc^P)^^"-"3 such that the compositions S2"4"1 c> Gn^kfk(C) -A S2" + 1 and

54" + 3 ^ en+k,fe(H) Xs4" + 3 are degree 1. Let/": S°° Wn + kik -> S°° en+k,k(C) and

^": Z°° J^n+fe>fc ->Z°°Qn+fc fc(H) be stable retractions. Define / and g to be the
adjoints of stable maps £°°/'°/": 2°° WUkpk -> Z°°52" + 1 and ?<™g'°g": Z™ Xn+k,k
— > X00 S4n + 3, respectively. Then / and ^ satisfy the conditions.

We define sets of integers as follows
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(4.4) Cn+kik(W) = {ieZ\i = Yj=i£j(dn + dj - 1), e = 0 or 1}, where d=2 if ¥
= C and d=4 if¥ = H.

(4.5) H(w; p) = {ieZ i = 2pn + 2j(p - 1) for j ^ 1, or i = 2(rn + l)(p - 1) + 2prc
— 1 if rn > 0} where rn is defined by — n — 1 = pqn + rn, 0 ^ rn < p (See
Introduction.).

Note _ that Cn+k,fe(C) = {ieZ|HW+fc,*) =N 0} and Cn+k,k(K)
= {iEZ\Hl(Xn+kjk) 4= 0}. We also note that obstructions to deform /(resp. 0) to

S4"+'3) lie in H\Wn+ktkt S2" + 1; Tc^S2"*1, S2"+1)) (resp. H'(Ar
II+M,

Theorem 46. i) Assume k^p — 1, or & = p 0m/ p|/3, t/ie?2 Wn+kjk is
homotopy equivalent to S2n + 1 x Wn+kjk_1 if Cn+fc>fc(C) f) H(n; p) is empty.
ii) Assume k :g (p — l)/2, or k = (p + l)/2 awd p|2n + 1, tfcew ^n+fc^ ^ homotopy
equivalent to S4n + 3 x JT l l + k i k_1 i/ Cn+k,,(H)nn(2^ + 1 ; p) is

First note that dim Wn+ktk = max Cn+fc)fc(C) = 2n/c + k2 < min {2pn
+ 2p2 - 4, max {4prc + 4p - 6, 2w + 2p(p - 1)}} if fc ̂  p - 1, or k = p and
p\n. Hence, by (3.25), the condition of i) is equivalent to vanishing of Hl(Wn+ktk,
S2n+1; nt(QS2n + 1, S2n + l)) for any ieZ. Therefore there exists a left homotopy
inverse of the inclusion S2n + 1 q: Wn+k>fc, and fibration S2n+1 -> Wn+fc) fc -> W n+fc,fc- i
is fiber homotopy equivalent to the product fibration S2"*1 -* S2n + 1 x P^+fc^-!
^ Wn+k,k-i ([8], Corollary 4.3). Proof of ii) is similar.

If n ̂  (Ic2 - 2p 4- 3)/(2p -2k)(k^p- 1), dim WM +kpk ^ 2pn + 2p - 3. Hence
CB+kik_ j(C)nn(n+7;p)isemptyfor7 = 0,l,..., k- 1. And if m ̂  (p - l)/2, it is
easy to verify that Cmp+p>|7(C)nn(mp; p) is empty. Similarly, if n ^ (2k2 + k
- 4p + 3)/(4p - 4/c) (k g (p - l)/2), CB+kik./H) H H(2n + 2j + 1; p) is empty for

j = 0, 1,..., k - 1, and if p|2n + 1 (hence n^(p- l)/2), Cn + (p+1)/2j(p+1)/2(H)
n + 1; p) is empty. Thus the preceding theorem implies

Theorem 4.7, i) For k^p-1, Wn+k>k is p-regular if (J*=o(CB +*,*-./ (c)
(n +j; p)) is empty. In particular, it is p-regular if n ^ (k2 — 2p-f 4- 3)/(2p

- 2fc). yln^ W^p + p.p w p-regular if m ̂  (p - l)/2.
ii) For fc ̂  (p - l)/2, Xn+fc jk is p-regular if U*=o(Cn+ *,*-/») H H(2n + 2j + 1; p))
is empty. In particular, it is p-regular if n ^ (2k2 H- fe — 4p + 3)/(4p — 4k). And
Xn + (p+i)/2,(P+i),2 is p-regular if p\2n + 1.

The fact that n2n+1(BU(ri)) (resp. n4n + 3(BSp(n))) is a trivial group if n < p
(resp. n < (p — I)/ 2) easily implies the p-regularity of Wn+ktk (resp. Xn+kik) for n
+ k ̂  p(resp. n + k ^ (p - l)/2).

Proposition 48 ([6]). FFn + k)fc is p-regular if n + k ^ /?,
regular if n + ^ ^ (p — l)/2.
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Proof. Consider the fiber bundle Wn+k-ltk^l -> Wn+kik -> S2n + 2k~l which is
associated with the principal bundle U(n + k - 1) -> U(n + k) -» s2"-*-2*-1. Then
the classifying map is an element of n2n + 2k_l(BU(n + /c — 1)). If n + k ^ p,
^2n + 2k-i(BU(n + k - 1)) =- Z(p)/(rc + fc - 1)! = 0. Therefore the above fiber
bundle is trivial and Wn+ktk is homotopy equivalent to Wn^k^lik^1 x s2n + 2k~1.
Inductively, we can show the p-regularity of Wn + kjk. Proof of the second
statement is similar.

Remark 4.9. i) It follows from Theorem 4.7 and Proposition 4.8 that Wn+k^k

is p-regular for any n if fc ̂  [(2 — x/2)p] + 1 and that Xn+k9k is p-regular for any

n if fc ̂  (p - l)/2 for p = 3,5,7, 11, and k ^ [(3 - ^/5)p/2] + 1 for p ̂  13.
ii) Since the obstruction group n2pn + 2i(p,l)(QS2n + 1, 52n+1) ^ 7c2pn + 2 £ ( / 7_1 )_1

(F(2n + 1)) (i ^ 1) maps isomorphically onto P5P2pn + 2f(p_1)_1(F(2n + 1)) by the
BP-Hurewicz map as we noted in Remark 3.26, we may be able to know
whether the obstruction in this dimension vanishes or not, if we can describe the
map/*: BP*(Wn+k,k) -> BP*(QS2n + 1) explicitly (for this,/: J^+Mc -» gS2""1 should
be constructed explicitly). We also remark that if n > (k2 — 4p + 4)/(4p — 2/c),
we may assume that the image of /is contained in the (p + l)-th May filtration
F^C^S21^1 of C^S^^QS2^1 ([13]) and BP4Fp+lCQOS2n+l) can be
computed in the same way as we computed £P*(LJ.

Examples 410. i) For p = 3, Wn+ktk is 3-regular if and only if fc ̂  2, or k
= 3 and 3|n. Assume that fc^p — 1, or k = p and p\n. Wn+ktk is p-regular
except for the following undecided cases;
For p = 5, (n,fc) = (4,4), (5,5)
For p - 7, (n,k) = (2,6), (3,6), (6,6), (12,6), (7,7), (14,7)
For p = 11, (n,k) = (4,8), (f,9) for 3 ^ i ^ 10, (i, 10) for 2 g z ̂  12,

(40,10), (Hi, 11) for i = l,2,3,4
For p = 13, (n, fc) = (5,9), (i, 10) for i = 4,5,6,7, (i, 11) for 3 g i ^ 16, (i, 12)

for 2 ^ i ^ 18, (12z, 12) for i = 2,3,4,5,
(13i,13) for 1 ̂ i ^ 5 .

ii) For p = 3,5,7,11, ll,Xn+ktk is p-regular if and only if fc ̂  (p - l)/2,
or fc = (p + l)/2 and p|2n + 1.

Assume that fc ^ (p — l)/2, or fc = (p + l)/2 and p|2n + 1. %n+k,k i§ p-regular
except for the following undecided cases.
For p = 13, (n,fc) = (l,6)
For p= 19, (n,fc) = (l,9)
For p = 23, (n,k) = (l,ll), (2,11), (3,11).

Appendix. The Non-2-Regularity of Meal Stiefel Manifolds

Recall that real quasiprojective space 2n+k>fe(R) is in fact real stunted
projective space Pi^ + k~1- To begin with we state the following facts without
proofs.
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Lemma A.1. B*(Qn+ktl$Q) = F2{xll9xm + l9...9xll+k.1}9 SqlXj = ( J . ) xi+j.

Thus the action of the Steenrod operations in trivial if and only if k = 1, or k = 2
and 2\n.

Proposition A920 The following three conditions are equivalent.
i) k = 1, or k = 2 and 2\n. ii) Qn + k,kW is homotopy equivalent to Vf=1S'" + J"1

at prime 2. iii) OVn+ktk is homotopy equivalent to YK= i ̂ "+1~1 at Pr^me 2.
Moreover, if n is even, Qn + 2,2W is globally homotopy equivalent to S" V Sn+1 and
OVn + 2j2 is globally homotopy equivalent to Q(Sn x Sn+l).

Proposition A, 3. Vn+ktk cannot be 2-regular unless k = i, or k = 2 and 2\n.

Let kn: Sn + 1 ^ BSO(n + 1) be the classifying map of sphere bundle Sn

~* Kt+2,2 ~^Sn+1, and we also denote by knenn(SO(n + 1)) the element
corresponding to knenn + 1(BSO(n + 1)) by the natural isomorphism. The
following fact is due to Kervaire ([9]).

Lemma Ao4 Consider principal bundle SO(n) -> SO(n + 1) ~-^>Sn. Then

nn(S
n) for n=l^l

2nn(S
n) for odd n, n * 1,3,7

0 for even n

Hence we see that k2 and k6 are null homotopic. This implies

Proposition A0 56 There are homeomorphisms F4j2 ^ S2 x S3 and V8^2 ^ S6

Note that knenn(SO(n + 1)) is the image of generator in+l of nn + 1(S
n + 1) by

A: nn+,(Sn+l)^nn($0(n+l)\

Lemma A06B For even n, there exists k'nenn(SO/SO(n)) which maps to

knEnn(SO(n + 1)) by composition nn + l(SO/SO(n)) -*L>nn(SO(n)) -^ nn(SO(n + 1)).

Proof. By Lemma A.4, j^: nn(SO(ri)) -> nn(SO(n H- 1)) is surjective. Choose
k'n^nn(SO(n)) which maps to kn. Since kn = A(in+i) is in the kernel of nn(SO(n
+ 1)) -^ nn(SO(n + 2)) = nn(SO), it is easy to see that k'^ is in the image of d:
nn+i(SO/SO(n))^nn(SO(n)).

A proof of the following lemma is similar to that of Lemma 2.16.

Lemma A.7. 6%: n2n(QSn~l)-*n2n(F(ri)) is trivial for even n, n 4= 2,6.

Lemma A080 For even n, « 4=2,6, Vn = d(k'n)€nn(SO(n)) is mapped by J:
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nn(SO(n))-*nn(QlSn) to an element which is not in the image of the connecting
homomorphism 6': n^^S") -> nn(@[Sn) associated with fibration Q\Sn -> SH(n + 1)
-»Sn.

Proof. By the commutativity of (2.12) and the above lemma, composition

nn+l(SO/SO(n)) -^ nn(SO(n)) -^ nn(QlSn) is injective. Suppose J(/O = 8'(x) for

some xe7cn+1(S"). Let /: Sn -> SO/SO(n) be the canonical inclusion, then A:

Also 5'

(factors as J ° A = J ° 5 %. Therefore J ° d^) = J(k'^) = S'(x) = J ° d %(x) and
we have /£ =/„,(*) which maps to zero by composition nn + l(SO/SO(n))

-> nn+1(SO/SO(n + 1)) —> 7in(SO(n + 1)). This contradicts the choice of k'n since

kn is not zero.

Theorem A.9. Except for the cases n = 0, 2, 6, Vn + 2,2 i-s not 2-regular.

Proof. By the preceding lemma, knenn(SO(n + 1)) maps to a non-zero
element by JH*: nn(SO(n + 1)) -» nn(H(n + 1)). Then the result follows from
Theorem 2.9 and Proposition 2.10.

An analogue of Corollary 2.18 holds.

Corollary A. 10. The attaching map of the top cell of Vn + 2,2 (n = ?/, j 4= 0, 1,
3) defines a non-trivial element ^ in the 2-component of n4j(S

2j). ^ is in the
kernel of E2: n^S2-*) -» n4rj+2(S

2j'T2) = ns
2j(S°) and has order 2 if j is even and at

most 4 if j is odd.

Proof. Recall that Qn+ 2(R) is a stable summand of Vn + 2t2 (Theorem 4.2)
and en + 2,2W = $n V S"+1".+2Hence there exists a map h:(Vn + 2t2, S")-+(QSn, S")
such that h\Sn: Sn -»Sn is degree 1. In fact, h is an extension of composition

6n + 2,2(R) -^ S" -^ QSn- Thus i o ^ = i o c o ̂ . = o where ^-: S2" -> QW + 2,2(R) is

the attaching map and k: Qn + 2,2(ty~~> ^1 + 2,2 ^s the inclusion map. This means
that £j suspends to zero in the stable range. The last assertion follows from the
fact that n4rj(F(2j)) ( ^ ns

2j+1 P^.)) is isomorphic to Z/2 0 Z/2 if j is even and to
Z/4 if j is odd.
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