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Introduction

In 1983, H. Donnelly and C. Fefferman [3] discovered a strikingly new
phenomenon in complex analysis by establishing a vanishing theorem for the
invariant L2 cohomology. According to their result, for any strictly pseudo-
convex bounded domain D in a Stein manifold of dimension n, the L2

cohomology groups of D vanish except for that of the middle degree n. Their
proof is based on a rather original estimate of H. Donnelly and F. Xavier [4]
which may well be called the Hardy's inequality on manifolds. As for this new
estimate, K. Takegoshi and the author [10] noticed that it is a direct
consequence of Jacobi's identity, and applied it later to show an extension
theorem for L2 holomorphic functions (cf. [9]). It has applications to the
Hodge theory on singular complex spaces, too. (cf. [7] and [8]). As for the L2

cohomology in the middle degree, it was also shown in [3] that their (p, q)
components are all infinite dimensional. Compared to the vanishing theorem,
the basic reason for such infinite dimensionality seems to remain less
transparent, although it is discussed under several different geometric situations
(cf. [1], [6]). Therefore it might make sense to ask for a general geometric
situation under which the infinite dimensionality is valid. The present paper is
meant for that purpose.

Let D be a domain in a connected complex manifold of dimension n. By
definition, a regular boundary point of D is a point p e dD which admits a real-
valued C°° function cp defined on a neighbourhood U B p such that dcp(p) ^ 0 and
[/n D = {xeU; <p(x) < 0}. We call such <p a defining function of dD around
p. A regular boundary point pedD shall be called non-degenerate if rank dde9

= n at p, for any defining function (p around p. Then our result is stated as
follows.

Theorem. Let D be a domain in a connected complex manifold of dimension
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n. Suppose that there exists a non-degenerate regular boundary point
p e dD. Let cp be any defining function around p and let ds2 be any Hermitian
metric on D satisfying

C~lds2 < ( - cprads2
v + ( - cprbd(pd(p < Cds2

on U n D for some Hermitian metric ds^ defined on a neighbourhood U 3p. Here
a, b and C are positive numbers with l<a<b<a + 3. Then, for any positive
integers p and q with p + q = n,

dim Hffi(D) = oo.

Here HffiD) denote the L 2 d-cohomology group of type (p, q) with respect to ds2.

Note that

dim H ( D ) = dim tf(D) = oo

for any Hermitian metric on D, if D is a bounded domain in a Stein manifold of
dimension n. Thus we rediscover Donnely-Fefferman's infinite-dimensionality
theorem recalling that a = 1 and b = 2 if D is strictly pseudoconvex and ds2 is
the Bergman metric (cf. [2] or [5]).

The author thanks the referee for pointing out errors in the manuscript.

The Infinite Dimensionality Theorem

Let (D, ds2) be given as in Theorem, and let p e dD, U^p and (p: U -> R be
fixed likewise. Before going into the proof we prepare the notations. Let
CP)%D) (resp. LP'%D)) be the set of C°° (resp. square integrable) (p, q) forms on D
and let d be the complex exterior derivative of type (0, 1). We put

Lp>q + *(D) }

Zp>q:=

df= 0}

l(D) s.t. dg =

Then the operator d: @%q-+Zffi+1 induces a linear map, say [5"], from
®%q/(&l'q + Zp'q) to /ffi? + 1. By the regularity theorem for elliptic operators [d]
turns out to be injective. Therefore, in order to prove Theorem it suffices to
show the following.
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Proposition. Under the assumption of Theorem^ one has

dim &%*-*/(&%*- * + Zp'q~1} = oo

for any positive integers p and q satisfying p + q = n.

Proof. Let z = (z l9...,zn) be a holomorphic local coordinate around p
defined on a coordinate neighbourhood V. By choosing (V9 z) appropriately, we
may assume that z is a coordinate on V, ( — l ,0,.. . ,0)eDn V<^ (7, <pzi ^ 0 and

O on K We put £•= = ^i + I)'1 for i > 2, C: = (C2,...,O and
n

||2: = £ |C; 2. Then we take a C°° function %:M -> [0, 1] in such a way that
i = 2 _

— X ( \ z i + 1|)) extends to a C°° function on D, say p, which is zero
outside V and = 1 on a neighbourhood of p. Note that p = 0 on a
neighbourhood of {zeVn D; z1 = — 1}. Thus for any C°° function g in £, we
can regard pg as a C°° function on D. From the assumptions on ds2 and £, we
find that there exists a constant C0 such that

i = 2

on supp p n -D. For positive integers p and g with p + q = n we put

w: =£ + pgd£ A ••• A d£ A d£ A ••• A C+,

where 0 is a C°° function of £ which shall be specified later. As above, we
regard u as a C°° (p, g — 1) form on D. Since 33<p is non-degenerate on the
complex tangent spaces of dDr\ V, we can split du as

du = ddcp A v1 + dcp A i;2 + dcp A u3 + (py4,

for some C°° forms i;f on D, where i;t is chosen in particular in such a way that

for some (uniquely determined) C°° functions vuj on ^Dn K We put w: =u
+ dq> A t;^ Then dweLp'q(D), since 3<p A 5^, ^9 A u2, Scjj) A v3eLp*q(D) and
cpv4eLp>q(D) by the condition a + 3 > b. Therefore we^*"1. Suppose that
we^!'*"1 + Z1'-9"1. Then ^w = ^vv0 for some Woe^*'1. We express w0 on
Fn D as

dWG + 3<p A Z WOKL^K^LSV A WQ",
K,L

where /, J, K, L run through the multi-indices with | / 1 + | J \ = n — 1 and | K \
+ \L\ = n — 2. Then the L2 condition implies

(1) A ••• A dzn A
DnF

< 00
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for any K and L.
Since a > 1, (1) shows that there exists a sequence {sll}^>=1 c= ( —oo, 0) such

that lim e^ = 0 and
j*-»oo

(2) lim \WoKL\2ds(E} = 0.

Here ds(E} denote the volume form of the hypersurface ^~1(eA4)n K which is
n

induced from the metric £ dzidz^

Since w is C°° on D, (2) immediately implies that

(3) dv1 /\ dcp = 0 on <9Dn Fn (supp i;2)
c.

Clearly (3) does not hold if we choose g in advance to be a nonzero
polynomial in £2 without the constant term. Thus we have finished the proof of
Proposition. Q.E.D.
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