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§1. Introduction and Statements of Results

In this paper we consider the following lifting problem: for which n and k is
there a lift fj making the following diagram (1) or (2) commute up to stable
homotopy?

Diagram (1) Diagram (2)

Here and throughout this paper we use the following notations;

Notation

HP": the quaternionic n-dimensional projective space.
Q": the quaternionic quasi-projective space of dimension 4n-l.

n
n_k + l =HPn/HPn~k.

p is the canonical collapsing map.
r\ is the non-trivial element of n^S0).

These problems are natural 'next' questions after the stable James number
problem (For example, see [3]). Since Qn is a stable retract of Sp(n) [5] and
since HP" is a stable retract of Q(U(2n + 2)/Sp(n + 1)) [2], these problems are
closely related to the unstable lifting problem of r\ in the canonical Stiefel
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bundles: the problem with respect to Diagram (1) is related to the lifting problem
of rj to the quaternionic Stiefel bundle A"njk-> S4""1, and the problem with
respect to Diagram (2) is related to the relative complex-quaternionic Stiefel
fibration [5] rn + lik^>QS4n + 1, where Fntk is the homotopy fiber of the inclusion
Xn,k -* ^2«,2fc- F°r tne lifting problem of rj to the real Stiefel bundle Vn^k -> Sn~~l,
the complete answer is known by M.C.Crabb and W.A.Sutherland [4] and the
complex case is easy.

Theorem A. If n = 2\ then for any k ^ n there exists a lift rj so that the
diagram (1) commutes up to stable homotopy.

Theorem B0 There exists a lift rj in diagram (2) if and only if one of the
following conditions is satisfied]

(1) k = 1 or 2,

(2) k = 3 or 4, and n = 2 mod 4.

Theorem C. Let i ^ 1. Let n = 2lafor some odd integer a > 1. If there is
a lift fj: S4f l->QS-2* + i> then the composite

is non- trivial, where the map d is the usual one in the following usual cofiber
sequence',

Therefore there is no lift for k = 2l + 1 when n = 2la (a is odd).

In fact the above composite is detected by the secondary operation
associated to the following relation;

Sq2l + 2 + 1Sql + Sq2Sq2l + 2 + Sq4Sq2l + 2~2 + Sq2l + 2Sq2 = 0.

Therefore we have a family of the stable homotopy groups closely related to
what Mahowald constructed in [8] . If we choose a specific lift, we get precisely
Mahowald's element ri5ti+2 constructed in [9]. This fact follows from the
construction and the result due to Mann-Miller [10] or Mann-Miller-
Miller[ll]. From Theorems A and C we get the following corollaries.

Corollary D, There exists a stable lift fj: S4n -> Qn if and only if n = 2f for
some t.

Remark. There is no unstable lift of rj to the usual bundle projection Sp(n)
-> S4""1, because n4n(Sp(ri)) ^ n4n(Sp) is Z/2 or 0 according as n is odd or even
and because the generator of 7c8m+4(5p) comes from Sp(l).
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Corollary E» Let i ^ 1. The Mahowald's elements r]5ji + 2 as above referred
are in the image of the ^-transfer homomorphism t: 7C*(Q°°) -> 7i*(S°).

The following theorem is a partial result about the lifting problem in
Diagram (1) in case that k is small.

Theorem F0 Let k ^ 6. J7ze« z« Diagram (1) £/iere exists a stable lift tf for
k, if and only if one of the following conditions is satisfied.

(1) k = 1 or 2,
(2) k = 3 or 4 am/ n = 0 mod 4,
(3) k = 5 or 6 <2«d ?i = 0 mod 8.

§2. Proof of Theorem A

Throughout this paper, homology and cohomology are assumed to be with
Z/2-coefficients.

For the proof of Theorem A we need the following lemmas;

Lemma 2.1.

(i) Ht(Q2S5) = Z/2[xl,x2,x3,...l,

xt = 6i2iQi '"Qi(xi) and the dimension of xt = 2l+1 — 1.

(ii) (S. Kochman[7]) In H*(Sp) = Az/2(yl9 y2, y3,...), QM = l^n,

where Ql is the Dyer-Lashof (subscripted) homology operation.

Let a: S3 -> Sp be the representative of a generator of n3(Sp) = Z. Since Sp is
an infinite loop space, we have a canonical extension a: Q2S5 — » Sp of the map
a. Let 0: Sp -> ̂ Z^g00 be the /am^ splitting^. Taking the adjoint of the
composite 0°a, we have a stable map, say, g: Q2S5 -+ Q°°.

Lemma 202. Let g*. H^(Q2S5) -> 1/^(2 °°) te r/z^ homology induced
homomorphism of g. Then,

where 7 fGJFf4 i_1(Q°°) w ^/ze standard generator.

Proof. Let CT: H^D °° 27°° Q °°) -> ff^Q00) be the homology suspension.
Then vQ*(y^ = yf and crfl^decomposables) = 0[5]. Now consider the following
commutative diagram;
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So it is enough to show that ^(xi) = y 2
t ~ i - When i=l it is obviously

true. Since a is a double loop map, a^ commutes with Q±- operations.
Therefore the cases i ^ 2 follow from Lemma 2.1.

Recall, by Snaith decomposition [16], that the suspension spectrum of Q2S5

is a wedge of spectra, say, Dk for k ^ 1. Homologically, H^(Dk) corresponds to
the submodule of height k in H^(Q2S5). Here the height h is defined as /z(xj
= 2'"1. Thus D2

l is stably 3-21 — 1 connected and of dimension 2i + 2 — 1
complex: the bottom cell corresponds to xlleH3.2*(Q2S5) = Z/2 and the top
to xi + 1 E H2

i + 2_1(Q
2S5) = Z/2. According to Mahowald [8], Brown and

Peterson [1], Dk is homotopy equivalent to the Brown-Gitler spectrum

£3kBi - I Mahowald [8] proved that there is a stable map g{. S2l + 2 -*D2
l

such that the composite;

is rj. Thus by Lemma 2.2 the stable map g ° g{ gives the desired lift of r\. This
completes the proof of Theorem A.

§3. Proof of Theorem C

Let j^eH^-HQ00) be the dual basis of y^H^.^Q00). The following
lemma easily follows by using the cofiber sequence;

CP°° —» HP00 —> g°° —> I7CP00.

Lemma 3.1. Sq4j(yt) = ( )yi+j> where Sqk is the Steenrod operation.

Now the proof of Theorem C follows by standard arguments. However,
for my own safety I give the details. Let n = 2la for some odd integer a > 1. If
there is a lift fj: 54"-^ QJJ_ 2 i + i, then we denote the composite

C4w n ^ tnn d o4(n-2 l)
•3 ^ ^ n - Z ' + l ^^

by hien2l + 2(S°). For convenience we denote the normalized spectrum of the
mapping cone of hi9 say chi, by Xt ^ S° [Jhie

4"2l + l. Let uEH°(Xi) be the bottom
generator. All we have to do is to calculate the secondary composition
associated to the following sequence;

Xt -^ K(0) -L> K(l) x K(2i + 2) x K(2i+2 - 2) x K(2)-^K(2i + 2 4- 2),

where /= Sql x Sq2l + 2 x Sq2l + 2~2 x Sq2, g = Sq2l + 2 + 1 + Sq2 + Sq4 + Sq2l + 2

and K(m) is the m-fold suspension of the Eilenberg-MacLane spectrum
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HZ/2. By the definition there is a cofibration;

vv
Q? - * Cht - >£Qn-2l-

Let uelf0(r4(2I"n) + 1Q^_2 l) be the bottom generator. Then there is a
commutative (up to stable homotopy) diagram;

-2) x K(2)-^K(2^2 + 2)

-2) x

So it is enough to compute the bracket < g, fv, w>. From Lemma 3.1 it is easy
to see that <#,/, w> = <0,/u, w> ̂  0 without indeterminacy. This completes the
proof of Theorem C.

Now we shall prove Corollaries. First, let Mk = the order of J(£k), where £k

is the canonical symplectic line bundle over HPk~l and J is the classical J-
homomorphism. Then by James periodicity and by Theorem A, we see that
there is a lift rj in diagram (1) for n = 2l + M2I and /c = 2l. In this case, since n
= 2l a for some odd integer a (see Sigrist and Suter[15]), by Theorem C we get
a non-trivial family hi E 71^ + 2(8°). Now according to B. M. Mann and E. Y.
Miller [10] or B. M. Mann, E. Y. Miller and H. Miller [11], there is a
commutative diagram up to homotopy;

Here t is the representative as an infinite loop map of the S3-transfer
homomorphism. Note [6] [14] that the 53-transfer homomorphism t : 7cJ((2°°)
-»7i£(S°) for k^4l+ 1 is induced by the map d: Qm^i ~> S4Ml using James
periodicity [5]. Thus if we take the lift as in the proof of Theorem A, then from
the constructions of Mahowald's element ^5,i + 2[8][9] and our element hb we see
that our ht coincides to the Mahowald element rj5^ + 2. This proves Corollary E.

§4. Proof of Theorem B and F

First we prove Theorem B. For k = 1 or 2, it is trivial. So there is a lift fj:
S4" +1 -> HPn

n _ j. Consider the cofibration;

c4(« - k) * f c . rj D« Pk ^ TT r>n ^k ^ c<4-(n - fc) + 1^ >nrn_k >nrn_k + 1 >o ,
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where ik is the bottom inclusion and pk is the collapsing map. Let k = 2.
Consider the composite d2 ° fj. Then we have

Lemma 4.1.

v if n = 0 mod 4

r\a if n = 1 mod 4

0 if n = 2 mod 4

s if n = 3 mod 4.

The above lemma has been known [12] [13], but here we give a very simple (at
least, theoretically) proof. Recall ns

8(S°) ^ Z/2 0 Z/2 generated by v and e.
Put

Note that the integer a and b are independent of choice of fj. By using e-
invariant methods or the Hurewicz homomorphism of Im J theory, occasionally
denoted by hA, we see that b = 0 if and only if n is even. Here the symbol A
means ^-theory, which is defined as the fiber spectrum of ^3 — 1: ko -> kspin,
where ko (resp. kspin) is the connective (resp. 2-connected) cover of (2)-localized
^0-theory. On the other hand, by using the well-known structure of
H*(HP"_fc) as a module over the Steenrod algebra, we see that d2°rj is detected
by the secondary operation cited (i = 1) in §2 if and only if n = 0 or 1 mod
4. This implies that a ^ 0 if and only if n = 0 or 1 mod 4. This proves Lemma
4.1.

Thus from the above lemma we see that for k = 3 there is a lift of rj if and
only if n = 2 mod 4. Since ns

l2(S°) = 0, we see that for k = 4 there is a lift of Y\ if
and only if n = 2 mod 4. Now we shall prove that there is no lift of Y\ for k
^ 5. For this purpose we use KO theory and Adams operation. Assume that
there exists a map /: S4n + l -> HP"_ fe+1 such that the following diagram
commutes;

KO*(S4n)

Recall that KO*(HPn
n,k+l) ^ KO*(S°){xs | n - k + 1 ̂  s ^ n}, where xs e

KO4s(HPn
n_k + 1). Let akeKO~4k~l(SQ) be the element such that
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where imEKOm(Sm) is the standard generator. Note that p*(xn) = i4n and that
oc0 7^ 0. Let & be the stable Adams operation in KO-theory. It is not difficult
to show that

HLIII2 fs\
03(xs)= X .]ylx2i+s mod 2,

i = o \ij

in KO*(HPn
n_k+1), where yeKO~8(S°) is the standard generator. From the

commutativity between Adams operation and an induced homomorphism, we
see that, for any s such that n — / c + l ^ s ^ n , the following relations hold

Also note that aodd = 0. Let fe = 5. Then, applying the above equation, we
have

~

fn — 4\
Since n must be even if k ^ 3, we get that ( 1 = 0 mod 2. Thus we see that

n = 0 mod 4. But this contradicts the condition that n = 2 mod 4 for k
= 4. Therefore there is no lift of ?? for k = 5. This completes the proof of
Theorem B.

Now we shall study necessary conditions for the existence of a lift of r\ with
respect to Diagram (1). For convenience, we take the S-dual of Diagram
(1). Then we get the following diagram for some integer m;

Diagram (3)

Recall that ,4-theory is defined as the fiber spectrum of <P2 — 1: ko -» kspin,
where /co(resp. kspin) is the connective (resp. 2-connected) cover of KO. Then
by similar consideration, using ^-theory, as in the proof of Theorem B, we get
the following necessary condition;

1 ~i
< 2V2(m),

where v2(m) is the exponent of 2 in the prime decomposition of m. Thus taking
S-dual again, we see that the following condition is necessary for the existence of
a lift in Diagram (1);
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Remark that the condition obtained from Theorem C is more restrictive than
this condition. This implies that the essential obstruction of co-extending Y\ is
not in the image of the classical J-homomorphism. So the problem does not
seem to be solved by e-invariant methods. However, for the case that k is small,
by using both e-invariant and secondary operation in §2, we can solve the
problem. Thus we obtain Theorem F. Details are omitted.
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