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A PoIncare-BIrkhoff-Witt Theorem for Quantized
Universal Enveloping Algebras of Type AN

By

Hiroyuki YAMANE*

Introduction

In this paper, we construct an explicit basis of the quantized universal
enveloping algebra Uq(slN + 1(C)).

Let A = (%-)i<jj<;v be a symmetrizable generalized Cartan matrix, and &(A)
the Kac-Moody Lie algebra of A. Motivated by studies of quantum Yang-
Baxter equations, Jimbo [6] and Drinfeld [2, 3] introduced a Hopf algebra
Uq(&(A)) with a nonzero complex parameter q. This Hopf algebra, which is
also called [3] a "quantum group", can be considered as a natural ^-analogue of
the universal enveloping algebra U(&(A)) of &(A). For example, it is known
that the representation theory of Uq(&(A)) is quite analogous to that of
U(&(A)). See Lusztig [9] and Rosso [11]. The purpose of this paper is to
show that, if &(A) is of type AN, and q8 =£ 1, then Uq(&(A)) has a Poincare-
Birkhoff-Witt type basis.

Let R be a commutative ring with 1. Denote by slN+l(R), the Lie algebra
of (N + 1) x (N + 1) matrices over R of trace 0. It has the standard J^-basis
consisting of the elements

etj = £„, ftj = EJti (l<i<j<N+l), ht = £,.,- - E i+u+1 (1 < i < N)

(Etj is the matrix having 1 in (i,j) position and 0 elsewhere). By the Poincare-
Birkhoff-Witt theorem [1], the elements

fm^—fm^n.h^ ~'htf eiltjl~-eittjt (*)

(r l5..., rN > 0; (ml5 nj^ ••• < (ms, ns) and (^,7!) < < (isjs) with respect to the
lexicographic order < ) form an jR-basis of U(slN+l(R)). Let Uq(slN + 1(R)) be the
quantum group over ^associated with the Cartan matrix of type A. (See the
beginning of Section 6 for the definition of Uq(slN+i(R)). ) Let Rx be the unit
group of JR. In this paper, for qeRx such that q8 — 1 e jRx, we construct an R-
basis of Uq(slN+1(R)) which can be considered as a natural ^-analogue of
(*)(Theorem 1.1 and 6.1). Here the condition q8 — leR* is essential. In fact,
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(i) When R is a field and q8 = 1, Uq(slN+l(R)) seems to have no basis
^-analogous to (*). (Even in this case, we can give an explicit
basis. See Proposition 6.2.)

(ii) If q is an indeterminate and R = C[g+1, (q4 — I)"1], then the
1^-module Uq(slN+1(R)) is not free. (See Proposition 6.3.)

To remedy this unpleasant situation, we are naturally led to introduce a new
quantum group Uq(slN + 1(R))(Section 6), which seems to be more natural than
Uq(slN+1(R)) in the following sense (See Theorem 6.1):

(0) Uq(slN + ,(R)) = Uq(slN+1(R)) if q8 - 1 e **,

(1) Uq(slN+1(R)) has an K-basis ^-analogous to (*).

We can define a filtration in Uq(slN + 1(R)) such that the associated graded
algebra is a non-commutative analogue of a polynomial ring (Section 5 (and
6)). As a corollary of this fact, we show that if R is a Noetherian ring, then
Uq(slN + i(R)) is a left (right) Noetherian ring, and that, if R has no zero divisors
7^0, then Uq(slN+1(R)) has no zero divisors / 0 (Theorem 1.2 and 6.1).

An important step in proving our main results is to show that a quantum
group Uq(^(A)) has a "triangular decomposition"; this is done in Section 2 for a
general A. We also need "(g-)commutator relations" in Uq(slN+1(C))(Section 3),
which have been communicated to the author by Professor M. Jimbo. The
author is very grateful to him.

In the last section, we also give an explicit Poincare-Birkhoff-Witt basis of
Uq(so5(Q).

§ 1. Statement of the Main Results

Let A = (f l j j) i<jj<jv be a symmetrizable generalized Cartan matrix (see [8]);
there exists a diagonal matrix D = diag^,..., dN) such that ^ feZ\{0} and DA
= \DA). Let F be a field, and let qeF* be such that q^ ^ 0 (1 < i < N). Let
Uq(&(A)) = Uq(&(A), D) be the associative F-algebra with 1 with generators e i 9 f t ,
/cf1 (1 < i < JV), and relations:

, kfa = kjkt (1.1)

jjkr1 = q-d^fj (1.2)

(1.3)

(1.4)

v^b L v J,2dl - (1.5)



PBW THEOREM FOR Uq(slN + l) 505

where, for any two integers m > n > 0 and an arbitrary parameter t,

m eZ[t, t"1] is defined by

[:],=
if m > n > 0,

if n = 0 or m = n.

When A is the Cartan matrix of type AN, we put l/^s/^^F)) = Uq(&(A),
diag(l, 1,..., 1)) for q4 ^ 1. For I <i <j < N + I, we define inductively the
elements eip ftj of Uq(slN + l(F)) by

^Cj-u - ^T^-i^u-i' (j-i> 1) (1.6)

and

fij = qfij-ifj-ij - q-ifj-ufij-t, (j - i > 1).

(The elements eij9 f^ were introduced by Jimbo [7].)

Define the lexicographic order < on Z x Z by

(i,j) < (m, n) if i < m or if i = m, j < n. (1.7)

Now we can state our main theorem.

Theorem 1.1. Let qeF* be such that q8 =£ 1. Then the elements

f ... f k6i ••• keN P ••• p. /mi, in J ms,ns^\ ^N ^iiji ^it,jt

((ml5 nj< •- < (ms, ns), (il9 jj) < < (it, j,), ^15..., ̂ ^eZ)

Theorem 1.2. If q8 ^ I, then Uq(slN + 1(F)) is a left (right) Noetherian ring,
and has no zero divisors ^ 0.

Remark. If N > 3 and q is a primitive 8-th root of unity, the set of
elements given in Theorem 1.1 does not span Uq(slN+1(F)). Even in that case
we can give an explicit basis of Uq(slN+1(F)). See Proposition 6.2.

§2. The Triangular Decomposition of Uq(&(A))

Let A = (aij)i<ij<N be a symmetrizable generalized Cartan matrix. Let
Uq(&(A), diag(d1?..., dN)) be the associative F-algebra with 1 with generators ei9

ft, k±l(l <i< N}, and relations (1. 1), (1.2), (1.3). Let ^+ (resp. #"_) be the free
associative F -algebra with 1 with generators C l 5 . . . , CN (resp. £19 . . . , £N). Let
F^*1,..., y^1] be the F -algebra of Laurent polynomials in inde terminates
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vl9...,vN. Let m = %_ (x) jrFOf1 , . . . , VxN](S)F%' + . Then the elements
^-^r-^^-^^i,..., ^eZ, 1<* 1 ? . . . ? i s 5 j l 5 . . . 5 j t < A T ) f o r m an F-
basis of SDL

Lemma 2.1. SD1 AOJ a fe/f 6^(4, diagO^,..., dN))-module structure defined by

(2.1)

(2.2)

where au = ar,iu+l + ar,iu + 2 + ••• + flr,is, a«^f ^ means that £iu is omitted.

This can be verified by straightforward computations.

Lemma 2,20 77ze elements f^'-fiM1"' k^eh '"eh (* i» • • • » £N e Z,
< i'i, • • - , / „ Ji,'~Jt ^ N) f°rm a basis of Uq(A, di

Proof. Let lwe 5R (resp. 1^ e Uq(&(A)) be the unit element of FOf \ . . . , t;^1]
(resp. Gq(&(A))). By Lemma 2.1, we can define the left U q(^(A))-modu\Q
homomorphisms a: <m^UJ9(A)) and T: Uq(&(A))->m by

^r-'^r-'-^^-'-W^---/^?1"-^^"-^ and T(X) = *.!„. Then
T O O - is the identity map. Moreover, Uq($(A)) = Uq(^(A)\ 1^ = Oj&(A)). tr(lj
= cr(9W). Hence CT is bijective. Hence the lemma follows.

FFe prepare some notations which will be used hereafter.

•Uq(J^+) (resp. Uq(^+)) is the subalgebra of UJ?(A)) (resp. (7^(^)))
generated by the e^s along with 1.

• Uq(^^) (resp. Gj^_)) is the subalgebra of UJP(A)) (resp. Vq(&(A)))
generated by the //s along with 1.

-H (resp. ft) is the subalgebra of Uq(&(A))(resp. Uq(&(A))) generated by the

• 0jj, 0j] (1 < i =£j < N) are the elements of Oq(0(A), diag(dl9...,dN)) defined
by



PBW THEOREM FOR Uq(slN+l) 507

•/+(resp. /_) is the two sided ideal of Gq(^V +)(resp. t/g(.yr_)) generated by
the <f>y9s (resp. the </>i}'s).

•X is the two sided ideal of Uq(&(A)) generated by the <^'s and 0£J's.

Obviously, Vq(^(A\ D) ~ Uq(&(A), D)/K as F -algebras. By Lemma 2.2, we
have Gq(9(A))^Gq(^

r-)®FB®FGq(^'+) as vector spaces, and
~%+~%_~ Uq(jy_) as F -algebras.

The following proposition gives a triangular decomposition of U

Proposition 2.3. Uj&(A\ D) ~ UJt^V-) ®FH ®F Uq(Jf+) as vector spaces.
Uq(^±)~Uq(^±)/I± as F-algebras. The elements k{1 ~'kj,*f(41,...,eNeZ) form
a basis of H.

Proof. By Lemma 2.2, it suffices to prove:

K =

This can be done by showing that (Gq(*V-))Bl+ and I-H(Uq(jV +)) are ideals of
Gq(9(A), D). We only consider I_B(Gq(JT+)), the argument for (Gq(^+))Bl +

being analogous. Let Y= I_H(Uq(^+)). It is clear that k?1 Yc 7, yfc*1 c Y
fiYcY, Y f i d Y , Yetc:Y. The proof of etYc Y is similar to that of [9, Lemma
2.3] and as follows. Let ef: Gj^-) -> Gjt^V-) be the two F-linear maps
defined by

where au is an in (2.3), so that

- . £ i . . - c - e ^ -e,t

^. I (^(/.•1-/^'-fc/-"2-fe

But we have
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(ft, £'eFx, 1 < £ ^ m < N). Hence it is enough to show that ef((/)~m) = 0. If
i ^ &, m, this is obvious. We consider the case i = m.

V

= 0.

In the above computation, we used the formulas:

(m > n > 1).

The remaining case i = £ can be verified by a direct computation.

Remark. Proposition 2.3 is an extention of [11, Prop. 2].

Corollary 2.4. Let A = (%-)i<ij<Ar be the symmetrizable Carton matrix. For
1 < M < N, let A' = (a^i^ijzM be the submatrix of A. Then the subalgebra of
Uq(&(A), disig(dl9...9dN)) generated by {ei9 fi9 k*l\\<i<M} is isomorphic to

1'), diag(^ l5...,^M))(fls Hopf algebras).

Proof. Let Uq(JVi) (g)F If (x)F Uq(^V'+) be the triangular decomposition of
Uq(&(A'\ diag(^1?..., dM)). Define the two homomorphisms i±: Uq(J^+)
-»Uq(J^±) by z+fo) = ct and i_(/J =/ f(l < i < M). By Proposition 2.3, it
suffices to show that i± are injective. We consider i+. By Proposition 2.3, we
can define the homomorphism p+: Uq(Jf^) -> Uq(^V'+) by p+fe) = et(l < i < M)
and p+fa) = 0(M < / < JV). It is clear that p+ 0 f + is the identity map. Hence
it is injective.

§30 Some (f-) commutator Relations In Uq(slN+l(F))

From now on, until the end of § 5, we are concerned with the quantum group
Uq(slN + 1(F))9 q8 ^ 1. For a positive integer N, put AN = {(i,j)eZ x Z|l < i
<j<N+ 1}. For (1,7), (m, n)eAN such that (1,7) < (m, «)(see (1.7)), there are
following six cases:
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(I) i = m < j < n, (II) i < m < n < j, (III) i < m < j = n,
J j_ J i i i

m n m n m n

(IV) i<m<j<n, (V) i<j = m<n, (VI) i<j<m<n.

i i 1 L L_l

m n m n m n

Set

C (!) = {(ft 7), (m, n))eAN x AN\i = m <j <n},
C ( i i) = {(ft j), K n))e^JV x yi^j i < m < n < j}9

C(III) = {((i, j), (m, ?t))eylN x yljv|i < m <7 = n},
C(IV) = {(ft j), (m, n))eyi]V x AN\i <m<j<n},

x AN\i < j = m < n},
x An\i < j < m < n}.

When <j8 =£ 1, we get the following formulas. We denote by e{j and/mn the
elements of Uq(slN+1(F)) defined in (1, 6), and by [x, y] the usual commutator
xy — yx.

(1)
3 " 2^mn ~ emneij = 0 if ((i, j), (m, n)) e C( , } (J C(III).
Leip emn\ = 0 if ((i, j), (m, n)) e C( „ , (J C(VI).
[ey, emn\ = (q2 - q~2)einemj if ((i,j), (m, n))eC(IV).

«2^mn - *mn*y = ^in if (ft j) , (^ »)

(2) The /£/s also satisfy relations similar to (1).

(3)
[cy,/™] = ( - ir'+1<LOA?fc?+i -fcy2-i if
[«y,/™] = ( - l)"-m + 1^^+1 - /cn

2_ l f i im if ((i, j)), (m, n
l>o->/™] = ( - l)J"m+1(?4 - Vfjnk

2
mk2

m+1 -k2^eim

if ((i,j), (m, «))eC(IV).
[«y /mJ =0 if ((i, j), (m, n)) 6 C, „ , U C, v , U C(V1).

[«„»/</] = ( - ly-'V1^2^2! -fc7-i«* if ((W% («. «

[«»»/u] = ( - ir'"1?"1/^2^! - A:"-2! if (ft/), (m, n

[emn,/u] = ( - lX"m(l - 9"4)/imfc-2/c-|1 -.. fc7_2
lC> if (ft/), (m,

[«™,/y] = 0 if ((i, y), (m, n))e C{n , (J C( V) (J
 C(VD-

2_ -2
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(4)
If p ]f-l — n(ai,r + al+l,r+..,+aj- i,r)pKreijKr — 4 eij-
If f If -I — n-(al,r + al^i,r + ...+aJ-1,r)fKrJijKr — V Jij-

Among these, we just prove:

tfeijtmn - emnetj = qein if ((i, j), (m, n)) e C( v }, (3. 1)

\*v **J = 0 if ((i, j), (m, n)) 6 C( „ }; (3. 2)

to verify other formulas is left to the reader. To prove the formula (3.1), we use
induction on n — m:

~ W em,n-l en-l ,w ~ Q en- l,nem,n- l)?i,m

= Q. ei,n-len-l,n ~ en-l,nei,n-l

We get the formula (3.2) by (3.1) and the following formula:

Lei,i+3> ei+l,i + 2J

- ei+1e,ei + 2 - e£

~21

l(e2
+1ei + eief+1))ei + 2

-<TW + <TT

= 0. (3.3)

We note that the condition q8 ^ 1 is used in proving (3.2).

§4. Proof of Theorem 1.1

Let AN be as in §3. Let Jf be an F-vector space spanned by a basis
{^ijKi, j)eAN}. Let 3£(jV*) be the free associative F-algebra with 1 with
generators xtj ((iJ)eAN). For (z,;)> (m, n)eAN such that (i,j) < (m, n), we define
£U m nGFx and yijmnt?£(Jf} by
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1 if (ft j), (m, n)) 6 C( n > U C(IV) (j C(VI)

q~2 if (ft 7% (m5n))eC ( I )UC (iii) (4.1)

q2 if (ft 7), (m, n))6C (V) ,

^i» if (ft/% (m,n))eC ( V )

0 if (ft 7% (m, n)) e C ( , , U C( n, I) C(m) U C(vi»

where C ( I ) , . . . , C(VI) are as in §3.

Let I (resp. J) be the two sided ideal of 3E(N) generated by the elements
mn (rCSP- ^ijmnXijXmn ~ XmnXij) for (j, j) < (m, w). Put

and S^^r) = #VT)/J. Let xy = xy + le ^(^), j?Umii = yij

le l/,(yT) and zy = x£j + Je 6
mn

Lemma 4.1. If q8 ^ I, there exist isomorphisms (p+: U^Jf}^ Uq(jV±) such
that (p+(xtj) = eip (p-(xtj) =ftj ((i,j)eAN).

Proof. We only consider cp + . By the formulas in §3, <p+ is well-
defined. By the definition of Uq(^V), we have

and

(^i,i+l) xi+l,i + 2~\4 +4 )xi,i+lxi+l,i + 2xi,i+l + ^i+ l,i + 2\xi,i+ l)

Similarly,

i+ 1,1 + 2

= 0.

Hence we can define the homomorphism \l/ + : U q(J\f +) -^> U q(J/°) by i// +(et)
= xiti+l. It is obvious that (p+°\l/+ and \l/+°(p+ are the identity maps.

Let PN be the set of finite sequences of elements of AN. We consider the
"empty sequence" (0) is also an element of PN. For Z = (O'i,7i),..., (it,jt))ePN,
we put xz= xtljl ~'xitjt', we understand that x(^l. Put xz= xz+ lEUq(^), zz

= xz+ Je S^^). Define the function 77: PN-+rL by */(-<£) = /i(/'i — ij + • • •
+ MIA — 0 and *!((</>)) = 0- F°r a nonnegative integer m, let £/m (resp. Sm) be the
subspace of Uq(J^)(rcsp. ®g(^K)) spanned by the elements xr(resp. zr) such that
n(Z) < m, along with 1. Call Z increasing if (il9j\) < ••• < (it,jt)> (0) is also
considered to be increasing.
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Lemma 42. Uq(^V) is spanned by {x£\£ increasing} as a vector space.

Proof. Assume that any element of l/m_x is an F-linear combination of the
jc^'s such that rj(Z) < m — 1 and that E is increasing. It suffices to show that,
for Z = (OWi),..., (i^ jt)) satisfying rj(Z) = m, we have

(mod Um-J.

for an integer u such that (iw ju)>(iu+1, ju+l). Indeed, if ((iu+1, jM + 1), (iu,
ju))eC ( I )y C ( I I )y C(III)(JC(VI), this follows from (4.2). If it belongs to
C(V)(resp. C(IV)), then it is obtained from (4.2) and the formula:

= (iu ~ iu + i)()u - 7« +1) > 0 (4.3)

(resp. i/U(iB + 1, ju+l), (iu, yj) J - f/nft. + i, Ju)5 (zu, ;u + i))j

= 0« - iu +1)(/« - 7« +1) > 0)- (4-4)

Now we show that {x^Z increasing} is, in fact, a basis of

Lemma 4.3. The set {zz\£ increasing} is a basis of ^

The proof is similar to that of Lemma 2.2; instead of Lemma 2.1, we need the
following Lemma 4.4. We omit the details.

Lemma 44 For 1 < i <j < n, let ctjeF. We denote by &~n the associative
¥-algebra with generators t^...,tn and relations c^tfj — t j t t . Let F[i;l9...,i;J be
the F-algebra of polynomials in indeterminates vly...,vn. Then F^j,...,^] has a
left 3~n-module structure defined by

t -n1"1 ...nr" /"ri rfi nr* 1/1 n ri+1 «/"li Vl Vn — Cl,iC2,i Ci-l,iVl '"Vi '"Vn-

For A, ueAN and £ePN, write A < Z if A < \i for all ueZ.

Lemma 4=5. There exists an F-bilinear map f:^
satisfying:

(A) /(XA, z^) = zAzr/or A<27 .
(B) /(XA, zj = zAZ£ (mod S^^,,^.^
(C) For all (i, j) < (m, n\

f(Xmn, ZT)) - f(xmn, f(xiJ9 ZT))
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<tf(xtn> ZT) if (ft j), ("», n))eC ( V )

(<22 - q~2)f(xin, f(xmj9 ZT)) if (ft j), (m, n))eC(IV)

0 i/ ( ft j), (m, ii)) e C( , , U C( „ } U C(ffl) U C(VI).

In order to prove this, we need:

Lemma 4.6. Let r be a positive integer. Assume an F-bilinear map /': Jf
satisfies the following'.

(B') y'(xA, z J = zAzr (mod S,(r)+IJ(A)_1).
(C) For a// (f, ;), (m, n)e>4N, TePjy swc/i ffcat (f, j) < (m, n) and rj(i, j) + f/

(m, n) + i/(T) < r,

eijnuJ'tXifif'frw, zT))-f(xmn,f(xip ZT))

lf'(xin, ZT) i f ( ( i , j), (m, n))eC ( V )

(q2 - q~2)f(xin, f'(xmp ZT)) if ((i, ;), (m, w))eCav)

0 if ( ft ;% (m, n)) e C( , , (J C( n , U C(ffl) U C(VI).

Then, for (h, e) < (i, j) < (m, n) and *FePN such that n(h, £) 4- rj(i, j) + r\(m, n)
r, it follows:

£h i ij£h &mnxhn ^tjmn7 Y ~ Viimn

~~ Gijmn Xijyh emnZY+ &hl ij^/i t mn XijZ «

= 0.

(Here we abbreviate f'(xtl, Jl9 f'(xi2j2,...,f'(xitjt9 zv).)) to xiltjlxi2j2>~xitjtzv.)

Sketch of the proof. In § 3, we have seen that there are 6 cases for ((i, j), (m,
n))eAN x AN such that (i, j) < (m, n). Similarly we can see that there are 62
cases for ((h, £), (i, j), (m, n))eAN x AN x AN such that (h, £) < (i, j) < (m, n) (See
Figure 1).
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Figure 1 (we omit the letters m and n).

(I) * £ . ( I I ) *
i

i i : !
j —

_1 U
1 0 I I

i J-'*1 • .1I 1- **'
I I =:
I I

*2

**2

(III) h 4 (IV)

*3 3r *J

( V )

In the 20 cases labelled °5 since j;ymil = yk s mn = yh e tj = 0, the formula (4.5) is
obvious. In the 24 cases labelled *r or **r (r = 1, 2, 3), we have

In the cases of *r,

the left-hand side of (4.5)

= fi*iyefc<mnxfcl<5lr(g
2 - Q'^XinXnjZy,- 5lr(q

2 ~

- eijmnshSmnS3r(q
2 -

= ~

+ ^3r(£hjmn£ismn ~ 8ijmn£h S mn)XhjXmnXH Z «P

= 0.
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The cases of **r, can be treated similarly.
In each of the remaining 18 cases, we can get (4.5) after easy

computation. For example, in the case ofh<i<£ = m<j<n (labelled #),

the left-hand side of (4.5)

= q2(q2 ~ q~2)xhtXinXmjZY- (q2 - q~2)xinxmjxhsz<j,

+ (q2 - q ' ^ X m n X h j X t e Z r - q2(q2 - q~2)xhjxis xmnz ̂

= q2(q2 - q~2)xhsxinxmjzy- q2(q2 - q~2)xinxhexmjZy,

q(q2 -q

q2(q2 -q~2)xhjxisxmnz^

= q2(q2 - q~2)2XhnXiSxmjZy>+ q(q2 - q~2)XinXhjzy,
- q(q2 - q~2)xhjXinz>r- (q2 - q~2}2^hn^m^i^^

= q(q2 - q~2)2xhnXijZr- q(q2 - q~2)2xhnxijZ^= o.

Proof of Lemma 4.5. To define /(XA, zj satisfying (A) and (B), we proceed
by induction on rj(X) + r\(£). If ??(A) + 7?(27) = 1, only the case A = (1, 2) and Z
= (<fj) occurs; therefore we can put/(x12, 1) = z12. Assume that we have already
defined the elements /(XA,, zr)e&q(JS*) for A', £' with f/(A') + fyfZ") < ^(A) + r\(Z)
so that they satisfy (A) and (B). We define /(XA, z£) when 27 is increasing. For
the case A < 27, we define /(XA, z£) = zAzr. If A < 27 fails, then 27 = (//, T), ILL < T
and ,u < A. Put (i,;) = /^, (m, n) = A. By (4) and (4.3 and 4), we can put:

/(Xm«5 zr) = eijmnZijZmnZT + Sijmnf(Xipf(Xmn> Zr) ~~ Zmnzr) ~ ^((i,7),(m,n))

where

^/(x£ll, zr) i/ ((i, j), (m, n)) e C( v }

(<?2 - « ~ 2)f(*in, f(xmj, ZT)) if ((i, j) , (m, n)) e C(IV)

0 i f ( ( i , j ) ,

(m, n ) )eC ( I ) UC ( I I ) UC ( I I I ) UC ( V I ) .

Since e0.mnzl7zmnzr = zmnzr, /(xmn, zr) satisfies (B). By the definition of /, /
satisfies (C) in the case (i, j) < T. We shall consider the case when (i, j) < T
fails. Write T= ((ft, £), W) where (ft, £) < ?P, (ft, ̂ ) < (ij). By induction on
rj(i, j) 4- ^/(m, n) + rj(T), we show that / satisfies (C). Assume that, for each r\(i, j)
+ ri(m, n) + rj(T) < r, (C) holds. Then, for *?(;, j) + rj(m, n) + fy(T) < r + 1, we
have:



516 HIROYUKI YAMANE

XijXmnXh S Z <F

= Xij\£h S mnxh e XmnZ *F ~ Vh S mnZ ¥7

= Sh & mn(£h S ijXh t XijXmnZ f ~~ ^/i I ijxmnz f) ~~ X^yh t mnZ «F

= £h t mn£h S ijXh S XijXmnZ f ~~ £h S mn^h t ijXmnZ Y ~ Xijy*i t mnz V -

(Here we abbreviate f(xilji9f(xi2j2,...9 f(xitjt, zv).)) to xilJlxi2j2'"XitJtzv.)
Similary,

T.nnr"y

= £h S ij£h e mn£ijmnxh s XijXmnZ «F ~~ £h S ij£h S mnXh S ̂ i jmnZ T

~~ Sh S ̂ h S mnxijz «F ~ ^mn^ft t ijz «F •

Therefore, by Lemma 4.6, we get:

£ijmnXijXmnZT ~ XmnXijZT ~ ytjmnZT = 0-

Hence / satisfies (C). This completes the proof.

We can restate Lemma 4.5 as:

Lemma 4.7. ©€(^0 has a left U q(J^)-module structure satisfying:

(A) x^zs=z^zI for k<L.

(B) xtfz=zizs (mod

As in the proof of Lemma 2.2, Lemma 4.2 and Lemma 4.7 imply the
following:

Lemma 4.8» Let qeFx be such that q8 ^ 1. Then the set {zE\Z increasing}
is a basis of

Combining Proposition 2.3, and Lemma 4.1 with Lemma 4.8, we obtain
Theorem 1.1.

§5. Proof of Theorem 1.2

Let ^ = ((/i,7i),..., (it,jt))ePN. Define the function 6: PN-+Z by <5(2T)
= (Ji — h) + ••• + (Jt — it)

 an(i <5((0)) = 0- Denote the element eil9jl ---eit,jt (resp.
/fiji -AJ of UJislN+l(F)) by g2;(resp./r). We understand gw =/w = 1. Put

N = {(m, n)eZ x Z|m, rz > 0, n < Jta,a>{Yi(Z)\LePN, d(£) = m}}.

For (m,n)e0tf, let 9I(m>II) be the subspace of U£slN + 1(F)) spanned by the
elements frk[l •••ks

N
N e£, where 27 and 27' are increasing, (5(27') + 5(27), iy(27')

(m, n), and *,,..., ^eZ. Clearly, ^l(m,n^(m,n) cz 9l(m,+mX+ll), ffl(WifI)
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<= 2l(iii7-) if (m, n) <(i,j). For (m,ri)EQN, let (m,ri)*eQN, be the element
satisfying that

(1) (m, rc)A <(m,n) .
(2) There is no element (i,j)EQN such that

(m, n)A <(i,j)<(m,n).

Put S(miB) = «(„.„/«<„.„> A, and ffl(0i0) = M(0f0). Then ®N = 0 S(m,n). has a
(m,n)6lfo

graded algebra structure with 1 whose multiplication is defined component-wise
by

(X + ^(m,n)A)(j> + 9l(m',B')A) = X}; + 9l(m + „',„ + „') A,

where xe3I(msW), j> e 2l(mW). Let <5€(^) be the associative F-algebra with 1 with

generators eij9 ftj ((i,j)eAN), kf1 , (1 < i < N) and relations:

-i -! l, £.£. = £.£.

T f f-1 _ / I-(fli,r + an-i,r4- — +f l j - i , r )7 'KrJijKr — V Jij

"ijJ mn J mrr'ij

^ijmn^mn = ^mn^ip ^ijmnfijfmn = fmnfij ((iJ) < ™, «))-

As in the proof of Lemma 2.2, we can show that the elements
/«!.»! ' ' 'fms,ns k s

1
i - - - k s

N
N eilji • • • eitjt ((ml5 nj < • • • < (ms, ws)5 (il5 A) < • • • < (it? jt),

£ i,...9 #NeZ) form an F-basis of <&q(&). As an immediate consequence of
Theorem 1.1 and the formulas in §3, we get:

Lemma 5.1. $IN is isomorphic to ^>q(^) as F -algebras.

Remark. The above argument shows that, using our filtration, we can
compute the structure constants of Uq(slN+l(F)) with respect to the basis given in
Theorem 1.1.

Lemma 5.2. (a) ^q(^) has no zero divisors ^ 0.
(b) <5g(^) is a left (right) Noetherian ring.

Since &q(&) is a non-commutative analogue of polynomial rings, (a) and (b)
can be proved in a way similar to the case of usual polynomial ring
(e.g. see [10, Th. 1.2.10]).

By Lemma 5.1 and Lemma 5.2, we obtain Theorem 1.2. The proof is
entirely similar to that of [5, Chap. 4, Theorem 4] .
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§6e Uq(slN+1(R)) over a Commutative Ring R

Let .R be a commutative ring with 1, and R* the unit group of R. Assume
qeRx is such that q4 — ieRx. Let Uq(slN+l(R)) be the associative J^-algebra
with 1 with generators ei9fi9 kf1 (1 < i < N), and relations (1.1),..., (1.5), where
A = (aij)i<ij<N is the Cartan matrix of type AN. For 1 < i < j < N + 1, we
define e^f^ by (1.6). Let Lbe the two sided ideal of Uq(slN+l(R)) generated by
K/ + 3, *i + i], L/i., + 3,// + 1] (1 < i <JV - 2). Put i/^+1(^)) - Uq(slN+1(R))/L.
By (3.3), for a field F, if <?8 * 1, UJtslN + 1(F)) ^ Uq(slN+1(F))/L.

Theorem 6,1. (a) As an R-module, Uq(slN+1(R)) is free. The elements

fmi.nl'''fm..n.kll---kpeiljl.--eitjt (6.1)

((ml5 nj < ••• < (ms, nj, (z"i,7i) < < fe Jt), ^ i , - - - , ^^eZ) /orm ow R-basis of

(b) If R has no zero divisors ^ 0, //z^w Uq(slN+1(R)) has no zero divisors
7^0. If R is a Noetherian ring, Uq(slN + 1(R)) is a left (right) Noetherian ring.

(c) If q8 - le^x , then L= (0).

Proof. First we prove (a). Let i; be an indeterminate, C(v) the field of
rational functions. Let <$/ be the Z-subalgebra of C(v) generated by 1, i?+1, (t;4

— I)"1. We define U^ to be the j/-submodule of Uv(slN+1(C(v)) generated by
the elements (6.1). From the arguments in §5, we see that U^ is an jaf-algebra
with a free j/-basis (6.1). We now define, for .R and q, UR,q = U^ (x) ^Rq,
where Rq is R, regarded as an j/-algebra with v (resp. 1) acting as multiplication
by q (resp. 1). Since UR,q satisfies the formulas [eM+3, ei+1] = L/i.i+a./i + i] = ^
we can define the epimorphism cp: Uq(slN + 1(R))^> URtq by (p(et) = et (g) 1, (p(/£)
= /i(8)l5 ^i+1) == ^i+1 (8) 1- Hence the elements (6.1) are linearly inde-
pendence over R. We know that the elements eij9 ftj and kt of Uq(slN+1(R))
satisfies the formulas (1), (2), (3), (4) in §3. Hence, defining the filtration on
U_q(slN+1(R)) similar to {^{m,n)}(m,n)enN in §5, we see that, as an ^-module,
Uq(slN+1(R)) is generated by the elements (6.1). This completes the proof of (a).

We obtain (b) from the same argument as in §5, and (c) from the formula
(3.3).

For Uq(slN+1(F)) over a field F, we have the following supplementary result:

Proposition 6.2. Assume qeF* is a primitive %-th root of unity. Then the
elements

f f ...f f2bi ... f2bN M i ... k£NP P ...P P2ci ... f>2cN

Jmi,niJm2,n2 J ms,nj 1 JN Kl KN eii,jiei2,J2 eitjtel eN

(rnp<np + l - 1 (1 < p < s - 1), ir<jr+l - 1 (1 < r < t - 1),

&!,..., bN, c l 5 . . . 9 c N >0 , ^1 9 . . . , -^jyeZ)
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form a basis of Uq(slN+i(F)).

The proof is based on Proposition 2.3 and an argument similar to the one
used in the proof of Lemma 2.1, 2.2; we omit the details.

From Proposition 6.2, we obtain:

Proposition 6.3. Assume q to be an indeterminate. Let ^/ =
— I)"1]. Then, if N > 3, Uq(slN + 1(^)) is not free as an $# -module.

Proof. By the argument of (3.3), we see

(q2 + 4~2)[>M + 33 ei + lfi + 2] = 0.

Let (eF be a primitive 8-th root of unity. Define the F-algebra homomorph-
ism p: UJtslN+lW)-*U£slN+1(F)) by p(et) = *J, p(fi) =fi9 p(k?1) = /c'*1, p(q)
= £ where e't, /-, k ' f 1 (l<i<N) are generators in the definition of

By Proposition 6.2, we have

P([>i,i+3> ei+l,i + 2]) = e'i,i + 3e'i+l,i + 2 — e'i+l,i + 2e'i,i + 3 ^ 0-

Hence [eM + 3, ei+1J+2] 7^0, which shows that Uq(slN+1(jtf)) is not free.

§7. On Uq(so5(F))

Let A be the Cartan matrix of type B2, namely, A = ( ). Put
- 1 2

1, diag(l, 2)) where qs =£ 1. Define the elements Ei9 F£ (1 < N)
by

Proposition 7.1. (a) The elements F?1 F£2 F^3 F£4 -k^k2
2- E^ F1

2
2 F1

3
3 F4

4

(ms, is > 0, 419 £2eZ) form a basis of Uq(so5(F)).
(b) Uq(so5(F)) is a left (right) Noetherian ring, and has no zero divisors ^ 0.

Let Vi be the subspace of Uq(so5(F)) spanned by the elements
FT1 F^2 F^3 F£4 -k^k2

2- F1/ F2
2 F1

3
3 F4

4 such that 2(ml + z\) + (m2 -f i2) + 2(m3

+ i3) + 3(m4 + f4) < i. The proofs of (a) and (b) are obtained by using the
filtration {J^}£o °f ^q(so5(F)). This is similar to those of Theorem 1.1 and
1.2. The details are omitted.
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