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A Poincaré-Birkhoff-Witt Theorem for Quantized
Universal Enveloping Algebras of Type Ay

By

Hiroyuki YAMANE*

Introduction

In this paper, we construct an explicit basis of the quantized universal
enveloping algebra U (sly.,(C)).

Let A = (a;j); <;;<n be a symmetrizable generalized Cartan matrix, and %(A)
the Kac-Moody Lie algebra of A. Motivated by studies of quantum Yang-
Baxter equations, Jimbo [6] and Drinfeld [2, 3] introduced a Hopf algebra
U,(%(A)) with a nonzero complex parameter q. This Hopf algebra, which is
also called [3] a “quantum group”, can be considered as a natural g-analogue of
the universal enveloping algebra U(%(A)) of 4(A). For example, it is known
that the representation theory of U,%(4)) is quite analogous to that of
U(%(A)). See Lusztig [9] and Rosso [11]. The purpose of this paper is to
show that, if %(4) is of type Ay, and ¢® # 1, then U %(A)) has a Poincaré-
Birkhoff-Witt type basis.

Let R be a commutative ring with 1. Denote by sly,{(R), the Lie algebra
of (N + 1) x (N + 1) matrices over R of trace 0. It has the standard R-basis
consisting of the elements

ei.j=Ei,j’ fi,szj,i (1 SI<JSN+ l)a hiin,i_Ei+1,i+1 (1 SISN)

(E;,; is the matrix having 1 in (i, j) position and O elsewhere). By the Poincaré-
Birkhoff-Witt theorem [1], the elements

fmmx"'fms,nshrll ;IN €y Cije (*)

(rise.., 'y =0; (my, ny) < -+ < (mg, ng) and (iy, j;) < -+ < (i, j5) With respect to the
lexicographic order <) form an R-basis of U(sly.(R)). Let U,sly,,(R)) be the
quantum group over Rassociated with the Cartan matrix of type A. (See the
beginning of Section 6 for the definition of U(sly,;(R)). ) Let R* be the unit
group of R. In this paper, for ge R* such that g — 1€ R, we construct an R-
basis of U (sly;;(R)) which can be considered as a natural g-analogue of
(*)(Theorem 1.1 and 6.1). Here the condition g8 — 1€ R* is essential. In fact,
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(i) When R is a field and ¢® =1, U(sly+(R)) seems to have no basis
g-analogous to (x). (Even in this case, we can give an explicit
basis. See Proposition 6.2.)

(i) If g is an indeterminate and R = C[q™!, (¢* — 1)"1], then the
R-module U (sly,(R)) is not free. (See Proposition 6.3.)

To remedy this unpleasant situation, we are naturally led to introduce a new
quantum group U (sly, ;(R))(Section 6), which seems to be more natural than
U, (sly+1(R)) in the following sense (See Theorem 6.1):

(o) Uq(SIN+ 1(R)) = Uq(SlN+ 1(R)) if ‘18 — 1eR*,
(1) ﬁq(slNH(R)) has an R-basis g-analogous to ().

We can define a filtration in ﬁq(slNH(R)) such that the associated graded
algebra is a non-commutative analogue of a polynomial ring (Section 5 (and
6)). As a corollary of this fact, we show that if R is a Noetherian ring, then
ﬁq(slNH(R)) is a left (right) Noetherian ring, and that, if R has no zero divisors
# 0, then Uq(slNH(R)) has no zero divisors # 0 (Theorem 1.2 and 6.1).

An important step in proving our main results is to show that a quantum
group U,(%(A)) has a “triangular decomposition”; this is done in Section 2 for a
general A. We also need “(g-)commutator relations” in U (sly +;(C))(Section 3),
which have been communicated to the author by Professor M. Jimbo. The
author is very grateful to him.

In the last section, we also give an explicit Poincaré-Birkhoff-Witt basis of
U,(505(C)).

§1. Statement of the Main Results

Let A = (a;3); <i,j<v be a symmetrizable generalized Cartan matrix (see [8]);
there exists a diagonal matrix D = diag(d,,..., dy) such that d;eZ\ {0} and DA
=YDA). Let F be a field, and let ge F* be such that ¢** #0 (1 <i < N). Let
U/(%(A)) = U, (%(A), D) be the associative F-algebra with 1 with generators e, f;,
kf'(1 <i< N), and relations:

kiki—l = ki_l ki = 1, klk] = kjkl (1.1)
ket = gt e, kifikit=q " f; (1.2)
k2 — k2
efj—fiei= 5ij§27,—_~q—_22 (1.3)
1-ay 1—a;;
—1y t 1—a,-v e’ =0 i i

VZ:O ( ) [ v :qud, é ejel (l #J) (14)
1-a,

v=0

v l_aif 1—ay,;—-v v ; i
NCY ]f ffr=0 (#) ws)
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where, for any two integers m>n>0 and an arbitrary parameter ¢,

['Z] eZ[t, t~] is defined by
t

tm—i+1 _ t—m+i—1

n
I1 if m>n>D0,
i=1

HE I
nl, 1 f n=0or m=n.

When 4 is the Cartan matrix of type Ay, we put U (sly. (F)) = Uy (%(4),
diag(1, 1,..., 1)) for g* # 1. For 1 <i<j< N + 1, we define inductively the
elements e;;, f;; of U(sly,(F)) by

€iv1 =€ fiiv1 =fi

e =qej-1€j-1;—q ‘€€ -1, J—i>1) (1.6)
and

fij= afij-1fi-1,;— q—lfj—l,jfi,j—lv G—i>1.
(The elements e¢;;, f;; were introduced by Jimbo [7].)
Define the lexicographic order < on Z x Z by

GH<mnifi<morifi=m, j<n. (L.7)

Now we can state our main theorem.

Theorem 1.1. Let qe F* be such that q® # 1. Then the elements

4 ]
Smims T K1 k™ €5, €,

(mu,n)<--<mgyny, (,j) < <(pj), €15....¢xnEZ) form a basis of
U sy +1(F)).

Theorem 1.2. If q® # 1, then U (sly,(F)) is a left (right) Noetherian ring,
and has no zero divisors # 0.

Remark. If N >3 and q is a primitive 8-th root of unity, the set of
elements given in Theorem 1.1 does not span U (sly,(F)). Even in that case
we can give an explicit basis of U,(sly.,(F)). See Proposition 6.2.

§2. The Triangular Decomposition of U,(%(4))

_ Let A= (@)1 <i,j<n be a symmetrizable generalized Cartan matrix. Let
U/(%(A), diag(d,,..., dy)) be the associative F-algebra with 1 with generators e,
fo kFY(1 <i < N), and relations (1.1), (1.2), (1.3). Let &, (resp. Z _) be the free
associative F-algebra with 1 with generators (,,..., {y (resp. &4,..., &y). Let
F[v{',..., vy'] be the F-algebra of Laurent polynomials in indeterminates
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Ugpe.svy. Let M=F_ @ Flvil,..., vi"]1® ;Z.. Then the elements
Eo o G uft 0N e G, (B, EyEZ, 1 <y, g Jyy..., J; < N) form an F-
basis of 9.

Lemma 2.1. M has a left Uq(A, diag(d,,..., dy))-module structure defined by

kr. éi; isvfl ”.UKI'NC]'1”'CJ'¢

=q_dr(ar,ll+".+a"'s)éil... isvfl...vrﬂr"“l...u]ﬂvw G 2.1
for &y vl NG L,

=&&i, isvfl"‘UKIN P (2.2)
e, &y e S uit 0N G e g,

— q—dr(ﬂlar,l+"'+eNa"yN)éil cisvft UﬁNCerl ij:

1 ~ 2dypay ‘ 0,+2 ‘N

+mi;r{q Eiy oo & e GO 0B 2 N L
P, E e & ot TN ) 2.3)

where o, =a,; ., + a + - +a,;, and &, means that &, is omitted.

Foiu+2

This can be verified by straightforward computations.

Lemma 2.2. The  elements  f; ---fi ki'---ky¥e; ---e;,  (£1,....¢y€EZ,
1< ila"'sisa jla"'ajt < N) form a basis Of ﬁq(A5 dlag(dl’:dN))

Proof. Let 1,6 M (resp. 1€ U (%(A)) be the unit element of F[vi?,...,v5 "]
(resp. Uq({f(A))). By Lemma 2.1, we can define the left Uq(g(A))-module
homomorphisms o1 M- U, (%(A4) and © T (94)->M Dby
o(&;, - & uft ok, - G) = i o fiu kit - kyNej, - e;, and 1(x) = x. 1. Then
to¢ is the identity map. Moreover, U (%(A4)) = U (%(A)). 15 = U (%(A)). o(1y)
= ¢(M). Hence o is bijective. Hence the lemma follows.

We prepare some notations which will be used hereafter.

U N,) (resp. U (A,)) is the subalgebra of U (%(A)) (resp. U, ¥%(A)))
generated by the e/s along with 1.

‘U AN_) (resp. Uy A"_)) is the subalgebra of U, (%(4)) (resp. U,(%(A)))
generated by the fs along with 1.

“H (resp. H) is the subalgebra of U %(A))(resp. U, (%(A))) generated by the
kibs.

@5, ¢; (1 <i#j<N)are the elements of Uq({ﬁ(A), diag(d,,...,dy)) defined
by
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1—ay, 1 — a;;
+ v Y 1—a,;—v v
o (— 1)[ v il e; Y oege,
g2d.

1 — ay —a;;—v v
[ Jj| fie fifi
v=0 Vo 24,

-I, (resp. I_) is the two sided ideal of U (A" ,)(resp. U (A" _)) generated by
the @¢;’s (resp. the @;’s).
-K is the two sided ideal of ﬁq({é(A)) generated by the ¢;’s and @;’s.

bij

I
g
!

Obviously, U (%(4), D) ~ Uq(?(A), D)/K as F-algebras. By Lemma 2.2, we
have U %(A4)) ~ U (N ) @rH QU (N ;) as vector spaces, and U, (A,)
~%, ~%_~U/(N_) as F-algebras.

The following proposition gives a triangular decomposition of U, (%(A)).

Proposition 2.3. U (%(A), D) ~ U (AN _) @rH @ Uy AN ,) as vector spaces.
U (N +)=U(N+)/I+ as F-algebras. The elements ki*---k§¥(¢,,...,ey€Z) form
a basis of H.

Proof. By Lemma 2.2, it suffices to prove:
K= Oy )AL, + I_HO (N ,)).

This can be done by showing that (T (4" _))HI, and I_H(U(A4",)) are ideals of
U/%(A4), D). We only consider I_H(U(A4",)), the argument for (T (4 ,)HI,
being analogous. Let Y=1I_H(U/(A",)). Itis clear that k*'Y< ¥, Ykf' c Y
fiYe Y, Yf,c Y, Ye,c Y. The proof of ¢;Y = Y is similar to that of [9, Lemma
2.3] and as follows. Let ef: Uy A _)—> U (A4 _) be the two F-linear maps
defined by

+ N
e (fis i) = T a ¥ o f o foa
=1
where a, is an in (2.3), so that
ei'fil ‘f;skfl kIfINejl ...ejt
— q--dl(ﬂ1lh,1+---+lz\rﬂ:,m)fil f;skfx kll\’Neiejl ej:
1

R e VAR AT A L)

— et (fy, i )kE kT ke e )
But we have
E(fy Sy bimfia - fins)
= Bet (fis - fi)bimfi .,



508 HIROYUKI YAMANE

+ B fi - i,,eii(¢yz—m)fis iy,
+ oSy bimei (o fir)

B, BPeF*, 1 <¢+#m<N). Hence it is enough to show that e*(¢,,) =0. If
i # £, m, this is obvious. We consider the case i = m.

e (é0)
1-a,, 1—a,]
=< e(_l)v Ayi inda-vah)f%—ag,

[0] v _g2a,

Q

1_ B —_—
_ ( h( 1y 1 Ay indl(v—l)(aex‘l)
v=1 | v—1 dq2dy

&y 1—a,;]
+ io(_ l)v oi inda-v(ah-l))f:;—ae,

- —g2dy

2

= 0.

In the above computation, we used the formulas:

— —1
I:m] = ti(m_")[m 1:| + ti"[m j' (m>n>1).
n, n—1] no|,

The remaining case i = ¢ can be verified by a direct computation.

Remark. Proposition 2.3 is an extention of [11, Prop. 2].

Corollary 2.4. Let A = (a;)); j<n be the symmetrizable Cartan matrix. For
1<M<N, let A" =(a;));<;;<m be the submatrix of A. Then the subalgebra of
U/ %(A), diag(d,,...,dy)) generated by {e, f, ki '|1 <i< M} is isomorphic to
U[%(A"), diag(d,,...,dy))(as Hopf algebras).

Proof. Let Uy AN_) ®rH QpU/A) be the triangular decomposition of
U/ %(4), diag(d,,...,dy)). Define the two homomorphisms i:: Uy (A7)
- UyfAN+) by i(e) =2 and i_(f)=f;(1<i< M) By Proposition 2.3, it
suffices to show that i, are injective. We consider i,. By Proposition 2.3, we
can define the homomorphism p.: Uy (A", ) > Uy (AN") by pi(e) =e;(1 <i< M)
and p.(e;) =0(M < i< N). It is clear that p, .i, is the identity map. Hence
it is injective.

§3. Some (g-) commutator Relations in Uy sly ., ,(F))

From now on, until the end of §5, we are concerned with the quantum group
U sly+1(F)), g8 # 1. For a positive integer N, put Ay = {(i, )eZ x Z|1 < i
<j< N+ 1}. For (i,j), (m, n)e Ay such that (i, j) < (m, n)(see(1.7)), there are
following six cases:
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(I) i=m<j<n (II) i<m<n<j, (III) i<m<j=mn,

i J

m

i J i J

n m n m n

(V) i<m<j<n, (V) i<j=m<n, (V) i<j<m<n.

i J

Set

i iJ

n m n m n

Ci)= {(G, )), mm))edy x Ayli=m<j < n},
Cany = {(G )), (m n)edy x Ayli<m<n<j},
Camy = {(G)), mn)edy x Ayli<m <j= n},
Cavy = {((G, ), (m, n)edAy x Ayli<m<j<n},
Civy = {(Gi, )), (m, n))edy x Ayli <j=m < n},
Con = {(G, ), (m, n))edy x Ayli <j<m<nj.

When ¢® # 1, we get the following formulas. We denote by e;; and f,,, the
elements of U (sly.(F)) defined in (1, 6), and by [x, y] the usual commutator

Xy — yx.
1)

-2

qd "€;i€mn — €mnlij

[eija emn] = 0

=0 if (G, /), (m, n)eC;,J Can)
if ((la ])9 (m> n))e C(“) U C(VI)'

[eij’ emn] = (q2 - q—z)einemj If ((ls ]): (ms n))e C(lV)'
qzeijemn - emneij = gé€;y, if ((la ])’ (m’ n))e C(V)-

(2) The f;/s also satisfy relations similar to (1).

©)

[eij’fmn] = ( - l)j—

[eij’fmn] = ( - )n
[eij’fmn] = ( - 1)1

[eijsfmn] = O
[ mn’fx]] = ( - I)J

[emmfij] =(—1"
[emmfij] = ( - 1)j—

i+1qf_/nk2k12+1”'kj?~1 lf ((ls.]): (ma n))ec(l)'
m+lqk2 km+1 'kn 1€im if (@, 7)), (m, ")Ec(m)-
m+1(q )f]nk km+1 k}—leim

. lf ((ls ])5 (ma n))eC(IV)'

if (@, j), (m, n))e C( ) U Civy U Covyy
‘ _lk 2kH—l kj——zlejn lf ((la J): (ma n))ec( 1)
"'q_lf,-mk;zk;fl kn_—zx if (@, j), (m, n))e Cuny-

™1 — q—4)fimkr;2kr;£1 kj——zlejn if (G, ), (m, n))e C(]V)'

[emmfij] =0 if (GG, j), (m, n))e Cony U Civ) U Coviy

[el]’fl]] =

_11 i+1
G Wk, K — K k)
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)
kreijkr_l — q(al,r+a(+ 1,r+...+a1—x,r)eij_
-1 _ (@ rtai+1,r+...+a;- 1,7
k. fike b =q @ ! e

Among these, we just prove:
qzeijemn - emneij = (g€, lf ((l: J)’ (m, n))EC(V)s (31)
[eija emn] =0 if (G, j), (m, n))e Cn y (3.2

to verify other formulas is left to the reader. To prove the formula (3.1), we use
induction on n — m:

2
q ei,jem.n - em,nei,j
— 2 -1
=4q ei,m(qem,n— 1€n— 1,n — q €, 1,nem,n— 1)
-1
- (qem,n— 1€n—1,n — q e, l,nem,n— 1).ei,m

= qzei,n— 1€n—1,n ~ €n—1,n€in—1
= qei,n'
We get the formula (3.2) by (3.1) and the following formula:
[eiiv3 €ir1,i42]
= (qPei€is 16112 — €i11€i€iss — €408 41 T+ g2 284180841
— e +1(qPeliv 1€, — €108y — €400y T 4" %e; 264 1€)
=qe((q® + g7 ) MeFr 1€z + €ir2eli1)) — €ir 1€ 2814,
— e p0€tey + G Y€ ((@® + g ) el e + eefi )
— q*((q> + 73 (eP 16 + €€l 1))eir, + €l e
+ eiy1€ir20€iy — 4 ((q* + g7 2) el €2 + €irr€li1))e;
=0. (3.3)

We note that the condition g% # 1 is used in proving (3.2).

§4. Proof of Theorem 1.1

Let Ay be as in §3. Let A be an F-vector space spanned by a basis
{Zl(i, )eAy}. Let Z(A) be the free associative F-algebra with 1 with
generators x;; ((i, j)e Ay). For (i, j), (m, n)e Ay such that (i, j) < (m, n), we define
&me€F™ and ;€ Z(A) by
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1 if (G, /), (m, n)eC, Cavy U Conyy

Eijmn =\ 42 if (G, j), (m, n))eC, U Can 4.1)
q* if (G, J), (m,n)eCy),
4% if (@i, j), (m, n))eCy,

Vipmn = | (@ — @" xiXm;  if (G, ), (m, m))e Cqy, (4.2)
0 if (), (m, n)eCry U Comy U Cam U Covne

where Cyy,..., Cyy are as in §3.

Let I (resp. J) be the two sided ideal of Z(A4") generated by the elements
EijmnXijXmn — XmnXij — Vijmn (I'CSp. € jmnXijXmn — xmnxij) for (ls ]) < (m’ n) Put
U (N) = Z(AN)/T and Sy(AN) = Z(A)/J. Let %= x;; + Le UA), Fijmn = Vijmn
+IeUyAN) and z; = x;; + Je S (A).

Lemma 4.1. If q® # 1, there exist isomorphisms ¢ +: Uy(A) = UyAN'%) such
that @ (X;) = e;;, @ (%) = fi; (G, )leAy).

Proof. We only consider ¢,. By the formulas in §3, ¢, is well-
defined. By the definition of U,(A"), we have

Rije1Xjj+1 — Xjj41%i41 =0 for |i—jl=2,
and
5 22 2 -2z > 5 < = 2
Fiir ) Xir 1,642 =@+ 47 VR0 1 X v 0280001+ Xiv 1,4 2(85041)
— g1z x a% % -0
=4 Xiiv1X5i+2 74X+ 2X5i+1 = U
Similarly,

Riv1,i42) Fiie1 — (@ + 4 DRis 1 v 2K 1 Kiv 142
+ Ziir1(Kiv1,i42)°
=0.

Hence we can define the homomorphism .: Uy(AN,)— UyAN) by ¥.(e)
= X;;+1. It is obvious that ¢, °y, and ¥, o¢@, are the identity maps.

Let Py be the set of finite sequences of elements of 4y. We consider the
“empty sequence” (¢) is also an element of Py. For X = ((iy, j1),..., (ip» jo)) € Pys
we put xy= Xx;, ; -- X;, ;,; we understand that x,1. Put Xy=xy+ 1eUy(AN), 25
=x5y+JeS(A). Define the function n: Py—Z by n(X)=i,(j; —iy) + -
+ i(j, — i,) and 5((¢)) = 0. For a nonnegative integer m, let U, (resp. S,,) be the
subspace of U (A")(resp. ©,(A4)) spanned by the elements X5 (resp. zy) such that
(&) < m, along with 1. Call X increasing if (i;,j,) < - < (i, Jj,).- (¢) is also
considered to be increasing.
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Lemma 4.2. Uy(A) is spanned by {X,X increasing} as a vector space.

Proof. Assume that any element of U,,_ is an F-linear combination of the
X ys such that #(2) <m — 1 and that X is increasing. It suffices to show that,
for 2 =((iy, j1)s.-.» (i ji)) satisfying n(X) = m, we have

Xirgt " Xhju X 1jur s Lisje
= it tudus thwduXingt " Xius G 1 Xhwdu " X je
(mod U,,_,).

for an integer u such that (i,, j,) > (i,+1, jusq)- Indeed, if ((u+1 Jur1) G
iNeC,JCu U CamJ Covyy this follows from (42). If it belongs to
Cv)(resp. Cyy)), then it is obtained from (4.2) and the formula:

n(((iu+1’ ju+ 1)9 (iw .]u))) - ﬂ(((lw 1> ]u)))
= (lu - iu+ 1)(iu _ju+ 1) >0 (43)
(resp' n(((lu+ 1> ju+ 1)’ (iw ]u))) - ”(((lu+ 1 ju): (ius ju+1))>

= (lu - iu+ 1)(iu _ju+ 1) > 0)' (44)
Now we show that {X,2 increasing} is, in fact, a basis of U (A).
Lemma 4.3. The set {zjX increasing} is a basis of S (N).

The proof is similar to that of Lemma 2.2; instead of Lemma 2.1, we need the
following Lemma 4.4. We omit the details.

Lemma 4.4. For 1 <i<j<n,letc;eF. We denote by 7, the associative
F-algebra with generators t,...,t, and relations c;;tit; —tit;. Let F[vy,...,v,] be
the F-algebra of polynomials in indeterminates v,,...,v,. Then F[v,,...,v,] has a
left 7 ,-module structure defined by

r rt+1

gt I TR r r r
LY e Ot = 10 e O iU e ) Uy

For 4, uedy and XePy, write A <X if A < pu for all peX.

Lemma 4.5. There exists an F-bilinear map f: N x Gy(N)— Sy(AN)
satisfying :

(A) f(xs z5) =z;z5 for A< 2.

(B) f(x2 z9 =z;z5 (mod Sy(5)sny—1)-

(C) For all (i, j) <(m, n),

gijmnf(xijﬂ f(xmm ZT)) _f(xmm f(xijs ZT))
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af (Xiw 27) if (G, j), (m, n)eCe,)
= (¢* — q—z)f(xim f(xmﬁ z7)) i (G, j), (m, n))e Cay,
0 if (G, J), (m, n)e Co) U Can U Com U Covyy

In order to prove this, we need:

Lemma 4.6. Let r be a positive integer. Assume an F-bilinear map f": N
X G (N) = SN satisfies the following:

(B) f(xs z9) =z3z5 (mod Syzy4py—1)-
(C) For all (i, j), (m, n)e Ay, Te Py such that (i, j) < (m, n) and #(,j) + 14
(m,n) +n(T) <r,

Eijmnt Xijy f' Comms 21)) = ' s [ (X, 27))
4f" Xin, Z7) if (G, J), (m, n)eCyy,
=1 @ —a f K ['Cmp 21)) i (G, ), (m, n))eCqyy
0 if (G ), (m, m)eCiiy U CanyU Cam U Cowny

Then, for (h, £) < (i, j) < (m, n) and We Py such that n(h, ¢) + n(i, j) + n(m, n)
+ n(@)<r, it follows:

EneijenomnXng VijmnZ ¥ YVijmnXne Z w
~ EijmnXijYhemnZ ¥ EngijVnomnXijZ ¢
+ xmnyhlijz v Bijmnehﬂmnyheijxmnz b4 (45)
=0.
(Here we abbreviate [(X;,, j,, ['(Xiyjoree oS Kijo Zw))) 10 Xiy jy Xi 1y " Xi 2 )

Sketch of the proof. 1In §3, we have seen that there are 6 cases for ((i, j), (m,
n))e Ay x Ay such that (i, j) < (m, n). Similarly we can see that there are 62
cases for ((h, £), (i, j), (m, n))e Ay x Ay x Ay such that (h, £) < (i, j) < (m, n) (See
Figure 1).
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Figure 1 (we omit the letters m and n).
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In the 20 cases labelled ©, SiNCe Yjmm = Vhgmn = Vaeij = 0, the formula (4.5) is
obvious. In the 24 cases labelled +" or =*" (r =1, 2, 3), we have

Yijmn = O1r Ynomn = O2p> Vgij = O3y
In the cases of #,
the left-hand side of (4.5)
= &n4ijChomnXn, 01(q* — q—z)xinxmjz w— 5”(‘12 - q_z)xinxmjxhe Zy
~ imnX1102:(0% — 47 XXy Z 0+ €40102/(8% — G Xpn Xy XijZ w

2 -2 2 -2

+ Xmn03{q° — 47 2)XjXi 0 Z 90— Eijmnbromn93/@> — 47 2)XpjXi g XunZ w0
= @ ~ 47 b1Enitnm — )
=g q ir haijshemn shlmjghllin xhzxinxmjz‘l’

- 52r(8ijmn8hnij - 8haij8ijme)xhnxijxmt Zy

+ 53r(8hjmn8iemn - Sijmnshlmn)xhjxmnxie Z‘I’)
= 0.
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The cases of %", can be treated similarly.
In each of the remaining 18 cases, we can get (4.5) after easy
computation. For example, in the case of h <i< ¢ =m <j <n (labelled #),

the left-hand side of (4.5)
=4%(a* — 4" ) Xn XinXmiZw— (@° — 4 ) XinXmjXno Z
— 4X;jXpnZ @+ qXpy XijZ
+(¢* — q_z)xmnxhjxilz‘l’_ 7*(q* — q‘z)x,,jx,-ﬂ XmnZ @
= q%a* — 4" ) Xn XinXmjZw— 4(Q° — 4 *)Xin Xy XmjZ 9 +

2 -2
—dq )xinxhjz '

qlq
+ (@* — 47 )X XnXig 2w — (% — 42 Xy X Xi g Z g —
7*(q* — q_z)xhjxia XmnZ w
= q*(q* — 47 * XX, XmiZw+ q(@° — 4" ) XinXpiZ @
— 4@ — 4 )% XinZw— (@ — 4 ) XpnXmjXi0 2w

= ‘1(‘12 - q_z)thnxijZ‘P— q(q* — q—z)thnxijz‘l’= 0.

Proof of Lemma 4.5. To define f(x,, z) satisfying (4) and (B), we proceed
by induction on (1) + n(X). If n(d) + n(X) =1, only the case A =(1, 2) and X
= (¢) occurs; therefore we can put f(x,,, 1) = z;,. Assume that we have already
defined the elements f(x;, z5)€ S (A) for A, 2" with n(d) + n(Z") < n(4) + n(2)
so that they satisfy (4) and (B). We define f(x,, zy) when X' is increasing. For
the case A < X, we define f(x,;, z5) = z;z;. If A< 2 fails, then 2 =(u, T), u<T
and u< A Put (i,j)=p, (m,n)=41 By (4) and (4.3 and 4), we can put:

S 25) = €ijmnZijZmnZT T Sijmnf(xiﬁ S mms 21) = ZmnZ7) — X((i,j),(m,n))

where
qf Xins 21) if (@ )), (m, m))eCqy,
Xpimmy =\ (@ — 0" f i [y, 21)) i (G, ), (m, n)) € Cyy,
0 if (G ),

(m, n)eCy, U Cony U Cam U Covy

Since  &;mnZiZmnZr = ZmnZgs f(Xmm z5) satisfies (B). By the definition of f, f
satisfies (C) in the case (i, j)) < T. We shall consider the case when (i,j) < T
fails. Write T= ((h, ¢), ¥) where (h, ) < ¥, (h, ¢) < (i, j). By induction on
n(i, j) + n(m, n) + n(T), we show that f satisfies (C). Assume that, for each #(i, j)
+ n(m, n) + n(T) <r, (C) holds. Then, for 5@, j)+ nm, n) + n(T)<r + 1, we
have:
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XijXmnXnoZ @
= xi}(shﬂmnxhﬂxmnz w yhlmnz 'I’)
= ehemn(ghlijxhﬂxijxmnz‘l’_ Yo ijXmnZ w) — XijYhomnZ w
= 8hfmnghﬂi]"xhexijxmnz v 8hlmnyhﬂijxmnz'l’_ xijyhlmnz‘l’*

(Here we abbreviate f(x;, j,, f(Xiy jpr--es f(Xijor Z2).)) 1O X 5 Xi, 5000 Xy, 2w )
Similary,

XmnXijXnoZ @
= Engij€nomnCijmnXngXijXmnZ ¥~ €ngijCnomnXneYijmnZ ¥
— EhgijYnomnXijZ w— XmnYheijZ @ -
Therefore, by Lemma 4.6, we get:
EijmnXijXmnZT — XmnXijZT — Vijmn2T = 0.

Hence f satisfies (C). This completes the proof.

We can restate Lemma 4.5 as:

Lemma 4.7. S/(A") has a left U(AN)-module structure satisfying:

(A) Xzz=2z,zy for A< 2.

(B) Xzz=1z;z5 (mod S,(5+n-1)-

As in the proof of Lemma 2.2, Lemma 4.2 and Lemma 4.7 imply the
following:

Lemma 4.8. Let ge F* be such that q® # 1. Then the set {z5X increasing}
is a basis of Uy(N).

Combining Proposition 2.3, and Lemma 4.1 with Lemma 4.8, we obtain
Theorem 1.1.

§5. Proof of Theorem 1.2

Let 2 = ((iy, j1)..., (i»Jj))€Py. Define the function §: Py—Z by 6(2)
=(j; — i) + -+ + (j; — i,) and J((¢)) = 0. Denote the element e¢; ,;, - e;,;, (resp.
Sivis = Jinj) Of Ugslys1(F)) by ey (resp. f5). We understand e, = f,, = 1. Put

Qy={mneZ x Zim,n>0, n < Maz{nZ)|2ePy, 6(2)=m}}.

For (m, n)eQy, let A, be the subspace of U(sly, (F)) spanned by the
elements fy ki{'---ky¥ey, where 2 and X' are increasing, (6(Z") + 42, n(2")
+ n(m) < (ma n), and el;---: eNEZ- Clearly’ 9I(m’,n’)c“u(m,n) < Q'I(m’+m,n'-e—n), QI(m,n)
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c A, if (mn)<(@j). For (m, n)eQy let (m n)"eQy, be the element
satisfying that

1) (m n)" <(m, n).
(2) There is no element (i, j)e 2, such that
(m, n)* < (i, j) < (m, n).

Put Wiy = Wonny/Ymmn> and g oy = Yoo Then Ay= H A, has a

(m,n)e @n
graded algebra structure with 1 whose multiplication is defined component-wise

by
(x + 9I(m,n)")(y + Q’[(m’,n’)") =Xy =+ QI(m+m’,n+n’)"9
where X €W, VE Wy Let S,(%) be the associative F-algebra with 1 with

generators &, f;; (G, )eAy), k', (1 <i < N) and relations:

Rkt = qwrtairt o ing,
E ]fIE‘ L q_(“'~"+“1+1-"“"'+a1-l,r)j..
rJ ij™r ij
éijfmn =fmnéij
1jmn€1j€mn = Cmnijs Eijmntijfmn = FanSi; (G J) < m, n)).

As in the proof of Lemma 2.2, we can show that the -elements

fml,nl "'jms,ns Ei‘ EKIN éil,h éit,jg ((ml’ nl) << (ms, ns)a (ilajl) << (in jz),
£,..., éycZ) form an F-basis of S,(%). As an immediate consequence of
Theorem 1.1 and the formulas in §3, we get:

€

Lemma 5.1. Uy is isomorphic to S,%) as F-algebras.

Remark. The above argument shows that, using our filtration, we can
compute the structure constants of U (sly. 1(F)) with respect to the basis given in
Theorem 1.1.

Lemma 5.2. (a) S,(9%) has no zero divisors # 0.
(b) ©¥9) is a left (right) Noetherian ring.

Since S,(%) is a non-commutative analogue of polynomial rings, (a) and (b)
can be proved in a way similar to the case of usual polynomial ring
(e.g. see [10, Th. 1.2.10]).

By Lemma 5.1 and Lemma 5.2, we obtain Theorem 1.2. The proof is
entirely similar to that of [5, Chap. 4, Theorem 4].
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§6. Uy sly, (R)) over a Commutative Ring R

Let R be a commutative ring with 1, and R* the unit group of R. Assume
geR* is such that g* — 1eR*. Let U(sly.,(R)) be the associative R-algebra
with 1 with generators e;, f;, k*! (1 <i < N), and relations (1.1),..., (1.5), where
A = (a;j)1 <i,j<n is the Cartan matrix of type Ay. For 1<i<j<N+1, we
define e;;, f;; by (1.6). Let Lbe the two sided ideal of U ,(sly.(R)) generated by
Leiiv3s €iv1]s [fiiva firid (1< S_N —2). Put Usly+1(R)) = Ufsly,(R))/L.
By (3.3), for a field F, if ¢® # 1, U(sly(F)) ~ U(sly+(F))/L.

Theorem 6.1. (a) As an R-module, [7q(slN+1(R)) is free. The elements

¢
fml,nl ...fmS,nskll k,ﬁ,” € iy i 6.1)

((my, ny) < - <(mg nyY, (i1, j1) < - <(pJ)s £15..., €n€Z) form an R-basis of
Uq(SlN+ 1(R)). _
(b) If R has no zero divisors # 0, then Uy(sly,(R)) has no zero divisors
#0. If R is a Noetherian ring, Uq(slNH(R)) is a left (right) Noetherian ring.
(¢) If ¢® — 1eR*, then L= (0).

Proof. First we prove (a). Let v be an indeterminate, C(v) the field of
rational functions. Let o/ be the Z-subalgebra of C(v) generated by 1, v™?, (v*
—1)"1. We define U, to be the .&/-submodule of U (sly(C(v)) generated by
the elements (6.1). From the arguments in §5, we see that U, is an o/-algebra
with a free of-basis (6.1). We now define, for R and ¢, Uz, = U, & 4R,
where R, is R, regarded as an .«/-algebra with v (resp. 1) acting as multiplication
by g (resp. 1). Since Uy, satisfies the formulas [e; ;. 3, €;+1] = [fii+3,fi+1]1 =0,
we can define the epimorphism ¢: Uq(slNH(R))—) Ug, by 0le) =e; ® 1, o(f)
=fi®1, ek ')=kF'® 1. Hence the elements (6.1) are linearly inde-
pendence over R. We know that the elements e;;, f; and k; of ﬁq(slNH(R))
satisfies the formulas (1), (2), (3), (4) in §3. Hence, defining the filtration on
U:q(slN+1(R)) similar to {Wiumimmeny i §5, we see that, as an R-module,
U(sly+1(R)) is generated by the elements (6.1). This completes the proof of (a).

We obtain (b) from the same argument as in §5, and (c¢) from the formula
(3.3).

For U(sly, ,(F)) over a field F, we have the following supplementary result:

Proposition 6.2. Assume qe F* is a primitive 8-th root of unity. Then the
elements

SmyimiSmzms “'fms,nsffhl “'fz%bN kit kg™ €i1,j1€izj2 """ ei,,j,efcl ey
(mp<np+1_1(1 <Sp<s— 1)5 ir<jr+1_1 (1 SrSt—l)s

bl""’ bN’ cl,..., CN209 gl,..., eNEZ)



PBW THEOREM FOR U (sly+;) 519

Sorm a basis of U (sly 1(F)).

The proof is based on Proposition 2.3 and an argument similar to the one
used in the proof of Lemma 2.1, 2.2; we omit the details.

From Proposition 6.2, we obtain:

Proposition 6.3. Assume q to be an indeterminate. Let o = F[q*", (¢*
—1)"Y). Then, if N =3, Usly(=)) is not free as an sf-module.

Proof. By the argument of (3.3), we sce

(@* + g e+ €is1,+2] = 0.

Let {eF be a primitive 8-th root of unity. Define the F-algebra homomorph-
ism p: Uysly+1()) > Udsly+1(F)) by ple) = ei, p(f) =fi, plkit) = k', plg)
={ where ¢, f;, kKi' (1<i<N) are generators in the definition of
Uysly+1(F)). By Proposition 6.2, we have

! ! ’ 7
p(leii+3 €iv1,i+2]) = € iv3€ivtivs — Cir1,i+2€i+3 # 0.

Hence [e;;+3, €;4+1,:+2] # 0, which shows that U,(sly. (<)) is not free.

§7. On Uy sos(F))

2 -2
Let A be the Cartan matrix of type B,, namely, A = ( | ) ) Put

U, (sos(F)) = U (A, diag(l, 2)) where ¢® # 1. Define the elements E, F; (1 < N)
by

E,=e,, E,=¢,, E3=c¢;e, —q4ezel, E,=eE;— q_4E3el,
Fi=fi, Fa=f5 Fy=fif> ‘q4f2f1a F,=fF; _q_4F3f1~

Proposition 7.1. (a) The elements F7'F32F%F4-kitki2- El E? E3 EY
(ms, i;>0, ¢, £,€Z) form a basis of U [sos(F)).
(b) U(sos(F)) is a left (right) Noetherian ring, and has no zero divisors # 0.

Let V, be the subspace of U,(sos(F)) spanned by the elements
FP Fp F33 Fpe-kirki>-EX ER ES EY such that 2(m, + iy) + (my + iy) + 2(ms
+ i3) + 3(my + i,) <i. The proofs of (a) and (b) are obtained by using the
filtration {V}}2, of Uysos(F)). This is similar to those of Theorem 1.1 and
1.2. The details are omitted.
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