Publ. RIMS, Kyoto Univ.
25 (1989), 521-577

New L#-Estimates for Solutions to the Schrodinger
Equations and Time Asymptotic
Behavior of Observables

By

Tohru OzawAa*t

Introduction

We consider the Schriodinger operator H=H,+V in the Hilbert space L*R"),
n=1, where H, is the self-adjoint realization of —A in L*R") and V is a sym-
metric operator with Hy,-bound less than one. This paper is mainly devoted to
obtaining detailed informations about the asymptotic behavior in time of the
following quantities:

ey le~®Hg| 7z, 1=p=£ o,
2) (e Ve "8, )2y,
3) [(x/2t+)e | 2 pms ,

where ¢ < L*(R") is an appropriate initial datum. We obtained some new esti-
mates for (1)-(3).

For a nice initial datum ¢, it is reasonable to expect that e"*#¢< L?(R")
for all t&R and that the map R=t—e *"#d= LP(R™) is continuous even when
p+#2. By taking the asymptotic behavior of the Schriddinger free evolution
group into account, it is natural to think that for scattering solutions (i.e.,
e~"#g¢ with ¢ orthogonal to any eigenvector of H), (1)-(3) decay as t—+oo
provided 2<p=<co. The local L*-decay of scattering solutions has been exten-
sively studied by many mathematicians (see [14][15][16][17]{18][20][24][25]
[26][29]). The L?-decay estimate, however, has not been fully investigated
(see [2][3][32] for some special results in three space dimensions). Concerning
scattering solutions, it is known that the expectation of the potential energy
(2) and the difference between the momentum of classical mechanics and that
of quantum mechanics (3) decay as {— oo under suitable conditions (see [4][6]
[27]). Time asymptotic behavior of observables under the Schrédinger group
has been of importance in proving asymptotic completeness of the wave operators
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(see [5][61[27][33]).

The contents of this paper are as follows. In §1 we give some preliminary
lemmas. In §2 we study the Schrddinger evolution group in the weighted
Sobolev spaces. In §3 we state the pseudo-conformal conservation law for the
Schrédinger equation. The pseudo-conformal conservation law for some class
of non-linear Schrédinger equations was first observed by Ginibre & Velo [8].
Then, the non-linear theories have been developed by many authors (see [91[10]
[117[37]). In §4 we establish the general existence theory of LP-solutions to
the Schridinger equations. Various LP-estimates will be obtained. We use
these estimates in §5 and §6. We investigate scattering solutions in §5. Suf-
ficient conditions for the quantities (1)~(3) to decay in time will be given. The
purpose of $6 is to determine the rate of decay of (1)-(3) for short-range
potentials and repulsive potentials.
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§1. Preliminaries

In this section we collect some preliminary lemmas. We begin with mak-
ing some notational conventions. Throughout the paper we always assume that
V is a symmetric operator of multiplication in the Hilbert space L? and is H,-
bounded with Hy-bound less than one. H denotes the self-adjoint operator
defined by the operator sum H=H,+V. *,(H) and 4 (H) denote the
absolutely continuous spectral subspace of H and the continuous spectral
subspace of H, respectively. For any real function we denote by the same
symbol the operator of multiplication by that function when this causes no
confusion.

N denotes the set of positive integers. <£)=j!/k!(j——k)! for 7, ke N\U{0},

j=k. For seR, we denote by [s] the largest integer less than or equal to s.
p’ denotes the conjugate exponent to pE[l, «o]. 0.(p)=n/2—n/p. Let E and
F be Banach spaces. .L(E; F) denotes the Banach space of continuous linear
operators from E to F. We abbreviate L(E; E) by L(E). C{; E) denotes the
Fréchet space of continuous functions from an interval ICR to E. For a linear
operator T from E to F we denote by D(T) its domain.

0; denotes the distributional derivative with respect to the j-th variable. V=
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@ o, ) A=3105 3a,=0 it k2L x=(x, o, 5, [21=(5 )7, o)
i=1 i= =

=(1+1x|?"?, for x=R™ For any multi-index a=(NU{0})*, we follow the
usual conventions:

jal=3a, al=1Ial (2):}1}1(;;) o= 11op, xe=Ixp.
S denotes the Fréchet space of rapidly decreasing C~-functions from R™ to C.
S’ denotes the dual of S.
L? denotes the Lebesgue space LP(R™) or LP(R™)QXC™, with the norm denoted
by |-l 1<p=<oo. LPNL? denotes the Banach space with the norm ||-|z7~z2
=|-lp+-llp 1=£p<g<oo. For m, seR, the weighted Sobolev space is defined
by

Hm ={¢pcS8"; |Plln, s=IA=2)""P,+ [@°Plla<oo}.

(-, -) denotes the LZscalar product and various pairings between L? and L?
(1<p<oo), H™® and H™° (meR), H** and H"° (s€R), S and &'. e.t.c.
D,= N D(x*H™) denotes the Banach space with the norm

mtial<j

||¢||Dj=m§yaqullx“H’”sbllz, JEN.

A denotes the generator of dilations: A={1/2/)(x-V+V-x).
F denotes the Fourier transform defined according to the normalization:

(#g)@= @y re-rgnidx, ceRrr.

Different positive constants might be denoted by the same letter C. If neces-
sary, by C(x, ---, %), we indicate the dependence of the constants on the quantities
appearing in the parentheses.

Lemma 1.1. Let g, r<[1, o]. Let j, m=NU{0} satisfy 0<j<m. Let p
and a satisfy
1/p=j/n+al/r—m/n)+(1—a)/q;

j/m<a<l if m—j—n/reNU{0}, j/mZaxl otherwise.
Let ¢p= L satisfy 0°¢pe L, |Bl=m. Then 3*¢=L?, |a|=j, and moreover,
ImEzjlla“sbllpéC(n, m, 7, 4, 7’)I ﬁgm (R B A P

For Lemma 1.1, see, e.g., A. Friedman [7].

Lemma 1.2 (C.S. Lin [22]). (1) Let j=N. Let k, (eNU{0} satisfy k+I
=j. Let ¢=H¥"I. Then x*d*¢p=L? |a|=Ek, |BI=I, and moreover,

‘Ekllx“aﬂgbllzé Cln, DIl x17QlE 115 .

a
181=1
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(2) Let s=0, meR. Let ¢=H"* satisfy 0’0°¢=L? |a|=m. Then 0P L?,
|Bl<m—1, and moreover,

ﬁEk lwd?Pl,<Cl(n, m, s) 3 @@ @Ply™IPliF™, 1=k=m—1.
1pl= laj=m

Lemma 1.3 (W. Hunziker [12]). Let j&N. Then:
(n e "(D)CD;, teR,
le=*#¢llp,<Cln, NA+1t1YIdlp,, tER, €D, .
(2) For any ¢=D; the map Rot—e " HgeD; is continuous.

(3) For any ¢=D,,
xae—i:H¢:e—isza¢+iS:e—i(t-r)H[H, xaje-irH¢dr, |aI§].,
where the commutator is defined as [H, x*]=—2(Vx%)-V—(Ax%).

Lemma 1.4 (W. Hunziker [12]). Let {.(x)=exp(—|ex|?), >0, x&R". Lei
ucsCR; L?. Then:

(1) Lu—u in C(R; L? as e—+0.
(2) For jeN, 0 C.u—0 in C(R; L?) as e—+0.

§2. Some Properties of the Time Evolution e-i*#
in the Weighted Sobolev Spaces

In this section we describe some properties of e~**¥ in the weighted Sobolev
spaces. For this purpose we use the square root |H|'% of the operator |H]|.
It is well known that D(H)=D(H,)=H?"° and that there exist constants 0<a<1
and >0 such that

@1 [V, Pl=alVoli+olols,  ¢=DH).

This implies (H¢, $)=—0blll;, ¢=D(H), so that for A>A,=1+b, H+2 is a
positive operator in L% Indeed, [(H+A)¢l:l¢l:=(H+2)P, H)=A—=b)¢ll3, ¢
D(H). Moreover,

(2.2) Cl(Ho+Dll. < | HPllo+ 1@l = [(HA+DP 41+l Pl

SAHA+DA=D)OIH+DPl.,  $=D(H).
On the other hand,

(2.3) IH+DP|.Z Cll(Ho+D¢ll.,  ¢=H™®,
By the Heinz-Kato theorem [35], we obtain from (2.2) and (2.3) that
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D((H+2)"*)=D(H,+1)"*)=H"*,
COIG oS NHA P C Do, P H,

Similarly, from the relation (see T. Kato [19; p. 335])
(2.4) I Higll:=IHpl. < [(H+DPl.= (1 H[+Dll., ¢=D(H|)=D(H),
we obtain D(|H|'*)=D((H+2)'*),
(2.5) AP 2Pl < I(H+2 )l < [(LH| 4+2)"*¢ ],

=(I1H"*PlIz+2lgl1D*,

SAIAHP+DPle,  =DHM).
We have thus proved that for j=1, 2,
(2.6) D(H|#"*)=H"*,
2.7 Cligls o=l HIP+DPl.=C"lPlls0,  PE=H”".

It follows from (2.1) that

[V, DI=Cligllollgle, ¢, ¢=DH),

and therefore V extends to a bounded operator from H'° to H~°, which will
be also denoted by V in the sequel. Now we have:

Theorem 2.1. (1) Let j=1 or 2. Then:

e UE(HICH,  teR,

(2.8) le=*#gll;0=Cliglls0, 1ER, gH"

For any $=H*" the map Rot—e ““HpsH'® is continuous.

2) e HH(HYYCHY', tER,

(2.9) e $llo, s < Cligllo,+Cltllglo, tER, gH"

For any ¢ H"* the map R=t—e " ¢= H* is continuous, Rot—e" T xe g L®
is continuously differentiable, and

(2.10) -(%(e“”xe'“”gb):—Zz'e”HVe"“”gb , teR.

(3) Ve"“H(Hl’O)CH"l'o , tER,
Ve ' |1, 0=Cl¢lo, tER, g=H""
Remark 1.1. Estimates (2.8) and (2.9) have been proved by C. Radin & B.

Simon [30]. But they have not studied the continuity properties in ¢ of e *¥,
which will be needed in the proof of Theorem 3.1.
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Proof of Theorem 2.1. (1) Let ¢=H’”°. It follows from (2.5) that
e ;o< CI(| H| 2 +)e " |,
=Clle”*#(| H|"*+i)¢lla=CI(| H|"*+)pl. = Cl @l .0,
le=¥g—e=1*7 g, < CI(| H| 7+i)e™ " —e~*T)g
=Cl(e " —e "1 H|+i)gll, ¢, SER.

These inequalities prove part (1).

(2) Let g=H"' and let {¢,} be a sequence in H*'=D, such that ¢,—¢ in H"*
as j—oo. Let u(t)=e "H#¢ and let u,t)=e "¢, =R, j€N. By part (2) of
Lemma 1.3, u;=C(R; H*') and

(2.11) xu](t)ze‘”Hx¢j——2iS:e“'““"”Vu,(f)df, teR,
By (2.8) and (2.11),
2.12)  fxu,O)—xue@®lle = x¢;— xPslla+C 2] sup. V() —Vur(®)ll

Sl@i—dellos+Clell@;—@elio—>0 as j, k—oo.
On the other hand,

sup lu,t)—u®)l=l¢;—dl. —0 as j—ooo.

Since the multiplication operator x is closed, we find xu(t)e L® and xu;(t)—xu(t)
in L? as j—o. In the same way as in (2.12), we see that the R.H.S. (=right
hand side) of (2.11) tends to

e‘””¢—Zz'S:e“i“")HVu(r)dr
in L? uniformly on compact f-intervals as j—oo. Therefore, xuesC(R; L?) and
2.13) xu(t)= e“””xgb—ZiS:e‘“"””Vu(r)dr . teR.

It follows from part (1) that R=t—e* #Vu(t)e L? is continuous. (2.10) now fol-
lows from (2.13). (2.9) follows by estimating the R.H.S. of (2.13) in the L%-
norm.

(3) Since we already know that Ve £(H""; H™'°), part (3) reduces to part (1).
Q.E.D.

Theorem 2.2, ¢ “H(H**)CH"? tER,
(2.14) le=*#llo,. < Cll@llo.e+Clt|*@leo, (ER, g=H™2

For any ¢ H™?, the map Rot—e "*H$c H"? is continuous, Rot—e*# | x|%e """
e L*? is continuously differentiable, and
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(2.15) %(e“*’lx‘[ze'“Hgb):éle“HAe““”gb , tER.

Although a formal proof of (2.14) proceeds exactly as in [30], we give here
a rigorous proof for the sake of completeness. The proof proceeds in several
steps. We first approximate u(t)=e *#¢ by u,({)=iA(H+i2)'u() and prove
that Au;=CR; L?). We next show that {|x|%u;(¢); 2>1} is bounded in L2
This in turn implies that | x|*u(t)eL?® and AucC(R; L*). We then prove that
ucsC(R; H"*) and (2.15) by obtaining an identity for |x!*u(¢). The proof of
(2.14) uses a differential inequality associated with [[(|x!2+2)u(?)].. To this end
we start with the following

Lemma 2.1. Let AeR\[—1, 1], 1=<;<n. Then:

1) 10,(H+i2) | caan=C|A[ 772,

(2) (H+id)"(H*H)CH"*,

(2.16) X HAD) p=(HA+id) " 5 ,p— 2 H+id) 0 ,(H+id) 'y, e HO,
3) d,(H+id) \(H*YYCH"*

2.17) 20 HA+i2) =0, HA+id) " x sp— (HA+i2)"'¢p

—20,(HA-i2) 0, (H+id) ¢,  H€H™.

4 (H+i)*(H**)CH*?,

(2.18) U HAD) ' p=HAiA) x5+ 2(H+i2) %)
—4(HA+-12)70,(H4-i2) " x ¢
+8(HAi2)10,(H+iA)'0,(H+id) ),  $cH*

Proof. (1) For ¢=D(H), we have
IHHI"QIE= | HIQllllpll:= HPlllp]l2 -
Therefore it follows from (2.7) that
l0,915=Cll1 H|**¢lI3+ Cligpl2
=ClHl:l¢l.+ClalllE
=Cl2|7HQl+Clalllgl
=CIAI"(IHYlE+2glIDH=C A1 I((H+id)gll%,
form which part (1) follows.

(2) Let L. be as in Lemma 1.4. We have on L°®
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x,8e=x,C(H+i)(HAi2)™
=((H+i0)x L+ 5,8, H+iAIXHAi2)™

=(H+i)x,L(H+iA) +[x,8., HoJ(H+i)™,
so that

(2.19) (H+id)x Le=x,L(H+2) " +2(H+12)"'.0,(H+i2)™

—2(HA12)  (n+2—2]ex |®)e?x L4262 x ,L(x - N)NHA+IA) .
Let ¢=H*'. By Lemma 1.4,

x,Cep —> 2,0, C.0,(H+i2) ' —> 0,(H+id) ¢,

(n+2—2]ex|e’x, 426" x L (x - V)H+A) ¢ —> 0,
in L? as e—+0. Therefore from (2.19) we see that

1, L (HA12) ') — (H+1A) " x,0—2(H+-12)70,(H+12) "¢

in L? as e—»—+0. Since the multiplication operator x, is closed, we obtain part
2).
(3) Let ¢=H™'. By part (1), (H+id) " x,¢, (H+i2)0,(H+i2)'¢=H"® and thus,
by (2.16), x,(H+id)'¢=H"’. Consequently,

2 20,(H+12) " p=0,x x(H+12)"'p)— ;. (H+iA) P L*.
Part (3) now follows from part (2) and the equality above.
(4) Let ¢=H*® Then x,p, 0(H+iA)'¢=H®'. By part (2), (H+id)*x,¢,
(H4i2)9,(H+iA)'¢g=H*'. By (2.16), x,(H+i2)'¢=H®'. We have thus proved
that (H+:2)"* keeps H®? invariant. (2.18) follows by iterative use of (2.16) and
(2.17). Q.E.D.

Proof of Theorem 2.2. Let ¢<H** and let ¢, =iA(H+i) ‘¢, A>1. With-
out loss of generality we assume that ¢0. We define u and u; by u(t)=e "¢
and u;(t)=e 7@, =iA(H+i2)*ult), teR, 2>1, respectively. Theorem 2.1 im-
plies that u, u;=C(R; H*'). Moreover, Lemma 2.1 shows that Au;C(R; L?).
Since {A(H+i4)"'—1 strongly in £(L?), we see that

sup 30— u®ls=lgs—gls —> 0 as A-roo.

We now prove that u(t)eH®? for each tR. Let{. beas in Lemma 1.4. Not-
ing that |x|*C.u,eC'R; LYNCR ; H>?),

.d
i 2P =12 " Hua, (% *CetuOE= 11 2 CeuaDlE+ 6211,

we have



LP-ESTIMATES FOR THE SCHRODINGER EQUATIONS 529

A(PIL I APILSNOTE

=2 Re(%lxizcgu;, %1%z

=2Im (|x|’CcHouz, |x1°Couz)

=2Im {1 x1°C, HoJua, |x|*Ceuz)
=8Im ((1—lex|*)ex-Vuz, |x*Cus)
=—4Re((1—|ex | Aus, |x]2Cus).

The Lipschitz continuous function ||{|x|?*C.47)u; . is differentiable a.e. (=almost
everywhere) and

LT D =20 2 et Dl 12 Gt Dl ace,
Consequently,
I 2Dzl - | S 10 2 aOl
<211~ | ex 1 Auz | x e

=2[(A—Jex M Auzloli(l 2 *C+Dualls a.e.

We devide both sides of the above inequality by [|(|x|%C.+d)uzl, (Z]@2].>0)
and integrate the resulting inequality with respect to ¢ to get

(2.20) I 2 1PCet-D)uall

< (%12 | 10— Tex DA (ladz

, tER.
By Lemma 1.4, the R.H.S. of (2.20) tends to
@.21) I 12+gl+2| | 1 Awa(o)llde|

as e—+0, since we already know from Lemma 2.1 that ¢, = H"?, Au;=C(R; L?).
Fatou’s lemma then shows that (| x|247)u,(t) is in L? and is estimated in the
L?norm by (2.21). We estimate the integrand in (2.21). By part (1) of Lemma
1.2 and (2.8),

I Auz (@< ClI(T 2 1P +)ua(@lE® a0l
SClIUx P +FDua@IE 1 allzE .
By (2.2) and (2.3), we have for 2,=1+0b (see (2.1)),
[P alle. 0= ClI(H+20)@ allo= ClidA(H+12)"(H+20)$ |2
=Cl(H+20)p .= Cligllz.0 -
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Combining these estimates, we obtain
I P+ =Nl C eIl ot C| {10 21 Dua@lade
Gronwall’s lemma now gives
I P4+uaOl< C exp (C Il +Iglen), SR,

where C is independent of 1>1 and t€E. By Lemma 2.1, SAL;E) Igallo.eZCl@lo.2.

Therefore, again by Fatou’s lemma, (|x|®+7)u(f)is in L? and is estimate in the
L*norm by Cexp(C|t])|@lls.2, as was to be shown. We next prove that Aue
C(R; L%. This follows from the H?°'-continuity and H°2-boundedness of u.
Indeed, by part (1) of Lemma 1.2,

Au@®)—Au(s)lo= Cllult)—u(s)|15/5l u@)— ul(s)13/3
S Cu® oo+ Nuls)o, )2l ult)—uls)II3/
—>0 as t—s.

Now the rest of the proof proceeds with some modifications of the arguments
in [12] and [30]. We compute

(0| 5 ) =ie T H, |x1°CTult)
=—2ie""#(n—(n+4)|ex|*+2]ex | )+2(1— ex [)Ccx - Vu(t).
This leads to
(2.22)  |x|PCul)=e ¥ |x|*C.0
—ZiS:e‘i(“”H<(n—(n+4)]ex|2+2]ax!4)§5+2(1—!ex|2)Csx-V)u(z')dz'.

The L.H.S. of (2.22) tends to |x|2u(t)in L? as e——+0 for each t=R, while by
Lemma 1.4, the R.H.S. of (2.22) tends to

e”“H] x l 2¢_4S:e—i(t—r)1{Au(r)dT

in L? as e—+0 uniformly on compact f-intervals. This proves usC(R; H"?)
and (2.15). We turn to (2.14). In the same way as before, we have

%H(IXIZCS-H')u(t)l]%:sIm (A—lexiM)Cex - Vul®), | x|*Cu®)

=81Im (x-V(Cu()—lex|*Ccx-Vu@), | x| ul)),
and hence

L1115+ ul
<4le Va4l lex | -Tuls
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SCl 1 x PCeully?1Ceulls/3+41 [ex |*Cex - Vully
ZCU % PEe+Dully? 1Ceullyi+40 | ex |*Cex -Vull,
SO 2 12Ce+Dully*(ICeully s+l 2l ex | *Cex -Vull,)  a.e.

Noting that (d/dO)|(|x]|*Cc+Dule=2(( x |?L+Dully®-(d/dOI( x | A+Duly? a.e.,
we devide both sides of the above inequality by [(jx|%.+2)uli? (Z=]uli?=
[#132>0) and integrate the resulting inequality with respect to ¢ to obtain

I % 1A DUBIS I 51+ 15
+ C || (Cu@s+ gl ex 1 Cox-Tu@lde |, teR.
Taking the limit e—+0 in the inequality above, we find
st I x 1 +g 1+ || Ju@lisde|,  teR.
This together with (2.8) yields (2.14). Q.E.D.

Theorem 2.3. Let j&N. Then:

(n e HH([IYCH,  tER,

(2.23) le=*™ogll;0=l8l;0, tER, g<H”",

For any ¢=H'*°, the map Rot—e "Hoge H7° is continuous.

2) e tH(HINCH™!, teR,

(2.24) le#m0g ]y )< Cllglo,+Clt1Igly0, LR, gSHM,

For any ¢ = H’J, the map Rot—e " Hodc H* is continuous, Rot—e  Hoxse~"tHog
eL? la|<j, is continuously differentiable, and

(2.25) %(e“”ﬂx"‘e““HOqi):—z'e”HU((Ax“)-l-Z(Vx"‘)-V)e‘””°¢ .

Proof. We use the following relations:
(2.26) (1—Ay2e  Hoh=g~HHo(1—AY % , ¢ H)’,
(2.27) xe HHoh=g=uHo(x —2tN) , g H,

Part (1) is an immediate consequence of (2.26). We turn to part (2). We first
prove by induction on jEN that if ¢=H’/, then Rot—e *Hog=H*7 is con-
tinuous. The case j=1 follows from (2.27) and is also the special case of part
(2) of Theorem 2.1. Let ;=2 and suppose that if ¢g=H7=7-!, then R=t—e " Hogh
€H"’-! is continuous. Let ¢=H?J. By part (1) of Lemma 1.2, we have x¢,
Vo H/-%i=t Tt follows from the induction hypothesis that
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xix | e g =| x| I xe W Hog 2t | x |7 e H N g

defines a continuous map from R to L? as required. We next prove (2.25).
Let g=H77 and let u(t)=e *#og, tcR. Since usC(R; H’’), we see from
part (1) of Lemma 1.2 that xf0"us C(R; L?), | 8+7| <7, and therefore the R.H.S.
of (2.25) defines a continuous map from R to L?. Let {. be as in Lemma 1.4.
We compute

4 (etoxsfu(ty=ie L Hi, x7CTu(h)
=—7e"Ho(((Ax*)—2(n+2)e?x+de* x| x | +2((Vx*)—2e2xx)-L.Nu(t) .
In the same way as in the proof of (2.15), this leads to
x”‘u(t):e‘”HOx"qﬁ—iS:e'““”HO((AX“)—l—Z(Vx“)-V)u(z‘)dr,

which in turn implies {2.25). It remains to prove (2.24). Let ¢=H7/\{0}. Let
u and {. be as above. In the same way as in the proof of (2.14), we have for
lal=j
Ao ap oo Gy ap 1o
(2.28) Ell(x CetHdullz= dt”x Coulld
=21Im ([x°Ce, HoJu(t), x*C.u(t))
=4Im Vx*- V. ult)—2e*x°L.x-Vu(t), x°C.ul)).
Using part (1) of Lemma 1.2, we estimate the R.H.S. of (2.28) by
2.29)  C(lix "Vt xCex - Vull)| x°Ceul.
SCUN xiCeullF2 1N ull 3+ x 17N ull) x| /Ceull

SCI % 1D ullz 2|1 Ceulli 4+ Clle? | x 17N ull () x 17 4-Dul. .
Since

% PGtduli= 2 Loixegul+lul,
from (2.28) and (2.29) we obtain

2.30) L1l

=@ (e Lkl | S et

=ClCeul;3+ClglE " 1ex ®Celx |77 Vull,  a.e.

Integrating (2.30) with respect to f, taking the limit e—+0 in the resulting in-
equality and using (2.23), we have

I x P +Du@IE < x [7+Dg 137+ Clellglih,  tER,
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from which (2.25) follows. Q.E.D.

§3. The Pseudo-conformal Conservation Law

In this section we provide the pseudo-conformal conservation law, which
will be one of the main tools in this paper. For this purpose we introduce
some notations and assumptions on H. We denote by F the function defined as

F(t): “xeilfloe—ithsl|%+4t2(eitllve—it1{¢, ¢) s tER.

If g=H"!, then Theorem 2.1 shows that R=t—e *“#g=H"' is continuous, so
that we may write

xettHog =t H =g tHo(x +271\V)e *H ¢ ,
(" Ve it G p)y=(Ve "Hg, e " Hg),
Then FeC{R; R) and F(¢) satisfies
FO=(x+2itV)e "¢ |l3+482(Ve * 7, e " g).
We denote by i[ A, H] the symmetric form on D(H)N\D(A) defined as
GLA, Hlg, ¢)=i(Hp, Ap)—i(Ad, HP), ¢, p=D(H)ND(A).
We consider the following assumptions (Aj), j=1, 2:
(A]) i[A, H] extends to a bounded operator B L(H’°; HI-°).

Such assumptions are variants of those of E. Mourre [23] and P. Perry, 1. M.
Sigal & B. Simon [28]. Since {[A4, H,J=—2H, as forms on D(A)N\D(H), (Aj)
is equivalent to the following

(A)¥ The form i[A, V] on D(AYND(H), defined by
(LA, Vi, 9)=i(Ve, Ap)—i(Ad, V), ¢, p=D(A)ND(H),
extends to a bounded operator V< L(H; H3:9),
Lemma 3.1. Let j=1 or 2. Then:

(1) H extends to a bounded operator H? e L(H?*7°; H-7%, Moreover, HC H®
CH®.

@ If =L and HOGS L?, then = H>® and Hd=Hgp.
®3) If =L and HPS=H*, then = H"" and HOd=Hgp.
4) For any ¢, g H®, (HDe g, o~ #U)=(HD g, &) t<R.

Proof. (1) By (2.4), we have
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|(Ho, I =(1H|P, )=I1HI"*PI3=Clplt.,  $=DH).

Therefore,

[(Hp, )| =Cldlolglle, & p=D(H),

from which it follows that H extends to a bounded operator H® = L(H"°; H™"°).
On the other hand,

[(Hp, §)I=1(¢, HYI=ClPlol@leo, ¢, g=D(H),

which shows that H extends to a bounded operator H® < L(H*"; H%"%. If
¢=H"°, then there exists a sequence {¢,} in § such that ¢,—¢ in H"° as
k—oo. Consequently, Hp,=HPp,—HP¢ in H7" as k—oo. This implies that
H®¢g=H™¢, and hence HPCH®.

(2) Let ¢=L? satisfy H®Pe L Put ¢, =iA(H+iA)'¢, A>1. We easily see
that Hep; =iA(H+i2)" " H®¢ and (¢1, Hp)=(GA(H+i2)" " H®), ¢) for any ¢ D(H).
Letting A—oo in this equality, we have (¢, Hg)=(H®¢, @) for any ¢=D(H).
This proves that ¢=D(H) and H¢p=H®.

(3) Let ¢=L® satisfy H®Pc=H™°. Put ¢,=iA(H+id)¢, 2>1. Let ,=1+D
(see (2.1)). We easily see that

(HA4-20)p =1 A(H+i2) " (H®+ )¢,
(H+20)72p 3 =iA(HA-1A) " (HA+2) "V (H® + 20)¢p
I(HA+20)"*(a— P liE
=((H+2:)(P2—P ), P2~
=(CAHAA) 7 —ip(H+-ip) " XH®+20)¢, ga—P,)
=(GACHAi2) —ip(HAipe) ™ Y HA20) H® 200, (HA2)5( i — ),
and therefore
ICHA20) 22— P, o= | GAH+i2) " —ip(Hoipe) Y HA20) " A (HD 4+ 2,)p
—>0 as 4, g—oco.
This implies that ¢ D((H+2,)"*)=H"" and H®¢=HP¢.

(4) If g=H*° and ¢<L?, then the result is immediate. If ¢, p=H"°, then we
approximate ¢ (resp. ¢) by a sequence {¢;} (resp. {¢:}) in S in the H*°-norm
and obtain the desired result by taking the limit k—co in the corresponding
result for ¢, and ¢. Q.E.D.

Let j=1 or 2. If (Aj) holds, then we have the identity H® ?+4(1/2)B=
V+(1/2)V# as operators in L(H7°; H7°), where H®=H. Concerning suffi-
cient conditions for H to satisfy (Aj), we have the following:
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Proposition 3.1. Let j=1 or 2. Suppose that V can be decomposed as V=
Vi+ Vs, with x-NV,, V,e L(H?"; H7®) and xV,eL(H"*; H=7°. Then (Aj)
holds. Moreover,

(VE, d)=((x-VV 1), §)—(xV.p, V)—(g, xVop)—n(Vog, ), ¢, pEH”".
Proof. The proof is parallel to that of [28; Proposition 1.3]. Q.E.D.

Propesitien 3.2. Let W be a funciion on R™. Suppose that W can be de-
composed as W=WP+W where W= L? with ¢q=1, W< L*. Then:

(1) WeL(H"; H*° for all q such that q=1 for n=1, ¢>1 for n=2, and
q=n/2 for n=3.

(2) WeL(H*; H*° for all q such that q=1 for n<3, ¢>1 for n=4, and
q=n/5 for n=b.

3) WeL(H"°; L? for all q such that ¢=2 for n=1, ¢>2 for n=2, and g=n
for n=3.

4) WeL(H*"; H™*° for all q such that ¢=1 for n=1, ¢>1 for n=2, ¢=6/5
for n=3, ¢>4/3 for n=4, and q=n/3 for n=5.

Proof. We only prove part (1), since the other parts can be proved analo-
gously. It suffices to obtain the estimate

|(W@b, )| =CliglsolPlle, ¢, g=H".
By Holder’s inequality,
[(W@d, O)| < [WPllgllllldllp ,
where 1/¢+2/p=1. By Lemma 2.1 (6,(p)=n/2—n/p, see §1.),

3. 1611,< IV 32 g 32w,

where p ranges over 2<p=< for n=1, 2<p<oo for n=2, and 2<H»<2n/(n—2)
for n=3. Combining these estimates, we obtain the required one. Q.E.D.

Theorem 3.1. Let j=1 or 2. Suppose that (Aj) holds. Let $=H’'. Then
FeC(RB; R) and F satisfies

%F (=8H(H>+(1/2)B)e- 1, o~114 )
=81(V+(1/2)V*)e ¢, o= 1), teR.

Remark 3.1. The pseudo-conformal conservation law for the nonlinear
Schrédinger equation of the form 70, u=—Au--2|u|? 'u is expressed as follows
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—%(H(x+2z‘tV)u(l‘)H§+(82/(p+I)WHu(f)liﬁii)

=dA(n+4—np)/(p+tu®F1.

See J. Ginibre & G. Velo [8], Y. Tsutsumi [37], N. Hayashi, K. Nakamitsu &
M. Tsutsumi [9][10] for related results.

The proof of Theorem 3.1 is devided into several steps. We first sum-
marize the properties of the operator A. For A& R\{0}, we define R;=7A2(A+4i2)™*
and A;=AR;.

Lemma 3.2. (1) A defines a bounded operator (also denoted by A) from
H"° to H™=*. Moreover, A satisfies

(3.2) (Ag, §)=—i(Np, xp)—i(n/2X$, ¢), ¢=H"’, p=H*,
(3.3) (A, $)=Im (Vg, x¢), S=H"'.

2) Let meR. Then Ry&L(H™®; H™) for |2]|>m,

(3.4) LS IR ccorm. om0 = |m|+1,

(3.5) R; —> 1 strongly in L(H™°; H™®)  as |A]—co.

@) Let meR. Then AjesL(H™"; H™®) for |A|>m. Moreover, A;=.L(H"";
H®Y) for 2#1,

(3.6) A, —> A strongly in L(H®; H*") as |A]—oo.
Proof. (1) If ¢, ¢S, then (3.2) holds and thus

[(Ag, DI=Cldloldllo., &, PES.

Therefore A= £(H"°; H*"') and (3.2) extends to the case where g H"°, g
H*'. If ¢,¢c=H"", then (A¢, ¢)=(A¢, ¢), so that (Ag, §)=Re(4g, §)=
Im (Y4, x6).

(2) (Compare with [28; Lemma 6.2]). We use the representation

~z'S:°e‘“e“Aa’s it 2>0,
(avir={ |
L zS e-Bgads  if 1<0.

From now on we consider the case 4>0, since the case 1<0 can be treated
similarly. Let ¢&H™°. From the relation (¢**4¢)(x)=e"*'*¢(e’x), s€R, x=R",
it follows that Fet*4=¢-4F, Put w,(&)=(1+e**|£|%)'?, scR, EER". Then we
have in L2
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(1—-A)™2et 4 =F 9™ Fe s 4p=F 0™ 4T Pp=F e "I F
=e" 4G 'wl T .
Thus, R=s—(1—A)™*¢**4p< L* is continuous and
[A=A)"2e 4|, < |wT FPll.<max (1, e™)|w™FPl.<max (1, e™)|Pllm,o -
Therefore, if 2>m, then (0, o) s—e *|(1—A)"%e** 4| ,=R is integrable,
[Ter10—aymresagldssmax @—m), 2 lm.s

and hence, (0, )2 s—e " (1—A)™%*4)=L? is integrable. Since (1—A)™/? is

closed, we see that
(A+id) e D(1-A)m*)y=H™",

(A=A A+i2)y g=—i| o= H(1— Ay rretragds

:—iSoe‘“e”“EE‘lwsggbds ,
| Ridllm, 0=max (A(A—m)~?, Dldln.o,
from which (3.4) follows. We next prove (3.5). We write

(1—A)’"/2(1—Rz)gb:RS:oe‘*s(l—A)’"’Z(l—ei“)gbds
:zgje‘“(g“w’"ﬂ—e”“g“w? F)pds

:S(:e“’(ﬂ"1a)m—ei“’“ASF“‘wl’h)£F¢dr .
The above integrals converge in L® uniformly in A&(max(0, m)+1, o). There-
fore (3.5) will follow if we can show that for each >0,
(Fo™—e =/ DAG19m NF |, —> 0 as A—co .
This follows from Lebesgue’s dominated convergence theorem. Indeed,
[(F o™ —e*/PAF 0l )F Pl
=[|(1—e* @/ PNF Y™ F H4-*/ DAF @™ — T ) F P,
S[(A—et e DHA=A)"2P ]+ (@™ —wl ) F Pl —> 0 as A—oo.
Q.E.D.

Lemma 3.3. Let j=1 or 2. Suppose that (Aj) holds. Let ¢, p=H”'. Then
Roit—(Ae "¢, e " )= C is continuously differentiable, and

(3.7) %(Ae‘””qﬁ, e‘”"’gb)z—(Be‘“HqS, e-th¢,) , =
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Proof. Let ¢,=ip(H+ip)'¢, ¢a=ip(H+ip)'¢p, p>1. Let uy(t)=e “Hg,,
vat)=e ", ult)=e "H¢, v(t)=e "), teR. It follows from Theorem 2.1,
(2.7), and Lemma 2.1 that u,, v,eC(R; H*'), Au,, Av,eC(R; L?), and that
u,—u, v,—v in C(R; H*»') as p—oo. We first show that

t
3.8 (Azu @), v (E)=(A2¢ Sby)_SO(RXBRZ uu(7), v(r))dr.
For this purpose we compute
d . .
zi—t(Alu#, Vp)=—i(ArHuy, v,)+i(Agu,, Hoy).

We consider the first term on the R.H.S. of the equality above. By Lemma 3.2,
(A—id) ' Avy=v,+iR_v,c H*""\D(A)=D(H)ND(A). We write —i(AiHuy, v,)
as

—i(uy, HR_; Av,)

=—i(A(A+id) u,, HR_jAvp)—i(Rau,, HR_;Av,)

=—i(ARu,, HA—i) " Av,)—i(Ru,, HR_Av,)

=i([A, HIR u,, (A—i2)* Av,)—i(HR ju 4, A(LA—i2) " Av ) —i(Ru,, HR_; Av,)

=(BRup, (A—il) Av,)—i(HR ju,, Av,).

Therefore,
%(Al Uy, V)=(BRuy, (A—id) " Av)—i(HR u,, Av,)+i(AR u,, Huy)

=(BRuy, (A—id) " Av,)—(BR iy, v,)
=—(BRuy, Rojv)=—(R;BRuy, v,),

which shows (3.8). Since A;=.L(L?) and R;BR;=.L(H’°; H ), we take the
limit g—co in (3.8) to obtain

(3.9) (Au(t), v)=(As, $) | (RaBR1u(z), oe))dr .
By (3.4) and (2.8),
sup [((RiBR;u®), vit)| = C| Bl cca?%m=7 % ul® . olv@ .0

SCIBleca?ma=2 5101504050, tER.
By (3.5) and (3.6), for each t=R,

lim (R;BR;u(®), v)=(Bu®), v(1)),
Lim (Azu(®), v(O)=(Au(), v(®)) -

Therefore we apply Lebesgue’s bounded convergence theorem to the integral in
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(3.9) to get
(Aud), v(0)=(A9, ) —| (Bu(o), v(@)dz,
which implies (3.7), since Bue C(R; H™/'°). Q.E.D.

Lemma 3.4. Let ¢, JcH"'. Then R>it—(xe ¢, xe *p)=C is con-
tinuously differentiable, and

%(xe‘i”'lgﬁ, xe"””gb)zﬁl(Ae‘“”gb, e-itlf¢)’ teR.
Proof. Let {¢:} be a sequence in H** such that ¢,—¢ in H"' as k—oo.
Let u,()=e "7 ¢,, ult)=e “#¢, v(t)=e ' . By Theorem 2.2,
d d, . )
2 (xFu), xv(t))zd—t(e””lxlze“”’sﬁk, &)

=4(e* " A"y, O)=4(Aud), v(t))
so that

(euat), 5E)=(x, 2)+4] (Aus(z), ve)dr.

It follows from (2.8) and (2.9) that u,—u in C(R; H"') as k—oco, which when
combined with part (1) of Lemma 3.2 shows that (Au,, v)—(Au,v) in C(R; C)
as k—oo, Therefore we have

(xutt), u)=(xg, x¢)+4{ (Aue), ve)dr .

This proves the lemma. Q.E.D.

Proof of Theorem 3.1. We write
Ft)=llxe "¢ |3—4i(Ae " g, e “HP) 4 (HE e " Hp, e~*H )
=llxe " "Pli—4t(Ae "7 P, e G) A (H* P, §).
By Lemmas 3.3 and 3.4, we obtain FeC(R; R) and
%F(t):élt(Be“””gzi, e GBI HE P, &)
=8H((H® P4(1/2)B)e "¢, e~" " g). Q.E.D.

Theorem 3.2. Let g=1 for n=1 and let q>n/2 for n=2. Suppose that
A2)* holds and that V, V¥ L2+ L>. Then:

(1) e“noe_“H(Ho’l)CHo'l, l‘ER,
(3.10) [xe*Hoe= [, <Clxglo+CltlIgll:, (=R, gcH™"

For any ¢ H*?, the map Rot—e e He H* {s continuous.
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2) Y g uI([Io Y Ho-1  teR\{0},
(3.11) e**#Ve "5l < C(A+ [t ™D|Blle.s, t=RN{0}, g=H".

For any ¢, ¢ H"?, the map R\{0}t—(e* " Ve "¢, )= is continuous.

(3) For any g=H"*, the map R\{0}2t—>F()ER is continuously differentiable
and satisfies

(3.12) %F(t):t(e””(V+(1/2)V”)e'”H¢, @), te R\{0}.
Moreover, F is absolutely continuous on R.

Remark 3.2. Part (2) with V replaced by V#* also holds. This can we
proved if we replace V by V# in the proof below.

Remark 3.3. Let 1<¢g<p<oo. If VeL?+L> then Ve L™+ L>. This
q p

=T

follows by cutting the L?-part of V into two pieces. See H. Isozaki [13].

Remark 3.4. See A. Jensen [14] and N. Hayashi & T. Ozawa [11] for
related results.

Proof of Theorem 3.2. We begin with some preliminary estimates. Let
0rES, k=1, 2. Put ¢,=exp(|x|*/4it)),, tcR\{0}. Let W be a real function
such that We L4 L=, where ¢ is as in the theorem. From (3.1) we obtain

(3.13) {(Why, @) =1 (Wes, ¢2)]

<C LIV l3Ips 19+ C IT lgals

< C T e/ 2it+ ) [305a 4-/14 C 1T Il

|

C I IGx/2it)e o |57 gali="19-+ C TT I

In the same way as in the proof of [11; Lemma 3.5], by using Theorem 3.1
and (3.13), we obtain

(3.14) [(x+2itN)e 7P, < Clxpl+Cltllgll:, tER, =S

Let ¢=H"' and let {@,} be a sequence in S such that ¢;—¢ in H*' as j—oo.
By (3.14), we see that for each t€R {xe'*Hog~"¥g } is a Cauchy sequence in
L2 On the other hand,

Sug He“l""e—imgﬁj—e”m’e"”I¢Hz=H¢,'—¢}\z — 0 as j—oo.
te

Since the multiplication operator x is closed,



L?-ESTIMATES FOR TIIE SCHRODINGER EQUATIONS 541
(3.15) xe'tHog g 2
(3.16) xeltﬂoe—iLII¢J > xeitHoe—iLII¢ ill LZ

as j—sco.

(3.10) now follows (3.14) and (3.16). We next prove that for each teR\{0},
et Ve 1 extends to a bounded operator from H®' to H® ! and has the esti-
mate (3.15). It is enough to show

(3.17) (@ Ve, b)| < C(L+ |¢]-12) i{lngb,,no.l . geES.

This follows immediately from (3.13) and (3.14). We now prove that for any
@, pH*', R\{0}st—(e""" Ve "H¢, y)=C is continuous. Let {¢,} (resp. {¢,})

be a sequence in & such that ¢,—¢ (resp. ¢,—¢) in H"' as j—oo. It suffices
to prove that for 7 >0,

stu%' It[ n/ql(ein Ve—itH¢j, ¢])_(eitll Ve_”HSb, ¢)l —_—> O
1t =
as j—co, This follows if we write

(e‘ltH Ve—itH¢j, ¢])__(eitH Ve—ltH¢, ¢)

=" Ve " (P;—¢), gi—)+ (" Ve o, §,—¢)
+(eiLHVe—iLH(¢j_¢), &)

and use (3.10) and (3.16). The rest of the theorem can be proved in the same
way as in the proof of [11; Proposition 3.2]. Q.E.D.

Theorem 3.3. Let g=1 for n=1 and let ¢>n/2 for n=2. Suppose that

Ve L'+ L= and that (A2) holds. If in addition, there exists a constant AR such
that

(3.18) H+(1/2) B2V as forms on H*°,

then the conclusions of Theorem 3.2 hold.

Proof. Let ¢=H"* and let {¢,} be a sequence in H** such that ¢;—¢ in
H"' as j—oo, It follows from Theorem 3.1 and (3.18) that

“xeitHOe—i£H¢]“§+4t2(eitl~1 Ve'“Hgﬁj, ¢J)
= x¢18-+8( c(H+(1/2)Ble~ <5, ¢=71g,)dz

<l l+82] 2(Ver=7g, o9 )dx

and therefore
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(3.19) ]|xe’i£”0e—i£H¢J”§
S48 | Ve, 6| +lxg 5482 (e Ve Tg, ¢ )

The conclusions of Theorem 3.2 follow by the same argument as in the proof
of Theorem 3.2 if we use (3.19) instead of Theorem 3.1. Q.E.D.

§4. LP-Estimates of the Schridinger Equations I
In this section we study sufficient conditions for the existence of LP”-solutions.
Theorem 4.1. (1) Let 2<p=<co for n=1, 2<p<oco for n=2, and let 2<p
<2n/(n—2) for n=3. Then
e”HH(HV)CL?, teR,
le*#$l,<Cligl:o, tER, gcH""
For any ¢=H", the map Rot—e B¢ L? is continuous.

(2) Let 2£p<o0 for n<3, 2<p<oo for n=4, and let 2<p<2n/(n—4) for n=5.
Then
e HH(HEOCLP, =R,

le*#g[,=Cl¢l.0, tER, g=H™".
For any ¢=H*®, the map Rot—e "2 L? is continuous.

(3) Let meN. Suppose that H satisfies D(|H|™?*)=H™"°. Let 2<p<co for
n=2m—1, 2£p<oo for n=2m, and let 2L p=2n/(n—2m) for n=2m+1. Then

eH(H™)CL?,  teR,
le”* 23|, <Cl@llm.o, tER, gH™".

For any ¢=H™°, the map Rot—e "HdeL? is continuous.

Proof. In view of (2.6), parts (1) and (2) reduce to part (3). We prove
part (3). By the assumption D(|H|™/?)=H™°=D(H7/*) and by the closed graph
theorem, we obtain

(4.1) CIHP240)p L < (| HI ™2+l < C' N HP P +id)dl.,  pSH™"
Lemma 1.1 implies

(4.2) ”e_im“”éClagm”aae_imﬂﬁll'z" e

where a=0,(p)/m. By (4.1), we estimate the first factor Z_m”a“e'i”’qﬁllzz
2 lg*Fe 4], on the R.H.S. of (4.2) as e
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4.3) CllgImFe g, < CIIH ?e " ||,
=CI(HI™?+i)e " ],
<CIUHI™*+0)$l. < CI(HF "+, -

Combining (4.2) and (4.3), we have

le 476 1,=Cllg 5. ole g1y <Clplm., LR
Similarly,

e~ g—e" G, <C 3 9% g—e ) ge I p—emiH g e
< Cllte=t —e Y| H| ™ i) (e~ 4 — et )¢
—0, astos. Q.E.D.
We study sufficient conditions for V to ensure D(|H|™*)=H™°. For this

purpose we prepare the following

Lemma 4.1. Let k€N and let V,, -, V,€HE D, Suppose that V; and

their distributional derivatives up to the 2(k—1)-th order are H,-bounded, for all
k
j=1, -, k. Let a; be the Hy-bound of V;. Then, 11V, is HE-bounded with
J=1
Hé-bound< 1‘12[l aj.
=

Proof. The proof is essentially the same as that of M. Arai [1; Lemma
5]. Therefore, we omit the details. Q.E.D.

Proposition 4.1. Let meN. Let a be the Hy-bound of V. Suppose that
a<2MWm-L2EL__1 When m=3, assume in addition that the distributional deri-
vatives up to (m—2)-th order are H,-bounded. Then, D(|H|™*)=H™",

(4.4) Cim, A)Pllm. =N HI™*+)P[.=Cm)|pllm.0,  P&H™".

Remark 4.1. 2V<Cm-DRI¥D_1—1 when m=2.

Proof of Proposition 4.1 (See also [1; Lemma 4]). Let k=[m/2]. We first

remark that f[&‘”‘ Veds’, provided (<% and multi-indices a, (1=p=/) satisfy
p=1

la,| <2(k—1). Indeed, by Lemma 4.1, we have for ¢S

(o, g) | (gammv)at i presrghiaee x e,

2=1

SCIA+ x4 D a0
=C 3 sup (1+|x[?)"/2*2|9%)(x)].
zeR™

lats2l
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Let jeN satisfy j<k and let ¢y=S. The Leibniz rule V(f-g)=(f)g+f(V3),
fes, ge&’, then gives

(4.5) (—A+VY)p=(—AYd+ L,
where

Jj=1
Cla, =+, s, B(JL3°V )06
131=21—-1 p=1
lag—ra -y fl=21

Lg=5 () r-ayg+ 3

This formula follows by induction on ;j and makes sense in S’. Nevertheless,
Lemma 4.1 implies that the R.H.S. of (4.5) is in L% Therefore, SCD(H?)
and the L.H.S. of (4.5) is equal to H%). Using (4.5) and Lemma 4.1, we have
for ¢>0

it~ s (5 )ve- gl C'S 3, (oo,
lag+eima g +fi=2l

<'S(FNetortimglrcolglc s | 5 1HE 0]
“i=\/ vl 2 =1 |ﬂ\§t—1 0 2
=((a+1+e)=DIHil+Cle)lgll+C , ZZk IHaﬁSb”z-
1pI= -
We estimate the last term by using the following inequality.
(4.6) lﬁllla“gbﬂzécllIEllgngngH [EI*F Dl | Fplst-P1*
Se|Hillo+CeF-PF g,  ISk—1, ¢>0.
Collecting these estimates, we obtain

I(H*=H{)Pl.<(a+14e)* =1+l Hipl+ C(e)ll, -

When m is even, we have k=m/2=[(m—1)/2]+1, and hence (a+1+¢e)*—1+¢
<1 for ¢>0 sufficiently small. Since H{*/? is essentially self-adjoint on S, we
apply the symmetrized version of the Kato-Rellich theorem (T. Kato [19; Theo-
rem 1X-4.5], M. Reed-B. Simon [31; Theorem X. 13]) to the inequality above
to conclude that H™? is essentially self-adjoint on S and D(H™?[S)=H™°,
where the bar denotes the closure. This proves the theorem for m even. We
turn to the case where m is odd. In this case, k+1/2=m/2 and k-+1=

[(m—1)/2]4+1. Let ¢=S8. The preceding argument shows
(4.7) C.El (1H50 .+ 07l = WZ:I (1H*0"¢ll.+1107¢]l2)
éC’Ir‘él(llH’éarstﬁIlarsbllz).

We see from (4.5) that
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[H*, 0"1p=[L, 0"]¢
k=1/h k-1 a‘
=S(Beworgr s 5 Cla e, pE(FZ0V))0%.

131=2l—1
lay b rap—g+vBI=2L

By applying Lemma 4.1 to the R.H.S. of the last equality, we find
(4.8) 3 ILH?, 67 1gll.=C 2 Ha’@sbllz

171=1 131=2

By (4.7), (4.8) and (4.4) for m even, we obtain
> |o"H* ¢112<C E 1876l .

I71s1

This together with (2.6), (2.7) and (2.4), implies that H*¢<D(|H|'*) and
4.9) WHI™2 )= H* | H|*gll.= | H|'*H*@[. < C Zgl lo"H ¢l

=C 2 lié"’ffq)llz CICIEI™+D)F Ple=CIHT*+i)lls ,

and therefore the second inequality in (4.4) follows if ¢=S8. If ¢=H™, then
there exists a sequence {¢,} in & such that ¢,—¢ in H™® as j—o. By the
inequality which we have just proved, we find that {(|H|™*4i)¢,} is a Cauchy
sequence in L® Since |H|™? is closed, we have ¢<=D({H|™?). Thus, H™°C
D(|H|™?®). We next prove that D(|H|™*)CH™". Let ¢=D(|H|™?). By the
first equalities in (4.9), we see that H*¢eD(|H|'*)=H"°, and moreover, by the
moment inequality [35],

(4.10) 2, " H Pl = ClI| HI**H*$llo+ C| H* ¢l
=CI1H[™Pll+CITH] ¢l
SCITHI™ 2l +Cl | H| ™ PlFH ™ pll5 724 ™
=ClIH|™"*Plla+Cll. -

Let g=D(H*). Since D(|H|™?)C D(H*)=H?*°=D(H*[S), there exists a sequence
{¢;} (resp. {¢;}) such that (H*+i)p,—(H*+i)) (resp. (H*+i)¢,—~(H*+i)¢) in
L* as j—oo. By the preceding step where m is even, we see that ¢,—¢, ¢,—¢
in H?*° as j—oco. We write for |7|=1,

@5, H'G)=(H"T¢;, ;)= H*§,, ¢,)+(LH", "]y, 6))

:—(Hk¢]; ar¢j)+([Hk} ar:}sbj: ¢J) )
so that by (4.8),

[@7¢;, H )| < [(H*¢;, 07,) | +C ﬂszllaﬁ¢J||2“¢jl|z-
IBI=
Letting j—oo, we obtain

|07¢, H*@)| < |(H*¢, 07¢)] +Clﬁl2<}2k||6'9¢llel¢llg .
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By (4.10),
(0", H*@)| < C([| H|™?Plo+Plor, )l Ple,  p=D(HE).

This implies that "¢ = D((H*)*)=D(H*)=H**°, |r|=1, and hence ¢=H™", as
required. We have thus proved that D(|H|™*)=H™°'=D((1—A)™/?). (4.4) then
follows from the closed graph theorem. Q.E.D.

Proposition 4.2. Let V be as in Proposition 4.1. Then for any A=2,=1-+b
(see (2.1).), D(H+A)™*®=H™",

Cla, 4, M) Qllm, o = (H+D"*P.=CQA, M)l Pllm.0,  P=H™".

Proof. Notice that (H+4)™/% is a positive operator in L% if 4=4,. Since
Eél_pb(lI,ulm’2+il(y+2)’m’2+(ﬂ+2)""2{Iyl’"’2+i!“)<oo, an operator calculus

shows that D((H+A)™®=D(|H|™?), (|H|™*+i(H+A) ™ < L(L?), (H+2)™?.
(1H|™®+{)*e.L(L*). Therefore the result is obtained from Proposition 4.1.
Q.E.D.

In the case 1<p<2, we have the following results (see § 1 for notations).

Theorem 4.2. (1) Let 1=p<2 for n=1 and let 2n/(n+2)<p<2 for n=2.

Then
e—itH(Hl,l)CLp , Z‘ER,

le**#6l,<Cldlo.., (=R, gcH""
For any ¢=H"", the map Rot—e "HPe=L? is continuous.
(2) Let 1=p<2 for n<3 and let 2n/(n+4)<p<2 for n=4. Then
e"HHE(H2HCL?, (=R,
le 7|, <Cliglh., tER, pH ™.
For any ¢=H*?, the map Rot—e "HP=L? is continuous.

(38) Let jeN. Let 1=p<2 for n<2j—1 and let 2n/(n+25)<p<2 for n=2j.

Then
e MH(DHCL?, tER,

le-Hg|,< CA+|t1) P P|gl,,, (R, $D,
For any ¢=Dy, the map Rot—e "My L? is continuous.
(4) Let j&N. Let p be as in part (3). Then
e"UHy(HINCL?, (<R,
le=#og |, < C(L+1t]) PP B],;, tER, gHM.

For any ¢ H’"I, the map Rot—e “Hpe LP is continuous.
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Proof. We first prove part (4). Let u(t)=e *#¢. Let ¢ satisfy 1/¢=1/p
—1/2. Noting that jg>n, we obtain by Holder’s inequality.

Hu(t)||p§(glx‘§1+” u(t)lzdx> (Six\slﬂtl x)llq

+(S‘11>1+m £l u([)Ide)U2<S|m>1+;tu. lx ‘”a’x>
= CA 1)) 2Bl CAA ) 2 U0

1/q

By virtue of Theorem 2.3, we have

Ix Tu®l<CA+ 1Yl

and thus,
lu®l < CAH [t S5, -

Similarly,

uu<t>—u<s>np§(5mw'*u<f> u(s)*dx) (5 ax) "

+<Slzl>l+lsl ‘ * lz;‘ u(t)—u(s)‘de) (Slz|>1+|sx xl—jqu)
= CQL s DM u— (st O+ s DT ut) =l

1/q

Again by Theorem 2.3, the R.H.S. of the last inequality tends to zero as {—s.

This proves part (4). Parts (1), (2) and (3) can be treated analogously if we

use Theorems 2.1, 2.2 and Lemma 1.3, respectively, instead of Theorem 2.3.
Q.E.D.

Remark 4.2. 1t is well known (see [8]) that for p<[1, 2),
e g <4 [t Plgll,,  t€RN{0}, g L.
From this estimate and Theorem 4.2 (4), we have
Clt| P <[e **Hog|,<C(1+[t]) 2P| Bl;;, tER, gcH.
where p and j are as in part (3) of Theorem 4.2.

Theorem 4.3. Let g=1 for n=1 and let g>n/2 for n=2. Suppose that
(A2)* holds and that V, V¥€ L+ L. Let2<p=<oo for n=1, 2£p<oo for n=2,
and let 2£p=2n/(n—2) for n=3. Then:

e HE(HOYCL? RN},
(4.11) le 7|, < C(A+[t] @) llo,, t=RN{0}, = HL,

For any ¢ H"?, the map R\{0}t—e" = L? is continuous.

Proof. Let {¢;} be a sequence in H*' such that ¢,—¢ in H*! as j—oo.
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We already know from Theorem 4.1 that R=t—e *#¢,= L? is continuous. We
prove that {e"**#¢,} is a Cauchy sequence in L? if t#0. Let a=d.(p). Let
S(t)=exp(|x|?/4it). By (3.1) and (3.10),

4.12) e (g;— )l o=SBe " ($,— i)l
=Clt1m e (x+2tV)e " (p,— P54, —elli™®
=Cit|~*A+1tD* g, —@ello.n —> 0  as j, k—oco.

Therefore, {e**7¢,} is convergent in LP?NL% This implies e **#¢<L? and
etHg e ' in LP as j—oo, provided ¢=+0. (4.11) now follows by letting
j—oo in the following inequality:

e, 1, < CA+1t["9)@,lo.r, 0.

We next prove that RN\N{0}=3t—e*"g=L? is continuous. Let v,(t)=
etHoyg-ttHog-itHdg — Again by (3.1).

@13)  ISWe Mg, S(s)e g,
< CIIS@it) (a2t T)e~ 47— S(s)2is) (x-+2isTe g, 5
ISt 416, S(s)e g, 170
< CIISEX2it) v 1t)—S(s)2is) vl
IS®e g, S(s)e~ 47,572

Put u@)=e "¢, v(t)=e*Toxe *Hoy(t), Taking the limit j—oo in (4.13), we
obtain from (3.10) that

(4.14) 1S@)u(t)—S(s)u(s)ll»

= ClerS@v®)— s~ S(s (NN SBu@)—S(s)u(s)lz~* -

Since we already know from Theorem 3.2 that v=C(R; L?), we conclude from
(4.14) that Sue C(R\{0}; L?) and therefore usC(R\{0}; L?), as was to be
shown. Q.E.D.

Remark 4.3. If we assume that the hypotheses of Theorem 3.3 hold, then
we have the same conclusions as those of Theorem 4.3. The proof is exactly
the same.

§5. LP-Estimates of the Schridinger Equations II

In this section we consider some classes of potentials V and of initial data
¢, for which the quantities (1)-(3) in the introduction tend to zero as ¢{—+oco.
We list the additional assumptions on V.
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(A3) V is compact from H*° to H%°.
(A4) The Hy-bound of V is equal to zero.
(A5) V*# 1s compact from H*® to H™*°,
(A6) V#<0 as forms on H*°.

Theorem 5.1. Suppose that (A2)¥, (A3) and (A5) hold. Then:
(1) For any ¢= 4, . NH"", tlim (e 8 Vet Hg ¢)=0.

(2) For any ¢= I ,NH", tlim [(x/t)ettHoe=tH G|, =0,
(3) For any p=Hq . NH", tlim e 7] ,=0,

for all p such that 2<p=<oo for n=1, 2<p<oo for n=2, and 2<p=2n/(n—2)
for n=3.

(4) If in addition, D(|H|™*)=H™" for some m&N, then for any ¢=IH . NH™?,
tlign le=*" g ,=0,

for all p such that 2<p=<oo for n<2m—1, 2<p<co for n=2m, and 2<p<
2n/(n—2m) for n=2m-+1.

Remark 5.1. For the proof of part (1), we need (A3) only (see the proof
below).

Remark 5.2. See also V. Enss [5][6] and P. Perry [28] for related results.

Proof of Theorem 5.1. (1) Let g=I.,NH* . It follows that e~ "= H>°,
e p=(H+7)"e " #(H+1)p and (H+i)p= Ho.. We estimate (" Ve ¢, ) as

(B.1) Vet ig, ) = |(VIH+i) e I H+1)g, e g)]
<N V(i) e HHA DG 000 e o

Since e **#(H+1)¢p—0 weakly in L* ast—=+ oo, (AD) implies that the first factor
of the R.H.S. of the inequality in (5.1) tends to zero as t—=+co. On the other

hand, by (2.8), the second factor is estimated by Cll¢l... Thus, for ¢e
HoeNH?,

(5.2) (e # Ve ", )| —>0  as t—xoo.

Let p=Hq,,NH*® and let ¢;=iA(H+id)"'¢, A&R\{0}. Then ¢, X, NH>".
We estimate (e“Z Ve "#¢, ¢) as
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(5.3) [ Ve 7 g, §)]
S| Ve (g—¢,), @)+ (" Ve ey, d—¢1)l
+ (e Ve g, ¢1)|
=Clg—galluo- gl ot P2l o)+ (e Vet g, ¢1)1,

where we have used part (3) of Theorem 2.1. It follows from (5.2) that the
second term of the R.H.S. of the final inequality in (5.3) tends to zero as ;!
t—*oo, Part (1) of Lemma 2.1 shows that ¢,—¢ in H"° as A»+oo. This
proves part (1).

(2) Let ¢p=dls.,NH*'. In the same way as above,
tllrﬁg(e“” Vie-itHgy )=0.
Noting that
sup [ H(V+(1/2)VF)e p, )= Cl 3.0,
we obtain

!tdg:T(eirH( VAH(1/2)V¥)e g, ¢)d1l

<[ [l eV e T, glde|—> 0 as 1oz,

By using Theorem 3.1, we see that [|(x/t)e**"oe~"*#¢||,—>0 as t—+oo. Let g
HaeNH" and let ¢,=iA(H+i)'¢. By Lemma 2.1, ¢,—¢ in H*?! as 1—+ oo,
We estimate [|(x/t)e‘*Hoe " |, as

[(x/t)e oo H |, < ||(x/t)e* Hoe " (P —@ )l 4[| (x/t)e Foe =44 g, ||,
ZCllgr—olat+II(x/t)e Foe " g, |, [t]=1,
where we have usedjTheorem 2.1. This proves part (2), since ¢g,=H . NH>".

(3) Part (3) follows from part (2) and the following inequality

]l o< Cli(x/t)e** Fogh||3n P> || p||3~on P>,
which can be derived from (3.1).

(4) When m=1, part (4) reduces to part (3). Let m=2. We distinguish be-
tween two cases:

(i) n=3, p=2n/(n—-2). (ii) n=2, p=oo.

(i) When n=3 and p=2n/(n—2), we use the following inequality which can be
derived from Lemma 1.1
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(5.4) Igl,=C 3 13°¢l5Iglinse-n

where a=(n/(m—1))1/2-+1/n—1/p); 2n/(n—2)Lp=< o for n<2m—1; 2n/(n—2)
<p<oo for n=2m; 2n/(n—2)<p<2n/(n—2m) for n=2m+1. (4.3) and (5.4)
yield

le=t7 8], < Cllg %, ol 752

so that the result follows from part (3).

(ii) When =2 and p=oco, we use the following inequality which can be derived
from Lemma 1.1

(5.5) Igl-=C 2 lo°glzldle,

where 2=<q¢<oo, a=2/((m—1)¢+2). In the same way as in the case (i), the
result follows from (4.3), (5.5), and part (3). Q.E.D.

Theorem 5.2. Let g=1 for n=1 and let q>n/2 for n=2. Suppose that
(A2)%, (A3) and (AD) hold and that V, V¥ L'+ L>. Then:

(1) For any ¢Ej[a,cmHo’ly thm (e“IIVé—“H¢’ ¢):0'
2) For any ¢&HoeNH™?, lim |[(x/D)e*Hoe™ ||, =0.
(3) For any g&Ho.,NH™!, lim |77 ,=0,

for all p such that 2<p=<co for n=1, 2<p<oco for n=2, and 2<p=2n/(n—2)
for n=3.

Proof. Let ¢=H,NH"" and let ¢,=iA(H+i)'¢, A=cR\{0}. By Lemma
2.1, ¢;=H*" and ¢;—¢ in H*' as A»+co. Theorem 5.1 shows that

Jim (¢4 Ve g, §2)=0,
Jim [[(x/t)e* Hoe G, [,=0,
Jim e g, ,=0..
Moreover, we find from (3.10), (3.11) and (4.7) that for |#|=1,
(™ Ve ™ (g —1), $2)+(e" Ve g, §—¢,)]
=Clig—allo. - Uigllo.+ldalo.0),
[(x/t)e* Hoe " (g —G ), = Cllg—allo.1,
le=*#(@—@)l, = Clg—allo.1 -

Therefore we have the assertion. Q.E.D.
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Theorem 5.3. Let n=3. Suppose that (A2)*, (A3), (Ad) and (A6) hold.
Then:

(1) For any ¢=H"°, tlirﬁrzg(e“” Ve g, ¢)=0.

(2) For any g=H"?, tl—{ltr:o [(x/t)e "o~ 8 g ||, =0.

(3) For any g=H"?, tlirﬁoue‘””qiﬂpzo,

for all p such that 2<p=2n/(n—2).

(4) If in addition, D(|H|™*)=H™" for some m&N, then for any ¢=H™!,
Jim [le=47g,=0,

for all p such that 2<p<oo for n<2m—1, 2<p<oo for n=2m, and 2<p<
2n/(n—2m) for n=2m+1.

Proof. By virtue of the Lavine-Arai Theorem (see R. Lavine [21], M. Arai
£1], M. Reed & B. Simon [31]), H is absolutely continuous under the assumptions
(A4), (A6) and n=3. Therefore all of the arguments in the proof of Theorem

5.1 work, except that we use Theorem 3.3 with A=1 in place of Theorem 3.1.
Q.E.D.

Theorem 5.4. Let n=3. Let ¢=2 for n=3 and let ¢>n/2 for n=4. Sup-
pose that Ve L+ L* and that (A2)*, (A3) and (A6) hold. Then:

(1) For any g=H"?, tlil;r:o(ei‘HVe“lﬁH¢, 6)=0.
(2) For any g<H™!, lim [(x/t)e’oe™*H ], =0.
(3) For any ¢=H"?, tljg:cllé‘i‘H¢l|p=0,

for all p such that 2<p=2n/(n—2).

Proof. We first note that (A4) follows from the assumption that Ve L9+ L=,
The proof now proceeds from Theorem 5.3 in the same way as in the deriva-
tion of Theorem 5.2 from Theorem 5.1. Q.E.D.

§6. LP-Estimates for the Schridinger Equations III

In this section we study the decay rate of the scattering solutions in the
L?-norm. We need the following function spaces. For m, s€R, H™* denotes

the Hilbert space
Ams= (¢S ; ¢ n. =0 1—A)™*¢|,< oo}

with the scalar product
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(@, B s=(@ (A=A, & (1—A)™¢).

By M. Tsutsumi’s theorem [36; Theorem 2.3], an equivalent norm on Hms is

given by
gl s= 1 (1—=A)"*w*Plls= @’ Pl m.o ,

so that Hm™sc,Hm.v if m'<m, s’<s. Part (2) of Lemma 1.2 shows that if
meN, s=0, then the following norms are equivalent norms on H™*:

lgls= 3 l0°@@ls

IglRs= 33 13°@ Pls+glo.s,

Igle= 3 |09l

Igle= 3 10a*glatlglos .
In this case, part (2) of Lemma 1.2 also implies that

(6.1) llgll, s= CliglR TP ™

where k=N satisfy k<m.

Lemma 6.1. Let s=0. Then:
(1) Mo={geH>*; HpeH**},
6.2) Cligila, ;< NHGlo. s+ [llo S Clplls,  peBo.
(2) For any p=2,=1+b (see (2.1)) and any 2=C with Re 220, d*(H+A+p)'e
LH™), la] =1

(8) There exists a constant 2,=2, depending only on s, n, a and b such that for
any =2, and any A=C with Re 1=0,

(6.3) I(H4+p+2)" ceao, s <(Re 24+1)71.
(4) For any 2&C with Re A=, {¢=H*’; (H—i—l)ngH‘)'s}:ﬁZ's,

~

(6.4) C, lglle, s IHADPlo. s =C' 2, Plls, — p=H™®

Proof. (1) (See also W. Hunziker [12; Lemma 1]). It follows from the
preceding argument and (2.5) that the norm [|-]I§%, defined by [[¢llii%=Hw'¢l.
+|@*¢lls, is an equivalent norm on H?s, Thus, part (1) will follow if we can
show that the norm |[-[I{%, defined by [IQlli%=llw*Hl.+llw'dll,, is equivalent to
lI-115. Let ¢p=H>* satisfy Hp=H**. Then for any ¢=S we have

(@°¢, Hp)=(w*H¢, ¢)— (¢, [H, 0*])
=(w*Hg, ¢>+2J§ (&, 8,0;0° P)+(, A+ ).
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We estimate the first and the last terms on the R.H.S. of the last equality as

(w*H, )| = |’ HPlllI gl =[Gl
(¢, Ao’ §)| = Cllo* 2Pl ¢ll.= ClIPlIET I Blle -

If 0<s<1, then the middle term is estimated as
(6.5) IZJé (¢, 0,00,0°-9))| <2s 123 @011l = ClVl2.oll @]
=Cldlaoligl=CligllisR 1Bz,

and therefore we obtain

(6.6) (@', H)| = ClIlIETs ] llz -

Since (6.6) extends to ¢=D(H), we conclude that w’¢p=D(H*)=D(H) and [|¢|ls%
=ClI¢lls7, provided 0<s<1. Let ¢=H** satisfy w’p=D(H). Since |[|-]li¥ is an
equivalent norm on ﬁ“, we have gbeﬁ“. If 0<s<1, then in the same way
as above, we see that HpcD(w*)=H"* and |lglliH=ClPlls%. We have thus
proved part (1) in the case 0<s<1. Let k=N and assume that part (1) holds
for se(k—1, k1. Let ¢=H** satisfy Hpe=H"*. We perform the same pro-
cedure as in the case 0<s=<1, so that we only have to estimate the L.H.S. of
(6.5) in the case k<s<k+1. Now

lw*d;¢ll: < CligllES -2 = ClIgIIES -1 = CllllET-1

where we have used the induction hypothesis at the last inequality. Therefore,
Il = Cliglls7s.  Similarly, we have [lgfli3 < Clligllss, ¢=H**. This proves part
(D).

(2) For any A=C with Re A=0, we obtain, by an operator calculus and (2.7),

6.7 ICHA20+D 7 ran= sup, |(et+ 20+ | =((1+Re 2)°+(Im 2)*) 71/
=CQA+14D7,
(6.8) ]Elllaa(H+lo+l)_l||£(L2)§ CICHM i) (HA-20+2) 7 £cze

éC-fgg (e 240420+ 271
SCAA+ 212,

This proves part (2) for s=0. Let {. be as in Lemma 1.4. For ¢=H"*, we
have

6.9 Cw’(H+2+A)"¢

=(H+2+2)7 L0’ ¢—(H+ 20+ ) (AC0*)(HA+20+2) "¢
—2(H+2+2)7(VC0")-V(H+ A+,
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(6.10)  Lw'd,(H+2+2)"¢
=08,(H+2+2)"' L’ p—0,(H+ 20+ 2) (AL HA-20+2) ")
—20,(H+ 2+ )" (V") - V(H+20+2)"'¢—(0,(L0))(H+2A0+2)"¢.

If 0<s<1, then for any nonzero multi-index B, 88({.0w*)EL(L?), 0*(L.0*)~0fw’
strongly in £(L?%) as e—-+0, and hence, in the same way as in the proof of
Lemma 2.1, it follows from (6.7), (6.8), (6.9) and (6.10) that 0*(H+2,+2)"'¢<=
H*®, la| =1,

(6.11) W (HA20+2)"')
=(H+2+2) '@ ¢p—(H+ 20+ 2) " (A0* ) HA+20+2) "¢
—2(H+2,+2)" (Vo) -V H+2,+2)"'¢,
(6.12) @*0,(H+2,+2)"'¢
=0,(H+20+2)"'0*¢p—0,(H+20+2) (A0’ H+2+2)" ¢
—20,(H+2+2) " (V*) - N(H+ 2+ 2) " p—(0,0° N H+2g+2)"" .
By (6.7), (6.8), (6.11) and (6.12), we obtain
(6.1 { [(H+20+2)7 | £co, 5= C(A+|2])77,
‘ElHa“(HHoH)“Ilam,sé CA+{ap)e,

provided 0<s<1. Let k=N and assume that (6.13) holds for s=(k—1, £]. We
prove (6.13) for se(k, k+1]. Let ¢=H*°. Then by the induction hypothesis,
the R.H.S. of (6.9) (resp. (6.10)) tends to the R.H.S. of (6.11) (resp. (6.12)) in
L? as e—>+0. Therefore, 0*(H+2,+2)"'¢=H"*, |a| <1, and the equalities (6.11)
and (6.12) hold for se(k, k+1]. (6.13) for s=(k, k+1] then follow from (6.11),
(6.12) and (6.13) for se(k—1, k1.

(3) Let ¢=S and let zeC. By the Schwarz inequality,
ICH+2)llo, sl o, s = (@ (HA-2), @° )]
=Re (0'(H+2)), o'¢)
=—Re (0°’Ad, @’P)+(Vo'd, *d)+(Re 2)[dlo,s .

By (2.1),
Vo', 0'¢)]
=a|V(@'P)li+blw’Plls
=a(|oVgl;+2 Re (0V¢, Vo)) +I[(Vo)Pl)+bl ¢l s,
while

2 Re (0'V¢, Vo' ))=(1/2)Nw™, V|$|*)=—(1/2)(Aw*, |¢]*).
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Now
—Re (0°A¢, 0'¢)=—(1/2)(w*, AlJ|*)+ (0, |[VP|?)
=—(1/2)A0”, |¢|")+[w*Vl3.
Collecting everything, we obtain
I(HA+2)llo.sllPllo. s

=(1-)oVPlli—((1—a)/2)Aw™, [|")—al(Vo')pli+[Re z—Db)|¢l3. s

=—C(s, n, a)llPl§, s-1+Re z—D)lPlI5, s

Z(Rez—b—C(s, n, a))lE.s -
Therefore there exists 2,=4, such that for any g=2, and any AeC with Re 1=0,
(6.14) I(HAp+2Dpllo. s=(Re A4+Ddllo.s, PES.

We now prove (6.3). Let g=H"™* and put ¢g=(H+p+2)'¢. By part (2), ¢<
H**NH*°=H?* Moreover, by part (1), ¢eﬁ“, since Hp=¢—(p+A)psH®".
There exists a sequence {¢;} in S such that ¢—¢ in H>* as j—oo. Put ¢,=
(H+p+2)¢p,. By (6.2), ¢,»(H+p+)p=¢ in H*® as j—co. Applying (6.14) to
¢;,€S and letting j—oco in the resulting inequality, we obtain [@[o, ;=
(Re 2+1)[¢llo.s, as required.

(4) Let gcH>*. By (6.2),
I(HA-Dllo. s 1 HPllo. s+ 121 P]lo.s= CA+ 2D, s -

By (6.7), we have
[Pllo, s <A+ 12—2: ) HI(HA A llo, s
so that
[HPllo. sl Pllo. s N(HA+DPlo, s (1A +DPllo. s

A4 +DA412=2 D HIHA+DPllo. s < CAlI(H+2A)Pllo, s -

Combining this with (6.2), we obtain (6.4). If ¢=H>® satisfy (H+2)¢p<=H"*,
then by (6.3) we have ¢=H®*. Part (1) then implies gbeﬁ“. Q.E.D.

We define the operator H in the Hilbert space Hos=Hs a5 follows: D(ﬁ )
=H*s, Ap=—Ap+V¢, p=D(H). 1If p=D(A), then Hp=Hp=H™*. 1If p=H®*,
then in the same way as in the proof of part (3) of Lemma 6.1, ¢=
(H—I—/,t—l—l)'lgl)EﬁZ's:D(F]). By the preceding argument, H¢:ﬁ¢, and therefore
d=(H+p+Dp=(A+p+ ¢, (A+p+2)"'p=¢=(H+p-+2)"¢ for all 1=0. Thus
(6.3) becomes

(615) ]](ﬁ—i‘ﬂ‘i—z)_l'J‘C(}[O,s)g(Re lj‘“l)—l Re 220, ‘nglll.
And (6.4) becomes
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(6.16) Cliglls, s < ICH+DPlo. s <Cllplle.s,  p=DH), Re2=4, .
It follows from (6.15) that ﬁ-l—y is maximal accretive [35] in Hes for ©v=2,
s=0. In this case we can define the fractional power (ﬁ+;,e)“ of ﬁ—l—,u for any
ac=R. With these notations, we have the following Lemmas 6.2, 6.3 and Pro-
position 6.1.

Lemma 6.2. Let p=2, and let s=0. Then:
1) (A+p)ireLH").
@) D(HA+pym=H",
(6.17) Cliglls, < I+ 2l s <Cllgllss,  pSH.

Proof. (1) Let ¢=H*® and let ¢=(Fl+y)‘1¢. By the moment inequality
[35], we have

I+l < CICH+m 12BN
This and (6.15) yield

()7 2llo. sZ ClIG I 2IH+ ) B 2Z Cliblo. s
as required.

(2) (6.16) is written as
ClA—=D)llo, s I(H+)pllo. s = CIIL—A)b o, s -

Since H+p and 1—A are maximal accretive in Hes, it follows from the Heinz-
Kato theorem [35] that D((H4+p))=H":, (1—AV*(H+p)"2c.L(H"*), and
(A+py(1—A)y"2e L(H ). Q.E.D.

Lemma 6.3. (1) If ¢=D(H), then Ap=Hdp.
©2) If gcH"*, then (H+p+2)"'¢=(H+p-+2)"'¢ for all 2=0.
®3) If g=H*® and (H+p)pcH"*, then p=D(H) and Hp=Hg.

) Let keN. If $=D(H") and (H+p)'¢=H", then $peD(H+p)") and
(H+p)*gp=(H+p)"¢.

) Let ac0,1). If ¢=D(H+p)*) and (H+p)*peH*®, then $<D(H+p)%)
and (A+p)*¢p=(H+ ).

Proof. Parts (1) and (2) are restatements of the results preceded by the
definition of A. Part (3) is an immediate consequence of part (3) of Lemma 6.1
and part (1). We turn to part (4). The case k=1 reduces to part (3). Let
k=2 and let g=D(H*) satisfy (H+p)*¢p=H"*. We deduce, from the statement
of part (4) with % replaced by k—1, that ngD((F[—}-/J)k) and (ﬁ+y)k¢=(H+y)k¢.
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We have (H+p)psD(H ), (H+p)*(H+p)pe H"* and therefore by the induc-
tion hypothesis, (H-+p)p&D(A+p)t), (H+p)t-(H+p)p=(H+p)*$. By (6.3)
and part (3), gbeD(ﬁ) and (ﬁ—l—y)gb:(H-f—y)gb. This proves ¢eD((ﬁ+y)’*) and
(H+p)*p=(H+pn)*¢, as was to be shown. We finally prove part (5). Let ¢&
D((H+p)*) satisfy (H4+-p)*¢g<H™®. Put ¢={(H+-u)*¢. By part (2), (ﬁ—l—y-{—l)“gﬁ
=(H+p+2)¢ for all 2=20. Now

¢=(H+p)*¢=n"sin ”“S?"‘“(HWH)“SZ‘ da

=7-'sin ﬂagjl‘“(ﬁ+y+/l)“¢ di=+p)y2¢,

where the integrals converge in H®® by virtue of (6.3) and (6.15). This proves
deD((A+p)*) and (H+p)*¢p=¢, as required. Q.E.D.

Proposition 6.1. Let meN and s=0. Let V be as in Proposition 4.1.
Then, D((ﬁ—l—p)"‘”)zﬁ""s,

6.18)  Clt, m, s, llllm, s I(HA+™Pllo. e < Clet, m, SN llm.s, pSH™.

Proof. We assume that s>0, since the case s=0 reduces to Proposition 4.2.
It follows from Proposition 4.2 that the norm [|-[|;, defined by [l¢lls =
I(H+p)""*0*Pll,, is an equivalent norm on Hms. Therefore, if we can show
that the norm [[-[|$)s, defined by llgll% s= @ (H+p)™*¢l,, is equivalent to [|-[Is,
then the result will follow from Lemma 6.3. We treat the cases m=2k and
m=2k+1, kN, separately.

(i) When m=2k, k=N, we prove by induction on /€N that [|-[Is and [|-I%s
are equivalent for any se({—1,/]. Let ¢=S. Replacing V by V4pu in (4.5),
we see from the remark just after (4.5) that g D(H*) and

(6.19) (Htp) p=(—AYe gt S S Wal, B)-0%,

B )a1+---+‘-£'|k§—2]j+/3|=2j
k—j
Where W({av}y ‘B)Zc(ab Tty ak-—j) ‘B)' ‘Eaay(v—i_p)-
Therefore,

6200 [(H+p)t, @'lg=[(—A), 0lg+ 3 B Wdal, fo, 0.
=0 a§._4-/9|

tegd--
We write

[(—4), 0'lg= 2 l)k,B' [0*, w*]¢

k 218 2 S
=2, 3,0 ( )@ )0 6
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= 3,3 s g () )@y,

lfh k Br<2B rsp’
W({a,}, B3*, 0*1¢

= —ym(BY(EYar - B-Br
2, B 07(5)(5 )07 1@ ia), B3P ag)

so that for ¢,
(¢, [(—A), 0']$)
28 ) ,
— 1k+‘/§| +28-B A8
'ﬂgkﬁgﬁ rszﬂ'( ) ( )( >((ar ') T, @),
(¢, W({a,}, B)L0%, w*lg)

= 3 3 0 ()G )@mdal, po-r e g, ).

Br<Brsp’
We note here that
(6.21) [(¢, [(—A), @’19)| = Cll¢lln-1,s-1l@l,  QES,
and that Lemma 4.1 implies
(6.22) (g, WHa}, BL0%, @*19)| = Clldlllm-1.s-1llglls,  PES,

provided {B8{=<2j, |ai+ - +ar-;+B81=25 and j<k. Let 0<s<zl. If g=H*®
satisfles w'¢p=D((H+p)*), then by Proposition 4.2, there exists a sequence {¢;}
in & such that ¢,—¢ in H**, (H+p*d,—~(H+p)*¢ in L* as j—oo. By (6.19),
(6.20), (6.21) and (6.22), we obtain for any ¢< S,

(6.23) [(H+p)* ), 0°9)| < (@, (H+)* @) |+ Clldsllm-1.01 Bl -
Letting j—oco in (6.23), we obtain for any ¢S,

((H+p)*), 0'@) | < (@'}, (H+1)* )|+ Cllgln-1.ollplle
SUH+ ) 0*¢lls+ Cliglm-1, )@l = CligllR s pl2 -

This implies that (H+p)*¢= H** and |||l < CligI®s. If p= D(H+p)*) satisfies
(H+p)*p=H**, 0<s<1, then in the same way as above, we find that w'd¢c
D((H+p)*) and (|l s=Clldlls>s. Let IEN and assume that [[-[l&)s and [[-[I&s
are equivalent for se({—1,/]. We perform the same procedure as in the case
0<s=1 to prove that the equivalence still holds for s&(l, [+1]. We use the
induction hypothesis only in obtaining estimates of the R.H.S. of (6.21) or of
(6.22) through the known quantities. We omit the details since the proof is
similar to that of the case 0<s<l.

(ii) When m=2k+1, k=N, we prove the proposition by showing that
D((ﬁ—l—y)’"’z):ﬁ m.8  (6.18) will then follow by the closed graph theorem applied
to the closed operators (FI—{—;;)”"Z and (1—A)™? in the Hilbert space H®°. Let
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¢=S8. We see from the preceding argument that
(6.24) 01721 107 ¢l & sélrél [(HA-2) 07 pllo, s = C’m‘él 107 pllz . s

and that (6.19) with (H+pg)* (resp. ¢) replaced by (Fl—}—y)’* (resp. ¢) makes sense
as an identity in Hees, Moreover, from the relation

[(Apr, olp=5 8 oW(al, P,  g<s,
lag+tap—;+p1=2j

we obtain by Lemma 4.1 that
(6.25) = | [(A+p), 7 lo*l,<C ﬁEgkilaﬁ(wsgb)llzé Cligiles. s -
7= 1gis

Similarly, from the relation

[[(H+p)t, 071, 0 1= kg':,: > IW({a,}, B)-[0%, w’1¢,

1 a1+~--41£ Lg_zjj'ﬂi 1=2j
we obtain

(6.26) B I+, 37, @1l Cliglhs.s

By (6.24), (6.25) and (6.26),

(6.27) B A Gl
= 3 lo(fl+p*d¢—[H+p)*, o'+ [H+0", 771, '1¢l:
=C 2 15 ll,s=Cliglhn. -

By part (2) of Lemma 6.2, we find from (6.27) that (H—l—y)’“ngD((ﬁ-}—p)‘”) and
that

(6.28) ICH+ ™20, s < Clllm. s -

If gbeﬁ"‘-“‘, then there exists a sequence {¢;} in & such that ¢,—¢ in Hms as
j—oo. Since the multiplication operator ° is closed in L? we have (H+p)™*¢)
eH"* and (ﬁ+p)m’2¢j—>(H+y)m/2¢ in H*® as j—o. By parts (4) and (5) of
Lemma 6.3, we conclude that ¢&D((H+p)™?). If ¢p=D((A+p)™?), then by
Proposition 4.2 and the case (i), there exists a sequence {¢;} in ¢ such that
¢—¢ in H?** and in H™® as j—co. For |7|=1 and ¢S, we write

(H+p)*g;, ©°9)

=—(¢,, "(H+p)*w'¢)

=—((H+p)*¢;, 0°09)+([0", @’ N H+p)*¢;, §)— (@’ [(H+p)*, F71¢s, ).
In the same way as in case (i), we obtain

(6.29) |((HA2)* 0y, 0°@) | < |(H+p2)* s, @0 9) |+ Clihller, o Bz -
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Letting j—oo in (6.29) and using part (2) of Lemma 6.2 and the results in case
(i), we obtain
(6.30) [(HA+2)* ¢, 0*$)| < | (H+ )¢, 0°5'$) | +Cligilee. | 1
<70 H+p) Glla+Cligllen. g 2
< CUA+ )l s+ lles. B e
SCIH+™ Ploslgle,  pES.
It follows from (6.30) that 6~T¢ED((FIi—y)")=ﬁ”", l7}=1, and hence p=H™".
We have thus proved that H™*=D((H+pg)™'*), as required. Q.E.D.
Lemma 6.4. Let ¢=2 for n<3, let ¢>2 for n=4, and let ¢>n/2 for n=5.
Let p=[2, g). Suppose that Ve L+ L= Then:
(1) For any ¢=L? with Ap€ L?, we have Ve LP. Moreover,
(6.31) Vol = ClI(A—-A)pl5 Pl ™™ .
(2) For any ¢ L*NL? with Ape L*NL?,
(6.32) CllAdl,+¢l )= Hll, 11, = C' (1A o+ 1Pl ) -
(3) There exists 2,=2; such that for any ¢S and any z€C with Rez=4,,
(6.33) [(HA+2)¢ll,=(Re z— )l -
Proof. (1) We first consider the case ¢>n/2. V can be decomposed as
V=V@LV with V@e L VL~ Let re(2, o] satisfy 1/r=1/p—1/q.

Then by Hoélder’s inequality, Lemma 1.1 and the LP”-boundedness of the Riesz
transform (see, e.g., E. M. Stein [34; Chapter V]), we obtain

Vol =1Vl +1Vlxllls
lgl-=ClAglz™ gl ™",

so that part (1) holds.

(2) Part (2) is an immediate consequence of part (1).

(3) We consider only the case p>2, since the case p=2 can be proved in the
same way as in the derivation of (2.2). Let ¢&S. By part (2), (H+z)p=L?.
Since V is Hy,-bounded with Hy-bound =0, it follows from (2.1) that for any
>0,

[(VY, )| <e|Voli+Cle)ldlE, p=H™".
This implies

[V, 191P) <&V P23+ C(e)ll ] P72]13

=e(p?/4XINP1®, 117+ C(lPE -
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By Holder’s inequality and integration by parts, we have

I(H+2)¢l 14157

= [((H+2)¢, 1177°)]

=Re (H+2)), 1§177¢)

=Re (V¢, V(1|7 2P)+Re (V+2)¢, [¢177°¢Y)

=(IVg1?, [¢]7*)+(p—2)|Re (sgn VY|, [H1P~)+Rez|lI5+V, 1417),

where sgn denotes the function on C defined by sgn z=z/|z| for z+0, sgn 0=0.
Combining these estimates, we have

I(H+2)¢l ol = (L—e(p*/NIVPI?, |17+ (Rez—C(e)lIllF .
(6.33) then follows by putting e=4/p? and ,=max (4,, C(4/p?)). Q.E.D.

Let V and p be as in Lemma 6.4. We consider the differential operator
K=(—A+V)IS. K is closable in L?. Indeed, if a sequence {¢;} in & and
¢ L? satisfy ¢,—0, Ky,—¢ in L? as j—oo, then for any feSCL?,

(8, /)= lim (K¢, f)=1im (¢, K)=0

and therefore ¢=0. We denote by H the closure in L? of K. (6.33) then ex-
tends to

(6.34) I(A+2)¢l,=(Rez—2)pll,,  for Rez=2, dp=D(H).
Put p=2+1, H,=H+py. Then (6.34) yields
(6.35) I(H,+2) " sory<(Rez+1)",  for Rez=0,

since z&€ p(ﬁ,,). By virtue of (6.35) we can define the fractional power aH 4 of
17,,, for any a=R. With the notations above, we have the following Lemmas
6.5, 6.6 and 6.7, and Proposition 6.2.

Lemma 6.5. (1) D(H)={¢cL?; A¢c L?},
(6.36) Hp=—Ap+Vp,  peD(H),
(6.37) CUADl, +HIPl) SN HPl o+ 141 = C'IASI+Igl),  peDED.
@) If VeL=, then DH*={¢cL? ; Ap= L7},
Heg=—Ap+Ve, =D

Proof. (1) Let gbeD(ﬁ). There exists a sequence {¢,} in S such that
¢,—¢, Hpy—Hp in L? as j—oo. It follows from (6.32) that {A¢;} is a Cauchy
sequence in L?. Therefore, ApcL? and A¢,—A¢ in LP as j—oo, so that
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Hp,=—Ap;+Vd,>—Ap+V¢ in L? as j—oo. This proves Hp=—Ad+V.
Conversely, if ¢ L? satisfies Ape L?, then there exists a sequence {¢;} in S
such that ¢,—¢, Ad,—»A¢ in L? as j—oco. This implies Hep;=—Ad;+Vp—
—AQ+V¢ in L? as j—oo. Since H is closed in L?, we find ngD(ﬁ) and Hp=
—Agp+V¢p. (6.37) follows from (6.36) and (6.31).

2) If ¢ED(ﬁ*), then for any ¢ES,

(8, AP) | =1(H*$, §)— (¢, VO <(IF*Slpr + 1V =l gl )1l ,
and therefore AgeL?. If g=L? satisfies Ap=L?, then by a density argu-

ment, we see that (9, Hp)=(—A¢+Vg, ¢), d=D(H). This proves that ¢e
D(H*) and H*¢=—A¢+V . Q.E.D.

Lemma 6.6. (1) If gcDH)NL?* and Hp=L?, then p=H*® and Hp=Hp.
@) If = L*NL?, then (H,+2) ¢=(H+p+A)"'¢ for all 2=0.
(3) If $eH*°NL? and HpeL?, then $=D(H) and Hp=Hg.

() Let keN. If ¢=DH*)NL? and (H+p)* e L?, then = DY) and Hig=
(H+p)* .

(B) Let 0<a<l. If ¢€D(H+u)INL? and (H+p)*¢pE L?, then ngD(ﬁ;‘j) and
Hidp=(HAp)*¢.

Proof. (1) If gbeD(ﬁ)mLz and ﬁgbe L?, then there exists a sequence {¢,}
in S such that ¢,—¢ in L*NL?, Hp,—H¢p in L? as j—oo. For any ¢=S we
have

(9, Hp)=1im (¢, Hp)= lim (H,, $)=(Hg, $).

This implies that ¢ D(H)=H?*" and Hgp=Hgp.

(2) Let g=L*NLP? and let {¢,} be a sequence in S such that ¢,—¢ in L*NL?
as j—oo., By (6.35) with p=2, {(ﬁ#—l—l)“gbj} is a Cauchy sequence in L% Since
(B, +27¢,~(H,+D"'¢ in L? as j—oo, we have (H,+2)'¢cL’ Put ¢=
(H,+2)7¢. Then ¢=DINL* and Hp=(H,+)p—(p+p=¢—(u+Dp= L.
By part (1), ﬁgb:Hgb. Thus ¢:ﬁ¢+(y+2)¢ is equal to (H+p#+2)¢ and hence
¢=(H+p+2)"'¢, as was to be shown.

(3) If g H**NL? and H¢p=L?, then we put ¢=(H+p)peL’NL?. By part
(2), gb:(H—{—p)“gb:ﬁ;queD(ﬁ). By part (1) of Lemma 6.5, we have ﬁgb:
—Ad+Vp=H¢.

Part (4) (resp. (5)) follows in the same way as in the proof of part (4) (resp.
(5)) of Lemma 6.3. Q.E.D.
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Lemma 6.7. (1) For any =0 and ¢ L?,

(6.38) IAH, 42 G1,<Clll, ,

(6.39) 3 10 A D= CA+ Pl
(6.40) IH A2 0l,<2]¢l 5,

(6.41) 12y H 427l , < CR+AD2 gl -

@  DUlyH={geLr; 0°¢eL?, la|=1}={¢cL?; (~A)’ge L7},
={¢sL?; 1-A)y’pe L?},
(6.42) C 3 109l <1 Al <C" 33 1°¢l,, g DU,

Let
Igl= 3 16°¢ls,
II®=1H2,,
I1=1(—A)"¢ll,+Il»,
Il =1(1—A) "¢l , .
All these norms are equivalent norms on D(ﬁ}/z).
Proof. (1) Let ¢=L? and let g=(H,+2)"'¢, 2=0. By part (1) of Lemma

6.5, Ap= L? and Ap=—Hp+Vg=—¢+(V+p+2¢. From (6.31) and (6.35), we

get
1Ad], =1l +(1/2)[Ad],+Cli Bl

=gl +1/2)[A¢ )+ CQA+1)llp
from which we get (6.38). Since ﬁﬂqi:gb—/lqi, we obtain, similarly as above,
1,81 ,< 16,422+ D "l =2(dl 5,

which is exactly (6.40). By the LP-boundedness of the Riesz transform, A¢ge< L?
implies 0%¢<= L?, la|=2, and

(6.43) 0°dll,=ClAd], .

lal=2
By Lemma 1.1,
(6.44) 2 18°1,<C 33 107l g1
Combining (6.35), (6.38), (6.43) and (6.44), we obtain (6.39). By the moment

inequality [35],
18], <CIH, Sl Il52,
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which together with (6.35), (6.40) leads to (6.41).

(2) By Calderdn’s theorem [34; Chapter V, Theorem 27, |-[{” and ||-[{* are
equivalent. By Stein’s theorem [34 ; Chapter V, Lemma 2], |- and |-||{* are
equivalent. Therefore it suffices to prove

(6.45) 3 19°¢l,=<Clgl®  for g DY),

(6.46) QI <Clgl*  for ¢= L? satisfying (1—A)/*p= L.
Let g=L?. We have in L?

(6.47) H, A p=(1—A+ )" ¢—(H,+ ) V+p—1)1—A+2)"6.
(6.34) specialized to the case V=0 implies that

(6.48) [A=A4+2)"ll, =(A+1) " ¢ll5 .

(6.40) specialized to the case V=0 implies that A(1—A+2)'e.L(L?). It follows
therefore from (6.31) and (6.48) that

(6.49) IV +p—DA—-A+07¢ ], = CA+D) " S]], .
By (6.47),

(6.50) ﬁ;1/2¢=n—15 2(H 2 da

0
:7:-15:02‘”2(1—A—I—2)‘1¢ dl—7r“‘Sjl“"“(ﬁﬁrl)‘l(V—l—y—l)(l—A—{—Z)‘lgb da.

:(I_A)—1/2¢_n-1S:°12—1/2(ﬁ#+12)—1(v+ﬂ_1)(1__A_*_2)-1¢ da.

By (6.35), (6.48) and (6.49), the integrals in (6.50) converge in L?. Since |||V
and ||| are equivalent,

2 00 A=2)7l,=Clgll -
By (6.39) and (6.49),
, glllﬂa“(ﬁy—l-l)"l(V—}-p—1)(1—A—|—,2)-‘¢“1,g CQ+1)2zenia| g

This shows that the first derivatives of the second term on the R.H.S. of the
last equality in (6.50) are in L?, and their L?-norms are bounded by C|g|,.
Therefore by (6.50), we conclude 8“[7;”25256 L?, |a|=1, and

|§=1‘!a"ﬁ;”2¢llp§C[|¢Hp ,

which is exactly (6.45). In view of (6.41), (6.49) and (6.50), we see that (6.46)
follows from in a way analogous to the preceding argument. Q.E.D.
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Proposition 6.2. Let ps[2, =) and let meN. Suppose that d*VeL> for
all |a|<max(m—2,0). Then

D(pm={peL?;*¢p=L?, |a| <m}={p L?; (—A)™*pc L?}
={¢peL?; (1-A™*pc L?},
65)  C 3 8¢l <|Hprgl,<C" 3 [8°gl,,  p=DEHE").

Let
|1¢||§i’=m§m]|a“¢[|p ,

gl =187l ,,
Il =1(—A2Pll 4+l ,
Il =[I1—A)y™"2], .

All these norms are equivalent norms on D(ﬁz"z).

Proof. By Calderdn’s and Stein’s theorems (see the proof of Lemma 6.6),
I-19, j=1, 3, 4, are equivalent. By Lemma 1.1,

(6.52) IELHG%IIéCIEmlla“gb!lé’”llgbll;“”", 1</<m—1.
Therefore it suffices to prove

(6.53) Il =Clglw>, ¢ES,

(6.54)m DA™ C{pe L?; *pe L?, |a|=m},

since m/% is a closed operator in L?. Let ¢=S8. To prove (6.53) we distinguish
between two cases:

() m=2F with keN. (i) m=2k+1 with kEN.

(i) When m=2k with k=N, we see from Proposition 4.1 that D(H?*)=H?2*.",
Since 04(V+p)eL®, |a!<m—2, it follows from (6.19) that

(6.55) II(H+pe>k¢Hp§C|ﬂ§2k 1821, -

Since g=SCH***NLP=D(H*)NL?, part (4) of Lemma 6.6 implies that ﬁ’;,gb:
(H4+p)*¢, and therefore (6.55) becomes (6.53).

(ii) When m=2k+41 with k=N, we have, in the same way as in the proof of
(4.8),

(6.56) B AL 71gl,=C | 3 1679, .

Since we have proved (6.53) with m=2%, we see from (6.56) that
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(6.57) 2 o Higl,<C 3 ITGIR+C R, 10°0],
<C s Zp 79l

(6.57) and part (5) of Lemma 6.6 imply that Htpe D(HY?),

(6.58) I rg),<C S 10%4l,,

1B1s2k+1

which is exactly (6.53). We now prove (6.54),. To this end we again treat
the cases m=2k and m=2k-+1 separately.

(ili) When m=2k, k€N, we prove (6.54),, by induction on 2N. The case
k=1 follows from part (1) of Lemma 6.5 and the L?-boundedness of the Riesz
transform. Let 2=2 and suppose that (6.54),; holds for all j<k—1. We prove
(6.54),;. Let ¢=S. By making use of part (2) of Lemma 6.5, we find in the
same way as in the case (i) that ¢eD((ﬁ;‘i)k) and that (ﬁjﬁ)”g{) is equal to the
R.H.S. of (6.19). Moreover, for any ¢<sS,

(6.59) (g, W({an}, B39 =Cligl el Bl

provided {B|=2j, la,+ -+ +a,-,+B|=25 and j=<k. The proof of (6.59) is
similar to, and in fact, easier than, that of (6.22). Let ngD(ﬁ}f). By the in-
duction hypothesis, there exists a sequence {¢;} in & such that [|¢y,—¢[52.—0
as j—oo. By (6.59),

(6.60) (s, (=AY < (s, (HE*B)+Clis | 58a191 -

Letting j—oco in (6.60), we have

(6.61) (@, (=A@ <CUH D]+ 1P1E Sl

and therefore A*¢)=L?. (6.54),, now follows from the LP-boundedness of the
Riesz transform.

(iv) When m=2k+1, we prove (6.54), by showing that ngD(ﬁz”z) implies
0’¢eD(Hf) for any |r|=1. There exists a sequence {¢;} in S such that

2
Ellsbj—sblléi’—@ as j—oo. For |7|=1 and ¢=S, we write

(6.62) @y, (T3 §)y=—(H}gy, 09)+((HE, 571¢y, 6) -
By (6.56),

(6.63) (CHE, 07 1¢,, $) < Cl I 16l -

By (6.42),

(6.64) [(Hbp, )| =0 Higp, $)| <CIH2G],11,

Letting j—oo in (6.62) and using (6.63) and (6.64), we have
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1(@"¢, (ﬁi‘)k@] =ClglIZldl , PES.
This proves afngD(ﬁ,’j), as required. Q.E.D.

Lemma 6.8. (1) There exists a constant C depending only on n such that
(6.65) gl =Cp2IU—A PPl g,  peH™™", pE[2, ).
(2) There exists a constant C depending only on n such that
(6.66) IPl-=CllIZRIRIPIE ™, S HM™ ", p[2, o).

Proof. (See also M. Reed & B. Simon [31; Theorem IX. 28] and J.Q. Yao
[38D).

(1) It suffices to prove (6.1) in the case p=(2, ) and ¢=S. Let 2>0. By
the Hausdorff-Young and Holder inequalities, we have

gl <@2a)~ 2P| F ]l
SQ2a) PP+ 1) PF PllalI (A +161™) 7 2pscp-o> -

Moreover,
[+ 1&81") 2 F o= F QI3+ 1E1™2F Pl15)*

=" PlE+I(—=A)"" Pl *,
1A+ &1 2 llapscp-nn=(m"(p—2)/(n L (n/2)))!/2 1P - 27717 ,
where I denotes the gamma function. Thus [|¢], is estimated by
(p—2)/(nL(n/2))1 /2122012 271227 || b3+ | (—A)" 4 plI3)
SCp - 27 P2M|PIE+II(—=A) gl D)?
where C is independent of p. If we choose
A== Plla+el* (I plla+e)*'"
with £>0, then we have
g1, = Cp 2 (I(—A)"*Plla+e) (Il +€)*'? .
Since ¢>0 is arbitrary, this proves (6.65).
(2) Let g H™*°, By Lemma 1.1, we obtain ¢= L'ZI”\L"":%@WLT’ and (6.66)

with C replaced by some constant which might depend on p. It is there-
fore sufficient to prove (6.66) by assuming that [[¢]n/es1,0>0 and |¢ll,>0 for
all p=2. Let f(p)=l¢l,, p=2. f is a continuous function on the interval
[2, o), since [2, )2 p—log(f(1/p))=R is convex. Furthermore, lgm f(p)=

lflle, since ¢pe=L*NL>. We now consider the function defined by
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2D)=gllollPlaTLr5™, f(p)P/®+™, p=2. g is a continuous function on [2, o)

and satisfies lim g(p)=1. This proves part (2). Q.E.D.
Doco

We collect here some results concerning the spectral properties of Schrid-
inger operators and the decay properties of the Schrodinger evolution groups.
See M. Murata [26], A. Jensen & T. Kato [18] and A. Jensen [15][16] for the

proof.

Theorem A. (1) Let e(n)=0 for n odd and e(n)=1 for n even, ¢>—1/2
and s>max(c¢+1, 26+2—n/2). Then we have the following expansion in
L(H*; H*-%) as z—0 with Im z, Im 22, Im log 2=0:

Lo+1-n/2] . ]
(Hy—z)'= E_‘,o F,-z"/z"”i(logz)s‘"’—i—E)G,zj-{—o(z”)
where F;, G, L(H™®; H*"*), and these operators can be computed explicitly (see
the references cited above).

(2) Assume that there exist p>max (2, 4—n)and m<1 such that V is a compact
operator from H™* to H"*** for any s€R. We define the generalized eigen-
space M by

M={¢= N H27; 14+G,V)¢=0}  for n=3,

T<n/2-2

M:{¢ET<QLIZﬁ2-T; (14+G, V)¢ =Range (F,), F,Vé=0}  for n<2.

Let P be the orthogonal projection onto Ker (H). Then, P{(Y4)CM and P(I)=M
for n=5.

(3) Let V be as in part (2). Assume that M={0} and there cre no eigenvalues
in [0, 00). Let p>3 for n=1and p>2 for n=2;1/2<y<min (p—1, (p+n)/2—1);
s>max (7, 2r—n/2). Let Il be the orthogonal projection onto H.. Then we have
the following expansion in L(H"®; H® %) as t—+oo:

(i) For n odd,
Cy-1/21

e l= TS i (L1 2) By ot

j=max (n/2-1/2,1)
where Bejo,= L(H®®; H* %),
(i) For n=4 even,

Iyl N N(+1

e HH][ = 3 1t (log t)k > a]le]—l.l+0(t—7))
j=n/e k=0 1=%+1
where B,1 i€ LCH™; H*%), N()=[(j—1)/(n/2—1)]—1 and a,u,EC.
(3) For n=2,

Crl
e il = é t9@ () +o(t7¢)
Jj=1
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for some €>0, where the @; are L(H"*®; H" ~*)-valued smooth functions such that
for any v>0,

v

D)= 3 (logt) "i‘,’la,-“B,-_l,l+0<<logt>-v-1>

k=M () 1=-j+

as t—+oo, where M(1)=2, M(j)=—j+2 for j=2. Bsj1, B and a;z can be
computed explicitly (see the references cited above). Analogous results also hold
in the case (——oo,

Theorem 6.1. Let a>max (2,4—n) and let w* VL™ Suppose that (A2)*
holds and that there exists a constant C=0 satisfying V4+(1/2)V¥<Cw™* as forms
on H®'. When n<4, suppose in addition that M={0}. Let max (2, 4—n)<p<a.
Then :

(1) For any ¢=H NH" "2,
et oo G|, <C|Bllo. o2, tER.

(2) There exists 6>0 such that for n+2 and any ¢ IH NH" "2,

|7 Ve it Hg, ¢)| <CA+|t)) 2P| Bk 02, LER.
For n=2 and any ¢=I NH"*7?,

| Ve g, )| SC(L+t])*(1+1log A+ 1) I@l5 oo, tER.
(3) For any =3 NH" 2,
e * |, < Clt| 2P| @llo, pra,  tERN{0},

where p satisfies 2<p<co if n=1, 2<p<oo if n=2, and 2<p=<2n/(n—2) if
n=3.

(4) Let n=3 and let meN. If 0P VeL= for all |B|<max(m—2,0), then for
any ¢eﬂ[cmﬁm'-"/2,

le* @l <Clt1 M iBllm. o2,  tERN{O},

where p satisfies 2n/(n—2)<p<oco if n=<2m+1, 2n/(n—2)<p<co if n=2m+2,
and 2n/(n—2)<p=2n/(n—2—2m) if n=2m+3.

(5) Let n=2. For any ¢<= I NH>*"?,

le=glle<CA+ 1t (A+1og 1+ [t [N/ [Blle, oz,  tER.

Proof. By the Kato-Agmon-Simon theorem (see M. Reed & B. Simon [31]), H
has no eigenvalues in (0, o). Without loss of generality we assume that H
satisfies the assumptions of parts (2) and (3) of Theorem A, since 4, and Ker (H)
are invariant under ¢ **#, We prove the theorem only for the case ¢>0, since
the case ¢<C0 can be treated analogously. We apply part (3) of Theorem A to
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r=14(p—max (2, 4—n))/8 and s=p/2 to conclude that there exist constants >0,
C>0 and #,>3 such that for any g=H NH**/? and any ¢=i,,

. Ct—l—anﬁbno,p/z for n+2,
(6.67) e Hllo, - prn=
Ct'(logt)2|gllo. ;e for n=2.
(6.67) gives
. . Ct?W D) |2 e for n#2,
(6.68) [(e** Ve g, ¢)] é{
Ct*(logt)™|@ll3, o2 for n=2.

Since V= L>~, we have
WH Y/, -itH < 2
sup (e Ve " g, §)| < ViIBl -

This proves part (2). We next prove part (1). Let g A NH"*?/* and let ¢,=
AQA+H)*$, 2=2, (see Lemma 6.1). Then, by Lemma 6.1, ¢, H.NH**/* and
¢;—¢ in H*?/? as 2—co. (6.67) implies

(V+A/2)VF)e " s, e "1 g2)
Ct=2*D 112 o1e for n+2, t=t,,
g{ Ct2(log ) *lIpllz. p2  for n=2, t=t..
From Theorem 3.2, (6.67) and (6.68), we obtain
(6.69) lxe*oe= ¢, |3
sS4 (e Ve i, ¢i)| +H4t5| (et Ve il g, ¢,)|
+Ivetuttngiong |54 [ c((VH(1/2V e T ga, €741 de
=Ciillgalls. prz,  t=to.
Letting A—co in (6.69), we obtain
(6.70) lxe®* o HGE<CL| I3, pra,  t=io.

Combining (6.70) and (3.10), we obtain part (1). In the same way as in the
proof of Theorem 4.3, part (3) now follows from (6.69), (6.70) and (3.10). We
turn to part (4). If ¢E..4[c/\ﬁm"”2, then by Proposition 6.1 and Lemma 6.3,
we have for pg>2, (see Lemma 6.2), (H—i—y)’"’zgﬁ:(ﬁ—l—,u)m”géeﬂ{cﬂH°'f’“ and
therefore by part (3),

”(H‘*‘,U)m/?@_un‘;ﬁﬂzwm-z):He_im(H—l'ﬂ)m/wHzn/(n-z)
SCtHKH+ ™20, p 2= Ct |l 12 -
By Proposition 6.2 and Lemma 6.6, this leads to

Iagm“a’!e_iﬁjgbuzn/(n—2)§ CHIi ZLIZQ_I“I¢”2n/(n—2)§ Cl_1|”¢|“1n ol2,
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for p sufficiently large. By Lemma 1.1,
le g1, <C 3 8% §lguscn-nle " Gl

where a=(n/m)(1/2—1/n—1/p) and p ranges over the intervals indicated as in
the theorem. Combining these estimates, we obtain part (4). We finally prove
part (5). The idea of the proof is essentially the same as that of J.Q. Yao
[38]. Let g=s . NH*r*, By (6.65) and part (1),

e~ ,=lexp (| x |*/4it)e™ g,

< CPITiexp (|x1/4ite )5 lexp (| |*/4ite Ty
< PG 20t +T)e G g7

< O 1o g TG 12 iR | G517 < C 5Pl 1

By (2.8),
le=*7@llz, 0= CliPll2.0 -

We apply (6.66) to the estimates above to obtain
”0_“11¢Hm§ Cpl’/(z(li+ﬂ))t(2-17)/(1)+-’1)”¢“2 pl2 -

Now taking p=log¢ in this inequality, we obtain part (5) for t>0 large. In
view of Theorem 4.1, the proof is complete. Q.E.D.

Theorem 6.2. Let n=3, a>2 and let w*Ve&LlL> Suppose that (A2)* and
(A6) hold. When n<4, suppose in addition that M={0}. Let 2<p<a. Then:

(1) For any g=H" ",
[xe* e~ TG, <Cll@llo. o2, tER.
(2) There exists 0>0 such that for any g=H"*?,
| Veteg, )| SCA+ NG5 o, 1R,

(3) For any g H"*?

le % @ll,<Clti 2 Plllo.pra, LER,
where p satisfies 2L p<2n/(n—2).
(4) Let meN. If 3*Ve L™ for all | B| <max (m—2, 0), then for any g=H™ 2,

e @l <Clt]l@llm. ore,  tERNO},

where p is as in part (4) of Theorem 6.1.

Proof. Since H is absolutely continuous (see the proof of Theorem 5.3),
the result follows in the same way as in the proof of Theorem 6.1. Q.E.D.
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Theorem 6.3. Let g=2 for n<3, lei ¢>2 for n=4, and let ¢>n/2 for n=5.
Suppose that Ve Li+L>, V=0, and that (A2)* holds. Suppose in addition that
there exists B<[0, 2] such that V*#<—BV as forms on H*°. For n=3, p=
2n/(n—2) and q=2, we define:

an(p, 9=01/2—1/n—=1/p)/(1/2—1/q), eu(p,2)=0.
ba(p, =01/2—1/n—1/p)/(1/2+1/n—1/q),
5n(p; (]):an(P: Q>5n(q)+1"_an(p7 4),

Then:

(1) For any ¢=H"?,
lxet* oo~ ¥ ¢, < C(L+1¢1)' P plo..,  tER.
(2) For any o= H"?,
0=(e*" Ve g, $)<Clt|"Plgli.,  ItI=1.
(3) For any ¢ H"™?,
le 7@l < Clt|~F»nD|gll,,,  (€RN0},
where n and p are as in part (3) of Theorem 6.1.
(4) Let n=2. For any ¢=H"",
le " gle< C(1+[t])"?*(1+1log A+ 1) lIBllk..,  t=R.
) Let n=3. () If 2<q<3, then for any ¢=H"",
le=#*7 @l ,=Clt|~Fmu@-Dldll, ,,  (=R\N{0},
where 6<p=<3¢/(3—q). If g=3, then for any p=H" ",
le=* g, < Clz|~Fmartumigl, ,,  t=R\N{0},
where 6<p<co. If 3<q<6, then for any ¢€ﬁ‘-’,
le=*#gll,<Clt| - %P2l g|l, ,,  tSR\{0},
where 6<p=<co. If q=6, then for any ¢€ﬁ"‘,

le=**#gl,<Clt|=#"gll...,  tERN{0},
where 6 p=<co,

(i) If 2=¢<6, then for any ¢Eﬁ2",
le= 7l ,< C(L+ [t])~P»rs-2||dll, ,,  tER,
where 6=<p=<co. If q=6, then for any ¢Eﬁ2",
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le=*#gll,<CA+1tNP7lls., tER,
where 6 p<L oo,
(6) Let n=4 or 5. (i) If n/2<q<2n/(n—2), then for any g/)eﬁ"l,
le=*#gll,<Clt|=F»n@2)g|l,,,  t=R\N{0},
where 2n/(n—2)<p<nq/(n—q). If ¢=2n/(n—2), then for any ¢Eﬁ"‘,
le=*"gl,<Clt|~P7lgll...,  t=RN{0},
where 4<p=< oo for n=4, 10/3<p=<10 for n=5.
(i) If n/2<q<2n/(n—2), then for any ¢Eﬁz-‘,
e~ 7@, < C|t| - PO gll,,,  t=R\{0},
where 2n/(n—2)<p<co. If q=2n/(n—2), then for any ¢Eﬁ2'1,
le=*# o[, <Clt]~#7ligllo..,  tERN{0},
where 2n/(n—2)<p<co,
(7) Let n26. Let m=1 or 2. Then for any ¢<H™",
le 7|, <Clt|*2lipllm..,  tERN{0},
where 3<p=<6 for n=6, m=1; I<p<cc for n=6, m=2; 2n/(n—2)<p<

2n/(n—2—2m) for n=T7.

Remark 6.1. T. Cazenave, J.P. Dias & M. Figueira [2] and J.P. Dias &
M. Figueira [3] have obtained some estimates similar to those in Theorem 6.3.
These references were brought to the attention of the author by Y. Tsutsumi.

Remark 6.2. 1f 3=n<5, 2<g<2n/(n—2)<p=co, then &,(P)Z7x(D,q)
>0.(p, )=0.(q)>0. In particular, 1=8,2n/(n—2))=71.2n/(n—2),q) =
0,(2n/(n—2), )>0.(q)>0.

Proof of Theorem 6.3. We consider only the case {>0, since the case ¢<0
can be treated analogously. Let g=H"' and let {¢,;} be a sequence in S such
that ¢,—¢ in H"' as j—co. For ¢S we put F@)=[(x+2itV)e " |3+
42 (Ve " 8¢, e7*#¢). By Theorem 3.1 and the assumption that V¥<—87V,

C-cii—tF(t)———St((V—{—(l/Z)V#)e—HH¢’ e_“Hgb)
§4(2—13(t) Ve_"Hgb, e_itlfﬂb)é(z_ﬁ)l‘“‘F(t) )

This gives (d/dt)tF2F()<0, so that F()<t*~#F(1) for t=1. It follows from
Theorem 3.2 that F(1)<C|¢[3... Therefore,

6.71) | xet*Hog=tH |12 4-4s% (" H Vo7, H)<1*~P| ]2 1, t=1.
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Substituting ¢;—¢, for ¢ in (6.71), we see that {e*Hoe~"#g} is a Cauchy
sequence in H®! Therefore we obtain e#oe-"Hg —eitHog=Hg in H™! as
j—oo. This together with Theorem 3.2 shows that (6.71) holds with ¢ replaced
by ¢ and that parts (1) and (2) hold. Parts (3) and (4) follow in the same way
as in the proof of Theorem 6.1. We turn to part (5). Let ¢EI71". If 2<¢9<6
and p=6, then we use Lemma 1.1 to obtain

(6.72) le=*#gl, < C|[Ve *# g gsP-2 e~ H |- sP-

where p ranges over the intervals indicated in the theorem. If ¢=6 and p=6,
then we use Lemma 1.1 to obtain

(6.73) le=*#gl,<C|Ve *#g|¢|e~ " p[5-*,

where a=(p—6)/(2p). Therefore, the results for ¢Eﬁ‘-‘ follow from part (3),
(6.72), (6.73), Lemmas 6.2, 6.3, 6.6 and 6.7, and Proposition 6.1. We next con-
sider the case ¢Eﬁ“. As in the preceding argument, we use Lemma 1.1.
We estimate [le"**#¢|, by C\g?_glla“e‘“%llzn”"q’Ile“””¢llé"’n‘p'q’ if ¢<6, and by

CIZ‘}=ZI|3“e‘“H¢II’;He“”HgﬁH’é if ¢g=6, where b=(p—6)/(4p). Here, p is in the

intervals determined by the conditions of Lemma 1.1. The results for ¢eH*!
then follows from part (3), Lemmas 6.3, 6.5, 6.6, Proposition 6.1, and part (2)
of Theorem 4.1. Parts (6) and (7) can be obtained in the same way as in the
proof of part (5). Q.E.D.
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