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New ZAEstimates for Solutions to the Schrodinger
Equations and Time Asymptotic

Behavior of Observables

By

Tohru OZAWA**

Introduction

We consider the Schrodinger operator H=HQ+V in the Hilbert space L\Rn},
72^1, where H0 is the self -ad joint realization of —A in L\Rn} and V is a sym-
metric operator with //o-bound less than one. This paper is mainly devoted to
obtaining detailed informations about the asymptotic behavior in time of the
following quantities:

(1)

(2)

(3)

where (j)^L\Rn) is an appropriate initial datum. We obtained some new esti-
mates for (l)-(3).

For a nice initial datum 0, it is reasonable to expect that e~itH^^Lp(Rn)
for all t^R and that the map R^t^e~itH^^Lp(Rn) is continuous even when
p^2. By taking the asymptotic behavior of the Schrodinger free evolution
group into account, it is natural to think that for scattering solutions (i.e.,
e~UH(f> with 0 orthogonal to any eigenvector of H\ (l)-(3) decay as £->±oo
provided 2<p<°o. The local L2-decay of scattering solutions has been exten-
sively studied by many mathematicians (see [14][15][16][17][18][20][24][25]
[26][29]). The Lp-decay estimate, however, has not been fully investigated
(see [2] [3] [32] for some special results in three space dimensions). Concerning
scattering solutions, it is known that the expectation of the potential energy
(2) and the difference between the momentum of classical mechanics and that
of quantum mechanics (3) decay as t— >±oo under suitable conditions (see [4] [6]
[27]). Time asymptotic behavior of observables under the Schrodinger group
has been of importance in proving asymptotic completeness of the wave operators
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(see [5][6][27][33]).
The contents of this paper are as follows. In § 1 we give some preliminary

lemmas. In §2 we study the Schrodinger evolution group in the weighted
Sobolev spaces. In § 3 we state the pseudo-conformal conservation law for the
Schrodinger equation. The pseudo-conformal conservation law for some class
of non-linear Schrodinger equations was first observed by Ginibre & Velo [8].
Then, the non-linear theories have been developed by many authors (see [9] [10]
[11] [37]). In §4 we establish the general existence theory of //-solutions to
the Schrodinger equations. Various //-estimates will be obtained. We use
these estimates in § 5 and § 6. We investigate scattering solutions in § 5. Suf-
ficient conditions for the quantities (l)-(3) to decay in time will be given. The
purpose of §6 is to determine the rate of decay of (l)-(3) for short-range
potentials and repulsive potentials.
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§ 1. Preliminaries

In this section we collect some preliminary lemmas. We begin with mak-
ing some notational conventions. Throughout the paper we always assume that
V is a symmetric operator of multiplication in the Hilbert space L2 and is H0-
bounded with //0-bound less than one. H denotes the self-adjoint operator
defined by the operator sum H=HQ+V. JCae(H) and JCe(H) denote the
absolutely continuous spectral subspace of H and the continuous spectral
subspace of H, respectively.. For any real function we denote by the same
symbol the operator of multiplication by that function when this causes no
confusion.

N denotes the set of positive integers. ( ] ) = j \ / k \ ( j — k } \ for /, k
\ k '

For s^R, we denote by [s] the largest integer less than or equal to s.
p' denotes the conjugate exponent to £e[l, oo], on(p}=n/2—n/p. Let E and
F be Banach spaces. ~C(E ; F) denotes the Banach space of continuous linear
operators from E to F. We abbreviate X(E ; E) by J7(£). C(I ; E) denotes the
Frechet space of continuous functions from an interval IdR to E. For a linear
operator T from E to F we denote by D(T) its domain.
dj denotes the distributional derivative with respect to the j'-th variable. 7=
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@i, -,3B). A=S3J. Sfl,=0 if k^l. x=(xl9---,xn\ \x\=(x*?'*

=(l+UI2)1/a, for x^Rn. For any multi-index a'e(2Vu{0})n, we follow the
usual conventions:

cS denotes the Frechet space of rapidly decreasing C°°-f unctions from Rn to C.
tS' denotes the dual of <S.
Lp denotes the Lebesgue space Lp(Rn) or Lp(Rn}®€11, with the norm denoted
by \\-\\p, l<p<oo. Lpr\Lq denotes the Banach space with the norm ||- \\L

pnLq

— II ' HP +11 • II g> 1^^<^^°°. For m, s^R, the weighted Sobolev space is defined
by

Hm>s={^S'; ||0IU,.= ||(l-Ar^||a+||a>VII«<00}.

(•, •) denotes the L2-scalar product and various pairings between Lp and Lp>

(l<p<ool Hm-° and H-m-° (me=R\ HQ'S and H°--' (sejR), cS and cSr. e. t. c.
D,= H D(xaHm) denotes the Banach space with the norm

m+\a\£j

\\</,\\D= sup Kx"Hm<f>\\t,
J

A denotes the generator of dilations: ^=(l
EF denotes the Fourier transform defined according to the normalization:

Different positive constants might be denoted by the same letter C. If neces-
sary, by C(*, • • • , * ) , we indicate the dependence of the constants on the quantities
appearing in the parentheses.

Lemma 1.1. Let q, re[l, oo]. Let j, m^NU{Q} satisfy Q^j<m. Let p
and a satisfy

j/m<a<l if m—j—n/r^N^J{Q}, j/m<a<l otherwise.

Let (p^Lq satisfy 3^eLr, i ^ i = 7 7 z . Then da<p^Lp, \a\=j, and moreover,

S l|3VHp^C(n, m, ;, (7, r)

For Lemma 1.1, see, e.g., A. Friedman [7].

Lemma 1.2 (C. S. Lin [22]). (1) Let j<=N. Let k, /e^U{0} sflfrs/;y Jfe+Z
;'. (p(=Hj'j. Then x^^^L2, \a\ = k, \fi\=l, and moreover,
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(2) Let s^O, m*=R. Let ^e//°-s satisfy (osda^L\ \a\=m. Then
1/3) <m—l, and moreover,

<C(n, m, s) S ||
| a |=m

Lemma 1.3 (W. Hunziker [12]). Lef /e^V. Then:

(1) e-^DJc.Dj, ts=R,

(2) For flwjy <f><^Dj the map R^t^e'itH^^Dj is continuous.

(3) For any

commutator is defined as [_H, % a]=— 2(7%a)-7— (A^a)0

Lemma 1.4 (W. Hunziker [12]). Let Ce(*)=:exp(- |s*|2), £>0,
L2). Then:

(1) C£W-»M /n

(2) For js=N, (MyCeM->0 /w C(/Z; L2) as

§ 2. Some Properties of the Time Evolution e~itH

in the Weighted Sobolev Spaces

In this section we describe some properties of e~itH in the weighted Sobolev
spaces. For this purpose we use the square root |#(1/2 of the operator \H\.
It is well known that D(H)=D(H0)=HZ'Q and that there exist constants 0<a<l
and 6>0 such that

(2.1) \(V<p,

This implies (H<f>, <p)^-b\\<p\\l, <J)^D(H\ so that for l>l,=l+b, H+2 is a
positive operator in L\ Indeed,
D(H). Moreover,

(2.2)

On the other hand,

(2.3)

By the Heinz-Kato theorem [35], we obtain from (2.2) and (2.3) that
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Similarly, from the relation (see T. Kato [19; p. 335])

(2.4) ||!Hi^||2-||^[(2^(|(//+^(i2^||(!//[+^||2, <

we obtain D(\H\l'*)=D((H+W*\

(2.5) || | H\ l'*<p\\^ IK//+J)1' tyll^ |K ! H\ +W*<{>

We have thus proved that for j=l, 2,

(2.6)

(2.7)

It follows from (2.1) that

and therefore V extends to a bounded operator from H1-0 to H~l>Q, which will
be also denoted by V in the sequel. Now we have:

Theorem 2.1. (1) Let /=! or 2. T/ien:

(2.8) lk-"

For any <f>^HJ-° the map R^t^>e~itH^>^Hj'Q is continuous.

(2)

(2.9) lk-"^||oii

For an^ ^e/f1-1 the map R^t->e-itH<j>^H°'1 is continuous,
is continuously differentiate, and

(2.10) (e»Hxe-ttfffr=

(3) Ve-itH(Hl-°)c.H-l-° ,

Remark 1.1. Estimates (2.8) and (2.9) have been proved by C. Radin & B.
Simon [30]. But they have not studied the continuity properties in t of e~itH,
which will be needed in the proof of Theorem 3.1.
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Proof of Theorem 2.1. (1) Let $^Hj'\ It follows from (2.5) that

These inequalities prove part (1).

(2) Let feH1-1 and let {^-} be a sequence in HZ'1=D1 such that 0,-»0 in H1'1

as y-»oo. Let u(t)=e~itH<f> and let Uj(t)=e-itH<f>j, t<=R, j^N. By part (2) of
Lemma 1.3, uje=C(R; H2-1) and

(2.11) xuJ(t)=e-i'Hxfa-2i^e-i«-T>HVuJ(T)d^ , f efi,

By (2.8) and (2.11),

(2.12) \\xuJ(t)-xuk(t)\\^\\x<f>j-x<j>k\\z+C\t\ sup ||7uXO-7M*(OII»
i r l S i i l

SII^-#*llo,i+CK|| |^-?S*lli.o— >0 as /, ^-^oo.
On the other hand,

sup ||tt/0-tt(Oll2=H0r-0ll2 — >0 as /->oo .
«eu

Since the multiplication operator x is closed, we find xu(t)^Lz and xuj(t)-+xu(t)
in L2 as /->oo0 In the same way as in (2.12), we see that the R. H. S. (=right
hand side) of (2.11) tends to

in Lz uniformly on compact ^-intervals as y->oo. Therefore, xu^C(R; L2) and

(2.13) xu(f)= e-UHx(j)

It follows from part (1) that R^t^eitH^u(t)^L2 is continuous. (2.10) now fol-
lows from (2.13). (2.9) follows by estimating the R.H.S. of (2.13) in the Lz-
norm0

(3) Since we already know that FeJ7(//1-°; H~l-*\ part (3) reduces to part (1).
Q. E. D.

Theorem 2.2. e-"*(#z'2)cff°'B,

(2.14) lk-"ff#llo.»SC||#||o..+C|f|a||#||,.o, t<=R,

For any ^e//2-2, the map R^t->e-itH<f>^HQ>2 is continuous, R^t^eitH\ x\*e-itH$
el,2 is continuously differentiate, and
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(2. 15) -t(e
U

Although a formal proof of (2.14) proceeds exactly as in [30], we give here
a rigorous proof for the sake of completeness. The proof proceeds in several
steps. We first approximate u(t}=e~itH^ by ux(t)—il(H-{-il)~lu(t} and prove
that Au^C(R; L2). We next show that { \x\*ui(t)', X>1} is bounded in L2.
This in turn implies that \ x \ 2 u ( f ) ^ L 2 andAu^C(R', L2). We then prove that
u^C(R',H°>2) and (2.15) by obtaining an identity for \x\*u(t\ The proof of
(2.14) uses a differential inequality associated with \\(\x\2+i)u(t}\\2. To this end
we start with the following

Lemma 2.1. Let JeJZ\[— 1, 1], l^j<n. Then:

(1)

(2)

(2.16)

(3)

(2.17)

(4)

(2.18)

Proof. (1) For $^D(H\ we have

Therefore it follows from (2.7) that

form which part (1) follows.

(2) Let Cs be as in Lemma 1.4. We have on L2
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so that

(2.19)

Let ^e/f0-1. By Lemma 1.4,

((n+2-2 ex|2)e2^C.+2e2x,C.

in Lz as s— >+0. Therefore from (2.19) we see that

in L2 as e->+0. Since the multiplication operator Xj is closed, we obtain part

(2).

(3) Let ̂ H0-1. By part (1), (H+tti^xrf, (H+i^d^H+i^^H1'0 and thus,
by (2.16), x3(H+iX)"l^Hl'\ Consequently,

Part (3) now follows from part (2) and the equality above.

(4) Let ^eH°-2. Then xrf, d^H+iX^^H0-1. By part (2),
(H+ar'd^H+ar^H0-1. By(2.16), x3(H+iX)-l<Ix=H*-1. We have thus proved
that (H+iXY1 keeps H°-2 invariant. (2.18) follows by iterative use of (2.16) and
(2.17). Q.E.D.

Proof of Theorem 2.2. Let <j>(E;H2-2 and let ^^=iX(H+a)-^9 X>L With-
out loss of generality we assume that ^^0. We define it and HI by u(t)=e~itH<f>
and uji(t)=e-itH<l>i=i]i(H+i]iYlu(t\ t^R, H>1, respectively. Theorem 2.1 im-
plies that u, ux^C(R] H2'1). Moreover, Lemma 2.1 shows that Au^C(Rm

9 L
2).

Since iA(H+iZ)~l-+l strongly in J?(L2), we see that

sup| |MXO-M(Oll2=ll^-j5| |2— ̂ 0 as J->oo.
teB

We now prove that u(t}^H°'2 for each t^R. Let Ce be as in Lemma 1.4. Not-
ing that | x | 2

we have
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=2Im([ x ^,

=8Im((l-|ex

The Lipschitz continuous function | | ( | , t | 2 C s +z ' )M^l l2 is differentiable a.e. (=almost
everywhere) and

Consequently,

-ill! '

- e x

We devide both sides of the above inequality by H ( U i 2 C £ + 2 ) M ^ | | 2 (^
and integrate the resulting inequality with respect to t to get

(2.20) ||(|jc I2

By Lemma 1.4, the R. H. S. of (2.20) tends to

(2.21) l l ( l *

as s->+0, since we already know from Lemma 2.1 that ^^e^0-2, Au^C(R\ L2).
Fatou's lemma then shows that (\x\z+i)uz(t) is in Lz and is estimated in the
L2-norm by (2.21). We estimate the integrand in (2.21). By part (1) of Lemma
1.2 and (2.8),

By (2.2) and (2.3), we have for 2Q=l+b (see (2.1)),
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Combining these estimates, we obtain

GronwalFs lemma now gives

where C is independent of ^>1 and t^R. By Lemma 2.1, sup ||$Mo.2

Therefore, again by Fatou's lemma, (\x\z+i)u(ty\s'm L2 and is estimate in the
L2-norm by C exp(C|Z|)||0||2.2, as was to be shown. We next prove that Au^
C(R',L2). This follows from the #2'°-continuity and #°-2-boundedness of u.
Indeed, by part (1) of Lemma 1.2,

— > 0 as t-*s .

Now the rest of the proof proceeds with some modifications of the arguments
in [12] and [30]. We compute

jt(e«s \ x [ 'C.M(0)=iV"r[#, i x 1 2Ce] u(t)

= -2ieitH((n-(n+4)\sx\z+2\ex 4)Cs+2(l- ex \2%£x- 7)u(0 .

This leads to

(2.22) |jc|'C.M(0=e-"fr|x|2C.#

-2i^e-i^H((n-(n+^\£x\z+2\sx\^

The L.H.S. of (2.22) tends to \x\2u(tym L2 as s-++0 for each ^e/Z, while by
Lemma 1.4, the R. H. S. of (2.22) tends to

in L2 as s—»+0 uniformly on compact ^-intervals. This proves
and (2.15). We turn to (2.14). In the same way as before, we have

and hence
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<C\\(\X

Noting that (d/dt)\\(\X\^+i)u\\2=2\\(\X\^e+i)u\\^-(d/dtmx\^+i)u\\^ a.e.,
we devide both sides of the above inequality by \\(\x\%s+i)u\\\l'i (>,\\u\\\^=
H0||2 /2>0) and integrate the resulting inequality with respect to t to obtain

•C.+00lli"

Jo • "^ '

Taking the limit s->+0 in the inequality above, we find

u(r)\\\'ldT , t^R.I

This together with (2.8) yields (2.14). Q.E.D.

Theorem 2.3. Let j^N. Then:

(1)

(2.23)

For any ^eJiP"'0, the map R^t^^e~itH°^^Hj'Q is continuous.

(2)

(2.24) ||,

For any <j)<^Hj'j, the map R^>t^e-itH°<j)^H0-j is continuous,
2, \a ^/, is continuously differentiate, and

(2.25)

Proof. We use the following relations :

(2.26)

(2.27)

Part (1) is an immediate consequence of (2.26). We turn to part (2). We first
prove by induction on j^N that if $^HJ''j, then R^t^e-itH°<f>^H°'j is con-
tinuous. The case j=l follows from (2.27) and is also the special case of part
(2) of Theorem 2.1. Let ;^2 and suppose that if ^eff'-1-'-1, then R^t^e~itHo<p

-7'-1 is continuous. Let $^HJJ. By part (1) of Lemma 1.2, we have x$,
1"7'"1. It follows from the induction hypothesis that
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defines a continuous map from R to L2, as required. We next prove (2.25).
Let <j)^Hj'3 and let u(f)=e~itH^, t^R. Since u^C(R; Hj'J\ we see from
part (1) of Lemma 1.2 that x?dru^C(R ; L2), | fi+r I ^/, and therefore the R. H. S.
of (2.25) defines a continuous map from R to L2. Let £e be as in Lemma 1.4.
We compute

*xa \ x z

In the same way as in the proof of (2.15), this leads to

which in turn implies (2.25). It remains to prove (2.24). Let $^Hj-j\{Q}. Let
u and Cs be as above. In the same way as in the proof of (2.14), we have for
\a =j

(2.28) I I U f l C . + i > I I I = l k a C . M | I I

=4Im(7jc"-7(

Using part (1) of Lemma 1.2, we estimate the R. H. S. of (2.28) by

: £ u i i ^+ i i£ 2 i%p + i c e v w i i 2 ) i i i ^ i c^ i i 2

Since

11(1* 'C.+OMl!i= 2 ^|il*aC^II
\a\=j a\

from (2.28) and (2.29) we obtain

(2.30) ^-||(|jc 3£,+i)u\\l/J

IIKI.,-^

Integrating (2.30) with respect to ty taking the limit s->H-0 in the resulting in-
equality and using (2.23), we have

l}^, t<=R,
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from which (2.25) follows. Q. E. D.

§3. The Pseudo-conformal Conservation Law

In this section we provide the pseudo-conformal conservation law, which
will be one of the main tools in this paper. For this purpose we introduce
some notations and assumptions on H. We denote by F the function defined as

If ^e/f1-1, then Theorem 2.1 shows that R^t^>e~itH^^H1'1 is continuous, so
that we may write

Then Fe C(R ; R} and F(t) satisfies

F(t)=\\(x+2iW)e-ltH$

We denote by i[_A, H~\ the symmetric form on D(H)r\D(A) defined as

We consider the following assumptions (Aj), /=!, 2:

(Aj) i[A, H'] extends to a bounded operator B^j:(Hj'Q; H~J'°) .

Such assumptions are variants of those of E. Mourre [23] and P. Perry, I. M.
Sigal & B. Simon [28]. Since i\_A, H,~\ = -2H, as forms on D(A}r\D(H), (Aj)
is equivalent to the following

(Aj)* The form i\_A, V] on D(A)r\D(H], defined by

extends to a bounded operator V*^-£(Hj'°; //-•>• °).

Lemma 3.1. Let /=! or 2. Then:

(1) H extends to a bounded operator H^^j:(H2-j'° ; f/^'-0). Moreover,

(2) // <I)^LZ and H^c/t^L2, then ^e//2-° and H™<p=H<f>.

(3) // ^eL2 and H^d><=H-l'Q, then <p^Hl-« and H™<f>=H<f>.

(4) For any $, (p^Hl>\ (H^e~itH(f>, e-it2I<f>)=(H™$, (p

Proof. (1) By (2.4), we have
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Therefore,
\(H<f>, d)|^

from which it follows that H extends to a bounded operator //cl)e_£(// l i ( ) ;
On the other hand,

which shows that # extends to a bounded operator //(2)e J?(H2'° ; /i"2"0). If
1-0, then there exists a sequence {<^} in cS such that (pk-^<j) in //1>0 as

Consequently, H<pk = Hu>(pk-*H^</> in //"-7'0 as k->oo. This implies that
H™<j)9 and hence H

(2) Let ^eL2 satisfy H^(p^L\ Put ^=a(H+iX)~1^J 2>L We easily see
that Hfa=tt(H+tt)-lH™<f> and (^, H$)=(ti(H+iZ)-lH™</>, & for any
Letting 2->oo in this equality, we have (^, JE7^)=(//C2)^, ^) for any $
This proves that <p^D(H) and H<f>=H™<f>.

(3) Let ^eL2 satisfy H™<f>^H-l>°. Put ^x=il(H+ilY1^, 1>1. Let ^0=
(see (2.1)). We easily see that

and therefore

||(#+Jo)1/8(^-Wlla^

— > 0 as 1, fi—>°o .

This implies that ^D((H-rl,}l'z}=Hl-Q and H^=H^.

(4) If (fi^H2'0 and ^eL2, then the result is immediate. If 0, ^e/f1-0, then we
approximate 0 (resp. $6) by a sequence {0*} (resp. {^}) in £ in the #1>0-norm
and obtain the desired result by taking the limit &-»co in the corresponding
result for $k and <pk. Q. E. D.

Let ;=1 or 2. If (Aj) holds, then we have the identity H<*-»+(l/2)B=
F +(1/2)7* as operators in £(H*-* \ H~3'*\ where H™=H. Concerning suffi-
cient conditions for H to satisfy (Aj), we have the following :
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Proposition 3.1. Let j—l or 2. Suppose that V can be decomposed as V=
V.+V,, with X ' V V l f F2eJ7(^'°;//-^°) and xV *<=£(&•*; H1^'0). Then (Aj)
holds. Moreover,

Proof. The proof is parallel to that of [28; Proposition 1.3]. Q.E.D.

Proposition 3.2. Let W be a function on Rn. Suppose that W can be de-
composed as W=W^+W^\ where W™^L* with q^l, l/FCoo) e L°°. Then:

(1) W^J:(Hl'Q;H-l'Q) for all q such that q^l for 72 = 1, q>l for n=2, and
q^n/2 for n^3.

(2) W^J:(H2-°; H~2-Q) for all q such that q^l for w^3, q>l for w=4, and
q^n/5 for n^5.

(3) W^£(Hl>Q', L2) for all q such that q^2 for n = l, q>2 for n=2, and
for n^3.

(4) W^J:(H2'Q; //-1'0) for all q such that q^l for n = l, q>l for n=2, q^
for n=3, <?>4/3 for n=4, and q^n/3 for n^B.

Proof. We only prove part (1), since the other parts can be proved analo-
gously. It suffices to obtain the estimate

By Holder's inequality,

where l/<?+2/£=l. By Lemma 2.1 (dn(p}=n/2-n/p, see § 1.),

(3.1) l l # l l p

where p ranges over 2<p<oo for n — l, 2^p<&> for n=2, an
for n^3. Combining these estimates, we obtain the required one. Q.E.D.

Theorem 3.1. Let j=l or 2. Suppose that (Aj) holds. Let ^Hj'\ Then
] R) and F satisfies

Remark 3.1. The pseudo-conformal conservation law for the nonlinear
Schrodinger equation of the form idtu = —AuJr%\u p~1u is expressed as follows
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See J. Ginibre & G. Velo [8], Y. Tsutsumi [37], N. Hayashi, K. Nakamitsu &
M. Tsutsumi [9] [10] for related results.

The proof of Theorem 3.1 is devided into several steps. We first sum-
marize the properties of the operator A. For Z^R\{0}, we define R^=iX
and Ai=

Lemma 3.2. (1) A defines a bounded operator (also denoted by A} from
H1-* to H°--1. Moreover, A satisfies

(3.2)

(3.3) (40, 0)=Im(70, *0),

(2) Lef meE. TAen R^J:(Hm'0;Hm'Q} for

(3.4) SUP
i+1

(3.5) J?^ — > 1 strongly in j:(Hm'° ; #m-°) as |^|->oo .

(3) Let m^R. Then A^j:(Hm'Q ; Hm-Q) for \l\>m. Moreover,
HQ'~l) for

(3.6) ^,? — >A strongly in £(&•*; H0-'1) as U|-»oo.

Proof. (1) If 0, (j}^S, then (3.2) holds and thus

Therefore A^j:(H^ ; H°'~l) and (3.2) extends to the case where f^H1-0,
/f0-1. If 0, <J)S=H1'1, then (40, 0)=(40, 0), so that (40, 0)=
Im (70, *0).

(2) (Compare with [28; Lemma 6.2]). We use the representation

-^e^ds if

e~*seisAds if

From now on we consider the case /l>0, since the case ^<0 can be treated
similarly. Let0e#m-°. From the relation (ei'A<f>Xx)=en"*<f>(e'x), s^R, x<=Rn

}

it follows that <3eisA=e-isA<3. Put ̂ s(f)=(l+£2s|f 12)1 /2 , s^R, ^Rn. Then we
have in L2
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Thus, jRBs-Kl— A)m/Vs^£eL2 is continuous and

[|(l-A)m/Vs^||2^ \\cof EF0||2^max (1, ems)

Therefore, if Z>m, then (0, oo)3s^-^1(l-A)m/Vs^||2ejR is integrable,

and hence, (0, oo)3s^e^s(l-A)m/Vs^EEL2 is integrable. Since (l-A)m/2 is
closed, we see that

from which (3.4) follows. We next prove (3.5). We write

The above integrals converge in L2 uniformly in Ae(max(0, m)+l, oo). There-
fore (3.5) will follow if we can show that for each r>0,

This follows from Lebesgue's dominated convergence theorem. Indeed,

Q. E. D.

Lemma 3.3. Let j=l or 2. Suppose that (Aj) holds. Let $, (p^HJ-1. Then
(Ae~itH(j), e~itn(/})^C is continuously differentiate, and

(3.7)
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Proof. Let Q^i^H+ipY1*!*, ^^i^H+ipY1^, fi>l. Let u $)=€-"*$?,
Vf,(t}=e-itH(p^ u(t)=e-itH<j>, v(t)=e-itH(p, t^R. It follows from Theorem 2.1,
(2.7), and Lemma 2.1 that z^, v^C(R; H2-1}, Aup, Av^C(R; L2), and that
UP-+U, Vp-*v in C(JR; //2>1) as j«— >oo. We first show that

(3.8) (^4^X0, ^(0)=^^^ W

For this purpose we compute

-^(Am^ v^=-i(AxHu^ vJ+K

We consider the first term on the R. H. S. of the equality above. By Lemma 3.2,
(A-ilYlAvp=Vr+iR-iV^H*'«r\D(A)=D(H)r\D(A). We write -{(A^Hu^ v^
as

Therefore,

p, Av^+^AR^u^ Hv^}

i} vj,

which shows (3.8). Since ^^eJ7(L2) and RiBRi<= £(&•*; H-'-*\ we take the
limit /*->oo in (3.8) to obtain

(3.9)

By (3.4) and (2.8),

By (3.5) and (3.6), for each fe/J,

lim (R,BR,u(t\ v(f))=(Bu(t), v(t)) ,

Therefore we apply Lebesgue's bounded convergence theorem to the integral in
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(3.9) to get

(Au(t\ v(ty) = (

which implies (3.7), since Bu^C(R] H~j'°\ Q.E.D.

Lemma 3.4. Let fi^^H1-1. Then R^t^(xe~itH^f xe-itH(f>)^C is con-
tinuously different! able, and

~(xe~itH(f>, xe-ltH<]>}^(Ae-iiH(j), e~UII(/>) , t<=R .

Proof. Let {<j)k} be a sequence in H2-2 such that (j)k— >$ in H1-1 as &->oo.
Let uk(t}=e~itH<j)k, u(f)=e-ilH$, v(t}=e~itH(p. By Theorem 2.2,

so that

It follows from (2.8) and (2.9) that uk->u in C(R; H1-1) as ^->oo, which when
combined with part (1) of Lemma 3.2 shows that (Auk, v}->(Au, v] in C(R\ C)
as k-^oo. Therefore we have

This proves the lemma. Q. E. D.

Proof of Theorem 3.1. We write

By Lemmas 3.3 and 3.4, we obtain F^C(R;R) and

tH$, e~UH^ . Q. E. D.

Theorem 3.2. Let q^l for n = l and let q>n/2 for n^2. Suppose that
,A2)* holds and that V, V*^La~\-L°°. Then:

(1) eitn^'itH(H

(3.10) ||«"^-"^||,^C|U#||a+CU|||^||8, t^R,

For any ^e//0-1, the map R^t^eiulQe~itH<j)^HQ'1 is continuous.
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(2)

(3.11)

For any <j), ^e//0-1, the map R\{Q}^3t>->(eitHVe-itH<f>, ^)eC is continuous.

(3) For any ^e//0-1, the map R\{Q}^t^F(t)^R is continuously differentiate
and satisfies

(3.12) ~F(t)=t(eitH(V+(l/2W*)e-itH<f>, #) , f e= R\{0}.

Moreover, F is absolutely continuous on R.

Remark 3.2. Part (2) with V replaced by F# also holds. This can we
proved if we replace V by V* in the proof below.

Remark 3.3. Let l<q<p<™. If FeL^+L00, then Fe n Lr + L°°. This
q^r^p

follows by cutting the Lp-part of V into two pieces. See H. Isozaki [13].

Remark 3.4. See A. Jensen [14] and N. Hayashi & T. Ozawa [11] for
related results.

Proof of Theorem 3.2. We begin with some preliminary estimates. Let
(j}k^S, k = l, 2. Put p*=exp(|*|a/4#)0*, t^R\{0}. Let IF be a real function
such that W^LqjrL°°, where q is as in the theorem. From (3.1) we obtain

(3.13)

< c i ii(*/2iY+7x&* ii ?/9ii^ ir^+ c n

o^||5/«||^||i-«/«^

In the same way as in the proof of [11; Lemma 3.5], by using Theorem 3.1
and (3.13), we obtain

(3.14) ll(

Let (p^H0'1 and let {^} be a sequence in <S such that ^— >^ in I/0'1 as /-»°o.
By (3.14), we see that for each t^R {xeitHQe~itn^3} is a Cauchy sequence in
ZA On the other hand,

sup ||el":oe-"ff^-elt//oe-l£^||8=||^-0||2 — >0 as ;

Since the multiplication operator x is closed,
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(3.15) xeitH»e-itu(j)^Lz ,

(3.16) xeltH^-itH^j — > xeitH*e-itn(f> in L2 as ;-»oo.

(3.10) now follows (3.14) and (3.16). We next prove that for each
eitHye-itH extends to a bounded operator from H0-1 to H0-'1 and has the esti-
mate (3.15). It is enough to show

This follows immediately from (3.13) and (3.14). We now prove that for any
0, ^etf0'1, R\{Q}=>t*-*(eitHVe-ttH$,<f>)^C is continuous. Let {<j)3} (resp. {fa})
be a sequence in S such that <j>j— >(f> (resp. <f>j-*f>) in //0>1 as /->oo. It suffices
to prove that for T>0,

sup \t\n'q\(eitHVe-ttH6jffa)-(eitnVe-ltH6,d>)\ — >0i t i s r r r

as y->oo. This follows if we write

and use (3.10) and (3.16). The rest of the theorem can be proved in the same
way as in the proof of [11 ; Proposition 3.2], Q. E. D.

Theorem 3.3. Let q~^l for n = l and let q~>n/2 for n~^2. Suppose that
L°° and that (A2) holds. If in addition, there exists a constant A^R such

that

(3.18) #+(l/2)5^;iF as forms on

then the conclusions of Theorem 3.2 hold.

Proof. Let ^e//0-1 and let {<f>3} be a sequence in H2-1 such that $j— >0 in
H0-1 as y->oo. It follows from Theorem 3.1 and (3.18) that

and therefore
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(3.19) \\xettn°e-itHfa\\t

The conclusions of Theorem 3.2 follow by the same argument as in the proof
of Theorem 3.2 if we use (3.19) instead of Theorem 3.1. Q.E.D.

§ 40 //-Estimates of the Schrodinger Equations I

In this section we study sufficient conditions for the existence of Lp-solutions.

Theorem 4.1. (1) Let 2<p^oo for n = l, 2<p<oo for n=2, and let 2<
2n/(n-2} for n^3. Then

For any ^eH1-0, the map R^t^e~itH^^Lp is continuous.

(2) Let 2^p^oo for n^3, 2^p<°o for n=4, and let 2^p<2n/(n-%) for n^5.
Then

\\e-UH<f>\\p<C\\<f>\\2,Q,

For any 0e£P'°, the map R^t*->e~itH(f>^Lp is continuous.

(3) Let m^N. Suppose that H satisfies D(\H\m/z)=Hm'°. Let 2^p<oo for
for n=2m, and let 2<p^2n/(n-2m} for n^2m+l. Then

For any ^e£Tm'°, the map R^t^e~itH^^Lp is continuous.

Proof. In view of (2.6), parts (1) and (2) reduce to part (3). We prove
part (3). By the assumption D(\H\m/z)=Hm'°=D(H?/z} and by the closed graph
theorem, we obtain

(4.1) CIKffr'+i'X&lls^||(IH\m/2+iW\\z^C'\\(H^z+i)<p\\z,

Lemma 1.1 implies

(4.2) \\e~itH$\\p^C 2 \\Sae~itH6\\z'\\e~itH6\\2~a
 f\a\=m

where a=dn(p)/m. By (4.1), we estimate the first factor

2 llfff*-'"^!!, on the R.H.S. of (4.2) as
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(4.3) C\mm3e-itH0

Combining (4.2) and (4.3), we have

ll«-"^llP
Similarly,

— > 0 , as t->s. Q. E. D.

We study sufficient conditions for V to ensure D(\H\m/z)=Hm'°. For this
purpose we prepare the following

Lemma 4.1. Let k^N and let V1} ••• , V k^Hl^~l\ Suppose that Vj and
their distributional derivatives up to the 2(k — l)-th order are HQ-bounded, for all

7 = 1, ••• , k. Let aj be the Unbound of Vj. Then, n V3 is Hi-bounded with
k J=1

Proof. The proof is essentially the same as that of M. Arai [1; Lemma
5]. Therefore, we omit the details. Q. E. D.

Proposition 4.1. Let m^N. Let a be the Unbound of V. Suppose that
fl<21/cccm-i)/2]+i)_li When m^3j assiime in addition that the distributional deri-

vatives up to (m-2)-th order are Unbounded. Then, D(\H\m/2)=Hm'°,

(4.4) C(m, a)\\<p\\m,Q<\\(\H\m/z+i)(p\\z<

Remark 4.1. 21/C[Cm-1)/2:]+1)--l=l when

Proof of Proposition 4.1 (See also [1; Lemma 4]). Let k=[m/2~\. We first
i

remark that T[daf*VGSr, provided l^k and multi-indices a^ ( l ^ f j t ^ l ) satisfy

\au\^2(k—l). Indeed, by Lemma 4.1, we have for

i(l+ | x 12)cn/4]+10||2||(l+ I x 12)-[7l/4]-1||2

| « l ^ 2 i ~c=.nn
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Let j^N satisfy j^k and let (/>^<S. The Leibniz rule
', then gives

(4.5) (-A-f F)V=(-

where

This formula follows by induction on j and makes sense in S' , Nevertheless,
Lemma 4.1 implies that the R. H. S. of (4.5) is in L2. Therefore, SdD(Hk)
and the L. H. S. of (4.5) is equal to Hj<p. Using (4.5) and Lemma 4.1, we have
for £>0

We estimate the last term by using the following inequality.

(4.6) S IISYIU^CIIIfl^ll^Clllfr^lli^ll^lll1-*^*
I a |=i

^el l f fJ i&H.+ Ce-^-^*!^!!,, /^fe-1, £>0.

Collecting these estimates, we obtain

When m is even, we have &=m/2=[(m—l)/2] + l, and hence (a+l+£)* — 1+e
<1 for £>0 sufficiently small. Since H f i z is essentially self-adjoint on S, we
apply the symmetrized version of the Kato-Rellich theorem (T. Kato [19; Theo-
rem IX-4.5], M. Reed-B. Simon [31; Theorem X. 13]) to the inequality above
to conclude that Hm/z is essentially self-adjoint on S and D(Hm/zl<S}=Hm-°,
where the bar denotes the closure. This proves the theorem for m even. We
turn to the case where m is odd. In this case, k+l/2=m/2 and
[_(m—l)/2] + l. Let (j)^S. The preceding argument shows

m=i " in

= i rT^ i '

We see from (4.5) that
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'(Vk-lWl^+ 2 S C(a,, - , a,.,,
Z = l I 3 I S 2 Z - 1

laj h -'rak-l-i-P l= 2 i

By applying Lemma 4.1 to the R. H. S. of the last equality, we find

(4.8)
i n = i \P\s

By (4.7), (4.8) and (4.4) for m even, we obtain

x / K/' -O (ZJ g f^ O / j
I 7" I = 1 | jS | ^ TJl

This together with (2.6), (2.7) and (2.4), implies that Hky^D(\H\l'z} and

(4.9) \\\H\mlz</)\\2=\\Hk\H

^C S ||
I j S l ^ i a

and therefore the second inequality in (4.4) follows if </)^S. If <p^Hm>0, then
there exists a sequence {9^} in cS such that <f>j-*(f> in /fm '° as /->oo. By the
inequality which we have just proved, we find that {(\H\mlz+i)<f>j} is a Cauchy
sequence in L2. Since \H\m/z is closed, we have (p^D(\H\m/z\ Thus, #m-°c
D(]Him / 2) . We next prove that D(\H\m/z)dHm'°. Let (/}^D(\H\m/z). By the
first equalities in (4.9), we see that Hk<p^D(\H\l'z}—Hl'Q, and moreover, by the
moment inequality [35],

(4.10) S \\drHk6

Let <p^D(Hk}. Since £(|#| m/z)dD(Hk)=Hzk'Q=D(Hk IS), there exists a sequence
{^•} (resp. {^}) such that (ff*+/)0r->(#*+/)0 (resp. (Hk+i^^(Hk+i^) in
L2 as /— »°o. By the preceding step where m is even, we see that <pj^(p, <f>j-*<j>
in #2*-° as ;->oo. We write for |r|=l,

so that by (4.8),

Letting /— >oo, we obtain
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By (4.10),

This implies that dr</>^D((Hkr}=D(Hk)=Hzk>Q, |r|=l, and hence (]}^Hm'», as
required We have thus proved that £(|#im/2)=//m-0=£((l-A)m/2). (4.4) then
follows from the closed graph theorem. Q. E. D.

Proposition 4.2. Let V be as in Proposition 4.1. Then for any X^XQ=
(see (2.1).), D((H+Vm/z)=Hm'°,

C(a, X, m^\\n.^\\(H+nn/^\\^C(X9 m)i|^||m,0, ^Hm'°.

Proof. Notice that (/f+/l)m/2 is a positive operator in L2 if ^^0. Since
sup (| |/£r /a+i|(Ai+i)-m/ '+(Ai+^)m/8! l/ir'M-iir'Xoo, an operator calculus
//S-6

shows that ZX(#+^)ra/a)=£(l#r/2X (\H\m/*+i)(H+Z)-n<2ej:(L2\ (H+^m/2-
(\H\m/2+i)-1^j:(L2\ Therefore the result is obtained from Proposition 4.1.

Q. E. D.

In the case l?S-p<2, we have the following results (see §1 for notations).

Theorem 4.2. (1) Let l^p<2 for n=l and let 2n/(n+2}<p<2 for n>2,
Then

!, t<=R,

For any ^e//1-1, the map R^>t*-*e~itH(f>^Lp is continuous.

(2) Let l^p<2 for n^3 and let 2n/(n+£)<p<2 for n^. Then

\\e-itH<f>\\p<C\\<f>\\z,z, t<=R,

For any <f><^H2>2, the map R^t*-*e~itH(f>^Lp is continuous.

(3) Let je=N. Let l<p<2 for n<2j-l and let 2n/(n+2j)<p<2 for n^2j.
Then

For any (j)^Dj, the map R^t^-^e~itH^^Lp is continuous.

(4) Let j^N. Let p be as in part (3). Then

For any <f>^HJ'J, the map R^>t^>e~itH$^Lp is continuous.
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Proof. We first prove part (4). Let u(t)—e-itH^. Let q satisfy l/q=l/p
1/2. Noting that jq>n, we obtain by Holder's inequality.

\\p< (\ l«(0|»dxY"(( dx\
\ J | x | g l + | t | / V J m g l + m /

By virtue of Theorem 2.3, we have

|||x|'
and thus,

l l«(Ol
Similarly,

\t'\u(t')-u(s')\tdxY\\
/ \ J i a r |> l+|>l+|*|

Again by Theorem 2.3, the R. H. S. of the last inequality tends to zero as t— >s.
This proves part (4). Parts (1), (2) and (3) can be treated analogously if we
use Theorems 2.1, 2.2 and Lemma 1.3, respectively, instead of Theorem 2.3.

Q. E. D.

Remark 4.2. It is well known (see [8]) that for />e[l, 2),

From this estimate and Theorem 4.2 (4), we have

C\t\-'»"W\\p.£\\e-"a'f\\p<W

where p and j are as in part (3) of Theorem 4.2.

Theorem 4.3. Let q^l for n = l and let q>n/2 for n^2. Suppose that
(A2)* holds and that V, F*eL2+L°°. Let 2<p^oo for n=l, 2^p<°o for n=2,
and let 2<p<2n/(n-2) for n^3. Then:

(4.11) ll^^llp^Cd+UI-^^il^llo,!, fe«\{0},

For any (ft^H0'1, the map R\{Q}^>t^eltH$^Lp is continuous.

Proof. Let {<j)j} be a sequence in H2'1 such that <f>j-^<f> in H0>1 as /— >oo.
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We already know from Theorem 4.1 that R^t^e~itH^j^Lp is continuous. We
prove that {e~itH$j} is a Cauchy sequence in Lp if t^Q. Let a=8n(p). Let
S(0=exp(|*|2/4#). By (3.1) and (3.10),

(4.12) ||e-"zr(^-^*)llP

I ) a l l^ -#*l lo . i— >0 as y, &->oo.

Therefore, {e~ltH^j} is convergent in Lpr\Lz. This implies e~ltH<j)^Lp and
e-itH<j>j-*e-ltH<f> in Lp as y-»°o, provided ^0. (4.11) now follows by letting
;"— >oo in the following inequality:

We next prove that J2\{0}3£—>e~uf f0eLp is continuous. Let !;.,(£)=
gi^o^g-«H0g-«//^ Again by (3>1)<

(4.13)

V)e-ls^

Put u(t)=e~ltH(j)} v(t}=eitn»xe-itH*u(t\ Taking the limit ;-*oo in (4.13), we
obtain from (3.10) that

(4.14) \\S(t}u(t}-S(s)u(s}\\p

Since we already know from Theorem 3.2 that v^C(R; L2), we conclude from
(4.14) that Su^C(R\{Q}; Lp) and therefore u^C(R\{Q} ; Lp), as was to be
shown. Q, E. D.

Remark 4.3. If we assume that the hypotheses of Theorem 3.3 hold, then
we have the same conclusions as those of Theorem 4.3. The proof is exactly
the same.

§ 5. ZAEstiinates of the Schrodinger Equations II

In this section we consider some classes of potentials V and of initial data
0, for which the quantities (l)-(3) in the introduction tend to zero as t—>±oo.
We list the additional assumptions on V.
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(A3) V is compact from Hz'° to H~2-° .

(A4) The HQ-bound of V is equal to zero.

(A5) F* is compact from //2-° to H~Z'Q .

(A6) F*^0 as forms on #2-° .

Theorem 5.1. Suppose that (A2)*, (A3) and (A5) hold. Then :

(1) For any <j>^3Cacr\Hl'\ lim (eltHVe-itH$, 0)=0 .
-

(2) For an;y ̂ eE^ntf1-1 , lim \\(x/t)eitH°e-itH<f>\\2=Q.

(3) For an;y <j><=3Cacr\H1'1 , Urn ||<r"*0||p=0 ,

/or a// £ SMC/I ^ 2<p<oo for n = l, 2<£<co /or n=2, anrf 2<p^2n/(n—2)
for ?2^3.

(4) // «w addition, D(\H\m/z)=Hm'Q for some m^N, then for any 0e Jfacn//m>1,

/or a// /> SMC/I f/zaf 2<^?^oo /or 7Z^2m— 1, 2<p<oo for n=2m, and
2n/(n—2m) for n^

Remark 5.1. For the proof of part (1), we need (A3) only (see the proof
below).

Remark 5.2. See also V. Enss [5] [6] and P. Perry [28] for related results.

Proof of Theorem 5.1. (1) Let ^eE^acn#2'°. It follows that
e-"n<l>=(H+iYle-itn(H+i)<l> and (H+i)(f>s=JCac. We estimate (e^Vir*"^ 0) as

(5.1) \(eitHVe-ltH4>, <F)\

Since e~ltH(H+i)(/}-^Q weakly in L 2 as^->±oo j (A5) implies that the first factor
of the R. H. S. of the inequality in (5.1) tends to zero as t— >±oo. On the other
hand, by (2.8), the second factor is estimated by C|]^l|2i0. Thus, for ^e

(5.2) \(eltHVe-itn<f>,</>)\

Let <f>^Macr\H2'° and let ^^=^(//+^)-^, ^eE\{0}. Then
We estimate (eitHVe~itH^t 0) as
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(5.3) |(*"*ttr"*0,0)|

where we have used part (3) of Theorem 2.1. It follows from (5.2) that the
second term of the R. H. S. of the final inequality in (5.3) tends to zero as
t— »±oo. Part (1) of Lemma 2.1 shows that ^— >0 in H1-0 as 2— »±oo. This
proves part (1).

(2) Let <p^3CacP\H2'\ In the same way as above,

£-»±oo

Noting that
sup |(e*

we obtain

^ rM \(eiTH(V+(l/2)V#)e-iTHd>, di}\dr —>0 as £-+±00.
Jo

By using Theorem 3.1, we see that \\(x/f)eitHQe-itH0\\2-*Q as t->±oo. Let
SCacC\H1'1 and let ^^=iX(HJri)~1^a By Lemma 2.1, ^^—>^ in /f1-1 as 2—>d
We estimate \\(x/f)eitH*e-ttH$\\2 as

where we have usedJTheorem 2.1. This proves part (2), since

(3) Part (3) follows from part (2) and the following inequality

which can be derived from (3.1).

(4) When m=l, part (4) reduces to part (3). Let m2^2. We distinguish be-
tween two cases:

(i) n^3, p^2n/(n-2\ (ii) n=2, j^=ooe

(i) When n^3 and p^2n/(n—2\ we use the following inequality which can be
derived from Lemma 1.1
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(5.4) Wp^C 2 l|3"^HSll^lli»?(»-n,
\a\=m

where a=(n/(m-l))(l/2+l/H-l/£); 2n/(n-2}<p<°° for n^2m-l; 2n/(n-2)
^£<oo for n^2m]2n/(n-2)<p^2n/(n-2rn) for n^2m+l. (4.3) and (5.4)
yield

so that the result follows from part (3).

(ii) When n=2 and p—^, we use the following inequality which can be derived
from Lemma 1.1

(5.5) 11011.̂  C S ||3 nsiwii-,
where 2<q<™, a=2/((m—l)q+2\ In the same way as in the case (i), the
result follows from (4.3), (5.5), and part (3). Q.E.D.

Theorem 5.2. Let q^l for n — l and let q>n/2 for n^2. Suppose that
(A2)*, (A3) and (A5) hold and that V, V*^L«+L°°. Then:

(1) For any <j>^JCacr\H«>\ lim
t^±OQ

(2) For any <j)^Macr\H«>\ lim \\(x/t)eitH°e-itH$\\2=Q.
t-*±co

(3) For any <j><=SCacr\H*-1, Urn \\e~itH<l>\\p=Q,

for all p such that 2<p<c° for n=l, 2<p<oo for n=2, and 2<p^2n/(n-2)
for n^3.

Proof. Let <fx=3Cacr\H°'1 and let (f>x=rt(H+iYl<i>, ^e!2\{0}. By Lemma
2.1, ^e//2'1 and (j)x-^<j) in H0'1 as ^-^±00. Theorem 5.1 shows that

lim

Urn He -«

Moreover, we find from (3.10), (3.11) and (4.7) that for | f |^

Therefore we have the assertion. Q. E. D.
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Theorem 5.3. Let n^3. Suppose that (A2)#, (A3), (A4) and (A6) hold.
Then :

(1) For any ^e//1-0, lim (eitHVe-itn<f>, 0)=0.
t-*±oo

(2) For any fi^H1-1, lim \\(x/t)eitff*e-itH$\\z=Q.
t-*±oo

(3) For any jSetf1-1, lim \\e-itff$\\p=Q,

for all p such that 2<p^2n/(n-2\

(4) If in addition, D(\H\m/2)=Hm-» for some m<=N, then for any <f><=Hm'1,

for all p such that 2<p<°o for n^2m—l, 2<£<oo for n=2m, and
2n/(n-2m) for n^

Proof. By virtue of the Lavine-Arai Theorem (see R. Lavine [21], M. Arai
[1], M. Reed & B. Simon [31]), H is absolutely continuous under the assumptions
(A4), (A6) and n^3. Therefore all of the arguments in the proof of Theorem
5.1 work, except that we use Theorem 3.3 with /i=l in place of Theorem 3.1.

Q.E.D.

Theorem 5.4. Let n^3. Let q^2 for n=3 and let q>n/2 for n^4. Sup-
pose that FeL9+L°° and that (A2)*, (A3) and (A6) hold. Then:

(1) For any $^H«-\ \\m(eitH Ve-ltH<f>, 0)=0.

(2) For any f^H0-1, lim \\(x/f)eitH°e-itH$\\2=Q.
t-*±oo

(3) For any $z=H°'1, lim ||g-*^||p=0,
J->±00

for all p such that 2<p^2n/(n-2\

Proof. We first note that (A4) follows from the assumption that
The proof now proceeds from Theorem 5.3 in the same way as in the deriva-
tion of Theorem 5.2 from Theorem 5.1. Q.E.D.

§6. JLp-Estimates for the Schrodinger Equations III

In this section we study the decay rate of the scattering solutions in the
Lp-norm. We need the following function spaces. For m, s^R, Hm-s denotes
the Hilbert space

^-s={^e^';!|!^L,s=|lcys(l-A)m/2^||2<oo}

with the scalar product
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By M. Tsutsumi's theorem [36; Theorem 2.3], an equivalent norm on H™"s is
given by

so that Hm-sc+Hm'-s' if ra'^ra, s'<s. Part (2) of Lemma 1.2 shows that if
V, s^O, then the following norms are equivalent norms on H™"s:

(2) - ^ ||3«(cysc«||2,m,s

.= 2 !i
\a\=m

11(4) — V< II
\\rn.s— 2-1 I I

1 ai gm

In this case, part (2) of Lemma 1.2 also implies that

(6.1) IIW*..^C|||^

where k^N satisfy k<m.

Lemma 6.1. Let s^O. Then:

(1) HZ-S.

(6.2)

(2) For any p^2Q=l+b (see (2.1)) and any /leC with Re^^O,

(3) There exists a constant ^i2^0 depending only on s, n, a and b such that for
any f t ^ A i and any l^C with

(6.3)

(4) For any l^C with

(6.4) C(l,

Proof. (1) (See also W. Hunziker [12; Lemma 1]). It follows from the
preceding argument and (2.5) that the norm HHII!?., defined by |||^||l|fj=||/fo)*^||2
+ ||ft)s</>||2, is an equivalent norm on Hz>s. Thus, part (1) will follow if we can
show that the norm H I - H I ? * , defined by |||0|||?J=||ft)'/^6||2+l|a)*^||2, is equivalent to
III- III?.. Let (/)^HZ'S satisfy H<p^H°'s. Then for any $(ES we have
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We estimate the first and the last terms on the R. H. S. of the last equality as

\(<p, An'. 0)| ^CIIoi-VII.II^II.

If O^s^l, then the middle term is estimated as

(6.5) | 2 S ( ^ 3 / 3 X ^ ) ) l ^ 2 s ^

and therefore we obtain

(6.6) |(ce>s

Since (6.6) extends to $£LD(H\ we conclude that a)s(p^D(H*)=D(H) and \\\<p\\£l
^C|||0|||£J, provided O^srgl. Let </>^Hz's satisfy a>'4>^D(H\ Since |||.||||?> is an
equivalent norm on Hz-s, we have (p^H2-8. If O^s^gl, then in the same way
as above, we see that H<p^D((os)=HQ's and |||^|||^i^C|||^|||ifi. We have thus
proved part (1) in the case O^s^l. Let k^N and assume that part (1) holds
for se(& — 1, &]. Let <p^H2's satisfy H<p^H°'s. We perform the same pro-
cedure as in the case O^s^l, so that we only have to estimate the L. H. S. of
(6.5) in the case k<s^k+L Now

||o>f3 |̂|2^C|||̂

where we have used the induction hypothesis at the last inequality. Therefore,
WII^^CIII^IH^. Similarly, we have |||^|||?>^C|1^KJ, ^H2-s. This proves part

(1).

(2) For any 2^C with Re^O, we obtain, by an operator calculus and (2.7),

(6.7)

(6.8)

This proves part (2) for s=0. Let £E be as in Lemma 1.4. For ^e//°'s, we
have

(6.9)
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(6.10) co

^
)-V(#^

If 0<s^l, then for any nonzero multi-index 0, d^(^£a)s)^J:(L2),
strongly in JC(L2} as s— >+0, and hence, in the same way as in the proof of
Lemma 2.1, it follows from (6.7), (6.8), (6.9) and (6.10) that

(6.11)

(6.12)

By (6.7), (6.8), (6.11) and (6.12), we obtain

(6.13)
S .

|a|=l

provided 0<s^l. Let k^N and assume that (6.13) holds for se(£ — l, &]. We
prove (6.13) for se(&, & + !]. Let ^e/J0-8. Then by the induction hypothesis,
the R.H.S. of (6.9) (resp. (6.10)) tends to the R.H.S. of (6.11) (resp. (6.12)) in
L2 as £->+0. Therefore, da(H+ZQ+Z)-l^H°'s, \a\ ^1, and the equalities (6.11)
and (6.12) hold for s^(k, £+1]. (6.13) for se(&, jfe + 1] then follow from (6.11),
(6.12) and (6.13) for se(fe-l, fe].

(3) Let ^^cS and let zeC. By the Schwarz inequality,

By (2.1),

while
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Now

Collecting everything, we obtain

-5-C(s, 72,

Therefore there exists ^i^/l0 such that for any /*^i and any ^eC with

(6.14)

We now prove (6.3). Let *f>^HQ's and put ^=(H+fjt+^)'1^. By part (2), ^e
H°'S^HZ'°=HZ'S, Moreover, by part (1), <p<=H2-s, since H<p=^-(/jt+2)(p^H0's.
There exists a sequence {<pj} in cS such that ^-»0 in l/2's as j-^oo. Put ^=

;,. By (6.2), 0,->Cff+0+;fy&=0 in /f°-s as /->oo. Applying (6.14) to
and letting /— >oo in the resulting inequality, we obtain ||0][0,s^

o,s, as required.

(4) Let <p^Hz>s. By (6.2),

IK/

By (6.7), we have

so that

Combining this with (6.2), we obtain (6.4). If <p^Hz-Q satisfy
then by (6.3) we have <p^H°'s. Part (1) then implies <p^Hz's. Q. E. D.

We define the operator H in the Hilbert space HQ'S=H°'S as follows: D(H)
=HZ'S, H(j}^-^+V(p, (f)^D(H). If <f>SED(H\ then H</>=H(/>E^H0>S. If (p^H*-\
then in the same way as in the proof of part (3) of Lemma 6.1, 0 =
(H+^+lYl(j}^Hz'&=D(H). By the preceding argument, H$=H<f>, and therefore
<f>=(H+p+V<f>=(H+tJi+W, (H+fjL+X)-l(])=^=(H+iJL+XYl(}) for all 2^0. Thus
(6.3) becomes

(6.15) IK+^+^IUc^o .^^CRe^+l ) - 1 Re^O, ^^.

And (6.4) becomes
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(6.16) CW|2>S^|](#+^

It follows from (6.15) that H+p is maximal accretive [35] in HQ-S for ^^/li,
s^O. In this case we can define the fractional power (H+pY of H+fJt for any
a^R. With these notations, we have the following Lemmas 6.2, 6.3 and Pro-
position 6.1.

Lemma 6.2. Let p^ and let s^O. Then :

(1)

(2)

(6.17) ClWk.^llO^

Proof. (1) Let ^e//°-s and let $=(H+[i.')-1<j). By the moment inequality
[35], we have

This and (6.15) yield

as required.

(2) (6.16) is written as

Since H+p and 1— A are maximal accretive in HQ-S, it follows from the Heinz-
Kato theorem [35] that £((//+/*)1/2)=#1's, (l-A)1/2(^+^)"1/2eJ7(^0-s), and

-A)-1/2e J7(J?0'S). Q. E. D.

Lemma 6.3. (1) // ^D(H), then H</>=H<p.

(2) // <p^H°-s, then (H+^+^-^^H+fjt+^r1^ for all ^0.

(3) // cp^H2-Q and (#+/0^#°-s, then <p^D(H] and H$=H<p.

(4) Let k^N. If (]}^D(Hk} and (H+fjt)k(/>^HQ's, then ^D((H+fjt}k) and

(5) Let ae(0, 1). // <J)^D((H+pY) and (H+fjiY^H*'8, then
and (ft+p)a<f>=(H+fji)a4>.

Proof. Parts (1) and (2) are restatements of the results preceded by the
definition of H. Part (3) is an immediate consequence of part (3) of Lemma 6.1
and part (1). We turn to part (4). The case k = l reduces to part (3). Let
k>2 and let </>^D(Hk) satisfy (H+^k(/)^H°-s. We deduce, from the statement
of part (4) with k replaced by k — 1, that (p^D((H+^k} and
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We have (#+/^e£(#*~1), (H+p)k~l(H+p)(/}^PP's and therefore by the induc-
tion hypothesis, (H+^^D((H+/ji)k-1)) (H+fjt)k-\H+fjt^=(H+fji)k^. By (6.3)
and part (3), <p*ED(H) and (ft+fjt)<f>=(H+p)<f>. This proves <f>^D((H+ft)k) and

(H+p)k<pf as was to be shown. We finally prove part (5). Let <p^
satisfy (#+^)a^#°-s. Put <j>=(H+[j.Y<l>. By part (2),

=(H+p+Z)-l<l> for all ;i^0. Now

Jo

where the integrals converge in H°'s by virtue of (6.3) and (6.15). This proves
)a) and (H+{i)a(p=<f>, as required. Q.E.D,

Proposition 6.1, Let m^N and s^0= Let V be as in Proposition 4.1.
Then, D((H+fjt)m^=Hm's,

(6.18) C(/i, m, s,

Proof. We assume that s>0, since the case s=0 reduces to Proposition 4.2.
It follows from Proposition 4.2 that the norm HHIImU defined by |||^&KJg=
\\(H+p)m/za)s<f)\\2, is an equivalent norm on Hm's. Therefore, if we can show
that the norm IIHIImU defined by \\\(f>\\\m}s=\\(os(H+p)m/z(f}\\z, is equivalent to I I H I I m J s ,
then the result will follow from Lemma 6.3. We treat the cases m=2k and
m=2k+l, k^N, separately.

(i) When m=2k, k^N, we prove by induction on l^N that |||-K!« and |||-||IS!«
are equivalent for any se(/—1, /]. Let $<^<S. Replacing V by V+p in (4.5),
we see from the remark just after (4.5) that $<^D(Hk} and

(6.19) (HJr[jt)k$=(-A')k0Jr *i] S
\al+-+ak~-j

k-j
where ^({a,}, j8)=C(a!, - , a*.,, ]8)-

Therefore,

(6.20) [(//+^)*)a>s]?5=C(-A)4,<U
s]^+S S

./=0 ! j8 I S2J
l a i H •••+a^-_ ;-J- i

We write

I j8|=*
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= S S

= 2 S (-
P'<P rap-

so that for ^e^S,

(<6, [(-A)*, a/

= S 21,91=4 ;9'<2/! rs

= 2
^-<^ rs

We note here that

(6.21) IC^, [(-A/.

and that Lemma 4.1 implies

(6.22) |(

provided i /3j^2/ , aH ----- ha*-^+]8i=2y and j<k. Let 0<s^l. If
satisfies a)s<p^D((H+fjt}k\ then by Proposition 4.2, there exists a sequence {^-}
in cS such that ^-- >^ in #°-s, (H+[i)k</)j-+(H+[ji}k<p in L2 as ;->oo. By (6.19),
(6.20), (6.21) and (6.22), we obtain for any

(6.23)

Letting /->oo in (6.23), we obtain for any

-i

This implies that (H+/jt)k^HG's and |]|^|]|^s^C]|i^!|t8:s. K ̂ D((H+^k) satisfies
0<s^l, then in the same way as above, we find that o>s0e

and |||^|ll^s^C|i|^t9:s. Let /eJV and assume that ||[.||[«J. and |||.|||SJ.
are equivalent for se(/— 1, /]. We perform the same procedure as in the case
0<s^Jl to prove that the equivalence still holds for se(/, /+!]. We use the
induction hypothesis only in obtaining estimates of the R. H. S. of (6.21) or of
(6.22) through the known quantities. We omit the details since the proof is
similar to that of the case

(ii) When m=2£ + l, k^N, we prove the proposition by showing that
D((H+[t)m/2)=Hm's. (6.18) will then follow by the closed graph theorem applied
to the closed operators (H+^m/2 and (l-A)m/2 in the Hilbert space //°-s. Let
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<p^S. We see from the preceding argument that

(6.24) C 2Jliy0ll.*..^^^^

and that (6.19) with (H+p)k (resp. 0) replaced by (fi+p)k (resp. 0) makes sense
as an identity in H°-s. Moreover, from the relation

.7 = 0 I j 8 l £ 2 ,

we obtain by Lemma 4.1 that

(6.25) 2 II [(#+/*)*, 3r]o)s^||2^C 2

Similarly, from the relation

we obtain

(6.26) S II[[(A"+/•*/"> f j> c t f " j ^ i i2^^ i i i ^ i i i 2A.*

By (6.24), (6.25) and (6.26),

(6.27) 2

By part (2) of Lemma 6.2, we find from (6.27) that (#+^)*^e£((#+;£)1/2) and
that

(6.28)

If </)<^Hm's, then there exists a sequence {^} in S such that ^->^ in H™"s as
j— >oo. Since the multiplication operator <ys is closed in L2, we have (jF/+^)m/2^
e//°'s and (^+^)m/2^-->(^+^)m/2^ in #°-s as /->oo. By parts (4) and (5) of
Lemma 6.3, we conclude that ^eD((#+/Om/2). If (p^D((H+[t)mlz\ then by
Proposition 4.2 and the case (i), there exists a sequence {<f>j} in <p such that
(pj- >$ in H2k's and in Hm-Q as /->oo. For |^|=1 and $^<S, we write

In the same way as in case (i), we obtain

(6.29)
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Letting j—>oo in (6.29) and using part (2) of Lemma 6.2 and the results in case
(i), we obtain

(6.30)

It follows from (6.30) that dr</)^D((H+fjt}k)=Hzk's, \T\=1, and hence
We have thus proved that Hm's=D((H+{jt}m/z\ as required. Q.E.D.

Lemma 6.4. Let q^2 for n^3, let q>2 for n=4, and let q>n/2 for n^5.
Let />e[2, 0]. Suppose that VtELq+L°°. Then:

(1) For Gn;y ^eLp u;#/i A^eLp, we /iat;e V<p^Lp. Moreover,

(6.31)

(2)

(6.32)

(3) There exists ^2=^i SMC/I £/uz£ /or an^ 0etS an<i a?ry

(6.33)

Proof. (1) We first consider the case q>n/2. V can be decomposed as
V=V™ + V™ with F^eL5, F^eL00. Let re(2, oo] satisfy l/r=l/p-l/q.
Then by Holder's inequality, Lemma 1.1 and the Lp-boundedness of the Riesz
transform (see, e.g., E. M. Stein [34; Chapter V]), we obtain

so that part (1) holds.

(2) Part (2) is an immediate consequence of part (1).

(3) We consider only the case p>2, since the case p—2 can be proved in the
same way as in the derivation of (2.2). Let </)^<S. By part (2), (H+z)</)^Lp.
Since V is //0-bounded with //0-bound =0, it follows from (2.1) that for any
s>0,

This implies
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By Holder's inequality and integration by parts, we have

where sgn denotes the function on C denned by sgnz=z/\z\ for z=£0, sgnO=0.
Combining these estimates, we have

(6.33) then follows by putting s=4/£2 and ^2=maxWi, C(4/£2)). Q.E.D.

Let V and /> be as in Lemma 6.4. We consider the differential operator
K=(—A+V)$<S. K is closable in Lp. Indeed, if a sequence {<f>j} in S and
0eLp satisfy 0,-»0, #0,-><4 in Z/ as y->oo, then for any f<^<SC.Lp',

(<j>, /)= lim (/f^, /)= lim (0,, 7f/)=0
J-,00 J-»00

and therefore <f>=Q. We denote by H the closure in Lp of K, (6.33) then ex-
tends to

(6.34) |l(H+z)^|]^(Rez-^)||^||p, for

Put jM=^2+l, H^=H+fji. Then (6.34) yields

(6.35) IK^+^-Mbc^^CRear+l)-1, for

since z^p(H^, By virtue of (6.35) we can define the fractional power //£ of
Hp, for any a^R. With the notations above, we have the following Lemmas
6.5, 6.6 and 6,7, and Proposition 6.2.

Lemma 6.5. (1)

(6.36)

(6.37) C(||A0||p + ||^||p)^||^l|p+||0||p^CXI|A0||p+

(2) // FeL00, fAen D(H*)={<f>^Lpl ;

Proof. (1) Let <J)^D(H). There exists a sequence {^} in £ such that
<p3-+<l), H<])j-*H<j} in Lp as y->oo. It follows from (6.32) that {A^;-} is a Cauchy
sequence in Lp. Therefore, Acp^Lp and A0;->A0 in Lp as ;->oo, so that
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in Lp as /->«>. This proves H<f>=-A<f>+V<f>.
Conversely, if <p^Lp satisfies A^eLp, then there exists a sequence {</>,•} in 3
such that <pj-><fi, A<pj-+A</> in Lp as /->oo. This implies Hfy^—Afa+Vfy-*
—A(f}+V(/} in Lp as /->oo. Since /? is closed in Lp, we find <p^D(H} and #0=
-A^+F^. (6.37) follows from (6.36) and (6.31).

(2) If $s=D(H*\ then for any ^3,

\m
and therefore A(f><^Lp>. If (j)^.Lpl satisfies A0eLp ' , then by a density argu-
ment, we see that (0, H<p)=(—A$+V$, 0), <p^D(H}. This proves that 0e

and J?*^= - A^+ Ff Q. E. D.

Lemma 6.6. (1) // ^EE£>(/?)nL2 and H<ps=L*, then ^H2-0 and H<f>=H<f>.

(2) // ^€EL2nLp , ^TI (H^+Xr^^H+^+^r1^ for all ^0.

(3) // (f>tEH2'°^Lp and H</>£ELP, then ^D(H) and H<f>=H<f>.

(4) Let k^N. If (]>^D(Hk)C\Lp and (H+p)k4>e=Lp, then $(ED(Hfi and Hfy=

(5) Let 0<a<l. // cp^D((H+^a}r\Lp and(H+p.Y(p^Lp, then <p<=D(H$) and

Proof. (1) If <p^D(H)r^Lz and Hcfi^L2, then there exists a sequence {^}
in cS such that <f>j-*<f> in L2nLp, H(/)j^H</> in Lp as /-»oo. For any ^e^S we
have

)= lim (^-, Hft= li
-

This implies that </)^D(H)=Hz'G and H<f>=H(f>.

(2) Let 0eL2nLp and let {^;} be a sequence in £ such that 0/-»0 in Lzr\Lp

as /— »oo. By (6.35) with ^==2, {(^+^)~J^} is a Cauchy sequence in L2. Since
(Hp+lY^^Hp+Z)-^ in Lp as /->oo, we have (H^1Y1^L\ Put 0=
(Hv+*rl<f>. Then <p^D(H}r\L* and ^=(^+^-(/2+^=^-(j«+^eL2.
By part (1), H<f>=H<f>. Thus ^=J?^+(^+^)0 is equal to (/f+^+^)0 and hence

"1^, as was to be shown.

(3) If (j)^Hz-*r\Lp and H(p^Lp, then we put <j)=(H+ [i}<p^ Lz f ^ L p . By part
(2), (/}=(H+^~1^=H~l^^D(H). By part (1) of Lemma 6.5, we have /fy=

Part (4) (resp. (5)) follows in the same way as in the proof of part (4) (resp.
(5)) of Lemma 6.3. Q.E.D.
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Lemma 6.7. (1) For any ^SjO and

(6.38)

(6.39) | sj
(6.40)

(2)

(6.42) C 23 IISVIIp^ll^'VUp^C' 23 ||3Vllp.
I a\ gl | < a r | ̂ 1

Le/
!I^IIi(1>= 23 \\da<[>\\p,T ^

i/iese norms are equivalent norms on

Proof. (1) Let <f>^Lp and let 0=(#fl+;Q-1^, ^^0. By part (1) of Lemma
6.5, A06ELP and A0=-#0+V0=-0+(V+ju+;o0. From (6.31) and (6.35), we
get

from which we get (6.38). Since H^=(p—2^, we obtain, similarly as above,

which is exactly (6.40). By the Lp-boimdedness of the Riesz transform,
implies da(f>^Lp, \a\=2, and

(6.43)

By Lemma 1.1,

(6.44)
I j 8 | = l | a i = 2

Combining (6.35), (6.38), (6.43) and (6.44), we obtain (6.39). By the moment
inequality [35],
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which together with (6.35), (6.40) leads to (6.41).

(2) By Calderon's theorem [34; Chapter V, Theorem 2], Hi1' and ||- | |{4> are
equivalent. By Stein's theorem [34 ; Chapter V, Lemma 2], | | - | l i ( 3 ) and | | - | l i ( 4 ) are
equivalent. Therefore it suffices to prove

(6.45) ^JlS^II^CII^Iir for

(6.46) Wr^CH^Hf 4 ' for <]}<=LV satisfying (l-

Let 0eZA We have in Lp

(6.47) (^+^-1^=:(l-

(6.34) specialized to the case F=0 implies that

(6.48) I I C l

(6.40) specialized to the case F=0 implies that A(1—A+^)~1^J^(^P). It follows
therefore from (6.31) and (6.48) that

(6.49)

By (6.47),

(6.50) H-w

-^

1^ dl .

By (6.35), (6.48) and (6.49), the integrals in (6.50) converge in Lp. Since ||-||i(1)

and ||- IIP are equivalent,

By (6.39) and (6.49),

S llS-c
1 a\=l

This shows that the first derivatives of the second term on the R. H. S. of the
last equality in (6.50) are in Lp, and their Lp-norms are bounded by
Therefore by (6.50), we conclude dAH-t

lf*$(=Lp, a\=l, and

which is exactly (6.45). In view of (6.41), (6.49) and (6.50), we see that (6.46)
follows from in a way analogous to the preceding argument. Q. E. D.
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Proposition 6.2. Let />e[2, oo) and let m^N. Suppose that daV^L°° for
all |a|^max(7n-2, 0). Then

; 3fl0e Lp, \a\ ̂ m} = {^e Lp ; (-A)m"tyeE Lp}

(6.51) C 2 | | 3 V l l p ^ l l ? ' V l l p ^ C ' 2
l a i s m l « | g

Lef

i i^iia5= s IIS^H

^4// these norms are equivalent norms on D(H™12).

Proof. By Calderon's and Stem's theorems (see the proof of Lemma 6.6),
l l ' l l m 5 , .7=1, 3, 4, are equivalent. By Lemma 1.1,

(6.52) S IISVllp^C S l|
l j S | = Z |a |=m

Therefore it suffices to prove

(6.53) II^IIS

(6.54)m D(H^2)d{<p^Lp',da</>^Lp, \a\=m],

since H^/2 is a closed operator in ZA Let <p^<S. To prove (6.53) we distinguish
between two cases:

(i) m=2k with k^N. (ii) m=2k+l with

(i) When m=2k with ^eJV", we see from Proposition 4.1 that D(Hk}=H2k-\
Since 3a(7+^)eL°°, |a!^m~2, it follows from (6.19) that

(6.55) IKff+AOVUp^C 2
| ^ 9 | S 2 f t

Since </)^SdH2k'°r^Lp=D(Hk)r\Lp, part (4) of Lemma 6.6 implies that Hfy=
(H+{i.}k(p, and therefore (6.55) becomes (6.53).

(ii) When ra=2£ + l with k<=N, we have, in the same way as in the proof of
(4.8),

(6.56) 2 \\IH£, 9 r]0llP^C 2 l|3ty||p.

Since we have proved (6.53) with m—2k, we see from (6.56) that
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(6.57)

(6.57) and part (5) of Lemma 6.6 imply that

(6.58) \\Hk,+l/^\

which is exactly (6.53). We now prove (6.54)m. To this end we again treat
the cases m=2k and m=2k + l separately.

(iii) When m=2k, k^N, we prove (6.54)2jfe by induction on k^N. The case
k = l follows from part (1) of Lemma 6.5 and the Lp-boundedness of the Riesz
transform. Let k^2 and suppose that (6.54)2;- holds for all j^k — 1. We prove
(6.54)2fc. Let 0e£. By making use of part (2) of Lemma 6.5, we find in the
same way as in the case (i) that (f>^D((H*)k) and that (Hffi<j) is equal to the
R.H.S. of (6.19). Moreover, for any

(6.59) \(<f>,W({av]

provided \p\^2j, \a,+••- +ak-j+p\=2j and j^k. The proof of (6.59) is
similar to, and in fact, easier than, that of (6.22). Let 0e£)(//*). By the in-
duction hypothesis, there exists a sequence {0^} in S such that ||0j—0||^L2->0
as y-*oo. By (6.59),

(6.60) K0J, (—A)*0) | fJ

Letting j-^oo in (6.60), we have

(6.61) 1(0, (—A)*0)|

and therefore A*0eLp. (6.54)2fe now follows from the Lp-boundedness of the
Riesz transform.

(iv) When m=2k + l, we prove (6.54)m by showing that 0eD(//™/2) implies
dr<f>^D(H£) for any 17*1=1. There exists a sequence {<pj} in <S such that

2

S l!0 j—<p\ \zk—>^ as y->oo. For 17*1=1 and <j)^S, we write
1=1

(6.62) (dr(/}j, (#*)*0)=

By (6.56),

(6.63) |([^*, n

By (6.42),

(6.64) j (//jJ0, dr(j)} | = | (

Letting ;->oo in (6.62) and using (6.63) and (6.64), we have
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This proves dr(p^D(Hfi, as required. Q.E.D.

Lemma 6.8. (1) There exists a constant C depending only on n such that

(6.65) ||^IU^C^1/2 |((-Ar^lll"2/Pll^lli /P > ^Hntz-\ 0e[2, oo) .

(2) There exists a constant C depending only on n such that

(6.66) ll^ll-^CII^IlS^VIIs&ll?7^115 > 0e//B/«+1-°, />e[2, oo) .

Pros/. (See also M. Reed & B. Simon [31 ; Theorem IX. 28] and J. Q. Yao
[38]).

(1) It suffices to prove (6.1) in the case />e(2, oo) and <p^S. Let ^>0. By
the Hausdorff- Young and Holder inequalities, we have

Moreover,

p_2)=(^

where T7 denotes the gamma function. Thus \\<f>\\p is estimated by

2n'*-Z-n'*(^^^

where C is independent of p. If we choose

^=(||(-A)n/V

with £>0, then we have

Since s>0 is arbitrary, this proves (6.65).

(2) Let d)^Hn/2+1'°. By Lemma 1.1, we obtain (l>ZEL2r^L°°= n Lp and (6.66)
2S?JSoo

with C replaced by some constant which might depend on p. It is there-
fore sufficient to prove (6.66) by assuming that ||^|U/2+1,0>0 and ||^||p>0 for
all p^2. Let f(p)=\\<f>\\P, p^2. f is a continuous function on the interval
[2, oo), since [2, ao)^p^log(f(l/p))^R is convex. Furthermore, lim /(/>) =

p^oo

|| 01] oo, since <f>^Lzr\L°°. We now consider the function defined by
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\\^\\ao\\^\\n?2+?^n\f(P^~p^p+n\ p^2. g is a continuous function on [2, oo)
and satisfies lim g(p)=L This proves part (2). Q. E. D.

p-»oo

We collect here some results concerning the spectral properties of Schrod-
inger operators and the decay properties of the Schrodinger evolution groups.
See M. Murata [26], A. Jensen & T. Kato [18] and A. Jensen [15] [16] for the
proof.

Theorem A. (1) Let e(w)=0 for n odd and e(n)= 1 for n even, <7> — 1/2
and s>max(<7 + l, 2<r+2— n/2). Then we have the following expansion in
J7(#°-s;#2--s) as z->0 with Imz, Imz1/2, Imlogz^O:

Cff + l -n /23 [ f f ]

(HQ-z)-1 = 2] FjZn/2-l-j(log *)"<»> + S Giz*+o(za)
j=o ^=0

where Fj, G^-e ^C(H°-S ; H°'~s\ and these operators can be computed explicitly (see
the references cited above}.

(2) Assume that there exist 1o>max(2, k—n~)andm<l such that V is a compact
operator from Hm-s to HQ'P+S for any s^R. We define the generalized eigen-
space M by

M={<f>^ H H 2 ' r ' } (l+GQV)<f>=Q\ for n^,
7-<72/2-2 T

M={<f>^r Q 2
2 ' r

Leif P ^ the orthogonal projection onto Ker (//). TTzen, P(^T)cM G??^f P(JC)=M
for ?2^5.

(3) Let V be as in part (2). Assume that M={0} and there are no eigenvalues
in [0, oo). Let p>3 for n — \ and p>2 for n^2; l/2<F<min (p — 1, (p + n)/2—1);
s>max(7, 2f—77/2). Let TIS be the orthogonal projection onto Mc. Then we have
the following expansion in «T(//°'S; //°'~s) as £—> + oo;

(i) For n odd,

j=max ( ra /2-1 /2 ,1)

where B2J-^ J:(H°'S; H°--s).

(ii) For ?2^4 even,

0-itHJJ V V* i
" •*•*• s— Z-i <—\ ^

j=n/Z k=Q

where £,-i.i6E J7(//°-s; HQ'~S\

(3) For n=2,
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for some s>0, where the 0j are J:(HQ'S; H°'~s)-valued smooth functions such that
for any p>0,

®j(t)= s (logo-* s1

as f-»+oo, w/iere M(l)=2, M(/)=— /+2 /or /^2. J32y-i, 5./-1.Z awd a./^ can fre
computed explicitly (see the references cited above). Analogous results also hold
in the case £— >•— oo.

Theorem 6.1. Let a>max(2, 4-n) and let o)aV^L°°. Suppose that (A2)*
/20/ofs and that there exists a constant CJ>0 satisfying V-{-(l/2)V*^Ca)~a as forms
on H*'°. When n^4, suppose in addition that M={Q}. Let max (2, 4— n)<p<a.
Then:

(1) For any

(2) There exists <5>0 SMC/Z ^to for n^2 and any

For n=

I

(3) For a^ <fx=Mcr\H°'P/2,

where p satisfies 2<p<°o if n = l, 2^^)<oo // w=2, anoJ 2^^^

(4) Le? n^3 a?2J /^ m^N. If d^V^L00 for all \$\ ^max(m-2, 0), i/iew /or
any

/> satisfies 2n/(n-2}<p<^ if n<2m+l, 2n/(n-2)<p<oo if n=2m+2f

and 2n/(n-2)<p^2n/(n-2-2ni) if n^

(5) Let n=2. For any ^e

Proo/. By the Kato-Agmon-Simon theorem (see M. Reed & B. Simon [31]), H
has no eigenvalues in (0, oo). Without loss of generality we assume that H
satisfies the assumptions of parts (2) and (3) of Theorem A, since Mc and Ker (H)
are invariant under e~ltH. We prove the theorem only for the case £>0, since
the case £<0 can be treated analogously. We apply part (3) of Theorem A to
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Y=l+(p— max (2, 4— n))/8 and s = p/2 to conclude that there exist constants d>G,
C>0 and f0>3 such that for any 0e1#cnH°"<)/2 and any

. for
(6.67) .

for n=2.
(6.67) gives

f Cr'^'WlS.,,,, for
(6.68) |(e"*7«-"*0, 0)1^]

I Cr'OogfnWIJ.,,, f o r r c = 2 .
Since FeL", we have

sup | (e"B7e-"^,^)| ̂ || 7||.||#||I .
fG/2

This proves part (2). We next prove part (1). Let ^e Mcr\H°'p/2 and let 0^ =
)-^, ->^o (see Lemma 6.1). Then, by Lemma 6.1, (j>^Mcr\H2'P/2 and
in H°-f"2 as ^->oo. (6.67) implies

.lt for 72^2

Ct-2(logtr4WtP/2 for n-2, f^f 0 .

From Theorem 3.2, (6.67) and (6.68), we obtain

(6.69) \\xeitH°e-itn$t\\2
2

Letting ^->oo in (6.69), we obtain

(6.70) \\xettH^e^

Combining (6.70) and (3.10), we obtain part (1). In the same way as in the
proof of Theorem 4.3, part (3) now follows from (6.69), (6.70) and (3.10). We
turn to part (4). If $^&ci^Hm'p/2, then by Proposition 6.1 and Lemma 6.3,
we have for ^2, (see Lemma 6.2), (H+/jt)m/20=(H+fjyn/2<j>^Mc^H°'pJ2 and
therefore by part (3),

Vu*0^

By Proposition 6.2 and Lemma 6.6, this leads to

s lia^-^iu /u_2)^cii^
I a i =m
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for jj. sufficiently large. By Lemma 1.1,

n-HH JMl I—a

where a=(n/m)(l/2—l/n — l / p ) and £ ranges over the intervals indicated as in
the theorem. Combining these estimates, we obtain part (4). We finally prove
part (5). The idea of the proof is essentially the same as that of ]. Q. Yao
[38]. Let 0eJfcnf/2^ /2. By (6.65) and part (1),

4/0^

-^-^lir2729!^!!!^

Ce-^^

By (2.8),
||e-"^||a.o^CWko.

We apply (6.68) to the estimates above to obtain

Nov/ taking ^ = log^ in this inequality, we obtain part (5) for t>0 large. In
view of Theorem 4.1, the proof is complete. Q. E. D.

Theorem 6.2, Let n^3, a>2 and let a)aV^L°°. Suppose that (A2)* and
(A6) hold. When n<4, suppose in addition that M={Q}. Let 2<p<a. Then:

(1) For any 0(E#0-"2,

(2) T/ierg gx/sfs <5>0

(3) .For any

p satisfies 2^p^2n/(n-2).

(4) Le^ m^N. If d? VE: L°° for all \p\ ^max (m-2, 0), rAerc /or any

fs as z'72 /Jar/^ (4) of Theorem 6.1.

Proof. Since // is absolutely continuous (see the proof of Theorem 5.3),
the result follows in the same way as in the proof of Theorem 6.1. Q. E. D.
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Theorem 6.3. Let q^2 for n^3, let q>2 for n=4, and let q>n/2 for n^5.
Suppose that V^Lq+L°°, V^Q, and that (A2)* holds. Suppose in addition that
there exists j8e[0, 2] such that V*<—j$V as forms on Hz'°. For n^3, p^
2n/(n—2) and q^2, we define'.

an(P, 0)=(l/2-l/H-l//0/(l/2-l/tf), an(p, 2)=0 .

bn(P, q}=(l/2-l/n-

8n(P, q}=an(p, q)dn(

Tn(P, q)=bn(P, q)dn(
Then:

(1) For any

(2) For any

(3) For any

where n and p are as in part (3) of Theorem 6.1.

(4) Let n=2. For any ^Hz'\

ll*-"*0IU^C(l+|f|)-^

(5) Let ?2=3. (i) // 2^?<3, then for any fi^H1-1

where 6^p^3q/(3-q}. If q=3, then for any

Ik-^^li^CUI-^^^^

where 6<p<oo. If 3<q<6, then for any

where Q^p^oo. If ql^6, then for any

\\e-UH<!>\\P<C\t
where

(ii) // 2^q<6, then for any

where G^p^oo. If q^6, then for any
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where

(6) Let 72=4 or 5. (i) // n/2<q<2n/(n-2), then for any

where 2n/(n-2)^p<nq/(n-q}. If q^2n/(n-2), then for any

where 4=<p^oo for n=4, 10/3^^^10 for n=S.

(li) // n/2<q<2n/(n-2), then for any ^e/f2-1,

n-2)^p^<x>. // q^2n/(n-2\ then for any

\\e-UH(j>\\p<C\t

(7) Let n^6. Let m=l or 2. T/ien /or 0:723;

3^/)^6 for n=6, m=l; 3^/?<oo /or 72=6, m=2;
2n/(n-2-2in) for n^7.

Remark 6.1. T0 Cazenave, J.P. Dias & M. Figueira [2] and J. P. Bias &
M. Figueira [3] have obtained some estimates similar to those in Theorem 6.3.
These references were brought to the attention of the author by Y, Tsutsumi.

Remark 6.2. If 3^n^5, 2<q<2n/(n-2}<p<™, then dn(p)^Tn(P, q}
^dn(P, <?)^n(<?)>0. In particular, 1 - 3B(2n/(n-2)) = r»(2n/(n-2), q) =
aB(2n/(fi-2),

o/ Theorem 6.3. We consider only the case £>0, since the case
can be treated analogously. Let ^e//0-1 and let {^^-} be a sequence in <S such
that $1-+$ in J70-1 as /-»oo. For ^GcS we put F(f)=\\(x+2itV)e-i*H<I>\\l+
4t\Ve-itH<f>, e~itH(})\ By Theorem 3.1 and the assumption that F*^-/3F?

This gives (d/dt)(t^F(t))^9 so that F(t}<t*-?F(l} for ^1. It follows from
Theorem 3.2 that F(l)^C||0||S.i. Therefore,

(6.71) ||j
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Substituting <f>j—(j>k for <]> in (6.71), we see that {eitHoe~itH<f>j} is a Cauchy
sequence in HQ>1. Therefore we obtain eitHoe~UH<f>j-*eitH°e~itH(f> in H0>1 as
/—>°o. This together with Theorem 3.2 shows that (6.71) holds with <f> replaced
by <j> and that parts (1) and (2) hold. Parts (3) and (4) follow in the same way
as in the proof of Theorem 6.1. We turn to part (5). Let ^e/P-1. If 2^#<6
and p^Q, then we use Lemma 1.1 to obtain

(6.72) ||e-"^||p^C||7g-"^||f>cp'«||e-"^||J-a8cp-«,

where p ranges over the intervals indicated in the theorem. If #2^6 and p^6,
then we use Lemma 1.1 to obtain

(6.73) lk-"^llp^C||7e-"^||f||g-"^||i-a,

where a=(p—6)/(2p). Therefore, the results for ^e/?1-1 follow from part (3),
(6.72), (6.73), Lemmas 6.2, 6.3, 6.6 and 6.7, and Proposition 6.1. We next con-
sider the case fi^H2-1. As in the preceding argument, we use Lemma 1.1.
We estimate \\e~itH^\\P by C S ||3ae-"^||^cp-«||e-"^||16-

&~cp-« if <?<6, and by

C S \\dae-itH^)\\l\\e-itH(j>\\l if ?^6, where fc=(/>-6)/(4/>). Here, £ is in the
] a] =2

intervals determined by the conditions of Lemma 1.1. The results for ^e//2-1

then follows from part (3), Lemmas 6.3, 6.5, 6.6, Proposition 6.1, and part (2)
of Theorem 4.1. Parts (6) and (7) can be obtained in the same way as in the
proof of part (5). Q. E. D.
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