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§ 0. Introduction

The concept of extended affine root systems was introduced by K. Saito [6]
to construct a flat structure for the space of the universal deformation of a simple
elliptic singularity. An extended affine root system is by definition an extension
of an affine root system by one dimensional radical (see Definition 1.2). It is a
natural problem to construct a Lie algebra associated with the root system.

In [7], P. Slodowy constructed a Lie algebra for an arbitray extended affine
root system in such a way that the set of its real roots coincides with the root
system. For instance, in the case of A[l'l\ Df1-15 or E{l-l\ they may be
expressed in the form g^C^?1, ^E1]- Here g is a finite dimensional simple Lie
algebra of type At, Dt or Et and the commutation relations are defined by the
formula

[x®H?l$, y®X&R = \_x, y~]®l^k%+l for all x, jyeg.

Independently, M. Wakimoto also constructed in [8] Lie algebras associated
with the extended affine root systems. In the case of ^4Z

(1>1) , Di1'1* or £z
(1>1),

they may be expressed in the form 8 = 9®C'C^fS ^l~]®Cc®Cdi@Cd2, whose
commutation relations are defined by the formulae

[dt, x^lf^f^m^lf^f*

where c is the center. Further he constructed their Hermitian representation
such that the center of g acts trivially.

For an application to the deformation theory of simple elliptic singularities,
it should be important to construct vertex representations of the Lie algebras.
In this paper, using vertex operators, we shall construct a Lie algebra which
has the extended affine root system A[l'^t £^(lil) or E l 1 ' 1 ) as the set of real
roots, following the idea of I. B. Frenkel [1], I. B. Frenkel-V. G. Kac [2] and
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P. Goddard-D. Olive [3]. They may be expressed in the form
Cy, H-^QCdiQCdz where g(/?0) is the affine Lie algebra of type A?\ D^
or EP (see Theorem 2.5). Furthermore we shall consider the Weyl group WR

of the Lie algebra g(/?) (see Proposition 3.4). The Weyl group WR is important
for the theory of simple elliptic singularities since the coordinate ring of the
base space of the deformation is the 1/F^-invariant functions (^-functions) on an
affine subspace of the Cartan subalgebra of g(/?)-

Let us give a brief view on the contents of this paper. In § 1, following
K. Saito, we shall describe the structure of an extended affine root system with
a marking (see Proposition 1.7). In § 2, for any extended affine root system
whose elements are all of length 2, we shall construct a Lie algebra using a
vertex operator (see Theorem 2.5). In §3, we shall consider the Weyl group
of the Lie algebra (see Proposition 3.4).

The author would like to express his appreciation to Professor K. Saito for
useful advices and Professor T. Morimoto for encouragement. He would also
like to thank Dr. N. Suzuki for valuable discussions and Dr. Rim-Sug for
beautiful typing.

§ 1. Marked Extended Affine Root Systems

In this section, following K. Saito [6], we shall describe the marked extended
affine root systems.

Let us start with the definition of general root systems. Let F be a finite
dimensional vector space over R with a metric (• •) of signature (/+, /0, L), i. e.,
/+, /„ or /_ is the number of positive, zero or negative eigenvalues of ( - | ° )
respectively.

Definition 1.1. A subset R of F is called a root system belonging to (• | •)
if it satisfies the following conditions (R.1)~(R.5):
(R.I) Let Q(R) be the Z-submodule of F generated by R. Then Q(R) is a full
lattice of F, i.e., Q(R}®ZR=F.
(R.2) For any a^R, (a | «)=£().
(R.3) We define the reflection ra^GL(F) for any non-isotropic vector a^F by

... £ T
ra(Z):=A — ̂ -f-^ -a for any l^

(a\a)

Then for any a^R, ra(R)=:R.

(R.4) For any a,

(R.5) (Irreducibility) If R=R^JR2 and R^R2 with respect to (• •), then
either Rl—(j) or R2=$ holds.

Assume that the metric ( • [ • ) is positive semi-definite, i.e., L=0. If /0=0,
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then R is a finite root system. If Z0— 1, then R is an affine root system.

Definition 1.2. R is called an extended affine root system if 10=2 and L=0.
(In general, R is called a ^-extended affine root system if /0=&^3 and L=0.)

From now on, we investigate extended affine root systems only. Namely,
we assume that the metric ( - ! • ) has a signature (/, 2, 0).

Definition 1.3. A linear subspace G of F is said to be defined over Q, if
Gr\Q(R} is a full lattice of G.

We define a subspace of F by

)=0 for any

Then Rad( • j • ) is clearly a 2-dimensional subspace of F defined over Q, since
there exists a non-zero constant c^R such that c ( - | - ) is an integral bilinear
form on Q(R)xQ(R) and that the equations c(A\fl=Q for all Y^Q(R) have
rational coefficients.

Definition 1.4. A 1-dimensional subspace G of R a d ( - | « ) defined over Q is
called a marking for an extended affine root system R.

Let G be a marking for R. Then the pair (R, G) is called a marked extended
affine root system belonging to ( • ! ' ) • Note that there may be (at most) two
different marked extended affine root systems for an extended affine root
system. For example, following K. Saito's classification of marked extended
affine root systems, Gl1-^ and Gf-15 are isomorphic as extended affine root
systems (see [6]).

We denote by Rf(Ra) the image set of R in Ff=F/Rad(- \ •) (resp. Fa—
F/G) and by (• | •)/((• I •)*) the metric on Ff (resp. Fa) induced by (• | •)• Then
R f ( R a ) is a finite (resp. affine) root system belonging to ( • [ • ) / (resp. ( - | - ) a ) .
In fact, we can easily see that Rf(Ra) satisfies the axioms of a root system
(R.1)~(R.5) since Rad(- | - ) (resp. G) is a subspace defined over Q. Let
{a0, at, •- , 0.1} be a fundamental root system of the affine root system Ra and

A/2(av\a
\ (a^a

its generalized Car tan matrix. Following M. Wakimoto [8], let us define
counting weights of {aQ, ai, ••• , aL} as follows:

Definition 1.5. An (/+l)-tuple (kQ, klt ••• , ki) of positive integers is called
a set of counting weights of {a0> ••• , ®i} if the matrix
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k,

is again a generalized Cartan matrix and G. C. D. ( k 0 , ••• , k{)—l.

Let Fa be the affine Dynkin diagram of the affine root system Ra. Then
assigning a counting weight kp, /^O, 1, • • - , / , to the Fa for each vertex
a^ p=Q, 1, • • - , / , we get a weighted affine Dynkin diagram (Fa, (kp)) (see [6]
and [8]). To get the marked extended affine Dynkin diagram (cf. Saito [6])
from the weighted affine Dynkin diagram (Fa, (kp)), we do the following
operation: Let / be the set of ft (Q^p^l) such that

a l / k v < a ' p / k p for every Q^v^l ,

where a~=(ao, ••• , «T) is the set of positive mutually prime integers such that
a"A=Q. Then extending the affine Dynkin diagram Fa by adding new vertices
{a*\[JL<^I} under the rule in [6], we obtain a marked extended affine Dynkin
diagram. In this way, the weighted affine Dynkin diagrams (Fa, (kp)) are in
one-to-one correspondence with Saito's extended affine Dynkin diagrams. The
following definition is necessary to describe the Weyl group of (R, G) (see § 3
Lemma 3.1).

Definition 1.6. The set {aQ, aif ••- , ai}\J{d^\^l} is called the generator
system of (R, G).

Now we describe the structure of a marked extended affine root system
(R, G). Since Ra is an affine root system, Ra is decomposed into a finite
number of orbits of the affine Weyl group Wa and each orbit contains some
simple root a^ (O^S/^/). Hence we can define a mapping k of Ra into the set
of natural numbers N as follows :

k(w(ap)): —kp for any w^Wa and fjt=Q, 1, • • • , / .

Then we get the following proposition:

Proposition 1.7. ([6]) Let (R, G} be a marked extended affine root system
and dz be a Z-basis of G. Then we have

§ 2. Construction of Lie Algebras Associated with Marked
Extended Affine Root Systems

In this section, following the ideas of I.E. Frenkel-V.G. Kac [2], I.E.
Frenkel [1] and P. Goddard-D. Olive [3], we shall associate a Lie algebra with
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a marked extended affine root system such that all the elements are of length
2, by using a vertex operator.

Let F be an (/+4)-dimensional vector space over R with a metric ( - | - )
whose signature is (1+2, 0, 2). We fix a maximal isotropic subspace L in F:

(i) (A\A')=Q for any A, A'^L.
(ii) dimL=2.

Let F be an orthogonal complement of L in F. Then F is an (/+2)-dimensional
vector space over R with a metric (• | •) whose signature is (/, 2, 0) where (• | •)
is the metric induced by (• j •)• Let R be an extended affine root system with
a marking G belonging to (• | •)- Let {a0, aif ••• , ait d2, Alf A2\ be a basis of
F which satisfies the following conditions:

(i) {Ait A2} is a basis of L.
( i i ) {a0, ai, -• , ai} is a fundamental root system of Ra and A—

2(av\oifi}*
(2.1) (

( / ". N ) is a generalized Cartan matrix of J?a.\ (a^ja^) /V.P=Q.-.I
(iil) d2 is a Z-basis of
(iv) We set di—aQ—6, where 6 is the highest root of Rf. Then

=30 for i,; = l,

From now on, we assume that (/?, G) is a marked extended affine root
system of the following type:

(2.2) X?^ = {cLf+m8i + n8i\afSE.Rf, m,

where Xt—Ai, Dt or Et and Rf is a finite root system of type Xt. Note that
all the elements of X[1-1^ are of length 2.

Now we introduce an infinite set of creation and annihilation operators
p**(m\ where m is a non-zero integer and jt£=l, ••• , /, and a finite set of
operators x1*, p**f x+, xL, p- and p+, /£=!, ••• , /, i=l, 2. We assume that they
satisfy the following commutation relations:

(2.3)

( i i ) \_xp, ̂ l-V^^k,),

(iii) [n, K] = V=:I(«i|^),

(iv) [xL, ̂ l-V^^iMO and

v) the others^O.

Note that we do not define operators p\ and x*—
Define a Z-sublattice 0(7?) in F by

Here we treat Al and ^2 asymmetrically. Define the subspace F of F by
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F: = {*e=^|(32 |jc)=0}

and let (• ] •) be the metric on F induced by (• | •)• The pair (F, (• | •)) is called
a hyperbolic extension of (F, (• | •)) in [6]. Note that G is a radical of (• | •)
and that Q(R) is a full lattice in F.

Let CiQ(R)~] be a group algebra of Q(R) and M- be the infinite dimensional
vector space over C spanned by p^(m\ ?n<0 and fjt=l, • • • , / :

2
77l<0

We denote by S(JC-) the symmetric algebra generated by M-.
Now let the above operators act on V=S(&-)®C[Q(R)1 as follows:

(2.4)

( i ) for m<0, p^(

( i i ) for m <0, inductively,

(iii)

(iv)

We set for

( i ) Q*(z): -z^-V^logz^^+V1^ S

(2.5)

72

( i i ) Q^bf^): =^±~V=Ilog2r/)*±, where xl=p*+=0,

(iii) Of+ ,(z):=V=T2 — Mn),
">o 72

(iv) Qf_,(z): =-V=I S — /•''(-n), and
n>o ?2

For any a= S aaan+md^ + ndz^R, we define a vertex operator of "momentum"
u ^=1

a by
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(2.6) X(a, 2): =exp{V=I<a,

•exp{Vz:l<a;
where

<a, Q t i>(z)> = S

Generally speaking, ^(a, z) maps F into the space F — { S znvn\vn^V}. How-
rcez

ever, the homogeneous components of X(a, 2} are well-defined operators on V.
We define

(2.7) E(a): = 0 Vi f — ^(«, ^) for any ae^
— I J ^

with the integration contour positively encircling z=0. To compute the
commutation relations of the operators E(a) for aeR, we need the following
lemma :

Lemma 2.1. For any a, /Se/? and |z |>|£| , f/ie following holds:

( i i )

(iii) exp{ V=I<«, Qc+)(2)>} -exp{ V^K/3, (?C.,

=(^-)Ca'^exp{V:rT<^ Qc-5(0>}-exp{V-K«,

(iv)

( 5» \ C a l j 8 ) / 2 _ _
•£•) exp{ V-l<j8, Q«,(O>} -exp{ V-l<«,

Proo/. Proo/ of ( i) . From (2.3) and (2.5), we have

2 flP6»CO?+)U), Ol!fJt,v=l

I ~-mrn

2 a A 2 - —^

= I! a^i^v S
^
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I / r \m, , , . , . , / *a \

/V00/ o/ (ii). By (2.3) and (2.5), we have

= 1" 2 fl^Ow^+ijmjOtbJ-U), 2 &vQo»(C)+ 2
L j«=i t=i y=i i=i

= S a^E^-V

= S a^a
fjt, V=l

Proof of (iii). From the Campbell-Hausdorff formula and (i), we have

=exp(o

exp{V:::T<a,

— T \ C a l j 8 )
exp{V— l</3, Qc->(0>}-exp{V— l<a, Qc+)(z)>}.

/V00/ o/ (iv). From the Campbell-Hausdorff formula and (ii), we can prove (iv)
similarly to (iii). D

Proposition 2.2. For any a, /3e/?, one has the following:

(i) X(a, z)X(p, C)=(^-C)ca|^«)"Cfl|^)/2^(a, P;z,Q for k l > I C I ,

i^/zere

X(a, ]8 ; z, C)=e
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( i i ) E(a)£(/3)-(-l)«"^£(/3)E(a)

=fev^l)2f~^"f -^r-(*-C)cnl'l3(*C)-tal*/t*(«, P ; z , O,

where the z integral on a contour positively encircling £, excluding z=Q and the
C integral is then taken positively encircling £= 0.

Proof. We can easily check (i) by (2.6) and Lemma 2.1. Here we prove
(ii) only. Let FQ={^C\ I C I = r } and rt={zeC| |z |=r tKf=l, 2) for r2<r0<r1.
Then, by (i) and (2.7), we have

-(-!)<"» f
J 1

— (2-C)^^(2C)-r% z

(-0-^(,0-^^(«, /»; z, 0- D

The integrand in (ii) of Proposition 2.2 is non-singular if (a |/3)^0, it has a
simple pole if (a|/3)= — 1 and a double pole if (a|/3)=— 2. Thus we obtain the
following :

Corollary 2.3. For any a, fl^R, one has the following:
(i) // (a 10)^0, then

( i i ) // (a|]8)=-l,

(iii) // (a|j8)=-2, then a+/3~0 mod Rad(- 1 •) and

(a+f$, z}

where --
dz

Remark 2.4. In Corollary 2.3 (iii), since a+/3=0 mod Rad(- | - ) , we have
for some k, l^Z. Hence from (2.6) it follows that



596 HIROTSUGU K. YAMADA

This operator commutes with operators X(a, z] for all

Proof of Corollary 2.3. First of all, we set

Proof of ( i ). If (a|£)^0, F(z\ 0 is a holomorphic function with respect
to z at z=£. Hence we obtain (i) from Proposition 2.2 (ii).

Proof of (ii). If (a|£)= — 1, F(z; Q has a simple pole at z=C as a func-
tion of z. Therefore we have

T f ̂ (*; 0=lim(z-C)F(z; 0
—IJ *-C

Hence by Proposition 2.2 (ii) and (2.7), we obtain

(a)= , ^-T fz^rv — 1»/

o/ (iii). If (a 1/3)=— 2, F(z, £) has a double pole at z=C as a function
of z. Hence we have

, j 8 ; z , 0

+«, V=Tg C o, (a)^ (« , ^3 ; z, 0

The last equality follows from the fact a+j3=0 mod Rad( - | - )« Therefore we
obtain (iii). n

Now we want to modify the equations in Corollary 2.3 so that their left
hand sides become commutators. To this end, following [2], we introduce a
2-cocycle s of the root lattice Q(Rf) of Rf : there exists a Z-bilinear form e :
Q(Rf)xQ(Rf}-*{±l} such that
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)e(j8, a)=(-l)Cfl |^ for any a,
(2.8)

( i i ) e(a, a)= — 1 for any

Moreover we define e: Q(R}XQ(R}-*{±1} by

(2.9) g(a, j8): = 6(a/f j8,) for any a,

where a/ and /3/ are orthogonal projections of F/ of a and /3, respectively.
Clearly e satisfies the following equations :

Ifad^ + ndi+kAi, a)=l for any a^Q(R),

since e(0, a)=l. We define ea : C[Q(/?)]-»C[Q(/?)] for any a^Q(R) by

(2.10) ea(^): = e(a, 0)^ for any ^Q(R).

Now to modify equations in Corollary 2.3, we introduce the following operators :

-=r f - X(a;
— 1 J z

( i i ) h(a)=ha(m, n): = — ̂ 7— fJ ZTTV — 1 J

z

for any a=

(iii) c(?n): = — - r — <«!, P(z)>Z(m52, z) for any
— 1

(2.11)

(iv) J,: = -_ -^, P(Z)> for . = 1,2.
27TV — 1J Z

Let us define an infinite dimensional vector space §(/?) over C and its
subspace 6(7?) as follows :

(2.12)
:= S CgC^eS S Cha(m,

a&R u= im,7 ieZ ^

:- S C7ia,(0,

Then we obtain the following :

Theorem 2.5. ( I ) §(R) has the following Lie algebra structure : For any
/3=/3/4-?i15i+n252e Rf

0 if (a |/3)^0

if (a\ft=-l

n2')} if (a\fi)=— 2,

( i i )

(iii)
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(iv) [J

(v) the other commutation relations are trivial.

(II) Let Q(Ra) be the affine Lie algebra associated with the affine root system
Ra, then we have

where di is the scaling element of Q(Ra) and dz=

Proof. We can easily check (II) from (I) , and so we here show (I) only.
By (2.4) (iv), (2.6) and (2.10), we have

ZaX($, z)=e(a, ]8)^(j8, z)e« for any a, fi^R.

Thus (i) follows from Corollary 2.3. We can prove (ii), (iii), (iv) and (v) similarly
to Proposition 2.2. Here we prove (iii) only. For any a/, /3/e Rf and \z\ > |£|,

<af, P(z)X|8/, P(C)>= : <af}

where: *: is the normal ordering defined by

where y+(m): = i n
 m

<fr Hence, by (2.11) (ii) and Remark 2.4, we have

-f,-T-<^'J ro z

I+??2, 52, 0

f -^-(z-^-X(m1d1+mt8t, a)) ^(nA+B.3,, 0
^ ^ o s \ ^2" /2=c

Therefore (iii) follows from the facts:



EXTENDED AFFINE LIE ALGEBRAS 599

(a, I £,)=(« | jB). D

By Theorem 2.5, S(J?) is a commutative subalgebra of $(R) and is called
Cartan subalgebra. From this theorem and (2.12) it follows that we have the
root space decomposition of $(R) with respect to

where 8a={^eg(/?)|[/i, *] = </i, a)* for all /ieb(#)}. Note that

Qa = Ce(a) tor any a£

,.„„„=.,,„,,
• i
^Ch«i

i
IjCha,

/m, ri)(

pn, n)

and

, n)@Cc(n] if

if n=0,

Here the set of real roots, i.e., roots with non-zero length, coincides with the
extended affine root system R. Let us call §(R) the extended affine Lie algebra
associated with (R, G).

§ 3. Weyl Group of an Extended Affine Lie Algebra

In this section, we describe the Weyl group of an extended affine Lie
algebra g(#).

Let F be an (/+4)-dimensional vector space over R with a metric (• | •) of
signature (1+2, 0, 2) and we take a basis {alf ••• , ait dlf dz, Al, Az] as in (2.1).
Let F* be the dual space of F. We define a basis {a\, ••• , al , c1} c2} d1} dz}
of F* by

( i i ) <ct, Ajy=<di9 3j>=3t, f,; = l ,2 ,

(iii) the others=0

where < , > is the pairing of F* and F. Since the metric (• I •) on F and the
pairing < , > are non-degenerate, we obtain an isomorphism <p : F*— >F defined by

(3.2) (p(/0|a): = </i, «> for any h^P* and

We denote by ( • | • ) the metric on F* defined by

: = (h, y>(/i')> for any h,
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Then the metric ( • ! • ) on F* is a non-degenerate one with sign (1+2, 0, 2).
From (3.2), we have

(3.3)
| i- • r -•

i=l, 2.

Let §(R) be the Lie algebra associated with a marked extended affine root
system (R, G) and h(R) its Cartan subalgebra. Note that 'b(R) is identified with
the following subspace of F*=J

From this fact it follows that {a\, ~- , a\t clf dlf dz} is a basis of 6(7?) and we
denote by (• | •) the induced metric on 6(/?), which is degenerate.

For any a^R, we define aveb(J?) by

(3.4) aT: = .<p~\a) modCcz.

It is clear from (3.3) and (3.4) that

-- 2m
& a I / i \~ ^1 •

Let e(a) be a basis of g« for any a^R satisfying the following conditions:

( i i ) [av, e(]8)]=<^, j8X]8).

Now we return to the description of the Weyl group of the extended affine
Lie algebra g(/?). Since the adjoint representation of g(J?) is integrable (i. e.
for any x, y^$(R), there exists a positive integer N such that
we can define an automorphism ra of g(7?) for any aeJ? as follows:

(3.5) ra:

Then we can easily check by (3.5) that

(3.6) ra(h)=h — <h, a>av for any

This is the reflection of 6(J?) with respect to a". Now we define a reflection
group by

(3.7) WR:=thQ subgroup of 0(6, (• | •)) generated by ra, a^R.

We call this reflection group Weyl group of the extended affine Lie algebra g(.ft).
Denote by Wf the subgroup of WR generated by r f l l, ••• , rai. As rafl(c1')=c1

and rafjl(di)=di, i=l, 2, we deduce that Wf operates trivially on Cc^Cd^Cdz.
We conclude that Wf operates faithfully on &/ which is the subspace of S(/?)
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spanned by a\, -•• , a^ and we can identify Wf with the Weyl group of the Lie
algebra g/ which is the finite dimensional Lie algebra associated with Rf.

Since we consider marked extended affine root systems of type XI1'1* (see
(2.2)) where Xi—Ai, Dt or Et exclusively, the generator system TT of (R, G)
(Definition 1.6) is as follows:

where aQ—di—6 and a*=dz-\-ap for ^e/. Here 6 is the highest root of the
root system Rf.

Lemma 3.1. Let x~ {a0, ••• , a.i}\J{a*\[j.^.I} be the generator system of
(R, G). Then WR is generated by rao, ••• , rai, rQ*,

Proof. Let W be the subgroup of WR generated by rOQ, ••• , rci, rf l* for
. Then one can easily check that

Therefore for any a^R, there exists an element w^VV such that a=w(aft) or
iu(a*) for /Ji=Q, ••• , /, i>^L Then ra=rw^a^ = w - r a f j [ ' i v ~ l or =w-ra*-w~l. From
(3.7), WR coincides with W. D

Lemma 3.2. ( i ) Let 6 be the highest root of Rf. Then

for any

( i i ) For any ot%, fjL<=I and h^$(R), ra*-rafi(h)=h + (h, dzy<Xp. Note that aQ—

dl — 6 and a^—

Proof. By (3.6), for any h^(R], we have

= h+<h, 3i>0~-(

which implies (i) from the fact 2 / ( 6 \ 6 } — ( 6 ^ \ 6 ^ } / 2 . We can prove (ii) similarly
to ( i ) . n

Motivated by these formulae, we introduce the following endomorphism tn

and pp of 6(/?) for any a,
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' (i ) ta(h):=h+<h, d^cp'^a)

(3.8) • -((h\<p~l( NX ' 1

. ( i i )

We denote by Hzl+1 the subgroup of GL(6(/?)) generated by ta and pp for all
a, jBe<?(/?,).

Lemma 3.3. #2m fs a Heisenberg group satisfying the following formulae:
For any a, ft

(i) ta'tp = ta + p, Pam

( i i ) (ta-PpXPp'tJ'^

where *(h)=<h, d2y for any

Proof. One can easily prove (i) by using (3.8). Here we prove (ii) only.
By (3.8), we obtain

-((Alp-'Cafl+l-tel

which prove (ii). D

We can also obtain

(3.9)

for any a^Q(Rf} and w^WR. Indeed, for any /ze6, we have

and

Hence (i) and (ii) hold since WR(di}=dl for z'=l, 2, and (• | •) is PF^-invariant.
Now we can prove the following proposition:

Proposition 3040 WR=Wf
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Proof. Since aQ=di—0 and a*=d2
Jrafl, /ze/ are contained in R, we have

te, pafJ[^WR. Hence tww, Pwta^WR for any w=Wf by (3.9). Now by Lemma

3.3 and (3.9), Hzl+l is a normal subgroup of WR. Since Wf is a finite subgroup

and H2l+1 is a Heisenberg group, we have Wfr\Hzl+1=l. Finally, since raQ=

td-r0l and ra*=£ t t /£-r~^, it follows from Lemma 3.1 that WR coincides with the

subgroup generated by Wf and Hzl+1. D

It should be remarked that for any marked extened affine root system, K.

Saito [6] proved Proposition 3.4. This proposition is important for the theory

of simple elliptic singularities since the coordinate ring of the base space of

the deformation is the ring of W^-invariant functions (^-functions) on an affine

subspace of the Cartan subalgebra £(/?) (see [4], [5] and [6]).
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