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By

Shigeo KUSUOKA*

Abstract

The author studies Dirichlet forms on fractals. He constructs some local Dirichlet
forms on abstract fractal sets by using products of random matrices. Also, he studies the
martingale dimension of the associated diffusion processes and its self-similarity.

§ 0. Introduction

Recently "Brownian motion" on Sierpinski gaskets were constructed by
probabilistic approach (Goldstein [6], Kusuoka [9], Barlow-Parkins [1]). These
are symmetric diffusion processes, and so the theory of Dirichlet forms applies
to them. On the other hand, Kigami [8] introduced "Laplacian" on Sierpinski
gaskets by analytic approach. Of course, these two approach reached the same
object. However, any explicit expression of the associated Dirichlet forms has
been unknown. In the present paper, we give their explicit expression by using
products of random matrices.

In the theory of Dirichlet forms (Fukushima [5]), if a symmetric diffusion
process on a locally compact space is given, one can define the associated
Dirichlet forms, and moreover, one can define the signed measure .«[M'U] on the
state space for any elements u, v in the domain of the Dirichlet form. For
example, if we think of the usual Brownian motion in Euclidean space Rd, the

associated Dirichlet form is given by —\ (grad u, gradv)dx, and /jtLU'v^(dx)=
.. Z jRd

-y(grad u, gradv^dx. So we may think that to describe the Dirichlet form isz
to describe the signed measures /jtLu>vl. We will focus on the explicit expression
of u-v\
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Since our results are quite complicated, we show only two results which
follow from our results in the present paper. Let us think of the "Brownian
motion" on Sierpinskii gaskets and the fractal measure £ on Sierpinskii gasket.
Then the "Brownian motion" is ^-symmetric.
(1) We give a measure p. on the Sierpinskii gasket which is singular relative
to £, and we show that any ^^n is absolutely continuous relative to p. for
any elements u, v in the domain of the Dirichlet form. We also give its
Radon-Nykodim density.
(2) We show that the martingale dimension is one. This answers to Problem
10.6 in Barlow-Perkins [1]. There they guessed that the dimension is d (2^2).

Our approach is quite abstract and we believe that our results also apply
to the diffusion processes on nested fractal which were recently constructed by
Lindstr0m [10]. So we discuss the relations between his results and our ones
in the last of this paper.
Acknowledgement. The author thanks Prof. Y. Tamura for stimulating dis-
cussions and useful suggestions. He also thanks Professors S. Kotani, Y.
Takahashi and M. Osikawa for useful discussions and informations.

§ 1. Stationary Probability Measure

Let V0 be a finite dimensional real vector space with inner product ( , ) .
We assume that the dimension of V0 is greater than one. Let Yit i=l, ••• , N,

N
be linear operators in VQ and wi} i=l, ••• , N, are positive numbers with S wL=l.

i=l

(1.1) Definition. We say that {Ylt ••• , YN} is irreducible if there is no vector
space V such that {0}£7£F0 and YtVc.V for all * = 1, ••• , N.

(1.2) Theorem. Suppose that {Y1} ••• , YN} and ^Y^ ••• , 1Y N} are irreducible.
Then there uniquely exist strictly positive definite symmetric linear operators QQ

and Qi in V0 and a positive number 1 such that
(1) trace Qo—trace Qi and trace QQQi=l,

(2) S wSYiQoYi^ZQo, and
i=l

(3) VwiYiQSY^QL
1 = 1

Proof. Step 1. We shall show that there are unique /£>0 and a strictly
positive definite symmetric linear operator Q in F0 such that

(1.3) trace 0 = 1 and S w^YiQY^XQ.
i=i

Let S be the set of all nonnegative definite symmetric linear operators
N

whose trace is equal to one. Note that S w^YiQYi^Q for any QeS. In fact,
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if I^wi
tYlQYl=Qf then letting V={v^V0 ; (v, Qv)=Q}, we have YlVdV, i=1=1

1, ••• , N. Since V=£V0, V should be {0} from the irreducibility. But then we
see that Yi=Yz= ••• =YN=0. This contradicts the irreducibility and the as-
sumption that dim V 0^2.

Therefore we can define a map F: S-»S by F(Q)=(trace( S wi
tYlQYi')')-

1

N
X 2 Wt'Y iQY i. Since S is a compact convex space, there is a Q^S such that1=1
F(Q)=Q. Suppose that F(Q)=Q. Let F={i;eF; (v, Qv)=Q}. Then since

S Wi(YiV, QYiV)—(v, Qv\ we see that YtVc:V, i=l, ••• , N. As V^V0, we1=1
have V={Q}. Thus we see that Q is strictly positive definite if F(Q)—Q.

Therefore we see that there is a strictly positive definite operator Q in S

with F(Q)=Q. Letting ^trace^w^YtQYt, we see that there are ^>0 and1=1
a strictly positive definite symmetric operator Q satisfying (1.3).

Now suppose that there is another pair {%', Q'} satisfying (1.3). Let
a=sup{a^0; Q' — aQ is nonnegative definite}. Then Q'—aQ is nonnegative
definite symmetric linear operator in VQ and is degenerate, but is not equal to zero.

Then we have l—a=trace(Q'—aQ)>0 and S Wi'YAQ'

Since the right hand side of the second term is nonnegative definite we see
that 1'^L Similarly we have 1^1'. So 2=Z'. Then we see that if we let
Q=(trace(0'-«Q))-1(Q'-aO)eS, then F(Q)=Q. However, Q is degenerate
and this is the contradiction. Therefore, a pair {/I, Q} satisfying (1.3) is unique.

Step 2. From the result in Step 1 we see that there exist uniquely Q'0f Q[^S

and ^0, ^>0 such that *jjWl
tYiQ'0Yt=lt0Qi and JjWlYlQ

/
1

tYi=^1Qi. Then wet=i t=i
have

^o trace(OJO()=trace(( S wSYtQtYJQ'J1=1

= trace(OJ( S wlYlQ'1
 tY1))=Xi trace(Q'0Q'1).

1 = 1

This implies ^0=^i- Thus letting Qt=(trace QiQ[)-1/2Qif /=0, 1, and ^=^0=^,
we have our assertion. Q. E. D.

In this section and the next section, we always assume that {Yi, ••- , Y N}
and {lYi, ••• , 1Y N} are irreducible. So we have strictly positive definite sym-
metric linear operators Q0 and Q1 and a positive number ^>0 as in Theorem
(1.2).

(1.4) Definition. We say that a probability measure p in Q={1, ••• , Np is
associated to ({Ylf ••• , YN}, {wlf ••• , WN}} if
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(1.5)

for any ilt i2, ••• , i'Be{l, •-• , W}.

(1.6) Remark. By virtue of Theorem (1.2), (1.5) satisfies the consistence con-
dition. Therefore there is a unique probability measure p in Q associated to
(\Ylf -•• , YN}, {wi, "- , WN}\ By (1.5), we see that the measure p is stationary,
i.e., fjt°T~1=ft, where T is a map from Q onto Q given by (To))n=<yn+i, n^N.

In this section and the next section, fj. always denotes the probability
measure associated to ({Y"i, ••• , Y N}, {wlf -• , WN}) and v be a Bernoulli measure
in Q with v (o}1=i)=wi, z'e{l, ••• , A/"'}. Let £F^, l<n<m^oo? be a (/-algebra
in Q generated by {cot °, n^i<m+\.}. Let Xn(<ii)=Y mn, n^N and o)^Q, and
let Wr

B(a>) = jyn(o>)Jfn-i(a>)-J?fi(a)), n^l and roefi. Finally, let Zn(o>) =

(1.7) Proposition0 (1) Zn(coi) is defined p-a.e. CD and trace(Q1Zn(a)))=l} /i-a.s. (o,
(2) {Zn(o)\ <Si, 72^1} is a matringale under /*. Therefore Z(cai)=\imZn((o) exists

n-*°°
jt-a. s. (s).

(3) Z(co)=(trace Q1
£Z1(cy)Z(To))Z1(cy))-1 - £Z1(ft>)Z(To>)Z1(ft)), /^-cze s.

(4) For any n^l and fs=C({l,—,N}n;R\

/or //-a. s. cy.

Proof, (1) is obvious, since ^(trace(QiWn({w)Q0W»(fl>))=l):=l. (2) comes
from the following.

1W^
1 S ^ • Wn(

= ZB(aO.

Then we have

=hm (trace Q1
tXl(a))Zn(Ta))X1(a)))-1 - tZ1(o)

n-»oo

This implies the assertion (3). Also, we have
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,,•••,*„) Iff S
771 -*oo

2V

lim S Z~nf(ii,~-,i
7?l-»oo I } , — ,1^ = 1

This implies the assertion (4).

(1.8) Proposition. Let a(p^mil-n-Ev[_\\f\Wn\\P P "*], p=l, ••• ,dimF0.
n AFo-AFo

id;e have the following.

(1) fl(/>)^l or fl(/0=0.
(2) T/iere are c0, Cie(0, oo) /or eac/i />=!, ••• , dim70, swc/2 that

(1.9)
A^o-»AF0

. Let an(#)=^~ n -^ 1 ; [ l lAW r nl lp P 2/p]- Then we have

Therefore we see that if a(p)<l, then a(p)=Q.
Note that

^[llAZ»||^ P I/*]=(trace(<?,(?,))-1Jl-"-^[||A(W»(?,Wn)ll/? ^ 1

and

I IAQ.I I , j> -'

This implies our assertions.

(1.10) Definition. We call />0=max{/>^l; a(#)^l} the index of ( { Y l f -•• ,

(1.11) Corollary. Let pQ be the index. Then p (rank Z(o>)^^0)=l awrf ^e (rank

§ 2. The Related Markov Chain

We use the notation in Section 1. In this section we assume that each Yit

i=l, •'• , N, is invertible and {Ylf ••• , YN} is irreducible. Then {*Ylf ••- , 1YN}
is also irreducible.

Let 5 be the set of nonnegative definite symmetric linear operators A in
VQ with trace Oi^=l. We let
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(2.1) p(A,i)=l-lwt trace Q^YtAYt and

(2.2) B(A, 0=(trace QSYtAYtY1 • 'F < AK ,

for each yleS and i'e{l, •-• , N], Then S(-, •) is a map from Sx{l, ••• , N]
into 5 and

(2.3) %p(A,i)=l, A^S.
i=l

Let us define a probability measure P((i, A}, •) in S={1, ••• , N}XS by

(2.4) P((z, 4), £)= J] />(4, /)•**((/, B(A, /))), £e <S(S)

for any (*', ̂ L)eS. Then this P define a Markov chain in S. Let {P2; zeS}
be a family of probability measure in 9=5W"N which defines the Markov
chain associated P(z, •), i-e.,

P(z,

for any z^S, E0, Elt -•• , En<
Let m0 be the probability distribution in 5 induced by (o>i, Z(o>))Junder

(2.5) Proposition. m0 zs P-invariant, i.e.,

mQP(E) = f mQ(dz)P(z, E) = TWO(£).
def JS

. By Proposition (1.7) (3), we have B(Z(T<o), o)i)=Z(oi), jti-a.s.
Therefore for any f^C(S;R),

2 #(^(Toi), 0/tf, B(Z(Ta>), i))]

This proves our assertion.

Let £r$ denote the natural projection map from S into S. Let Sp=
{AeS; the rank of A is p}, p=l, ••• , dimF0 and let Sp=prsl(Sp). Let M
denote the set of all P-invariant probability measure m in § such that Pm is
ergodic. Since P(z, Sp)=l if z^Sp, we see that there is a £^{1, ••• , dimF0}
for each meM such that m(Sp)=l.

(2.6) Proposition. For any meM, {ueF0; (v, Av)=0 for all yle/)rAS(supp(m))}
-{0}.
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Proof. Let V={v^VQ ; (v,Av)=Q for all A<=prs(supp(m))}. If (/, ^l)esupp(ra),
then (/, B(A9 /))esupp(m), /=!, — , M Therefore we see that (v, £F^F^)=0,
/=!, ••• , A71, for any v^V and Ae£r5(supp(m)). So we have YtVc:V, i=l, ••• , N.
Since V^VQ, F={0}. This completes the proof.

(2.7) Proposition. Let Z^co^^TaceQ^WnWAWn^r'-Wn^AW^a)) for any
and a)^Q. Then we have

=JB"[(trace Q^AWnKtrace Q SW n(a>)Q «
A=0, 1, -, n]

for any n^l and C0f ••• , Cre

Proof. This comes from the following.

= . S3 A-^*, - u/< B trace Q^F^ - T,^^ - 7<B
*l.—.*n=1

•ZCo(^)ZCl(5(^, i,)) - ZCB(B(-B(B(^, «,), f,)f - , in)

S i-w,, - u;,, trace Q^Y^-^Y^AY^-Y^
!•"•• *7l=1

ZCn(B(-B(B(A, in\ in.,}, ... ,

-*a>)eC* for ft=0, - , n]

=

for fe=0, - , n]

Q.E.D.

(2.8) Theorem. Let p0 be the index of ( { Y l 9 ••• , YN}, {wl9 ••• , WN}\ Then

(2.9) ^rankZ(o)}=pQ']=l and

(2.10) p0=max{p^{l, ••• , dimF0} ; m(Sp)=l for some

Proof. Since m0(SPo)>0 by Corollary (1.11), we see that there is an
such that mC?Po)=l. Let ^=max{^e{l, ••• , dimF0} ; m(Sp)=l for some
and take an meM such that m(5Q)— 1. Then q^pQ.

Since Pm is ergodic, we see that

Pz\-lbf(Ok)-*\Jdm for all /e=C(3; jR)~| = l, m-a.e. z.
L?2 *=1 J« J

Therefore, by Proposition (2.6), we see that there are (ij9 Aj)^S, y=l,
d

such that S ^4j is strictly positive definite and
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'dm for all

for /=!, ••• , d. Therefore

lim- i3£p«,.^[/(«*)] = . fdm

for any f^C(S;R} and /=!, ••• , d.

Take a <5>0 such that d-QQ< S ^^^Oo- Let
.7=1

,0,. B(oO=(trace OiWB(oiM,Pr»(a>))- (trace Q^Wn

and /=!, ••• , d. Then we have Zn
Aj((o)^(d'pJ.n(<oy)-1-Zn(co>) and

Therefore we have for any e>0

^r^tfn))

Therefore we have

*=l

-2 f i
j=l B-.

->0 as e i O .

This proves that j«[rankZ(a>)S^] = l. This implies our assertions.

Let Gp(F0), j&=l, ••• , dimFo, be the set of all ^-dimensional vector subspace
of VQ. Then Gp is a compact manifold. Let <rp be a map from 5P into Gp

defined by ap(A}={Av^VQ ; i?eF0}, ^4eSp. Then o-p is a continuous map. Let

(2.11) Theorenio Lg^ ^ be the index. Then mQ°d^1 is absolutely continuous rela-
tive to m°dql for any m^M with m(Sq)=l. Moreover, the Radon-Nykodirn
density is bounded,
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Proof. For any compact set Km Gq and s, 7>0, let K£,r be a set given by

Ke,Y={A<^Sq; there are A'<^Sq and £eS such that

\\AA'\\q q ^r, \\A'-B\\Yo^e and B

Then /fe r is a compact set in 5 and n ^a(Ke r)CI-K" for any r>0.
'' e>0

Let us use the notation in the proof of Theorem (2.8). Take a f>0 with
r<d~ldz. Then we have

E, r))^ | 2 Hm 1 J] P(i ., ̂ ,[

j=i *=l

Letting siO first and letting 7 1 0, we have mQ°dq
1(K)^dzd~1m°dq

l(K) for any
compact set K in Gg. This implies our assertion.

(2.12) Corollary. // the index equals one, then #(M)=1 and p is ergodic.

Proof. Note that al : Si— >Gi(F0) is one-to-one. Therefore we see that
mQ°pr^1 is absolutely continuous relative to m°pr~sl for any m^M. Since
P((i, A), E\ E<=$(S) is independent of i, we see that mQ=mQP is absolutely
continuous relative to m=mP. Therefore Pmo is absolutely continuous relative
to Pm. But this implies that m=mQ. This completes the proof.

(2.13) Definition. We say that {Y1} ••• , YN} is strongly irreducible, if there
does not exist a finite family of proper linear subspaces of VQ, Vlf ••• , Vk such
that

for all z = l, ••• , AT.

(2.14) Theorem. Let T be the semigroup in GL(VQ) generated by {Y1} ••• , Y N}
CGL(Fo). Suppose that {Ylf ••• , YN} is strongly irreducible and there is a
sequence {Mn}n=i in T such that \\Mn\\~

lMn converges to a matrix whose rank is
less than the index p. Then the probability measures u and /* are mutually
singular.
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Proof, Suppose that v and p are not mutually singular,, Since v is ergodic,
v is absolutely continuous relative to p. Thus by Proposition (1.7), we see that
for y-a.s. ty, \\Wn(®)QoWnW\\~l-Wn((0)QQWn(<i>} converges to a matrix with
rank£, and so the rank of any limit point of {(||Wn(a>)||"Wn(a))}"=itis greater
than or equal to p. This contradicts Theorem 3.1 in [2],

Combining Corollary (2.12) and Theorem (2.14), we have the following.

(2.15) Corollary,, Let T be the semigroup in GL(F0) generated by {Ylt — , Y N\
CGL(Fo). Suppose that {Yl, ••• , Y N} is strongly irreducible and there is a
sequence {Mn\n=i in T such that \\Mn\\~

lMn converges to a matrix whose rank is
one. Then f£=u, or p and v are mutually singular,

§ 3. Stochastic Matrices

Now let D, N, M be integers with D<N and D<^M. Let 1 be a vector in

RM given by !=*(!, ••• , 1). Let VQ={x^RM ; S Xj=Q} and P be the orthogonal

projection in RM onto F0. Let wk, k=l, ••- , N, be positive numbers with
N
^wk = L Finally, let Ak, k = l, ••• , N be MxM matrices satisfying the follow-
*=i
ing conditions.
(A-l) Let Ak=(aff), i, j=l, - , M and k = l, ••• , N. Then

(1) fltf^O and S a™ = l,

(2) fljg>=l for k=l, - , A
(3) for any /=!, ••• , M, there is a pair (/, fe)e{l, — , D}x{ly — , JV} such that
flff = l.
(A-2) There are Ce(0, oo) and re(0, 1) such that

for any n^l and ilf ••• , !„=!, ••• , N.
(A-3) PA1P, /=!, ••• , W, is invertible in F0 and {P^jF, — , PANP] is irreducible
in Fo.

Then we can apply the results in Section 1, letting Yk=PAkP, k — l, •- , N.
We use the same notation as in Section 1.

We also assume the following.
(A-4) The MxM matrix— PQQP is Markov generator, i.e., if we let qtj=
(PQ,P}ij, i, /=!, ••• , M, then ^0, i*j.

Then we have the following.

(3.1) Theorem. There is a continuous function f: QxRM-*R such that /(<*/, x)l
=lim^ An* t ••• AU> x for any w'^Q andn n-i i
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Proof. Note that -4*1=1, PAk=PAkP, k = l, ••• , N. Let |*|oo=max{ \xt\ ;
i = l, - ,M} for xfER3*. Then IP^U^UU and lA^U^UU, k = l, — , N
and xeJ2M. Also, there is a <5>0 such that 3||*||̂  I x\00^d~1\\x\\ for any xe/Z*.

Let /Uft/, Jc)=^a»'n-4ffl'B_1"- Aai* for any n^l, o/efl and x^RM. Then we
have

^1, and

for m^n. These imply our assertion.

From the assumption (I), there is a pair (i(j), &(/))e{l, ••• , D}x{l, ••• , M}
such that a$jff = l for each /=!,•••, M. We define a: {1, ••• , M}—>Q by

Then we have

(3.2) /((/(/), *)=*,, ; = 1, - , M and

For ft), o)'^Q and 72^0, we define [ft), G/]ne/2 by

om if

!>OT-TI if W^>72 .

Then we see that

f3 ^ //T/ii /T^'M v^ — ̂  >d ... >4 v^\3*3) J \\_(D) v\J J j n i %) — \S*-(on -^-(DI^)

for any n^l, coe£? and j = l, ••• , M.
This implies that

(3.4) Px=(PAniPYl - (PA^PrP'Mdu, a(l)]», ^), - , /([>, <J(M)]B,

for any n^O, wefi and

Let ^)0
(n), w^l, be the set of functions g in Q such that there is an

S^-measurable map x:Q-+RM such that g(ft>)=/(Tnft>; ^(ft>)), tyefi. Since
/(ft), x}=f(T(D, A^x\ we see that ^0

(ra)C^0
(re+1). Let ^0=U^0

(n). Then 3), is
71

a vector space.

(3.5) Lemma. (1) Let x : Q->RM be 3? -measurable function RM and let £(o>)=
f(Tn<0, x(ri)\ o)<=Q. Then

(3.6) Px(ai)

/or any m~^n. In particular, for any g^£DQ and
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(3.7)

(2) PFe d0/zw0 a signed measure ^*i.*2: m £? /or an;y

(3.8) /£"!• *«:>(<*<»)=(*(<» ; gl

/or a?ry continuous function <p in Q.

Proof, The assertion (1) is obvious from (3.3). Let xt: Q-*RM
9 i = l, 2, be

£Ff -measurable and let gi((o)=f(Tna), Xi(<o)\ Then we see that

for any continuous function y> in fi. This implies our assertion (2).

We define a map €: $QX£)Q-->R by 5(g, A)=L d^g-h\ The following is

obvious from Lemma (3.5).

(3.9) Proposition* (1) £: {D0X£DQ-*R is a symmetric bilinear form.
(2) £(£, ^)^0, £e <£0,
(3) // 5-, /ie^)0 and the support of g and h are disjoint, then B(g, /i)=0.

§ 4B Restriction of Space and Dirichlet Forms

The bilinear form introduced in the previous section is not necessarily
closable or Markov. The reason is that Q is too discrete in the first place and
that the assumption to the matrices A^^'s too general To avoid these points,
we first connect the points in Q,

Let / be a family of subsets in {1, ••• , N } X { 1 , ••• , D] satisfying the fol-
lowing.
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(J-D U/={1, - , JV}X{1, - , D}\{(k, &); * = 1, - , £} and #(J^M-D.
(J-2) If Be/, then #(B)^2.
(J-3) If B!, B2e/and B^B2, then B1r\B2=0.
(J-4) If Be/, (&, i), (&', z')eB and (k, i)*(k', *'), then £=£*'.
(J-5) (Connectivity Condition) For any k, &'e{l, ••• , A/"}, there are ( k t , it}^
{1, ••• , AT}X{1, ••• , D], /=!, — , 2?!, such that fei=fe, k2n=k', kzi=k2i+l, 1=
1, ••• , n— 1, and (fc z z- i , *2z-i), (kzi, i*i)^B for some Be/, /=!, ••• , 72.

We also assume that an injective map 7: {D+l, ••• , M}->/ is given. Let
, k}} ; ft=l, - , 0} and f : {1, - , M}->/ be given by f(i)={(i, 0} if

and f(/)=7-(f) if D+l^z^M. Finally we assume the following.
(H-l) flg^flf^, ; = 1, ••• , M, if (fe, 0, (^', 2v)eB for some Be/.
(H-2) flg>=l if (*, i)ef(;), ; = 1, - , M.
(H-3) (harmonicity condition)

Sw*(/Vl*A:, QQPy<k^vQ=Q for any ^e^M,

provided that y^^y?*, - , y$>)s=R*, k = l, ~- , N, satisfies that ^^=0 if
(k, i)ef(y) for some y=l, - , M; and that ;y{*> = ;y t

(F> if ( j fe , /), (k',i'}^B for
some Be/.

(4.1) Remark. (1) (H-2) implies (A-l) (3).
(2) Given D, N, M with 2<D^N and D^M, the set / satisfying the conditions
(J-1MJ-5), and the injection f: {D+l, ••• , M}->/, we have algebraic equations
(H-1HH-3), (A-l)(l), (2), and the following (4.2) for Ai9 i=l, ••• , N, Q0 and ^.

(4.2) S M/i'(/MiP)Oo(^4iP)=^Oo •
i=l

The existence of suitable ^LJ'S, QQ and A is not obvious. This problem has been
essentially solved by Lindstrom [10] for nested fractals (see Section 6). This
problem is also discussed essentially in Hattori-Hattori-Watanabe [7] for more
general fractals.

Let us introduce an equivalence relation ~ in Q by the following :
(4.3) co^o)', if o)=o)r or if there are an n^O and ( k , i ) , (k',i'}^B for some
Be/ such that (om=a)r

m, l<m<n — l, a)n=k, a)f
n-=k', a)i—i and coi=i', l^n + 1.

We denote by S the quotient topological space £?/~. It is easy to see that
5 is a compact Hausdorff space (See Bourbaki [3]). Let TT : 1R-+S be the natural
projection. If we let R={a)^Q; #(?r~1(cy))^2},.then R is a countable subset of
Q. Therefore we see that v(R)=fj.(R)=Q. So we will sometimes identify S
with Q when we think of functions defined only v-a. e. or /*-a. e. Let £)—

0; g(coi)= g(o)f) if co^o)'}. Then it is easy to see that /(•, z)e^) for any
Each element of S) may be regarded as a continuous function in 5.
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For each y=l, ••• , M, fix an element (k(j), i(j))^?(j) and let <r(/)=
(k(j), *'(;'), i(j\ —)^Q. Then n(a(j)) is independent of the choice of (k(j\ *(;'))
ef(y). Moreover, TT([>, 0"(y)]J depends only on CD, n and /, and independent
of the choice of (&(/), *(./))•

For each^-e C(S)and n^, let xn(
and let SngW=f(Tnco; xn(<*>\

(4.4) Lemma. Sng^3) for any

. It is obvious that *„(• ; g): Q-+R* is ff? -measurable. So Sn

Therefore it is sufficient to show that SngM=Sng((of\ if (s)=cof. There are
two cases.
Case 1. Q)k=Q)k for k = l, ••• , n.

In this case, Sng(a)')=^Sng(o)f} is obvious.
Case 2. o)k^=o)i for some &=1, ••• , n.

In this case, there are an m<n and (k, i\ (k, i')^B for some B such that
cok=a)'k, k = l, •-• , m, <ym+i=&, cy^+i=^', a>z=z and a)[=if

} l^m+2. Then Tncy
=(0 and so Sng(a>)=g([<*>, ^W]n)=5r([«, (0]n)=,g>(fl>). Similarly SB

Therefore Sng(o))=Sng((o/).
This completes the proof,,

(4.5) Lemma. (1) £(Sng, Sng)=2-n(da)XPxn((o ; g\ Q0Pxn(<o ;
C(S) flnrf 72^0.

(2) g(Sn+1g-Sng, Sng)=Q, g^C(S) and n^O.

(3) £(£, g}=S(Slg, Slg)+ S S(Sn+lg-Sng, Sn+ig-Sng),

Proof. The assertion (1) is obvious from (3.3) and Lemma (3.5). Note that
Sng(o))=f(Tn+1a) ; ^Wn+1^n(ft) ; g)). Therefore we have

£(Sn+1g-Sng, Sng)

Mn^xn((o;g)-xn+1(coi g}), Q,PAUn+1xn((o; g))

23 M/jk^C^^nC® ; ^)-^,+i(Ca>, (*)]„ ; g}\ Q0PAkxn(co ; g)).

Here (*)=(£, A?, -)e=0. Let ^^^^n+iCC®, («]» ; g)-^cfe)^,(cy ; g). If ( f t , i)
), then

Also, if (k, 0, (^7 , ̂ )e5 for some 5e/, then

^*)-^)=g([[ai, (fe)]n, (0]»+i)-£([

Therefore by the harmonicity condition (H-3), we have
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Thus we obtain our assertion (2).

By Lemma (3.5), we have

=lim <?(£„£, SBg).
7l-»oo

Since the assertion (2) implies that

e(sn+1g, sn+lg)=£(sng, sng)+e(sn+1g-sng, sn+1g-sng),
we have the assertion (3).

Let £ denotes the probability measure v°n~l in S. Then we have the fol-
lowing.

(4.6) Theorem. (1) 3) is dense in C(S).
(2) <5\g}xg is closable in LZ(S ; dv}.
(3) Let 6 be the smallest closed extension of 8 Q*®. If g^C(S) and
supg(Sng,Sng)<oo, then g^$om.(<S} and €(g, g)=\img(Sng, Sng\ Moreover,

n n-»oo

6 is a local regular Dirichlet form in L2(S ; dv), and satisfies the following.

(4.7) 8(h, h)=0 if and only if h(z)— constant for v-a.e. z.

(4.8) \ \h(z}-\ h ( z r y » ( d z ' ) \ * V ( d z ) ^ C ' € ( h , h),
JS JS

(4.9) \h((i))- h(zWdz)\^C-€(h, h}l'\ /ie£W(£) and /=!, ••• , D,
s

for some constant C>0.

Proof. Let geC(S) and gn be as in Lemma (4.4). Then we have
\\g°n— gn\\c<.Q^-»§ as n-^oo, since Q is compact metric space and so g is
uniformly continuous. This proves our assertion (1).

By Lemma (4.5) and the fact that QQ is strictly positive, we see that

sup
U l^i, j^D

for some C<oo, and so

S sup \g(la), <k
Q k = l 1^1, J^D

<C-£(g,g), ge£D,

for some C<<x>. Here < f e , iy=(k, i, i, i,
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Note that g(|>, <&, *>]m)=g([a>, <*?', *'>]m) if ( k , i ) , ( k ' , i ' ) s = B for some
0 Therefore using the assumption (J-5), we have

(4.10) supJ-» vn-\d<a>) sup sup
m J£

<C-S(g,g},

for some C<°o, and so

, g),

for all m^O and z = l, ••• , £>.
By the assumption (A-2) in Section 3, we see that

for all Ti^l. This shows that ^7*8<1. Therefore we have

(4.11)

Thus by (4.10), we see that there is a C<oo such that

(4.12) KdoO]^aO-s<l>, <7(/)3m)!2SC^.£(£, g)

for any g^-S), m^ and y=l, ••• , M.
Now suppose that £ne3), n^l, HgnlLacdW-^O as ?2->oo, and S(gn-gmjgn—gm)

->0 as n, m-»oo0 Then by (4.12) we see that Sm£n(o>)-»0 as w-^oo for any
and y=l, --• , M. By Lemma (4.5), we have

Therefore, we see that

lim <?(#„, gn)=li
7Z-*oo A-*CX

=0.

This proves our assertion (2).
Suppose that #e C(5) and sup £(Sng, Sng}< oo. Since Sng(o)}-^g((i)} uniformly,

n

we see that Sng->g in L2(S ; dv). By Lemma (4.5), we see that £(Sng—Smg,
Sng—Smg)-*Q as n, m->oo. Therefore we see that g^3)om(€) and <?(^, g)
=Yim£(Sng,Sng\

Now let geE<2 and <p<=C\R} with p(0)=0 and 1^(0 1^1, ^/J. Then we
have by the assumption (A-4)
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Thus we see that <p°g^3)om(£} and £(<p°g, <pog)^£(g, g\ This implies that <?
is Markov.

Then by Proposition (3.9) and Fukushima [5] Theorem 2.1.1, we see that
the smallest closed extension £ is a local Dirichlet form.

Also (4.11) leads to (4.9), and by them we have

, g), g<=3).

This implies (4.8). (4.7) follows from (4.8) immediately.
This completes the proof.

(4.13) Lemma. (1) // <Wi~ft>2 in Q, then [<w, oh]w~[a), ft)2]n for any n^l and
(D^Q.

(2) // g^3)om.(e\ then g([oi, -]n)^^ow(<f?) for any n^l and co^Q, and

(4.14) €(&[<*>, •]», 8([u, ^nMda))=Xne(gf g).

Here we identify functions on S with ones on Q.

Proof. (1) is obvious. Also it is easy to see that g([o), -]Je.0 for any
g^W. Then (2) follows from Lemma (3.5) and Theorem (4.6).

For each w^O, let FB={|>, (OLefl; w^Q, /=!, - , D}. Then Fn is a
finite subset in Q. Also, for each n^O and co^Q, let ^^^{[a), ft)']^^^; o)fQ}.
Then we have the following.

(4.15) Lemma. (1) g(co) is well defined for any g^£)om(<5) and oj^^J Fn.

(2) 7r(flin>)n7r(fl#>)C7rCFn) for any n^l and o),a)'^Q for which [o>, (l)]n^
[«', d)]n.

Proof. (1) follows from (4.9) and (4.14). (2) follows from the fact that if
[o>, ft)^]m~[ft>', o>^]m, then m^n.

The following is obvious from Lemma (4.13) and Lemma (4.15).

(4.16) Theorem. Let a)<=Q and n^l. If g^3)om(€'} satisfies that
(1) suppgCTKfii70) v-a.e. and
(2) £(o/)=0 /or any c
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§ 58 Associated Diffusion Process

Since 8 is a local regular Dirichlet form in L\S ; dv} there is a diffusion
process in S associated to 6. Then we can apply the theory of Dirichlet form,
especially the results in Fukushima [5] Chapter 5. We use the notions there.

(5.1) Lemma. There is a measurable map Y( • ; g) : Q—>VQC.RM for each
satisfying the following.
(1) ^'^(do))=(Y((o; g,
(2) Y(w; gi+g2)=Y((o; g1)+Y((o; g2) p-a.e.
(3) Y(a) ; g-)elmage Z(a>) p-a. e. z, g^£)om(8}.
(4) Y((o; /(• ; x))=P(<ai)x p-a.e. CD for any x^V0. Here P(o)) is the orthogonal
projection in V0 onto Image Z(o>).

Proof. Since Z(o>) is a non-negative symmetric matrix, P(co)=
lim(sI+Z(Q)))~1Z(Q)) u-a.Q.z. Let 2(o)) be the minimal eigen value of Z(<w)+
£ 4 0

(/-P(o>)). Then 2(o>)>0. For any ^e^}, let 7(a>; g)=P(<o)X((D', g\ where
^(tw; <§") is one given in Lemma (3.5). Then we have

(5.2) e(g, g}=

Note that X(Q>\ g\ g^£), is linear in g. So defining F(cw;^), g^£)om(£), by
the limit in L2(£? ; X(a))dfjt\ we obtain our assertion.

(5.3) Lemma. Let (P, &, Q] be a probability measure, n and m be natural
numbers with m^n — 1, and A°. Q-*Rn§§Rn be a measurable map such that
P[rank A—m, A is a nonnegative definite matrix} = \. Then there is an m
dimensional vector subspace in Rn such that P[(A(a))v, v)>Q for any i;eV\{0}] = l.

Proof. We prove this lemma by induction in k = n—m.
Step 1. We prove our lemma in the case that k=L

Let Pn~l be the projective space of dimension n — 1. Then we can identify
Pn~l with the set of one dimensional vector subspaces in R n. Let $((o)=
{v^Rn ; (A(a))v, v)— ()}„ Then we may regard 0 as a measurable map from Q
into Pn'1 except on a null set. Note that if v and 0(a)) are linearly independent,
then (A((o)v, v)^Q.

Now we show that for any /=!, •-• , n— 1, there is an /-dimensional subspace
Wi in Rn such that P((P"1(Wr

z))=0 by induction in /. This is obvious in the
case where /=!. Now suppose that this statement is correct for / with
l^l<n-2. Then, let B^fveP"-1; (v, u)=0 for all M€=WM. Then 5Z is
uncountable. Note that if v1} v^Bi and v^vz, then (Wi+RvJr\(Wi+Rv2)=Wi.
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Since P(#-Wz))=0, there is a v^Bl such that P(0-\Wi+Rv))=Q. This proves
that our statement is correct for /+!.

Therefore there is an m-dimensional subspace V such that P(@~l(V))=Q, and
so P[(A(<o)v, v)>0 for all uey\{0}] = l.
Step 2. Now suppose that n—m^2. Then by using measurable selection theo-
rem, we see that there is a measurable map X: Q-*Rn such that P\_\\X(a))\\ — l,
(A(a))X(o)\ Z(oO)=0] = l. Let ^(ai)=4(a>)+*(aO®*(a)). Then from the assump-
tion of the induction, we see that there is an (ra+l)-dimensional subspace V
such that P[(A(a))v, v)>Q for all veVr /]=l. Let A((o)=PV'A(o))\Y>. Here Pv> is
an orthogonal projection onto Vr. Then, since dim V'=m+l and P[rank A(o)}—m~]
= 1, applying the result in Step 1, we see that there is an m-dimensional vector
subspace V in V such that P[(A(<o)v, v)>0 for all vey] = l.

This completes the proof.

(5.4) Theorem. Let p be the index as in Definition (1.10). Then we have the
following.
(1) There are xlf ••• , xp^VQdRM such that Z(CD)XI, ••• , Z(a)}xp are linearly
independent for /Jt-a. e. <o.
(2) There are P ̂ -martingales {Mi}i=lj...>p satisfying the following.

(i) <Mi,M^t=dij<M\M1yt) f^O, Ps-a.s.
(ii) For any g<^.3)om(e}, there is a measurable map ht(- ; g): S-+R, i=l, ••• , p

such that

CX. ; g)dM\ , t^O, Pt-a. s.

In particular, the martingale dimension of the diffusion process P^ is the
index p (see Davis-Varaiya [4] for the definition of the martingale dimension).

Proof. First note that ft is a smooth measure in the sense of Fukushima

[5]. In fact, if we take y^RM
9 /=!, ••• , n, such that Ql= _S yt®yt, then

ji=|jjf >:'<•• *i".

By Theorem (2.8), we have that rankZ(a)')=p for jf-a.e. w. Therefore from
Lemma (5.3) there is a /)-dimensional subspace V in F0 such that /i[(i;, Z(o>)i;)>0
for all vey\{0}] = l. Let {j^, ••• , xp} be a linear basis of V. Let 4(o>)=
(-Ai/w))i.^i,...,P=((^i, Z(a))Xj))i,j=1>...,p. Then yl((y) is strictly positive symmetric
matrix for j«-a. e. tw. Let 5((y)=:^(cy)"1/2 /^-a. e. o>, and let

(5.5) Mi=
j=i Jo

Then by Lemma (5.1), for each /, ; = 1, ••• , p, the associated measure with an
additive functional <M% Mjyt is given by
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p̂
1 D

2j Dk,l=l

This proves (2)(i).
Note that

(5.6) Z(<o)y=t2i(yf

Therefore let hi(<o; g}= 2 Bi,JM(Y((i)'} g\ Z(o>)xj) for each g^3)om(€). Then
we have

p
Z(c0)( 2 hi(o)', g}Bik((*)}xk)=Z((o)Y(o) °, g) ft-&. e. o>.

i, fe=l

Therefore by the results in Fukushima [5] Chapter 5, we have

P r - P C -

i = i j o % ' ' < = i j o

-2 fj £5[<('/i,(Zs ; g)dM\,
i=i Jo

fj f /!,(<» ; g)A4(o
i=ijfi0

(r((w;^)- 2 hl(a>;
«.J=i p

Z(a>)(na>; ^)- 2t,j=i
=0.

This implies our theorem.

The following is obvious from Lemma (4.15).

(5.7) Theorem. For each (o^Q and n^Q, let ^~(wil ••• WiJ-^awv. Then
the probability measure on C([0, °°);S) induced by (Tnw(%~n- /\aFj)} under
Pp(n)(dw) is the same as one induced by {w('A0>0)} under P^(dw\ Here <?Fn(w}

§ 6. Examples

Example 1. Let D=N=M^>3 and w;i= ••- =M;^= — . Let



DIRICHLET FORMS ON FRACTALS 679

1 i=j=k

0 i=k,

2 . ,
N+2

2

, N.

N+2

I

Let Q0=Q1=_ !VQ and Z= , and let /={{(/, /), (/,

\ N+2

1 V / 2 r , , 1_

N+2
N, /=£/}. Then all assumptions are verified. In this case the abstract topolog-
ical space S can be regarded as a fractal space so-called Sierpinski gasket. One
can prove that the associated diffusion processes are essentially the same as
ones constructed in [1], [5], [7], [9] with reflecting boundary condition (see

Shin [11]). Since one can show that \\f\Yi\\=N(N+2)-z<}l) i = l, • • • , N, one
can see that the index p is equal to one. It is easy to check that v=£{£, and
so we see by Corollary (2.12) that fi is ergodic and is singular relative to v.
Thus the martingale dimension of our diffusion processes are one and the
increasing process <M*, Mlyt given in Theorem (5.4) is a singular continuous
function in t with /Vmeasure one.

Example 2. Recently various diffusion processes on the nested fractal have
been constructed by Lindstr0m [10]. Following his notions, we give the other
examples. Let us take a nested fractal and fix it. Let D—M be the number
of the essential fixed points, and N be the number of fixed points which is
equal to the number of contractive similitudes {<f>i, ••• , <f>N}. We may assume
that the fixed point xt for <piy i—l, • • • , D, is an essential fixed point. Let

Wi= ••• ^WN^—T^J and let us define the equivalence relation ~ on {1, ••• , N}

X{1, - , D}\{(i, i)', i = l, - , D] by (i, /Mi', /') if iMx,)=0i'(x,0. We define
/ from this equivalence relation.

Let us fix a good basic transition probability which is a fixed point given
by Theorem V. 5 in [10]. Then we have an associated homogeneous Markov
chain on 1-points. Let ul, i—l, ••• , D, be the function on 1-points for which u*
is harmonic relative to this associated Markov chain outside 0-points and u\Xj)
=8ij, i, 7 = 1, ••• , D. Now let us define a™, i, /=!, ••• , D, k = l, — , N, by
aff = uJ(</>kXi). Then by the results of [10], we can verify our assumptions
and the abstract topological space S can be regarded as the given nested
fractal.

We conjecture that our diffusion process and the diffusion process given by
Lindstrom [10] are the same and that the martingale dimension is one.
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