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By

Shigeo KUSUOKA*

Abstract

The author studies Dirichlet forms on fractals. He constructs some local Dirichlet
forms on abstract fractal sets by using products of random matrices. Also, he studies the
martingale dimension of the associated diffusion processes and its self-similarity.

§0. Introduction

Recently “Brownian motion” on Sierpinski gaskets were constructed by
probabilistic approach (Goldstein [6], Kusuoka [9], Barlow-Parkins [1]). These
are symmetric diffusion processes, and so the theory of Dirichlet forms applies
to them. On the other hand, Kigami [8] introduced “Laplacian” on Sierpinski
gaskets by analytic approach. Of course, these two approach reached the same
object. However, any explicit expression of the associated Dirichlet forms has
been unknown. In the present paper, we give their explicit expression by using
products of random matrices.

In the theory of Dirichlet forms (Fukushima [5]), if a symmetric diffusion
process on a locally compact space is given, one can define the associated
Dirichlet forms, and moreover, one can define the signed measure pt*® on the
state space for any elements u, v in the domain of the Dirichlet form. For
example, if we think of the usual Brownian motion in Euclidean space R¢, the

associated Dirichlet form is given by %Sxd(grad u, gradv)dx, and pt*“*(dx)=
%(grad u, gradv)dx. So we may think that to describe the Dirichlet form is

to describe the signed measures pt**. We will focus on the explicit expression
of pf®,
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Since our results are quite complicated, we show only two results which
follow from our results in the present paper. Let us think of the “Brownian
motion” on Sierpinskii gaskets and the fractal measure ¥ on Sierpinskii gasket.
Then the “Brownian motion” is §-symmetric.

(I) We give a measure 7 on the Sierpinskii gasket which is singular relative
to ¥, and we show that any pf*® is absolutely continuous relative to i for
any elements u, v in the domain of the Dirichlet form. We also give its
Radon-Nykodim density.

(2) We show that the martingale dimension is one. This answers to Problem
10.6 in Barlow-Perkins [1]. There they guessed that the dimension is d (=2).

Our approach is quite abstract and we believe that our results also apply
to the diffusion processes on nested fractal which were recently constructed by
Lindstrgm [10]. So we discuss the relations between his results and our ones
in the last of this paper.

Acknowledgement. The author thanks Prof. Y. Tamura for stimulating dis-
cussions and useful suggestions. He also thanks Professors S. Kotani, Y.
Takahashi and M. Osikawa for useful discussions and informations.

§1. Stationary Probability Measure

Let V, be a finite dimensional real vector space with inner product (,).
We assume that the dimension of V, is greater than one. Let Y, /=1, -+, N,

N
be linear operators in V, and wy, i=1, ---, N, are positive numbers with > w;=1.
=1

(1.1) Definition. We say that {Y,, ---, Y5} is irreducible if there is no vector
space V such that {0}&V<EV, and Y, VCV for all i=1, ---, N.

(1.2) Theorem. Suppose that {Y,, -+, Yy} and {*Y,, -, 'Yy} are irreducible.
Then there uniquely exist strictly positive definite symmetric linear operators @,
and Q, in Vo and a positive number A such that

(1) trace Q,=trace @, and trace Q,Q,=1,

@ 3wYQY =1Q,, and
() 2w QY =iQ..

Proof. Step 1. We shall show that there are unique 2>0 and a strictly
positive definite symmetric linear operator @ in V, such that

(1.3) trace Q=1 and f_‘{wi‘YiQYi:XQ.

Let S be the set of all nonnegative definite symmetric linear operators

N
whose trace is equal to one. Note that >} w;'Y;QY;#0 for any Q&S. In fact,
1=1
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if iwi‘Y,Qleo, then letting V={veV,; (v, Quv)=0}, we have Y ,VCV, i=

1, .-, N. Since V=V, V should be {0} from the irreducibility. But then we
see that YV,=Y,= --- =Y »=0. This contradicts the irreducibility and the as-
sumption that dim V,=2. .

Therefore we can define a map F: S—S by F(Q):(trace(g_{ w;'Y,QY )

X ﬁ}lwi‘YiQYi. Since S is a compact convex space, there is a Q=S such that
F(Q)=Q. Suppose that F(Q)=@Q. Let V={veV; (v, Qv)=0}. Then since
g}lwl(Yiv, QY )=, Qv), we see that Y,VCV, i=1,.---, N. As V=+V, we

have V={0}. Thus we see that Q is strictly positive definite if F(Q)=0Q.
Therefore we see that there is a strictly positive definite operator @ in S

with F(Q)=Q. Letting 2=trace§ w,'Y;QY;, we see that there are 2>0 and
=1

a strictly positive definite symmetric operator @ satisfying (1.3).

Now suppose that there is another pair {1, @'} satisfying (1.3). Let
a=sup{a=0; Q’'—a@ is nonnegative definite}. Then Q'—a@Q is nonnegative
definite symmetric linear operator in V, and is degenerate, but is not equal to zero.

N

Then we have l1—a=trace(Q’'—a@Q)>0 and 21wi‘Yi(Q’-—aQ)Yi:l’Q’—alQ.
Since the right hand side of the second term is nonnegative definite we see
that ’=2. Similarly we have A2=4’. So A=2’. Then we see that if we let
§=(trace(Q'——aQ))“(Q’—aQ)ES, then F(@):@. However, @ is degenerate
and this is the contradiction. Therefore, a pair {2, Q} satisfying (1.3) is unique.

Step 2. From the result in Step 1 we see that there exist uniquely Q;, Q:S

N N
and A,, 4,>0 such that Z}lwl‘YiQsYl:ROQ{, and Z}lwlYlQi‘YizllQ(. Then we
have
N
Ao trace(QqQ1)=trace(( > W'Y QoY )Q1)
N
:trace(Qg(E w,Y,Q{%Y,)=24 trace(Q;Q1).

This implies 2,=4,. Thus letting Q,=(trace Q;Q;)~'*Q;, i=0, 1, and 1=2,=4,,

we have our assertion. Q. E.D.
In this section and the next section, we always assume that {Y,, -, Y 5}
and {Y,, -+, Yy} are irreducible. So we have strictly positive definite sym-

metric linear operators @, and @, and a positive number A>0 as in Theorem
(1.2).

(1.4) Definition. We say that a probability measure g in 2={1, ---, N}V is
associated to ({Yy, -+, Y&}, {wy, -+, wy}) if
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(1.5) roe; w,=i,, wy=iy, -+, Or=in})
=2'"wi1wiz win-trace(QltYiI‘Yiz e tYinQOYinYin_l Y"l)

for any iy, 75, -+, i,€{1, ---, N}.

(1.6) Remark. By virtue of Theorem (1.2), (1.5) satisfies the consistence con-
dition. Therefore there is a unique probability measure g in £ associated to
(Y, -, Yuh, {wy, -, wy}). By (1.5), we see that the measure g is stationary,
i.e., peT'=p, where T is a map from £ onto £ given by (Tw),=w,.1, nEN.

In this section and the next section, g always denotes the probability
measure associated to ({Y,, -+, Y'»}, {w, =+, wx}) and v be a Bernoulli measure
in 2 with v (w,=0)=w;, i€{1, -, N}. Let g7, 1<n<m=<oo, be a c-algebra
in 2 generated by {w;; n<i<m-+1}. Let X(w)=Y,, nEN and w=f, and
let Wailw)= X (0)X,(0) - Xiw), n=1 and we 2. Finally, let Z,(0)=
(trace(Q'Wa(@)Q W n(@))) - ' Wo(@)QWa(w), n=1.

(1.7) Proposition. (1) Z,(w)is defined p-a.e. w and trace(Q,Z,(w))=1, p-a.s. o.

(2) {Zi(w), F7, n=1} is a matringale under p. Therefore Z(w)=lim Z (@) exists
n->00

7-a.s. .
(3) Z(w)=(trace Q' X1(0)Z(T w) Xy(@))* ' Xi(0)Z(T w) X,(w), p-a.s. w.
(4) For any n=1 and fC({1, ---, N}"; R),

Erf(Xy, -, Xa) | Fral(o)
=7-""ng()(1(®), oy Xn(@))-trace(Q ' W o(@) Z(T @)W a(a)v(d )

1

for p-a.s. o.

Proof. (1) is obvious, since p(trace(@,'W,(@)Q. W (w))=1)=1. (2) comes
from the following.

EtZpn] 1 o)
=(27"-trace(Q:'Wa(@)QWa(@)) - E[(A"* trace(Q:' W n1QoWns))Z nsi | F1]
=(trace(Q,"Wn(@)QW (@)™ ENI AW (@)Y QoY iWa(w)
=Z.(w).

Then we have
Z(w)=Ilim Z , .,(®)
=lm (trace @, Xi(@)Z (T ) X(w0))™ - Xy(w)Z (Tw) X\(w).

This implies the assertion (3). Also, we have
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Ef[f(Xy, -+, X)) Frar]
=lim E*[f(X,, -, X)) | Fpil

N
=lim 33 277G, e dwe, e ws

Moo iy, ip= n

xtrace(Q,"Y s, - V1 Zn(T @)Y s, - Y.

This implies the assertion (4).

(1.8) Propesition. Let a(p):ilzf 2‘”-E”[IIKWnH/z\:VOJ\oV:”’], p=1,---,dimV,. Then
we have the following.

(1) a(p)=1 or a(p)=0.

(2) There are c,, ¢,=(0, ) for each p=1, ---, dimV,, such that

(1.9) o PSETIAZ], 5 YPI1<cia(p).
NV=AVq

Proof. Let an(p)=2'"-E”[H}D\Wan » 2?]. Then we have
AV o-N\Vy

D p
@ DSTESAWA@y 5 PIAW T )y 5 #7]

0~V
édn(]-'))am(ﬁ)
Therefore we see that if a(p)<l1, then a(p)=0.
Note that
P D
Ef[INZalln. o VP]=(trace(Q:Qo)'A" - EX[IAN(W.QW)lp  » 7]
AV AV AVo=AVg

and

p yg »
IAQolle . “HPIAWlp o YPSIUACW QW a)lp  » 7P
AV AV NV =NV AV =NV

P b4
SINQdlln  » YPIAWl o 2.
AVo~AVy AV =NV

This implies our assertions.

(1.10) Definition. We call py=max{p=1; a(p)=1} the index of ({Y,, ---, Yy},
{wi, =+, wyh)

(1.11) Corollary. Let p, be the index. Then p(rank Z(w)<p,)=1 and p (rank
Z(@)=10)>0.

§2. The Related Markov Chain

We use the notation in Section 1. In this section we assume that each Y,
i=1, ---, N, is invertible and {Y,, ---, Yy} is irreducible. Then {*Y,, ---, ¥ y}
is also irreducible.

Let S be the set of nonnegative definite symmetric linear operators A in
V, with trace Q,;A=1. We let
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(2.1) p(A, i)=2'w, trace Q'Y ;AY; and
2.2) B(A, i)=(trace Q.Y ;AY ;) *- 'Y ;AY;

for each AcS and i{l, ---, N}. Then B(-,-) is a map from Sx{l, -, N}
into S and

2.3) %1 pA, =1, AES.

Let us define a probability measure P((, A), -) in S={1, ---, N} XS by
N ~
(2.4) PG, A), E)ZJE:IP(A, DX, B4, 7)), E€3(S)

for any (7, A)eS. Then this P define a Markov chain in S, Let {P,; ze§}
be a family of probability measure in @=8"Y which defines the Markov
chain associated P(z, -), i.e.,

PL{6<6; 0,2E,, 0,CE,, -, 0,€E,}]
=T5,2)-|

for any z&S, E,, Ey, -, E,€ 3(S).
Let m, be the probability distribution in S induced by (@,, Z(w)) under g.

B P(z, dz,)P(z,, dzs) -+ P(zn-1, dzn)

Ejyx--x

(2.5) Proposition. m, is P-invariant, i.e.,

moP(E) = Sémo(dz)P(z, E) = my(E).

Proof. By Proposition (1.7)(3), we have B(Z(Tw), w,)=Z(w), p-a.s.o.
Therefore for any f=C(S; R),

[ f@mdz)=EHLE# f(@r, BZ(Tw), 0| F71]
=E*[ 3 (Z(Ta), DG, BZ(To), )]

~

=| madz)| fe0PG, dz).
This proves our assertion.

Let prs denote the natural projection map from S into S. Let Sp=
{A€S; the rank of A is p}, p=1, -, dimV, and let S,=prsi(S,). Let M
denote the set of all P-invariant probability measure m in S such that P, is
ergodic. Since P(z, §p)=l if zegp, we see that there is a p={1, -+, dimV,}
for each m<M such that m(§,,):1.

(2.6) Proposition. For any meM, {(veV,;, Av)=0 for all A< prs(supp(m))}
={0}.
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Proof. Let V={veV,; (v, Av)=0 for all A< prs(supp(m))}. If (¢, A)=supp(m),
then (7, B(4, j))esupp(m), j=1, -+, N. Therefore we see that (v, Y ;AY ;u)=0,
j=1,--+, N, for any vV and A< prs(supp(m)). So we have Y,VCV,i=1,---, N.
Since V+#V,, V={0}. This completes the proof.

(2.7) Proposition. Let Z4(w)=(trace QW ,(w)AW () -W (@)AW .(w) for any
AES and wsQ. Then we have

P, 5[ prs(80)ECo, -+, prs(0.)=Cr]

=E*[(trace Q,'W, AW, )trace Q,'Wn(0)Q W (@)™, ZHT" *w)=Cy,
k:O, 1: Tt n]
for any n=1 and C,, ---, C,& B(S).

Proof. This comes from the following.
P, 5[ prs(00)E Co, -+, prs(02)€Cy]
= 5 2w, wi, trace QY - Y AV, - Y,
- Ao Ao, (BA, i) ++ Lo, (B B(B(A, 1)), i2), -+, i)
= % 12"‘wil s wy, trace Q%Y - Y AY ;- Yy
Ao AW, (B(A, in)) -+ Xe (B(-+- B(B(A, i), tn-1), -, 11)
=A""E’[trace Q\'W(0)AW  (w), ZHT" *w)eC, for k=0, -, n]
=FE*[(trace Q,'W, AW ,Xtrace Q,'W .(@)Q W ()}, ZAT" *w)=C.,
for k=0, ---, n]
Q.E.D.
(2.8) Theorem. Let p, be the index of ({Yy, -+, Y n}, {wy, -, wy}). Then
2.9) plrank Z(w)=p,]=1 and
(2.10) po=max{pe{l, -, dimV,}; mS,)=1 for some meM}.
Proof. Since mo(§po)>0 by Corollary (1.11), we see that there is an meM
such that m(§p°)=1. Let g=max{pes{l, -, dimV,}; m(§p)=1 for some me M}

and take an m& M such that m(§q)=1. Then g= p,.
Since P, is ergodic, we see that

Pz[%kéf(ﬂk)ﬁggf dm for all feC(S; R)]:l, m-a.e. z.

Therefore, by Proposition (2.6), we see that there are (¢}, Aj)e§, =1, -, d,

d
such that >} A; is strictly positive definite and
=
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1 = ~
Payap| o 2 £ f dm for all feC§; B)|=1
for j=1, -+, d. Therefore

lim- 33 EF [ f(02)1= f dm
for any feC(&; R) and j=1, ---, d.
Take a 8>0 such that 8-Qo< ]é A4,;<67Q, Let
;. n(@)=(trace Q"W (w)A,W .(w))-(trace Q,'W(@)Q W n(w))™, n=l

and j=1, ---, d. Then we have Z,%(0)<(d-p; ()™ Z,(w) and f}p,-,n(w)zﬁ.
=1

Therefore we have for any ¢>0

q
LUINZalle o <e]
AV=AVy

IA

a q
2 HLIAZa g, (. =d%e, p;,2d™'d]

0~

<457 S E*Lpsn, INZs by g Sd07]
.

=1

&

<d-o' 2 @, A])[”/\(prs(an))”q o_‘/z{Voédqa'qu].

j=1

Therefore we have

q
elINZllg o <e]
NSNS
_— l n 4
gllm——ZIl[“/\Zk”q K <e]
n—oo k=1 Vo~

<d-5 3 T 33 Py ap[I AGBra@alg g Sd07e].

J=1 n-oco

<d®m({ze8; IAGrs@)l, o <dWde))
AV =NV
—0 as g0.

This proves that g[rank Z(w)=¢g]=1. This implies our assertions.

Let G,(V,), p=1, ---, dimV,, be the set of all p-dimensional vector subspace

of V.. Then G, is a compact manifold. Let ¢, be a map from S, into G,

deﬁned by ap(A) {AveV,; veV,}, AS,. Then g, is a continuous map. Let
Gp=0p°prs: Sp—Gp.

(2.11) Theorem. Let g be the index. Then mo-a3" is absolutely continuous rela-
tive to megy' for any meM with m(§q)=1. Moreover, the Radon-Nykodim
density is bounded.
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Proof. For any compact set K in G, and ¢, >0, let K,r be a set given by
K.,={A€S,; there are A’€S, and BES such that ¢,(A")EK,
q
IAA"ly o 2T, |A'—Blly,.r,<¢ and B=TA}.
AVo=AVy

Then K.,, is a compact set in S and QOJQ(K,T)CK for any 7>0.

Let us use the notation in the proof of Theorem (2.8). Take a y>0 with
7<d~'¢°. Then we have

m(PT’sl(Ke r))> 2 llm_ 2 P(‘LJ A])[akeprs (Ks 7)]

=1mn-o0 1 k=1
>liml & S o, ZiticR. ]
d naw M =1 k=1 Oicts Z2 &7
>Liml 5 545 ulp,02d70, 12— Zulyy e
= dn—»oo'i’[ A a k= 1) EllVg-Vo="¢>

q
INZlla o 27, 0(Z)EK]
AV =NV
1 g
a0l B Ul Z—Zalv,vSe, IAZly o 21, 0dZ)K]

q
—J-25.
=d0-plIAZly, o =T, 0 Z)K].

Letting €| 0 first and letting 710, we have me 67 (K)<d?0 'm-6,'(K) for any
compact set K in G,. This implies our assertion.

(2.12) Corollary. If the index equals one, then #(M)=1 and p is ergodic.

Proof. Note that o,: S;—G,V,) is one-to-one. Therefore we see that
mee prs' is absolutely continuous relative to meprg' for any meM. Since
P(@, A), E), Ec ®(8) is independent of 7, we see that mo=m,P is absolutely
continuous relative to m=mP. Therefore P, is absolutely continuous relative
to P,. But this implies that m=m, This completes the proof.

(2.13) Definition. We say that {Y,, ---, Yy} is strongly irreducible, if there
does not exist a finite family of proper linear subspaces of V,, V,, ---, V; such
that

Y.V, UV, UV )=V UV, - UV,

for all =1, ---, N.

(2.14) Theorem. Let T be the semigroup in GL(V,) generated by {Y,, ---, Y y}
CGL(Vy). Suppose that {Y., ---,Y y} is strongly irreducible and there is a
sequence {My}5-1 in T such that |M,|*M, converges to a matrix whose rank is
less than the index p. Then the probability measures vy and p are mutually
singular.
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Proof. Suppose that v and g are not mutually singular. Since v is ergodic,
vy is absolutely continuous relative to g#. Thus by Proposition (1.7), we see that
for y-a.s. @, ['W,(@)Q W (@) ' W.(w)QW.(w) converges to a matrix with
rank p, and so the rank of any limit point of {(||W.(@)| W (@)}5-.%is greater
than or equal to p. This contradicts Theorem 3.1 in [2].

Combining Corollary (2.12) and Theorem (2.14), we have the following.

(2.15) Corollary. Let T be the semigroup in GL(V,) generated by {Y,, -+, Y y}
CGL(Vy). Suppose that {Y,, ---,Y n} is strongly irreducible and there is a
sequence {My}e-: in T such that ||M,)|*M, converges to a matrix whose rank is
one. Then p=y, or p and v are mutually singular.

§3. Stochastic Matrices
Now let D, N, M be integers with D<N and D<M. Let 1 be a vector in
RY given by 1=41, ---, 1). Let V.,={xER”’;§1 x;=0} and P be the orthogonal
projection in R¥ onto V, Let w,, k=1, -, N, be positive numbers with
S wy=1. Finally, let 4y, k=1, -, N be MxM matrices satistying the follow-

ing conditions.
(A-1) Let A,=(a®), i, j=1, -, M and k=1, ---, N. Then

M
(1) a#=0 and 2; a=1,
-

2) a®=1 for k=1, -, D,
(3) for any j=1, .-, M, there is a pair (7, k)={1, ---, D} X {1, ---, N} such that
aP=1.

(A-2) There are C<(0, ) and 7=(0, 1) such that
(PA;:,P) -+ (PAi, Pllvyov, =C-1"

for any n=1 and 7, ---, 1,=1, ---, N.
(A-3) PA,P, i=1, -, N, is invertible in V, and {PA,P, .-, PAxP} is irreducible
in V,.

Then we can apply the results in Section 1, letting Y ,=PA,P, k=1, ---, N.
We use the same notation as in Section 1.

We also assume the following.
(A-4) The MXM matrix—PQ,P is Markov generator, i.e., if we let ¢;;=
(PQOP)ij, 7, =1, ---, M, then qi,-éO, i#7.

Then we have the following.

(3.1) Theorem. There is a continuous function f: QX R¥—R such that f(', x)1
=lim Ay Ao, _, -+ Auy x for any o' €2 and xER™.

T ~sc0



DiriciILET ForMs OoN FRACTALS 669

Proof. Note that A,1=1, PA,=PA,P, k=1, ---, N. Let |x|.=max{|x;]|;
i=1, -, M} for x€RY™., Then |Px|e=Z|%le and [Apx|eZ|%x]w, k=1, -, N
and x€RY. Also, thereisa >0 such that d]|x]|<|x|.<0"!|x|| for any x= R,

Let fu(@', x)=Au,Aw, - Awyx forany n21, o'cQ and x&R™. Then we
have

| Pfa(@’, 1) =0 (PAu P) -+ (PAu P)x[[<072C-1" [ x| =
for n=1, and
| Ful@', %)= Ful@', £)]w
é I(Aw’m ot /1(1:1'”_‘_1 '—I)(I—P)fn(w’: x)lw—}_lAa)'m A""n-H an((l)’, x)]w

+Pfa@’, )=
<2672C-7"| x|

for m=n. These imply our assertion.

From the assumption (I), there is a pair (:(y), k()= {1, -, D} x {1, ---, M}
such that ef§’=1 for each j=1,--, M. We define o:{1, -, M}—-82 by
Then we have

(3.2) fle(), x)=x,, j=1,--, M and xR,

For w, o' €2 and n=0, we define [w, 0’1, €82 by

Wn if m<n
([CD, w’]n)mZ , .
On_n if m>n.
Then we see that
(3.3) f(Lo, ()]n, 1)=(Au, -+ Aw,X);
for any n=1, 0= and j=1, ---, M.

This implies that
(B.4)  Px=(PAu,P)" - (PAy,P) ' P-{(f([w, 6()]n, x), -+, f([w, a(M)]x, X))

for any n=0, w2 and x=R".

Let 9{™, n=1, be the set of functions g in £ such that there is an
F7?-measurable map x:£2—-R¥ such that glw)=f(T"w; x(w)), w=R. Since
flw, x)=f(Tw, Au,x), we see that D C P . Let QL,:\# ™. Then 9, is
a vector space.

(3.5) Lemma. (1) Let x: 2—RY be F-measurable function RY and let g(w)=
f(T"w, x(w)), w=Q. Then

3.6)  Px(@)=(PAu,,,P)" -+ (PAu,P)'P-Yg([, s(D]n), -+, &[w, 6(M)]n))

for any m=n. In particular, for any gED, and w<=Q
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B7) Xo; 9=lm(PAy, P) - (PA,, L)' P-(g([w, 6(D)]n), -+, &[0, 6(M)]n)

exists.
(2) We define a signed measure ptev 21 in Q for any g., 8.€9 by
3.8) prere(dw)=(X(w; g1), Z(@)X(w; g:))u(dw).

Then we have
SQ¢(w)ﬂ[31. Ez](dw>

=}liglol“"ggv(dw)qo(w) .%=1(PQOP)aﬂg1([w: o(a)]n)g([w, a(B)]n)

a

for any continuous function ¢ in £.

Proof. The assertion (1) is obvious from (3.3). Let x;: 2—R¥, i=1, 2, be
F?-measurable and let gi;(w)=f(T"w, x;(w)). Then we see that

Segp(w) ©tEL 22 dw)

= lim{ (X X(@; £), Znn(@X; g)p(dw)
= lim{ o)X X(@; £, Wain(@QW a n(@)X(@; g4 ™(d0)

=1lim 1+ (@) Pe(C0, 6DInsn), > &L, G(M)Tnsm),
QoP'(g([w, s(W]nsn), -, g([w, 6(M)]aim)V(dw)
:Tlni_rgl‘"‘ggv(dw)go(w)a%=1(PQoP)aﬂg1([w, o(@)]n)g:([@, o(B)]n)
for any continuous function ¢ in £. This implies our assertion (2).
We define a map &: 9yxD—R by &(g, h):Sngtg'w. The following is
obvious from Lemma (3.5).
(3.9) Proposition. (1) &: DX D—R is a symmetric bilinear form.

2) &g, £)=0, g€D..
(3) If g, heD, and the support of g and h are disjoint, then &(g, h)=0.

§4. Restriction of Space and Dirichlet Forms

The bilinear form introduced in the previous section is not mnecessarily
closable or Markov. The reason is that £ is too discrete in the first place and
that the assumption to the matrices A‘*>’s too general. To avoid these points,
we first connect the points in 2.

Let J be a family of subsets in {1, ---, N} x {1, ---, D} satisfying the fol-
lowing.
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(J-1) uj={1, -, N} x {1, .-, DI\{(k, kB); k=1, ---, D} and #(J)=M—D.
(J-2) If Be], then #(B)=2.

(J-3) If B, B,=J and B,+B,, then ByN\B,=@.

(J-4) If B€], (k, 1), (k',i")EB and (k, 1)#(k’, '), then k+Pk'.

(J-5) (Connectivity Condition) For any k%, k'{l, ---, N}, there are (%, i;,)=
{1, ---, N}x{1, ---, D}, I=1, ---, 2n, such that ky=Fk, kyn=~F', ky=ky., [=
1, -, n—1, and (ka4 G21-1), (kay, i) B for some Be], [=1, ---, n.

We also assume that an injective map 7:{D+1, -, M}—J is given. Let
f=]u{{(k, B)};: k=1, ., D} and 7: {1, -, M}—J be given by 7(&)={G, i)} if
1</<D, and 7(@)=7@) if D+1<i<M. Finally we assume the following.

H-1) aeP=a¥?, j=1, -, M, if (k, i), (k’,7’)eB for some B&J.
(H-2) a®=1if (k, DEF), j=1, -, M.
(H-3) (harmonicity condition)

N
,Ew"(PA“" QuPy®)y ;=0 for any xRY,

provided that y® =y ... y@¥eR¥ k=1, .-, N, satisfies that y*>=0 if
(B, 5)e7(j) for some j=1, ---, M and that y®=y%> if (k,1), (k’,i)EB for
some Be& .

(4.1) Remark. (1) (H-2) implies (A-1) (3).

(2) Given D, N, M with 2<D<N and D<M, the set J satisfying the conditions
(J-1)-(J-5), and the injection 7: {D+1, ---, M}—], we have algebraic equations
(H-1)-(H-3), (A-1)(1), (2), and the following (4.2) for A;, =1, -, N, @, and A.

“2) 31w (PAPIQSPAPI=2Q,.

The existence of suitable A;’s, @, and A is not obvious. This problem has been
essentially solved by Lindstrom [10] for nested fractals (see Section 6). This

problem is also discussed essentially in Hattori-Hattori-Watanabe [7] for more
general fractals.

Let us introduce an equivalence relation ~ in £ by the following:
(4.3) w~o', if o=’ or if there are an n=0 and (k,7), (&', )= B for some
Be& ] such that wn=wh, 1Sm<n—1, w,=k, w,=k', ;=7 and w;=17', [=n+1.

We denote by S the quotient topological space £2/~. It is easy to see that
S is a compact Hausdorff space (See Bourbaki [3]). Let n: 2—S be the natural
projection. If we let R={wc?; #(x "(w))=2}, then R is a countable subset of
Q. Therefore we see that y(R)=p(R)=0. So we will sometimes identify S
with £ when we think of functions defined only v-a.e. or p-a.e. Let 9=
{g€9,; glw)=g(w') if w~w'}. Then it is easy to see that f(-, x)=9 for any
x<=R™. Each element of 9 may be regarded as a continuous function in S.
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For each j=1,--, M, fix an element (k(y),i(/)E7() and let a(j)=
(B(D), i), i(), - )=L2. Then zn(a(;)) is independent of the choice of (k(7), (7))
€7(7). Moreover, n([w, 6(7)].) depends only on w, n and 7, and independent
of the choice of (k(7), i(7)).

For each ge C(S)and n=0, let x,(0; g)=g-n([w, 6(1)]1s, -+, gen([w, a(M)],)),
and let S,g(w)=f(T"w; x.(w; g), wE L.

(4.4) Lemma. S,g<=9 for any g=C(S).

Proof. 1t is obvious that x,(-; g2): 2—RY is $?-measurable. So S,g€D{™.
Therefore it is sufficient to show that S,g(w)=S,g(®"), if w=w’. There are
two cases.

Case 1. w,=w; for k=1, .-, n.

In this case, S,g(w)=S,g(®’) is obvious.
Case 2. w,+*w; for some k=1, ---, n.

In this case, there are an m<n and (%, 7), (k, /)= B for some B such that
W=, k=1, ,m, Opnu=~, Opn=Fk', ®,=7 and w;=17’, [Zm+2. Then T w
=(@) and so S,g(w)=g([w, ¢()].)=2([w, (/)].)=g(w). Similarly S,g(w")=g(®").
Therefore S,g(w)=S,g(@’).

This completes the proof.

(4.5) Lemma. (1) &(S.g, Sng)zl‘"ggv(dw)(f’xn(w;g), QoPxq(w; g)) for any gE
C(S) and n=0.
(2) &(Sn18—Sng, Sng)=0, g=C(S) and n=0.

®) &g =E(5:8, $:)+ 2 &(Sn8—Sng, Sniig—5n8), £ED.

Proof. The assertion (1) is obvious from (3.3) and Lemma (3.5). Note that
S28@)=f(T""'w; Aw,,,xz(@; g)). Therefore we have

E(Sn18—Sng, S.8)

=2 U dONP(A,, 5003 @)= 500s@; )y QuPAuy, 5a(@5 2)

=1 (d0) 3 AP 520 O 500, (D]n £), QuPALEA0; 2).

Here (k)=(k, k, --)=Q. Let y®P=x,.,([0, (£)].; &—A®x(0; 2). If (&, 1)
€7(J), then
¥ =g([[o, (k)]n, (()]ne1)—g(Lw, 6()1a)=0.

Also, if (&, 7), (k’, ") B for some Be<], then
¥R —y# > =g([[o, (k)]x, ()Ins1)—&([[®, (B")]n, (")]ns)=0.

Therefore by the harmonicity condition (H-3), we have
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N
Igwk(Py("’, QoPArx,(w; g))=0.
Thus we obtain our assertion (2).

By Lemma (3.5), we have
&g, O=tim 2| y(do) 5} (PQP)s2(lw, ol e, o(H])
=lim €(S»g, Sag).
Since the assertion (2) implies that

E(Sn18, Sn18)=E(Sng, Sn8)+E(Sni18—Sug, Sn+18—528),

we have the assertion (3).
Let ¥ denotes the probability measure yezr~! in S. Then we have the fol-
lowing.

(4.6) Theorem. (1) 9D is dense in C(S).

(2) &laoxg is closable in L¥S; dP).

(8) Let & be the smallest closed extension of &|gv9. If g=C(S) and
sgpé(Sng, Sag)<oo, then gEDom(€) and &(g, g)—-:}LiIEE’(Sng, S.g). Moreover,

& is a local regular Dirichlet form in L*S; dP), and satisfies the following.

4.7) &(h, h)=0 if and only if h(z)=constant for P-a.e. z.

(4.8) SS| h(z)—gsh(z’)ﬁ(dz’) 1%(d2)< C-&(h, h), hEDom(E),

4.9) lh((z’))——gsh(z)ﬁ(dz)l <C-&(h, h)'*, h€eDon(&) and i=1, ---, D,
for some constant C>0.

Proof. Let g=(C(S) and g, be as in Lemma (4.4). Then we have
lger—gullccoy—0 as m—oo, since £ is compact metric space and so g is
uniformly continuous. This proves our assertion (1).

By Lemma (4.5) and the fact that Q, is strictly positive, we see that

sup 2| w(de) sup |&(l, @)m)—2lo, (N)I*<C-8e, 8), 259,
for some C< oo, and so

sup2 | ude) S sup [ g(lw, <k, DIn)—a(lw, <k, HIn)I?

m Q k=1 151,)s<D

§C'g(g, g)y geg)y

for some C<oco. Here <k, id=(k,i,i,i, ).
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Note that g([w, <k, i>1n)=8g([w, <k’, '>1x) if (&, 1), (k’,7)=B for some
Be]. Therefore using the assumption (J-5), we have
410)  supa™| verdo) sup  sup | &(Tw, <k, DIn)—g(lo, (NI’
m 1SksSN 121, j<D
§C'g(g, g); ge@:

for some C< oo, and so

[ o) aCo, Olnm—glo, O1n)P<CI-Ee, @), g0

for all m=0 and =1, ---, D.
By the assumption (A-2) in Section 3, we see that

A" -trace Q°:¢1,.-é§n=xw“ - wy, trace(*(Ay, -+ Ai)Qo(Ay, - A NSC-1*"
for all n=1. This shows that A<7?<1. Therefore we have
(4.11) ng(dw)lg(w)—g([w, OIw)i*=CA—-"2"-E(g, 8), g<=2.
Thus by (4.10), we see that there is a C< such that
(4.12) ng(dw)lg(w)—g([w, a(7)Ia) P =CA™-E(g, 8)

for any g€9, m=0 and j=1, ---, M.

Now suppose that g,€9, n=1, || gallz2cazy—0 as n—co, and &(gn—Gn, Sn—8&m)
—0 as n, m—oo. Then by (4.12) we see that Spg.(w)—0 as n—co for any
w= and j=1, .-, M. By Lemma (4.5), we have

Tm 31 [ Sen—S1)gn (Sen—S1gn)"
—E&((Skr1—S1)8m, (Sks1—Sr)8n)/?1?=0.

Therefore, we see that
~ k ~

iif?o &(gn, gn)=£i£n Lign(S(Slgm Slgn)+l§ E((S1+1—S1)&n, (S141—S1)&x))
=0.
This proves our assertion (2).
Suppose that g€ C(S) and sup £(S, g, S,g)<oo. Since S,g(w)— g(w) uniformly,

we see that S,g—g in L%S; dP). By Lemma (4.5), we see that &(S,g—Sng,
S28—Sng)—0 as n, m—oo. Therefore we see that g=Don(€) and &(g, g)
=lm &(S,g, S»g)-

Now let g9 and p=CY(R) with ¢(0)=0 and !¢'(t)| <1, t€R. Then we
have by the assumption (A-4)
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E(Sn(peg), Salp-g))
ﬁ;‘; (PQoP)ag o(g([w; a(a)]a)e(g([w; a(B8)]a))

1

:Z‘"Sgu(dcu)

a

gl‘"sgv(dw)a’%zl(PQoP)aﬂ-g([w; o(a)]n)8([w; 0(8)]n)=E(Sng; Sa8).

Thus we see that pegE€Dom(€) and E(¢-g, ¢°g)<&(g, g). This implies that &€
is Markov.

Then by Proposition (3.9) and Fukushima [5] Theorem 2.1.1, we see that
the smallest closed extension & is a local Dirichlet form.

Also (4.11) leads to (4.9), and by them we have

[ a0 g~ g@naonizic-¢e, o), g=9.

This implies (4.8). (4.7) follows from (4.8) immediately.
This completes the proof.

(4.13) Lemma. (1) If o,~w, in 2, then [w, wil.~[w, @], for any n=1 and
wsf.
2) If g€EDon(€), then g([w, -1.)EDon(€) for any n=1 and wsR, and

(4.14) Sgé’(g([w, “In, g([o, -1 (dw)=2"E(g, g).
Here we identify functions on S with ones on Q.

Proof. (1) is obvious. Also it is easy to see that g([w, -1.)E9 for any
ge9. Then (2) follows from Lemma (3.5) and Theorem (4.6).

For each n=0, let F,={[w, ()].€2; 0=, i=1,---,D}. Then F, is a
finite subset in £2. Also, for each n=>0 and 0=, let QP ={[0, 0'1.€82; o’ 2}.
Then we have the following.

(4.15) Lemma. (1) g(w) is well defined for any g€ Dom(€) and ws\J F,.

2) w2&INa(2&)CTr(F,) for any n=1 and o, ' €2 for which [, (1)],#
[0, (1]

Proof. (1) follows from (4.9) and (4.14). (2) follows from the fact that if
[w, ®"ln~[0, "], then m<n.
The following is obvious from Lemma (4.13) and Lemma (4.15).

(4.16) Theorem. Let wsf? and n=l. If g€EDon(€) satisfies that
(1) suppgC () v-a.e. and
@) glw)=0 for any &' EF,,
then
e@([w, 1), g[o, 1a)=2(Wa, =+ Wa,)'E(E, &).
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§5. Associated Diffusion Process

Since € is a local regular Dirichlet form in L*S; dP) there is a diffusion
process in S associated to £&. Then we can apply the theory of Dirichlet form,
especially the results in Fukushima [5] Chapter 5. We use the notions there.

(5.1) Lemma. There is a measurable map Y (- ; g): Q—V,CRY for each g€ Dom(&)
satisfying the following.

(1) prerel(do)=(Y(w; g1), Z(@)Y (0; g)(dw), g1, 2:€Don(E).

2) Y(w; g1+&)=Y(w; g)+Y(®; g) p-a.c. 0, g1, 2:EDom(E).

(3) Y(w; g)clmage Z(w) p-a.e. z, gEDom(&).

4) Y(w; f(-; x)=Plw)x p-a.e. w for any x€V,. Here P(w) is the orthogonal
projection in V, onto Image Z(w).

Proof. Since Z(w) is a non-negative symmetric matrix, Plw)=
l:iirox(el—i—Z(a)))“Z(w) p-a.e. z. Let Aw) be the minimal eigen value of Z(w)+

(I—P(w)). Then Aw)>0. For any g9, let Y(w; g)=Pw)X(w; g), where
X(w; g) is one given in Lemma (3.5). Then we have

5.2) éle, 9= (Y (@; 2), Z@WY (@; D)p(dw)

zggl Y(w; 9)I*Aw)u(dw).

Note that X(w; g), g9, is linear in g. So defining Y(w; g), 2€Don(&), by
the limit in L%2; Aw)dy), we obtain our assertion.

(5.3) Lemma. Let (P, 8, 2) be a probability measure, n and m be natural
numbers with m<n—1, and A: Q2—R"QR"™ be a measurable map such that
Plrank A=m, A is a nonnegative definite matrix]=1. Then there is an m
dimensional vector subspace in R™ such that P[(A(w)v, v)>0 for any veV\{0}]=1.

Proof. We prove this lemma by induction in k=n—m.
Step 1. We prove our lemma in the case that k=1.

Let P™-! be the projective space of dimension n—1. Then we can identify
P! with the set of one dimensional vector subspaces in R™ Let @O(w)=
{veR™; (Alw)v, v)=0}. Then we may regard @ as a measurable map from £
into P"-! except on a null set. Note that if v and @{w) are linearly independent,
then (A(w)v, v)#0.

Now we show that for any /=1, ---, n—1, there is an /-dimensional subspace
W, in R™ such that P(@-'(W,))=0 by induction in /. This is obvious in the
case where [=1. Now suppose that this statement is correct for [ with
1<!<n—2. Then, let B,={weP*'; (v, u)=0 for all uW,}. Then B; is
uncountable. Note that if v,, v.,€ B, and v,#v,, then (W, +Rv)NW,+Rv,)=W,.
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Since P(@~'(W,))=0, there is a v< B, such that P(@'(W,;+Rv))=0. This proves
that our statement is correct for /41.

Therefore there is an m-dimensional subspace V such that P(@-*(V))=0, and
so P[(A(w)v, v)>0 for all veV\{0}]=1.
Step 2. Now suppose that n—m=2. Then by using measurable selection theo-
rem, we see that there is a measurable map X: 2—R™ such that P[|X(w)|=1,
(A(w)X(w), X(w))=0]=1. Let A(w)=A(0)+ X(@)RX(®). Then from the assump-
tion of the induction, we see that there is an (m-+1)-dimensional subspace V’
such that P[(A(w), v)>0 for all v&V’]=1. Let A(w)=Py A(w)|y,. Here Py is
an orthogonal projection onto V’. Then, since dim V'=m-+1 and P[rank A(w)=m]
=1, applying the result in Step 1, we see that there is an m-dimensional vector
subspace V in V'’ such that P[(A(w)v, v)>0 for all v&V]=1.

This completes the proof.

(5.4) Theorem. Let p be the index as in Definition (1.10). Then we have the
following.
(1) There are xi, -, x,€V . CRY™ such that Z(@)xi, ---, Z(w)xp are linearly
independent for p-a.e. w.
(2) There are Py-martingales {M}}i,...p satisfying the following.

(1) M M7=, {M*, M*>:, t=0, P;-a.s.

(ii) For any g=Dom(E), there is a measurable map h(-; g): S—R, i=1,---, p
such that

~

MEgJZéxzhz(Xs; g)dM;: th, P,';-Cl. S.

In particular, the martingale dimension of the diffusion process P, is the
index p (see Davis-Varaiya [4] for the definition of the martingale dimension).

Proof. First note that g is a smooth measure in the sense of Fukushima
[5]. In fact, if we take y,€R¥, {=1,---, n, such that Q,= iyi®yi, then
i=1
n
— LfC¢y9d]
p=2p :

By Theorem (2.8), we have that rank Z(w)=p for g-a.e. w. Therefore from
Lemma (5.3) there is a p-dimensional subspace V in V, such that u[(v, Z(w))>0
for all v€V\{0}]=1. Let {xi, ---, x,} be a linear basis of V. Let A(w)=
(A @), =1, 5= x4, Z(@)X;))s, j=1,..p- Then A(w) is strictly positive symmetric
matrix for g-a.e. w. Let B(w)=A(w)™'/* p-a.e. w, and let

(5.5) M=% S;Bzxxs)dMstf«:rm, 10,

Then by Lemma (5.1), for each 7, j=1, ---, p, the associated measure with an
additive functional {M?, M’), is given by
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é Bur(@)B(@)(xx, Z(@)x)p(do)=0;;u(dw).

k 1

This proves (2) (i).
Note that

(5.6) Z(a))y———i’él(y, Z(@)x,Al@) . ; Z(@)xi, YEV.

Therefore let hi;(w; g)= éBi,J(w)(Y(a); 2), Z(w)x;) for each geDom(€). Then
we have ’

b4
Z(‘”)(i ,,Zﬂhi(w; 2Bi(wx)=Z(@Y(w; g) p-a.e o
Therefore by the results in Fukushima [5] Chapter 5, we have
» (- , » (- A
BLemes— 3 niX; @M, Mio— 2 [ h(Xes M.

= B[, Moy, 1+ 31 B h(Xes @)aMs S'MXS; )M,
i,j=1 0

0
—2 é Eﬁ[<Soh,(Xs ; g)dMg, M[g]>lj
vd
= Le &1 i M . .
[ment 3, hw; phi; o

—Z.EP} S!) hy(w; 8)Biw)dpte ¢ 23
o

i, 7=1
=S oY (@; g,—i,élhz(w ; 8)Bi,(0)x;,

Z@XY @3 8)— 2 hi(w; 8)B,(@)x,)u(do)
=0.

This implies our theorem.
The following is obvious from Lemma (4.15).

(5.7) Theorem. For each w€Q and n=0, let v§¥=(ws, -+ wi,) Aowy. Then
the probability measure on C([0, o0);S) induced by {T"w(A™"-Aor,)} under
P,,l(um(dw) is the same as one induced by {w(- \og,)} under P,(dw). Here or (W)
=inf{t=0; wt)eF,}.

§6. Examples

Example 1. Let D=N=M=3 and w,= --- :wNz%r—. Let
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1 i=j=k
0 i=k, j*k
_2 =k, i+k i, 7, k=1, -+, N.
af?: N+2 J=Fr, ’ » s ’ ’ .
“—N?I—.‘Z i=j, i+k
1 N .
‘N—+2— 1+7, Z?Ek, ]ik

1 e 1 SN ey s s
Let Qu=Qi=(=) Ivs and 2= and let J={{G, ), G, D} &, j=1,

N, i#7}. Then all assumptions are verified. In this case the abstract topolog-
ical space S can be regarded as a fractal space so-called Sierpinski gasket. One
can prove that the associated diffusion processes are essentially the same as
ones constructed in [1], [5], [7], [9] with reflecting boundary condition (see

Shin [11]). Since onme can show that |AY.|=N(N+2)?<2, i=1, -, N, one
can see that the index p is equal to one. It is easy to check that v#g, and
so we see by Corollary (2.12) that p is ergodic and is singular relative to v.
Thus the martingale dimension of our diffusion processes are one and the
increasing process {(M*, M'); given in Theorem (5.4) is a singular continuous
function in ¢ with P;-measure one.

Example 2. Recently various diffusion processes on the nested fractal have
been constructed by Lindstrgm [10]. Following his notions, we give the other
examples. Let us take a nested fractal and fix it. Let D=M be the number
of the essential fixed points, and N be the number of fixed points which is
equal to the number of contractive similitudes {¢;, -+, ¢x}. We may assume
that the fixed point x; for ¢;, =1, -, D, is an essential fixed point. Let

1 . .
W= -+ :wNZW’ and let us define the equivalence relation ~ on {1, ---, N}

XA{L, -, D\{G, ©); i=1, -+, D} by (@, j)~@', 1) if ¢u(x)=¢s(x;). We define
J from this equivalence relation.

Let us fix a good basic transition probability which is a fixed point given
by Theorem V.5 in [10]. Then we have an associated homogeneous Markov
chain on l-points. Let u% i=1, .-, D, be the function on l-points for which u*
is harmonic relative to this associated Markov chain outside 0-points and u¥(x;)
=0yj, ¢, j=1, .-, D. Now let us define a®, ¢, j=1,-,D, k=1,--, N, by
a®=u'(¢prx;). Then by the results of [10], we can verify our assumptions
and the abstract topological space S can be regarded as the given nested
fractal.

We conjecture that our diffusion process and the diffusion process given by
Lindstrom [10] are the same and that the martingale dimension is one.



680

[1]
£z]
£31]
[4]
5]
(6]

SHIGEO Kusuoka

References

Barlow, M. T. and E. A. Perkins, Brownian motion on the Sierpinski gasket, Prob.
Theo. Rel. Fields, 79 (1988), 543-624.

Bougerol, P. and J. Lacroix, Products of random matrices with applications to
Schrédinger operators, Progress in Prob. and Stat. vol. 8, Birkhiuser, Boston-Basel-
Stuttgart, 1985.

Bourbaki, N., FEléments de mathématique, Topologie générale, Hermann, Paris, 1965.
Davis, M.H. A. and P. Varaiya, The multiplicity of an increasing family of ¢-fields,
Ann. Prob., 2 (1974), 958-963.

Fukushima, M., Dirichlet forms and Markov processes, North-Holland, Amsterdam,
1980.

Goldstein, S., Random walks and diffusions on fractals, Percolation theory and
ergodic theory of infinite particle systems (Minneapolis, Minn., 1984-85), 121-129,
IMA Vol. Math. Appl. 8, Springer, New York-Berlin, 1987.

Hattori, K., T. Hattori and H. Watanabe, Gaussian fields theories on general net-
works and the spectral dimensions, Prog. Theor. Phys. Suppl., 92 (1987), 108-143.
Kigami, J., A harmonic calculus on the Sirpinski spaces, Japan J. Appl. Math.,
6 (1989), 259-290.

Kusuoka, S., A diffusion process on a fractal, Probabilistic methods in Mathe-
matical Physics, Proc. of Taniguchi International Symp. (Katata and Kyoto, 1985)
ed. K. Ito and N. Ikeda, 251-274, Kinokuniya, Tokyo, 1987.

Lindstrgm, T., Brownian motion on nested fractals, Preprint.

Shin, T., Master Thesis, Univ. of Tokyo.



