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On the Maunder Type Theorems in the
Ex-homotopy Category

By

Yoshimi SHITANDA*

Abstract

We study the homotopy theory of comma category and define the cell structure and
Postnikov system in the ex-homotopy category. By using these structures we give the
four types of spectral sequences and show that Maunder type theorems hold for these
spectral sequences.

Introduction

In [5], C. R. F. Maunder defined the cohomology spectral sequence associated
with the Postnikov decomposition of £?-spectrum of target object and showed
that his spectral sequence coincides with Atiyah-Hirzebruch spectral sequence.
In [4], T. Matumoto proved Maunder's theorem in the equivariant homotopy
category. We remarked in [7] that Maunder's theorem holds also in the
category of functor complexes. In [6], we studied the unstable version of
Maunder's theorem and applied them to the theory of phantom maps. Thus it
is interesting to know whether Maunder type theorem holds in a homotopy
category. In this paper, we define homotopy spectral sequences associated with
cell structure and Postnikov system and prove Maunder type theorems in the
ex-homotopy category.

In § 1, we study the homotopy theory of comma category and obtain results
analogous to the ones of the ordinary homotopy theory (e. g. J. H. C. Whitehead's
theorem). In §2, we define the cell structure and Postnikov system in the
ex-homotopy category and obtain the duality between them. In §3, we define
the homotopy spectral sequences associated with the cell decomposition of a
source object and the Postnikov decomposition of a target object by the same
way as [6]. In this paper, we shall show that these homotopy spectral sequences
are isomorphic as exact couples. Moreover analogously we define the homotopy
spectral sequences associated with the anti-skeleton filtration and anti-Postnikov
decomposition defined in § 3. We also prove that these are isomorphic as exact
couples.
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§ 1. The Homotopy Theory of Comma Category

We review the abstract homotopy theory defined in [7], In this paper, we
shall use the results in [7] and terminologies and notations in S. MacLane [3].

Definition 1.1. We call a category C a pre-homotopy category if it satisfies
the following axioms (Al-3).

(Al) C is closed under finite limits and finite colimits; hence it has the
initial object 0 and the terminal object 1.

(A2) There are given covariant functors /, P: C-+C with a natural iso-
morphism C(IA, B}=C(A, PB} for any objects A, B of C (C(—, —) is horn-set
in C). We call these the cylinder and path functors respectively.

(A3) Moreover there are three natural transformations k*°. Id—*I (k=Q, 1)
and T: I-^Id with rO#=/rf=rl*. Here Id means the identity functor or identity
natural transformation. 0#, 1* and r are called the top-face, bottom-face and
projection transformations respectively.

Let In be n-time composed functor of / ( P — I d } ; and define the natural
transformations djk=In-'k*I': /n->/n+1 and s,=/B-Jr/>: In+l-+In for (/, fe)e=
[n]X[l] ([m]={0, 1, ••• , ra}). We call these the face and degeneracy operators
respectively. These operators d j k , sj satisfy the cubical simplicial relations
(cf. Lemma 1.3 in [7]). Let (i'0, fe0)e[n]x[l]. Then by patching the 2n+l-
faces dt*: In->In+l for (f, k)=£(i0, k0) according to the cubical simplicial relations,
we have the functors Jn—Jn(iQ, kQ) and the natural transformation ^:/n-»/n+1

0

We use the letter Jn for any (/0, *0) (J°=Id).
Now we consider the following extension condition and the natural homotopy

axioms for a pre-homotopy category C:
(E. C) For any morphism f:JnX—>Y, there is a morphism F: In+lX-*Y

with FJi=f.
(NHA 1) There is a natural transformation f j t : I n - * J n - 1 with pji=ld for

all n>0, that is, (EC) holds naturally by taking Fp=f.
(NHA 2) There is a natural transformation p: ln-»jn~l with ri^=rn and

fjL%=Id for all ?2>0, where rn\ In-*Id and r'n: J
n~l^Id are defined by compo-

sitions of projections r.
Let C be a pre-homotopy category. We call C an abstract homotopy category

if it satisfies (NHA 2). The category CGH of compactly generated Hausdorff
spaces and continuous mappings becomes our abstract homotopy category and
so does the pointed category CGH* of CGH (cf. Example 1.7 in [7]). We say
that two morphisms /„, /i: X-*Y are homotopic (relative /: A-*X\ if there is
a morphism /: IX-+Y with /*=/&* for fe=0, 1 (and //y=/0;V); and then we
write /o-/i (rel /) and call / a homotopy of /0 and /t. When /, g: IX-+Y
are homotopies with /l*=gO#, we can define a sum /0g of homotopies / and
g as usual which is unique up to homotopy relative /={0*Jil#} (the terminal
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faces).
Here we note on the dual considerations. By using the unit t]: Id^PI and

the counit e: IP-*Id, we have the following axiom (A3*) which is dual and
equivalent to (A3) by defining k*—zk*P (k=Q, 1) and a=P(r}r]:

(A3*) There are three natural transformations k*:P^Id (&=0, 1) and
a: Id-*P with §*a—Id=l*a, called the top-coface, bottom-coface and injection
transformations respectively.

By using (A3*) and dual constructions, we can obtain the duality principle
in our abstract homotopy (cf. [7]).

Let C be a pre-homotopy category. We say that /: A-^X in C (resp.
p: Y—+B) has the relative HEP (resp. relative HLP), if any commutative square

InA\Jjn-lX * Y

\P

rx > z
•i ,/••"

has a dotted morphism to obtain two commutative triangles for any p : Y-+B
with HLP (resp. /: A-*X with HEP) and all n>0. Note: When Z=l, j is
called HEP. When A=$, p is called HLP. HEP (resp. HLP) is known as
homotopy extension (resp. lifting) property, and called a cofibration (resp.
fibration) in CGH. Here X\JAB (abbr. X\JB) means the pushout of diagram
X<-A->B.

We consider the comma category CB for fixed objects A, B and a fixed

morphism a: A-^B in C whose objects is any diagram A^>X-*B in C with

px = a and whose morphism / : (A-^X-^>B)—>(A-^>Y-^B) is any morphism / : X—>Y
pin C with fx = y and qf=p. For ^4—>^T—>B, I, P, k* and r in ^ give us the

diagrams

IA-^IX

with TX = X, TT'—T, k*=r'k*, po=-p, a'd = a and k*=k*a'. Hence we have

A^IX^B (p = pr) and A^PX^B (x = dx) in t7i the functors /, P: C^Ci and
the natural transformations f: I->Id, k*: Id-*I, satisfying (A2-3). Thus we
have a theorem: If C is a pre-homotopy category, then so is the comma
category CB. Moreover if C satisfies NHA 2, then so does the comma category
Ci (cf. Theorem 1.9 in [7]).
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When B=l (resp. A=$\ we write simply (A-*X) (resp. (X->J3)) for any
object in Cf (resp. C$). When A=B and px=idB, this comma category is
called the ex-homotopy category (cf. [2]) and noted by €B. This category has

the zero object (B^-^B-^B). We write ££[— ; — ] (resp. £s[— ; — ]) for the
homotopy set in Ci (resp. CB).

In our abstract homotopy category C, mapping cylinder M(/), cone CX and
i* / i*

suspension IX are defined by pushouts of diagrams JZ<— X-+Y, IX<-X-*1 and
CX+-X-+1 respectively. D. Puppe's theorem (Theorem ffl.6. 11 in [8]) and the
homotopical invariance of induced (co)fibrations etc. hold also in C (cf . [7 ; § 2]).
Note that the suspension functor IB has the right adjoint functor QB (loop
functor) in the ex-homotopy category, because it has the zero object. Generally
this fact is not true for px^idB.

The following result is well-known, but we give a proof under our abstract
homotopy theory (cf. [1, 8]).

Lemma 1.2. Let C be a pre-homotopy category satisfying (EC) and A a

fixed object in C. For a given morphism f : (A^X}~ >(A-*Y) in Cf where x and
y have HEP, if f : X-* Y is a homotopy equivalence in C, then so is f in Cf,

Proof. By assumptions, there is a homotopy inverse g: Y-+X of / in C
with gy = x. Let H (resp. K) be a homotopy of Id and gf (resp. Id and fg)
and L\M(y)=IA\JY-»X a morphism defined by HIx: IA-+X and g: Y-*X.
Since M(y) is a retract of IY by ;yeHEP, there is a morphism L : IY-+X
which is the composition of the above retraction and L. Set gf=LQ* which
satisfies g'y = x. Let M=L/(/)®#-1: IX-+X be the sum of !/(/) and a
reverse homotopy H'1 of H which is a homotopy of g'f and Id. Clearly
homotopies MI(x) and XT: IA-+X are homotopic relative / (i.e. the terminal
faces), there is a homotopy M:PA-*X of MI(x) and XT. Since Ix:IA->IX
has HEP, there is N: PX-+X with M=NPx, JV(0*/)=M, N(IQ*}=gf/T and
^V(/l*)=r. Hence N(l*/) : /J^->Z gives us a homotopy relative x of g'f and
Id. Analogously we have f: X-+Y constructed as above with f'g'^Id rela-
tive y. Since f-(f/g')f=f'(g'f}-fr(re\ x\ then we have f^f : X-+Y relative
x. Thus we have the result.

Corollary 1.3. For a given morphism f : (A-^X^B)-^(A^Y^B) in
where x and y have HEP (i. e, NDR pairs in CGH) and p and q have HLP (i. e.
fibration in CGH), if f is a homotopy equivalence in CGH, then so is f in CGHjf.

Proof. By the above lemma, / is a homotopy equivalence in CGHf. By
the covering homotopy extension theorem (cf. Theorem I. 7. 16 in [8])

p:(A±+Xy+(A?ZB) and q\(A^Y}-^(A^B) have HLP in CGHi Hence by the
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dual one of the above lemma, / is a homotopy equivalence in CGH^.

Proposition 1.4. (Corollary 1.1.8. in [1]) Let C be a pre-homotopy category

satisfying (EC). Consider the commutative diagram in C where (A— >X) and

(A'^Xr) have HEP and (Y^B) and (Y'^B'} have relative HLP and hif kt

(i=l, 2) are homotopy equivalences in C.

X' — >X — > B — > Bf

h2 g &2

Then there hold the equalities

Proof. When left-hand square is pushout, the first equality holds by the
universality of pushout. Hence we may assume hi=Id by taking the pushout

hi x' x x'
of A*-A'-*X. Since (A-+X) and (A-+X') are homotopy equivalent in Cf by
Lemma 1.2, we can reduce A=$ by considering in Cf, and may assume g=id
and q\ F->J^eHLP by considering the induced fibration through g. Then the
first equality follows from the homotopical uniqueness of the induced fibrations
(cf. Theorem 2.3 in [7]). By the duality and definition of relative HLP, we
obtain the second equality.

Proposition 1.5. Let C be a pre-homotopy category with the zero object
satisfying (EC). Consider the diagram where the upper horizontal sequence is a
cofiber sequence and the lower one is a fiber sequence and the right-hand square
is homotopy commutative and $T is adjoint of <f>. Then there exists a morphism
T : B-*Fp which makes the diagram homotopy commutative.

/ /. d
A — > B — > C(f) — > I A

\r

x —+ Y

Proof. The above theorem is reduced to the following situation where /
(resp. p) have HEP (resp. HLP) and Fp=p~1 (*) (i. e. a fiber of p\ C(f)=BVCA,
SA—CA/A, p$=<f>d by the mapping cylinder property (cf. Lemma 2.2 in [7]).
Clearly there exist f: B-*FP with z"7'=^/i. Now, we must prove ff^j<fT. Let
37 be adjoint of <J>\CA' CA-^C(f}-*X. Then we can define (p1—(y, 7f): A-*
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LXXzFp=LXxY* which is homotopy equivalent to <]T: A-*LYxY* by com-

posing LXXxFp—>LYXY*. By the commutativity jf—j'ty' where j': LXXxFp

->FP and /: LYxY**^-LXXzFp^>Fp, we have the result.

Definition 1.6. (1) The connectivity of /: Z-> Y in CGH is the maximal
integer in {n; 7r,(Af(/), *)=0 for Q^i^n}.

(2) The coconnectivity of /: X—> Y in CGH is the minimal integer in
)=0 for i^

Lemma L70 Consider the commutative diagram (*) in CGH where (X, A} is
a relative CW complex and p is a fibration, and p—qj is the factorization of
mapping cylinder with qk—ld,

^r_
fl

W '1 */ \P , .M»

x'—l^
g

If kg deform into Y relative A (e.g. dim(^", A)<connectivity of p or connectivity
of (X, &)^(co connectivity of p)—T)t then there exists h: X-^Y with hi—f and
ph=g.

Proof. Since a homotopy H of kgi and jf can be constructed by using the
cylinder IY of Y, there is H: IX-^M(p) with H=HI(i) and HQ*=kg by /eHEP.
Thus we have g=Hl*: X-*M(p} with gi—ji and kg^g. Hence g and qg are
homotopic relative A. By assumptions, there is g: X—>Y with gi—f and jg^-g
relative i. Therefore pg and g are homotopic relative A by pg—qjg—qg (rel i)
— qkg—g (rel i). By the covering homotopy extension theorem, we can choose
h: X-^-Y with /iz"=/ and ph=g.

Proposition 1.8. Let f: (A—>X^B}-^(A^Y^B} be a morphism in CGH^

where p and q are fibrations and f is n-connected in CGH, and (A^->Z—>B) an
object in CGH^ where (Z, A) is a relative CW complex. Then the induced map

(1) /* : CGHs[Z ; ^]-^CGHjf[2T; F] is bijective, if dim(Z, A)<n — l.
(2) f*: CGH^[Z; AH->CGH|[Z; F] zs surjeclive, if dim(Z, A)^n.

Proof. V/e factorize / as f=gh: X^*Xf—>Y where £ is a fibration in CGH

and h is a homotopy equivalence in CGH. For h:(A^*X^*B)-^(A-^>X'-^>B),
Proposition 1.8 is true by Proposition 1.4. Hence we may assume / is a

fibration in CGH and apply Lemma 1.7 for A—»Z and X-^Y. Thus we obtain
the result.
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Proposition 1.9. Let f : (A-^X-^B)-^(A-^Y^B) be a morphism in CGH£

where p and q are fibrations and f is n-coconnected in CGH, and (A— »Z-^»5) an
object in CGH^ where (Z, A) is a relative CW complex and c-connected. Then
the induced map

(1) /*: CGH^[Z ; ^]->CGHJ[Z ; F] is bijective, if c^n-l.
(2) /*: CGH|[Z ; X]-*CGH;i[Z ; F] is injective, if c^n-2.

Proof. We may take (Z, A) which is homotopy equivalent relative A to
(Z, A) and has no /-cells for Q<i<c by the relative CW approximation theorem.
By the same way as Proposition 1.8, we may assume / is a fibration in CGH.
Thus we obtain the result by Proposition 1.4 and Lemma 1.7.

Since the proofs of the following propositions are analogous to the ones
above, hence we omit them.

Proposition 1.10. Let f : (A^X-^B)-^(A-^Y-^B) be a morphism in CGHJ
where (X, A) and ( Y, A) are relative CW complexes and f is n-connected in CGH,

and (A-+Z-+B) an object in CGHif where r is a fibration and c-co connected. Then
the induced map

(1) /*: CGH^[F ; Z]->CGHJ[Z; Z] is bijective, if n^c-L
(2) /*: CGH^[F; Z]->CGHJ[Z; Z] is injective, if n^c-2.

Proposition 1.11. Let f: (A^X-^B)-^(A^Y^B) be a morphism in CGHi
where (X, A) and (Y, A) are relative CW complexes and f is n-dimensional (i.e.

dim(M(/), X}<n} in CGH, and (A-^Z-^B) an object in CGH^ where r is a
fibration and c-connected. Then the induced map

(1) /*: CGH|[F; Z]-»CGH|[Z; Z] is bijective, if n^c-l.
(2) /*: CGH^[F; Z]->CGH^[Z; Z] is surjective, if n<c.

§ 2. Cell Structure and Postnikov System

Definition 2.1. (1) An object (A^X^B) in CGH| is called a cell complex

in CGH^ if A-^X is a relative CW complex. The n-skeleton of (A-^X-^B) is

defined by the restriction (A-^>Xn-^B) ( x n : A-^Xn, jn: Xn->X, jnxn=x,
PJn=Pn} on the n-skeleton Xn of X.

(2) Let (A^X^B) be a cell complex in CGHi Then (A^>X^-^>B)
n n

=(A^Xn/Xm-^B) is defined by the pushout diagram (0^
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In particular, z £ _ i (resp. ys_0 is abbreviated as in (resp. /"). (Xn/Xm, B) is a
relative CW complex with /-cells for m<i<,n and ( X n / X n ~ l , B) is a relative
CW complex with n-cells (BUjef, B), where Xn/Xn-1 is homotopy equivalent
to a wedge sum#Vj0? in CGH.

Remark 2.2. The cone C(B->Z->B)=(B-+CBZ-^B) of (B-+Z-+B) is homo-

topy equivalent to (B-^—^B-^B) by Lemma 2.2 in [7], in particular C5Z is
homotopy equivalent to 5 in CGH. Hence Xn/Xm is homotopy equivalent to
Xn\JCBXm in CGH by Theorem 2.5 in [7]. For the classification problem in
Proposition 1.4 (when A=B\ we may replace (B->Xn/Xm) by (B->XnUCBXm)
in the left-hand sideB

Theorem 2.3. (Theorem 6.4 in [8]). Let q:Y~*B be a fibration with a
connected fiber F, If iti(Y) acts simply on nn(M(q), Y), q admits a principal
Postnikov system.

Y

where qn°. Yn—>Yn-i is a fibration induced by kn\ Yn^l-^K(^:n(F}J w + 1) from the
standard path fibration on BKn (Kn=K(nn(F), n\ BKn=K(Kn(F), n + 1)), and
qn : Y-*Yn is (nDisconnected.

By using a fibration qn: Yn-^Yn-i and induction on Yn, ^i(Yn) is equal to
Xt(Y) for i<n and ^(5) for i^>n+2 and q ^ " - q n ^ Yn-*B is (n+2)-coconnected.
Moreover there is an exact sequence

Proposition 2A Le^ (^[Ajf-^B) Z?e a cell complex in CGH^ a?2df (A^Y-^B)
an object in CGH| where q admit a principal Postnikov system and qn : Yn-*B
the Postnikov n-stage of q. Then there holds a natural isomorphim :

of CGH^[^n+1 ; F]
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Proof. Consider the commutative diagram

Since ^ : F— >Yn is (n + l)-connected and dimension of (Xm, A) is ?n (m—nt

72 + 1), (1) is surjective and (2) is isomorphic by Proposition 1.8. Since qi~-qni
Yn-*B is (n+2)-coconnected and (X, Xm) is m-connected, (3) is injective and (4)
is isomorphic by Proposition 1.10.

If q has a cross section, Ki(Yn} is isomorphic to 7ct(Y) for z<^72 and nl(B)
for f^n+1, and there holds an exact sequence 0— ̂ (F)— >;rn(y)-»7rn(B)— »0.

Since an Eilenberg-MacLane space ^(TT, 72) (TT ; abelian group, 72^1) can be
< i d , 0 > pr

considered as a topological abelian group, (B — >BxK(n, n) — >B) is homotopy
< i d , r > pr

equivalent to (B — >BxK(n, ri) — >B) (r: B-*K(x, n) a continuous map) in CGHS

by using hi BxK(x, n)-+BxK(x, n) defined by h(b, x)=(b, x+r(ty).

Definition 2.5. Let (B-^Y-^B) be an object in CGH5 where q is a fibration
with a connected fiber F and admit a principal Postnikov system.

< i d , r > pr
(1) An object (B — >BxK(7r, n) — >B} is called an Eilenberg-MacLane object

in
qfiy qr-qn < i d , r > pr

(2) kn+i=<qi-qn, kn+1y: (B—>Yn—>£)-»(£—>BxBKn+l—>£) is called

the &-invariant of (B^Y-^B] in CGHB.
(3) Let LKn-+BKn be a standard path fibration with a fiber Kn. Then

(B<^BxLKn-^B)-^(B<^BxBKn-^B) becomes the standard path fibration

with a fiber (B<^BxKn-^B) in CGH5.

(4) An object (B—>Yn^-^B) is called the Postnikov rc-stage of (B-^Y-^B)

in CGH5. There are morphisms qn ' (B—>Yn—>B^(B —> Yn-l —> B) and

(5) The homotopy fiber in CGHB of qn : (B> YB)->(B YnB) defines
yln+ll qin+11

(B — > Fcre+1) — > B) where 7r l(7cn+1)) is isomorphic to ;rt(B) for ^72 and 7rl(7)

for z'^72 + 1. Note that CGUB has the zero object (B--^B^B).
n n

(6) (B — >Y(m, ri) — >B) is defined by the homotopy fiber of
qny r ? - . m -

(B — >Yn — >B)-^(B — >y w - , -#) in CGHS. ^(r(m, n)) is isomorphic to
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7Ti(F) for m^i^n and iti(B) for Km or n<i. We interpret Y(— oo, n),
F(n, oo) as Yn, F(n) respectively. Clearly (QBY}(m, ri) is homotopy equivalent
to QB(Y(m+l, n+1)) and (B-+QB(BxK)-*B) is homotopy equivalent to

B) in CGH5.

Proposition 2.6. Le£ (B^X^B) be a cell complex in CGHB and (B^Y-^B)
an object in CGHS wbere q is a fibration with a connected fiber F and admit a
principal Postnikov system. Then there is a natural isomorphism :

CGH5[Z; F<n+1)] = Image of CGHB[X/Xn ; F] — > CGH^X/X71-1 ; Y~\ .

Proof. Consider the commutative diagram

-1; F]

Since Fcra+1)—»5 is (n+l)-connected and X—>X/Xm is m+1-dimensional (m=n,
M—1) (cf. Remark 2.2 and Proposition 1.4.) (1) is surjective and (2) is isomorphic
by Proposition 1.11. Since Y<n+l>-+Y is (n+l)-coconnected and B-+X/Xm is
m-connected (m=n — 1, n\ (3) is isomorphic and (4) is injective by Proposition 1.9.

Corollary 2.7. Under the assumptions of Proposition 2.6, there is a natural
isomorphism:

nr^u r v • v/.,,*, ™M~ 1***^^^ ^f r^r^u rvn+i/vm-i. vi ^ rr^u rvn/vm-z. viL/vjfi^LA, ji\nij n)j = Lmage of L/VJII^LA /A. , / j —> L/vjii5L.A /-^ ? -« J-

§3. Maunder Type Theorems

In this section we work in the ex-homotopy category CGHB and assume
that all space in CGH is 0-connected and has the homotopy type of CW complex.

Lemma 3.1. Let (B-^B\Jen-^B} be a cell complex in CGH5 and(B^Y-^B)
an object in CGHB where q is a fibration with a fiber F and admit a principal
Postnikov system. Then CGHB[B\Jen; F] is identified with nn(F). If

f: (B-*B\Jen-^B}-+(B-+B\Jen-*B} is a map of degree m (i. e. degree of
Hn(B\Jen, B}^Hn(B^Jen, £)), then the induces map /*: CGHB[BUen, F]-»
CGHB[B\jen, F] is a map of degree m.

Proof. The homotopy set CGHB[_B^Jen; F] is classified by the relative
cross sections of the induced fibration p*(q) over BUen. Hence it is classified
by the relative cross sections of the induced fibration over the n-disk Dn. Since
a fibration over Dn is fiber homotopy equivalent to the projection DnxF-*Dn
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and a cross section over Sn~l is given, we have the result by assigning the
difference cochain d^Hn(D

n, Sn~l ; KnF)=xnF. For the second part, let
/: (Dn, Sn-l)-*(Dn, S n ~ l ) be a map of degree m. Then the induced map of
fibrations is fiber homotopy equivalent to /": DnxF-*DnxF, f ~ ( x , y)=(f(x), y).
Thus f:(Dn, Sn-l}-*(Dn, Sn~1} induces a map of multiple m: nn(F)-+xn(F) by

using the correspondence (Dn, Sn-1)^(Dn
f Sn~l}^F (s: cross section).

Let (B-^X-^B) be a cell complex in CGEB and (B^Y-^B] an object in
where q is a fibration with a fiber F and admit a principal Postnikov

system. Hereafter we write simply total space X for an object (B-^X-^B),
unless there happen confusions.

The Puppe sequence in CGH5

i* js hs

Xs-1 — > xs — > x'/x*-1 — > IBXS~I — > IBXS — > sBx'/x*-1 — >
gives the exact couple

/ n s, t z? s, t ^ p ri\u\ , &i ' , alt pi, ji)

(3.2) D1
s't=CGHBlIB

t-sXs')Y'] (^s^O)

= CS(X,

where al9 ^ and TI are induced by i': Xs~l->Xs, hs : Xs / Xs-1-*! BXS~\ js: Xs

->XS/XS-* respectively. The bidegrees al9 fa and Ti are (— 1, —1), (1, 0) and
(0, 0) respectively. Let {JV'S £/'', ar, /3r, rr} be the derived couple of (3.2).
Since the differential of (3.2) is induced by XM/X'=BViel+1-+SBX'-+SBX'/X'-1

= BUjej+l, £2-term is described by the following formula in the light of
Lemma 3.1.

(3.3) E^-^H^X, 5;7r£(F)) (f^s^O).

When t— s=0, E2-term is not obtained by ^-term. But we may use (3.3) for
the jE2-term by Lemma 3.8 below.

Now let us consider the Postnikov system of (B^Y-^B). By using the
fiber mapping sequence in CGHB:

— > QBYn-i —> QB(BxBKn} -^Yn—> Yn., -^ BxBKn

we define the exact couple.

{DS-*, E2
S'*, az, fa, ft}

(3.4) £2
S'J
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where az, ^2 and f2 are induced by qn: Yn-*Yn-lt kn: Yn.l-^BxBKn and
/„: BxKn-^Yn in CGHB. The bidegrees of a2, £2 and fa are (—1, -1), (2, 1)
and (0, 0) respectively. Let {Dr

8it
t E r

S i t
f ar, f i r , fr} be the derived couple of

(3.4).

Theorem 3.5. Let (B-^X-^B] be a cell complex in CGH^ where (X, B) has

no Q-cells and (B-^Y^B) an object in CGHB where q is a fibration with a fiber
F and admit a principal Postnikov system. Then, for t—sl^Q, there exist
isomorphisms

which commute ar, /3r, Tr find ar, ]ir, fr.

The proof of this theorem proceeds by the same way as [6]. Let consider
the diagram

Di+i.t+1

(3.6)

£f*+i, i+i » R«.« ^ £$+2.«+1 * /)!+*•«+»
a

We shall define the group E2
Stt(t—s^l), the isomorphisms <j>, (f)lt <f>2, (p^i—tp

and homomorphisms /32 and f2 which make the diagram commutative.
Let Y^ be the homotopy fiber in CGH5 of qk^\ Y->Yk-l9 i™: Fco->Fthe

canonical inclusion and q™: Y^->BxKt the natural morphism in CGH5o By
the proof of Proposition 2.4, qt induces an isomorphism (cf. [6]):

(3.7) 0: D2
s>t—>D2

Stt is an isomorphism for t—s^O.

We shall define E2
s>t for t—s^O.

for t—s^l.

Lemma 388o (1) There exists a natural isomorphism (p2: E2
s>t—»E2

S'J for

(2) The map /'*: CGH^C^'-^VZ-1; r^^-^CGH^C^4-^8; 7C£)] induces
an isomorphism (j}l: E2

s't-+E2
s>t for t—s^Q.

Proof. (1) is proved by Proposition 2.4. (2) By the following diagram we
have the result for t—s
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Cs-l(X,B;

For f-s=0, the map /'*: CGH^ZV^8"1 ; FCS)]->CGH£[Z
S ; Fcs>] induces the

isomorphism <pl : E2
S'S->E2

S'S by (1) and Proposition 2.4.
Now, for t—s^l, define

f 2 : £2
s+2> J+1 C CGH^E^4-8-1^84-2 ; Fci+1>] — > CGH^E^^8-1^^2 ; 7] ID Z)2

S+2' i+1.

We shall prove the commutativity of the diagram (3.6). The commutativities
of (1), (2), (3) and (5) are obtained by the naturality and the definitions of maps
involved. So we omit the proofs.

For the commutativity of (4), consider the diagram

(3.9)

t t II
CGHB[ S'B'X^ ; 7] -» CGHB[ Z<B-*Xs+l ; y,]= CGHfl[

The commutativity of the part (*) is proved by applying Proposition 1.5 to
next diagram.

ly-8-1^-1-1 — >js
£-s-izs+2 — >sB

t-s-ixs+2/xs+i — >^J-s^s+1 — >iy-szs+2

QBYt - > FC!+1> - > Y - > Yt

The other commutativities of (3.9) are obtained by the definitions and natural-
ities. Thus we proved the commutativity of (4). This complete the proof of
Theorem 3.5.
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Now we shall investigate the spectral sequence associated with the ex-anti-
skeleton filtration. By using the Puppe sequence

Xs/Xs~l —^ X/X8-1 -^> X/XS -^> ZsX'/X'-1 — > IBX/Xs~l

we define the exact couple as follow:

{D('-*9EC-*,a{9

(3.10) ^'•'

iy-'ZY^-1; F] (f^s^

where a{, #, rl are induced by gs: X/X'-l-*X/X', /.: X'/X'-^X/X'-1 and
A.: X/X-i-tSX'/X'-1 and bidegrees aj, fl, ri are (-1, -1), (1, 0), (0, 0) re-
spectively.

Theorem 3.11. Let (B^Y-^B) be an object in CGEB where q is a fibration
with a fiber F and admit a principal Postnikov system. Then there exist a
following system called anti-Postnikov system.

where F(s+1) fs induced by k's from the standard path fibration on BxKs.

Proof. This is clear from Theorem 2.3 and Definition 2.5.

Similarly we can define the spectral sequence associated with the anti-
Postnikov system (3.12). We define the exact couple:

f n / / s ,« cv/s.j _.// Off yin
\L>2 , £2 , <X2, p2> /2 I

(3.13) jDS/''t

where a?, ^8? and r? are induced by tf+1: Fcs+1)-> Yw, k's: Y^-»BxKs and
AJ: QB(BxKs}-*Y<s+v and bidegrees a?, ^, rJ' are (-1, -1), (2, 1), (0, 0) re-
spectively.

By using Proposition 2.6, we have the following result by the same way
as Theorem 3.5.

Theorem 3.14. Under the assumptions of Theorem 3.5, there exist natural
isomorphisms :

$ : D'r
s' t-^Df

r
/s' £, <p : E'T

S' t-*E/
r'

s- t

which commute with a'r, /3£, Tr and a", ft", Tf>
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