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Introduction

The study of various blowing-ups of a local ring (A, m) (or a "singularity" (W, w),
W = Spcc(A) and w = m) is very important in the theory of singularities. If we study
the property of a singularity (W, w) (e.g., resolution, invariants of (W, w) defined by
resolution, deformation, multiplicity, embedding dimension, ...), the study of the "tan-
gent cone" (or the associated graded ring) © mn/mn+1 always plays an important role.

n>0

On the other hand, we have a fairly well-constructed theory of graded rings which
enables us to know various ring theoretic properties of them (e.g., Cohen-Macaulay,
Gorenstein property, rational singularity, divisor class group, ...) in terms of geometric
language and which enables us to study the properties of normal graded rings in
geometric terms.

So, our aim of this article is to provide a theory of filtration and filtered blowing-
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up for a general filtration on (A, m) which enables us to know various ring theoretic
properties and invariants of (A, m) as a singularity. Our method is, roughly speaking,
to approximate (A, m) by a graded ring G (given a filtration {Fl}ieZ on A we have the
associated graded ring G = © Fn/Fn+1). This explains the reason why we should

neZ

consider more general filtration than an ideal-adic one. A "good" filtration for us is
one whose associated graded ring G has good properties (normal, integral domain,
reduced, . . . ), while in the case of m-adic filtration, G does not have such properties in
general.

As an excellent and an important example of our theory, we study normal two-
dimensional singularities with "star-shaped" resolutions. It turns out that if the associ-
ated graded ring of a filtration on a normal two-dimensional local ring (A, m) is a
graded domain which is finitely generated over the field A/m with isolated singularity,
then A has a "star-shaped" resolution and, surprising enough, the filtration is also
determined almost uniquely from this resolution (as in (5.13)). In this case, such filtra-
tion is not an ideal-adic one in general.

Now, we will summarize the contents of each section.

In Chapter 1, we develope general theory of a filtered blowing-up. Section 1 is
devoted to the general definitions and fundamental properties of a filtered blowing-up
and the induced filtration on the local cohomology groups. In Section 2, we study a
filtration whose associated Rees algebra $ is normal. We study the divisor class
groups of the spaces which appear in our theory and also the relation between Cl(A)
and Cl(^) (cf. Proposition (2.7)). This result is a generalization of that of [17]. In
Section 3, we calculate the dualizing module cox of the filtered blowing-up X of W. In
particular, if the associated graded ring G is Gorenstein with KG ^ G(a), then we have
CDX ^ Ox(a + 1) (cf. Theorem (3.5)). Also, the calculation of the canonical module of M
shows that K@ is free if and only if a = — 2, which gives another explanation of a result
of Goto-Shimoda [11]. In Section 4, we give a lower bound of the geometric genus of
a singularity in terms of the local cohomologies of G. Then we obtain numerical
criteria for the filtered blowing-up X of W to be normal or has only rational singularities
(Theorems (4.6) and (4.9)). In Section 5, we discuss the condition that G has an isolated
singularity. We prove: If G has an isolated singularity, then the filtered blowing-up X
has only toric singularities which we call "cyclic quotient singularity" and, especially, for
the case with dim A = 2 the dual graph of the exceptional locus of the minimal good
resolution of W is "star-shaped" (Theorem (5.6), see (0.5)).

In Chapter 2, we apply the results of Chapter 1 to the following situation:
Let /: (X, f ~ l ( w ) ) -> (W, w) be a resolution of a normal two-dimensional singularity

(W, w) over a field with arbitrary characteristic such that the dual graph F of /-1(w) is
star-shaped and r. X -*X be the contraction of /-1(w) except the central curve as in the
followings:

(*)
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where E is the central curve and E' is the image of E.
Let us introduce the filtration {Fk}ke% on A, by Fk = \l/^.(Ox( — k - E ' ) ) c Ow w = A

for k E Z. Let £(E, D) be the normal two-dimensional graded ring whose resolution
graph F is the same as that of W (we call it Pinkham-Demazure's construction for
F. See (6.2)). We consider the following problems:

Problem (1). Find good sufficient conditions for (W, w) to be a small deformation of
Pinkham-Demazure's construction.

Problem (2). Does the Gorenstein property of A induce the Gorenstein property of
R(E9 D)? How is the converse! Can we find a criterion for A to have the Gorenstein
property only from the graph F!

Problem (3) (see Problems (7.6)). When A is a Gorenstein domain, is (W, w) a small
deformation of R(E9 D)?

In Section 6, we see that A and R(E, D) are related by a filtration defined above in
the following manner.

Theorem (63). Let the situation be as in (*). Then G= 0 (Fk/Fk+l)Tk is an
k>0

integral domain with isolated singularities. Further R(E, D) is the normalization of G, and
we have the exact sequence of graded G-modules

0 -> G -»R(E, D)-+U^Q

with U= @KQT{R1^(Ox(-(k+l)E'))^R1il/:,(Ox(-k'Ef))}Tk (we can identify E
fc>0

with E' by x) where T denotes an indeterminate. Moreover U has finite length and is
isomorphic to E1

G+(G\ and 1A(U) = pg(R(E, D)) - pg(W, w).
In particular, G is normal if and only ifpg(R(E, D)) = pg(W, w).

For Problem (2), Theorem (7.2) characterizes the Gorenstein property of (A, m)
by the Gorenstein property of R(E9 D) and the injectivity of the canonical map
H*(X9 Ox(-a-E)) -> H\X - E, Ox(-a-E)) ^ H^(A\ where a = a(R(E9 D)).

In the rest of this paper we study Problem (3). We have partial answers to this
problem in Corollary (7.7), Theorems (7.8) and (7.9). In particular, the answer is yes in
the case pa(F) < 1 if the characteristic of the base field k is zero (Corollary (7.10), see
Notation and Conventions for pfl(/l). In Section 8, we examine Problem (3) for dual
graphs with pa(F) = 2. Here we see that the answer is yes if the genus of central curve
is greater than zero. Further we characterize the graph F where Problem (3) still
remains open in Lemma (8.11) (cf. Example (8.14)).

Both authors heartily thank to Prof. F. Hidaka for many discussions and to Prof.
S. Goto for discussions about the canonical module of graded rings. The first named
author heartily thanks to Prof. K. Saito for encouragements.
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§ Oo Notation and Conventions

(0.1).

F = [Fk}keZ: a filtration on (A, m) (1.1).
91= 0 FnTnc=,4[T] (1.1).

n>0

9f = 0 FT c AIT, T'1] (1.1).

AT: the integer with FnN = (FN)n for n > 0 (1.1).
We assume ht(F*) > 2 in this paper and put I = FN (1.1).
G = 0 (F7F"+1) T" = #ytt#', where M = T'1 (1.1).

X = Proj(^) (1.2).
E = Proj(G) (1.2).

y = Spec* (00*(n) (1.2).
\n>0

(1.2).
V»eZ /

S is the "zero section" of n: Y ^X, i.e., the closed subscheme of Y defined by

®0x(n)} .
n>l J ( Y

We sometimes, by abuse of notations, omit ~ as above; the ideal ( 0 Ox(n) J of
Oy is simply written as 0 Ox(n). ^n~i '

Z = Spec(#) (1.2).
Z' = Spec(#') (1.2).
a(A) = aF(A): a numerical invariant for a filtered ring A (1.12).

(0.2).

K: the quotient field of the integral domain A (2.1).
J = P^^n-'-riJP f

( f l t ): the primary decomposition of J in ^ with G =
WluM' (2.2).

Vt: the valuation of K(T) attached to Pt (2.2).
vt: the normalized valuation of K of the restriction of Vi to K, with Vt(x) =

for x e K and qi e Z (2.2).
C1(C7), cl(D), FV9 Ei9 Ft = FE., (2.6).

(0.3).

KG: the canonical module of G [12].
Km = H~d(D@): the canonical module of m (A.3.11).
K& = H~d(D%,)\ the canonical module of 9f (A.3.11).
CDX: the dualizing module of X (A.3.12) and (A.3.14).
cuy: the dualizing module of Y (3.2).
a>E: the dualizing module of E [14].
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(0.4).

pg(A) = pg(W, w): the geometric genus of the singularity (4.1).

(0.5).

U = 0 Ker{*V*(0*(fc + I))-+R^*(0x(k))} (5-6).
fc>0

R(E,D): Let D be a Q-Cartier ample Weil divisor on a normal projective scheme E.
Then we denote the normal domain 0 H°(E,OE(nD)) Tn by R(E,D) [7] (5.6). Any

n>0

normal graded domain R and R0 being a field is written in this way [7]. Further in the
case dim(K) = 2, Pinkham had written D from the resolution graph F [34] (6.2).

Y" = Proj 0 gt^QHJ1 (5.7).
V>o )

For generalities concerning the dual graphs of exceptional sets for good resolutions
of normal two-dimensional singularities, we refer [43, 25, 26]. Let /: (X, A) -> (W, w) be
a good resolution of normal two-dimensional singularity with exceptional locus A.
Then

An irreducible component E of A is a central curve if genus g(E) > 1 or E meets at
least three other irreducible components of A.

The exceptional set A (or the dual graph F) is called star-shaped if the dual graph
is a tree with at most one central curve. For example,

is star-shaped without central curves. (However, in this case we shall treat any com-
ponent At being as E in Theorems of Chapter II.) Further

is not star-shaped, because there are two central curves in F2.
By the star-shaped dual graph, we mean not only the topological weighted dual

graph but also the graph with the analytic data so that two graphs F and F' are same
if and only if Pinkham-Demazure's constructions for both graphs are analytically
isomorphic.

(0.6).

L_t: Giraud's inverse image of — kE on X by T (6.11).
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(0.7).

v: (C,E)-»(Spec(jR.(E,I>)), mR): the canonical partial resolution of Spec(.R(E, D))
obtained as the filtered blowing-up (7.8).

pa(W9 w): the arithmetic genus of a singularity (W9 w) is the integer pa(W9 w) defined
via a resolution f : ( X 9 A ) - + ( W 9 w ) by pa(Wy w) = sup{pa(D)|D is a non-zero effective
divisor on X whose support is contained in A], where pa(D) Is the virtual genus of D
[43]. This is determined by the graph F. Hence we shall denote it as pa(F).

In Chapter 2 (resp. Section 4), the ring A is supposed to be essentially of finite type
over an algebraically closed field fc (resp. over a field of characteristic zero).

For details about the materials above, we refer to the references cited after them.
See [25, 26, 28, 41, 43, 49] for the basic facts on two-dimensional singularities and those
numerical invariants.

Chapter 1. and BI0w!ng-Up§

§ I. Filtered Blowing-Up and the Induced Filtration on Local CohoraoSogy Groups

(1.1) Throughout this chapter let A be a Noetherian local ring with the maximal
ideal m, which is a quotient of a Gorenstein ring (so that A is universally catenary and
has a dualizing complex). A filtration on A is a decreasing sequence {F"}neZ of Ideals of
A satisfying the following conditions:

(i) F" ± (0) for every n e Z, F" = A for n < 0 and f) Fn = (0).

(ii) F1 • Fj c F'+J' for every i, j e Z.
We define two "Rees algebras" for this filtration:

M= @ FnTnc:A[T] and
n>0

&' = 0 FT c A[r, T'1], where the symbol T denotes an indeterminate.

We put G= @(Fn/Fn+1)-Tn^@f/u-@', where u denotes T"1. We call G the
n>0

associated graded ring of A with respect to {Fn}neZ.
In this paper we always assume that ^ is finitely generated over A = $0. This

condition induces the relations FnN = (FN)n (n > 0) for some Integer N (Chapter 3 of
[3]). Throughout this section, we will fix this integer N and denote the ideal FN by
1. Further we will assume ht(J) > 2 in the below. Throughout this chapter we fix our
filtration {Fn}neZ and use the following notation.

(1.2) The fundamental diagram. We denote W = Spec(yl), X = Proj(^), E =
( \ ( \

Proj(G), Y = Spec* 0 Ox(n) , 7' = Spec* 0 Ox(n) I Z = Spec(^), Z = Spec(^')?
\n>0

S the closed subscheme of Y defined by the ideal © Ox(n) of OY (cf. (0.1)), where
n>0

Proj(^) and Ox(n) = (m(n}Y are as in E.G.A. Chapter II. §§2, 3, 8. Also we use D
(resp. D+) for open subsets of some "Spec" (resp. "Proj") and V (resp. V+) for closed
subsets of some "Spec" (resp. "Proj").
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Between these schemes, we have the canonical morphisms as indicated in the
following commutative diagram:

(1.2.1)

Here X (resp. Y9 E) is covered by affine open sets of the form !>+(/*) (resp.
n'l(D+(f*)\D+(f))9 where feFd-Fd+\ with d > 0, /*=/Tde^d and / =
(fmodFd+i)TdeGd and /W/*), Ox) = F°(Af) (resp. r^1^ (/*)), Oy) = © F*(Af)T>,

n>0

F(D+(f)9 0E) = FQ(Af)/F
l(Af)\ where Fn(Af) = (j (Fds+n)/fs for every n e Z.

Note that our definition of {Fn(Af)}neZ gives a structure of filtered ^-module on Af

compatible with the filtration {Fn}neZ on A.
Then the dual diagram of (1.2.1) over the affine open set D+(/*) = D+(f- Td) is as

follows:

@Fk(Af)-T
k < @Fk(A)-Tk

F°(Af) < 0 Fk(Af)- Tk < 0 Fk(A)-T<k

k>0 k>0

F°(Af)/F*(Af) < F°(Af) < A.

Concerning these morphisms, we have the following facts.

Remark (1.3). (i) The morphism \// is projective and induces an isomorphism
between X - E and W - V(I).

(ii) The composition n • i' is an isomorphism.
(iii) We can write the morphism cp as follows: Y ^ Proj(^)-^—»Spec(^), where

^ = 0 $\m with @l\m = 0 $k. The exceptional locus of cp is contained in
m>0 k>m

/ \
= 5. Hence the morphism cp induces an iso-

\m>0

morphism between the schemes Y-{Sr\n~1(E}) and Z- V(3%+ +!•$) by (i). Here
we denote ^\1 also by ^+.

(iv) The morphism 7 is an open immersion with j(Y') = Y — S and the composi-
tion cp -j gives an isomorphism of Y' and Z — V(9t+).

(v) Also the morphism <p' is an open immersion onto Z' —
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(vi) (§ 5 of [23]) There is an exact sequence of graded ^-modules

0 -> H«mS®} ~+ & -> © H°(X, Ox(n)) -* H^JiX) -> 0 -
»eZ

and the isomorphisms H^(dt) ^ 0 Hq(X, Ox(n)) for g > 1
neZ

(1.4) The following three conditions are equivalent; (i) H°m+(M) = 0, (ii) Hf(A) = 0,
(iii) The canonical morphism A -»H°(X, Ox) is injective.

From now on, we assume these conditions.

Now we are interested in the condition so that we have the relation HQ(Y, OY) = <%
(resp. the relation H°(Y', 0Y>) = ffi\ For this purpose, we recall the following lemma.

Lemma (1.5). (i) If a Noetherian graded ring & satisfies the condition (Sk) (resp. is
normal, is a Cohen-Macaulay ring), so does (resp. is) Proj(^).

(ii) Let X be a Noetherian scheme, E a closed subscheme of X with the open
immersion i: X — E -»X. Then the relation i#(Ox-E) = Ox holds if and only if
depth(0XtX) > 2 holds for every point x of E.

Recall that we say that a coherent Ox-module ^ satisfies the Serre's condition (Sk) if
depth (J*^) > inf(fc, dim(J^))/or every point x of X.

Proof, (i) Take an'element / of £%d and examine the affine open set /)+(/) of
Proj(^). Then the coordinate ring of this affine open set is (fflf)0 = ((^(d))/)o5 where
$w — ̂  <%kdm NOW, our conditions are inherited to ^(d) and also to the localizations.

fc>0

Since (<%(d))f is isomorphic to ((^/)o)[7"5 T"1], our conditions are inherited to (^f)0.
(ii) See, E.G.A.IV, (5.10.5) [15].

Then we can show the following:

Proposition (1.6). Let the situation be as in (1.2). Then: (i) $' is a Cohen-
Macaulay (resp. Gorenstein) ring if and only if so is G.

(ii) $! satisfies the condition (S2) if and only if G satisfies the condition (S{) and A
satisfies the condition (S2).

(iii) & satisfies the condition (S2) if and only if so does Y and the relation (p*(OY) =
Oz (or, H°(Y, 0Y) = «, i.e., Fk = H°(X, Ox(k)) for k > 0) holds.

(iv) // $' satisfies the condition (S2\ so does 3$ (see Remark (1.8)). In this case
Ox-modules Ox(k) (k e Z) satisfy the condition (S2).

Proof, (i) Let u = T~1 as usual. Then u is a non-zero divisor of <%', and the
relations Seiu-df^G and (3t')u ^ A[T, T~l~] hold. Hence m1 is a Cohen-Macaulay
(resp. Gorenstein) ring if and only if so are G and A. Further it is well-known that A is
a Cohen-Macaulay (resp. Gorenstein) ring if G is so (cf. [22], [6], [44]). Therefore our
assertions follow.

(ii) follows by similar argument as in proof of (i).
(iii) If ^ satisfies the condition (S2), then so does X by (i) of Lemma (1.5). Since
and ^-module m(d^ = 0 mk+nd for k = 0, ..., d - 1 are finite direct summands

n>0
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of St, they also satisfy the condition (S2) as ^(d)-modules. Let / e Fd - Fd+1 and
f*=f-Td as usual. Then (<^(d'fe))/* also satisfies the condition (S2) as (#(d))/*-
module. Here we have the relations (^(d>k))/* = Fk(Af) ®Fou/) (^

(d))/* =
F k ( A f ) ® F O ( A f } F ° ( A f ) [ f * , ( f * r 1 ' ] . Hence F*^) satisfies the condition (S2) as
F°(Af)-modulQ. Further Fk(Af) ®A A[/*] = 0 F**1"1^)- Tk4-"d satisfies the condition

n>0

(S2) as F0(A/) ®A 4[/*] = 0 F"^)- T"d-module. Therefore 0 F*^)- Tk satisfies
n>0 k>0

the condition (S2). This implies that Y satisfies the condition (S2). Finally, by (iii)
of Remark (1.3), (ii) of Lemma (1.5) and our assumption, we obtain the relation
(^(Oy) = Oz,, since both structure sheaves are the direct images of those on
Y — (Sr\n~1(E)). Conversely, assume that 7 satisfies the condition (S2) and that the
relation H°(Y, 0Y) = Si holds. Then ^ satisfies the condition (S2) by (iii) of Remark (1.3)
and (ii) of Lemma (1.5).

(iv) First recall that Y' is isomorphic to an open subset of Z' by (v) of Remark
(1.3). Hence Y' satisfies the condition (S2) if so does ^'. Here we have the relation
m'jm+m1 ^ (A/Fl)\u]. Hence, by (v) of Remark (1.3) and (ii) of Lemma (1.5), we obtain
3K = H°(Y', Or). This implies the relation H°(Y, OY) = ffl. Next OT is a direct sum of
Ofiv = 0 Ox(nd + k)Tnd+k for k = 0, ..., d - 1 as O^0)-module. Since Y' satisfies the

neZ

condition (S2), the direct summands Ofd'fc) with k = 0, . . . , d—\ also satisfy the con-
dition (S2). Let d be the integer such that ^(d) is generated by $d over A. By using
such d in the situation above, we can conclude that Ox(n) satisfies the condition (52) for
every integer n. Therefore Y satisfies the condition (S2). Now, by (iii), Si satisfies the
condition (S2).

Proposition (1.7). Let the situation be as in (1.2).
(i) Assume that Y satisfies the condition (S2) and that the quotient field of G/P has

a homogeneous element of degree 1 for every minimal prime P of G. Then the canonical
homomorphism

Ox(m - n) -> Rom0x(0x(n), Ox(m))

is isomorphic for every integers m and n.
(ii) Further suppose that M is a finitely generated graded ^-module with dim M =

dim ^ satisfying the condition (S2)5 and put F(n) = M(ri)~ for every integer n. Then the
canonical homomorphism

F(m - n) -> Hom0x(0x(nl F(m))

is isomorphic for every integers m and n.

Proof, (i) Our homomorphism Ox(m — n) -> Hom0x(Ox(n), Ox(m)) is induced by
the multiplication. This is certainly isomorphic on X — £, because Ox(n) = Ox on
X — E for every n. We have to show that this is isomorphic in the neighborhood of
E. If J is a graded prime ideal of height 1 of ^ corresponding to a generic point of G,
then the homogeneous localization 3$^ contains a unit of degree 1 by our
assumption. This implies that Ox(i) is invertible and Ox(n) = Ox(i)®

n for every n at
J. So, our homomorphism is an isomorphism in codimension 1. Actually this is
isomorphic, since both sides satisfy the condition (S2).
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Proof of (ii) goes all the same.

Remark (1.8). Let A = fc[[s4, s3£, st3, t4]], where k is a field and s and t are
variables over k. If we put Fn = (s4, t4)" for every integer n > 0, then the associated
Rees algebra ^ is Cohen-Maeaulay [40]. However &' does not satisfy the condition
(S2) by our (ii) of Proposition (1.6) and the fact that dim A = 2 and depth A = 1. So
the converse of (iv) of Proposition (1.6) is not true in general.

Remark (1.9). If X satisfies the condition (S2), H°(X, Ox) = A and if {F}ieZ is the
m-adic filtration, then A satisfies the condition (S2), too. In fact, take a non-zero divi-
sor x £ m. If y E A and ym c= xA, then m-(y/x) c m and y/x e H°(X, Ox) = A. Thus
depth ^4 > 2 and 4 satisfies the condition (S2) at the other prime ideals since so does X.

It will be useful to know the condition for X to be a Cohen-Macaulay scheme.

Proposition (1.10). Let the situation be as in (1.2). Then the following conditions
are equivalent to each other.

(i) Y is Cohen-Macaulay.
(ii) Y' is Cohen-Macaulay.
(iii) Gp is Cohen-Macaulay for every homogeneous prime ideal p of G which does

not contain G+ and Aq is Cohen-Macaulay for every prime ideal q of A which does not
contain I.

Proof. Let / e FN - FN+1 and put /* - /• TN, f = (/mod FN+l) • TN. Then T~l

belongs to %* = 3t'f*. We have the relations M^/T^Mf* ^ G/ and (%*)T-i ^
(Af)[T, T"1]. These isomorphisms prove the equivalence of (ii) and (iii).

The proof of the implication (i) from (ii) goes as in the proof of Proposition (1.6).

Remark (1.11). The equivalent conditions of Proposition (1.10) imply that X is
Cohen-Macaulay.

(1.12) Now, we shall discuss the filtration on the local cohomology groups induced
from the filtration (F"}neZ as above. For an element / of F" - Fr+1 with integer r > 1,
we will always denote / = (/mod Fr+i)Tr E GrT

r and /* =/T re^ r as in (1.2). Put
dim G/mG = d. Let /1? ..., fd be a homogeneous system of parameters of G/mG and J
the radical of ( f i , . . . , f d ) in G. Then J + mG =3 G+ holds. Hence J =3 G+, and the
radical of (ff,...,//) (resp. (fl9...,/d)) contains ^+ (resp. F1). Therefore the scheme
E (resp. X) is covered by affine open subsets {D+(fJ\i = 1,..., d} (resp. [D+(f^)\i = 1,
. . . , d } ) . Here we may (and we shall) assume that each ft is a non-zero-divisor on
G/HQ+(G) so that there exists an integer n0 which satisfies the condition;

(1.12.1) If x belongs to Gn with n > n0 and x + 0 (cf. Remark (1.14)), then x - f t ^ 0
for every i.

Now we define the Cech complex C" (resp. C") of A (resp. of G) with respect to
(A>'-*fd) (resP- ( 7 i » - - - > J d ) ) as follows: Let us denote the complex [0-> C?-> Q1-> 0;
where C? = ^4 and Q1 - ^J (resp. [0 -> Q° -> Q1 -» 0; where Q° = G and Q1 = GA])
by C] (resp. CJ) for i = 1, ..., d. Then we define the complex C (resp. C") by the tensor
product of the complexes C\, ..., Q over A (resp. C\, ..., Q over G).

Then, by taking the cohomology of these complexes, we have the following rela-
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tions (cf. Chapter III [15], [14]):

H«(C)^HJ(A) and Hq(C') ^ H«G+(G) for q > 0.

Here the r-th component Cr of C8 is a direct sum of localizations of A for every
r > 0 and has the filtration on localizations defined naturally as in (1.2). These filiations
are preserved by boundary homomorphisms. So, C" is a filtered complex. Also, C" is
a complex of graded G-modules and we denote by (C")n the complex induced from the
homogeneous component of degree n of C'.

Proposition (1.13). (i) The associated graded complex G(C°) of C" with respect to
the filtration as above is isomorphic to C'. That is, Fn(C°)/F"+1(C) ^ (C')n holds for
every integer n.

(ii) For n e Z, we have the following exact sequence:

0 -> HftF") -» Fn -* H°(X, Ox(n)) -> H^F'fC)) -> 0,

£/ze isomorphisms:

H*(X, Ox(n)) ^ H«+1(F"(C')) for q>l.

(Hi) For n e Z, we have the isomorphisms:

x(n)) for q>Q.

Proof. Our statement (i) follows almost directly from our definition of filtration.
If we define the complex O\1 replacing C° = A by 0, we can easily show the

equalities /^(F^C'U) - Hq(X, Ox(n)) for q > 0 and n E Z.
Assertion (ii) follows from the exact sequence of complexes

0 -> F^CU -> F"(C) -> F" -> 0.

(iii) We have the exact sequence

0 -> F"(C8) -^ C -> C/Fn(C) -> 0.

Then the assertion follows from (i) and the long exact sequence of local cohomology
groups.

Remark (1.14). Let / be the product of a subset of {/19 ...,/d} and r the integer
such that /e Fr - Fr+1. Let x be an element of F" - F*+1 with n > n0 as in (1.12.1).
Then x/fs e Fn~sr - Fn~sr+1 as ( / ) f -x^0 for every r in G. Also, we can prove

n m)=o.
n>0

Here we introduce a numerical invariant a(A) = aF(A) for a filtered ring A with
filtration F = {F"}neZ, which is analogous to the invariant a(R) for a graded ring R (cf.
[12]).

Definition (1.15) (see also Proposition (1.17)). We define the filtration on local
cohomology groups and the invariant a(A) = aF(A) as follows:
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F"(H1(A)) = Image (Hq(Fn(C)) ^ Hq(C)} ,

a(A) = max{n e Z\Fn(H^(A)) / 0} .

Remark (1.16). (i) This defines a decreasing filtration on Hq(A) with

Fr-Fn(Hq(A))^Fn+r(HI(A)), for n, r e Z , and ^ > 0 .

(ii) limHq(Fn(C')) = Hq(A), where we take the limit with respect to decreasing— ̂
order on Z and the map induced from the inclusion of complexes Fm(C°) -> F"(Ce) for
m > n.

(iii) We have H«(F"(C°)) = 0 (q>l) for sufficiently large n, since OyC/V) is
a i^-ample invertible sheaf (cf. (1.1) for the definition of N). Further we have
Hl(Fn(C°)) = 0 for sufficiently large n by Theorem (2.3.1), Chapter III of [15].

Although C" is the associated graded complex of C", the operations of taking
cohomology groups and associated graded modules are not commutative in general.
So, we need some vanishing conditions to deduce the relations between Hf(A) and

(1.17). (i) // we identify H1+1(A) with Hq(X-E, Ox) = Hq(X-E, Ox(n))
for q > I, then Fn(Hq+l(A)) is the image of Hq(X, Ox(n)) in Hq(X ~ E, Ox(n)). In par-
ticular, this filtration does not depend on the choice of homogeneous system of parameters

{/ I , - - - /,}•

(ii) Suppose Hg^^G) = 0 and H%+
+

l(G) = 0 for some integer q>l. Then H%+(G) is
the associated graded module of Hq(A). Namely, Fn(Hq(A))/Fn+1(Hq(A)) ^ [Hg+(G)]n

holds for every n E Z. In particular, if H^~+
1(G) = 09 then the equality a(A) = a(G)

holds. (In general, we have the relation a(A) < a(G)).
(iii) // Hq

G+(G) = 0, then Hq(A) = 0 and Hq(Fn(C°)) = 0 for every neZ.
(iv) Let q and n be some integers with q < d. Suppose [Hg+(G)]f = 0 for i < n.

Then the canonical morphism Hq(X, Ox(n)) -^> Hq(X — E, Ox(ri)) is injective.

Proof. The assertion (i) follows from Proposition (1.13). The assertion (ii) follows
from the cohomology exact sequence associated to the exact sequence of complexes

(1.17.1) 0 -> Fn+1(C) -> Fn(C°) -> (C)n -> 0.

(iii) and (iv) follows from the following lemma which will also be used in § 4.

Lemma (1.18). Let q and n1 be integers with q > 0.
(i) Suppose [H£+(G)]n = H9(C'n) = 0 for every n>n^ Then Hq(Fn(Ce)) = 0 for

every n>nl.
(ii) Suppose [Hg+(G)]B = Hq(C'n) = 0 for every n<n^ Then Hq(C/Fn(C)) = 0

and the canonical homomorphism Hq+l(Fn(C")) -> Hq+1(C") is injective for every
n <n^

Proof, (i) By the exact sequence (1.17.1) and our assumption, the inclusion
Fm(C) -> Fn(C) induces the surjective map Hq(Fm(C)) -* Hq(Fn(C)) for every m > n >
n±. By (iii) of Remark (1.16), this shows the relation Hq(Fn(C)) = Qforn>nt.
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(ii) Consider the sequence of complexes

(1.18.1) 0 -> Q -> CyF1^^) -> C/F*(C) -> 0.

Our assumption implies that the canonical surjection Ca/Fm(Ca) -»C'/Fn(C') induces the
injective map Hq(C/Fm(C)) -> Hq(C/Fn(C)) for every n<m<n1.

Since limHq(C'/Fn(C)) = 0, where the limit is taken as in (1.16)(ii), the injectivity
shows the relation H9(C/Fn(C)) = 0 for every n<n^ The latter half of the statement
follows directly from this vanishing.

§ 2. The Divisor Class Group of Normal Rees Algebras

(2.1) In this section, we always assume that the Rees algebra <% is normal. Then
our filtration can be described by certain family of valuations on the quotient field K of
A (2.2). Our goal in this section is Proposition (2.7) which is a generalization of
Theorem (1.6) of [45] and [17].

Note that £ft! is normal when $ is normal. Also note that ^ is normal when A is
normal and G is reduced (cf. Proposition (1.6)).

(2.2) First, we define J of St by: J = 0 F"+1T", so that M/J ^ G ̂  @'/u@f.
n>0

Since 3ft! is normal, the principal ideal u$' is unmixed of height one. Hence J is also
unmixed of height one. Let

be the primary decomposition of J and Vi the valuation of K(T) attached to Pt,
1 < i < t. By the relation J = u$' D J?, the integer at is given by at = Vt(u) for 1 < i < t.
If Vi is the normalized valuation on K of the restriction of Vt on K, we have the relation
Vi(x) = qt - Vi(x) for every x of K with some positive integer qt for 1 < i < t. Since we
have the relations

PI(*•*!) n - - - n Pt
(k^ = ukm' n m = ® F"+fcrn and Fk = uk@f n A for k e Z,

n>0

we can describe Fk as follows:

Fk = {xeA\Vi(x)>k-ah 1 < i < t}

= {xe A\Vi(x) > fc-(a,/^), 1 < i < t}.

Conversely, we obtain the following:

Lemma (2.3). Let A be a Noetherian normal domain with the quotient field K and
fl5 ..., us be discrete valuations on K which satisfy the conditions: vf(x) > 0 for x 6 A,
1 < i < s. Suppose that the positive rational numbers rl9 ..., rs are given and that the
filtration {Ffe}fceZ is defined by

Fk = {xe A\vt(x) >k-rt,l<i<s}.

Then the associated Rees algebra M = 0 FkTk is normal (However, & is not
fc>0

necessarily Noetherian, in general, in this case.)
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Proof. Let us write r{ = pjqt with relatively prime positive integers pt and qi9

1 < i < s. Define the valuation V{ on K(T) by the rule; Vt(x) = g/i^x) for x e K and
Vt(T) = —ph I <i < s. Then our ^ is written as follows:

31 = {/e A[T-\\Vi(f) > 0, 1 < i < s}.

Hence ^ is a Krull domain.

The following remark gives the condition to get Noetherian ^ (cf. Chapter III
[15]):

Remark (2.4). (i) Let /: W -» W = Spec(^l) be a projective birational morphism
with normal W and normal W. Let D be an effective rational coefficient Weil divisor
on W such that there is a positive integer N so that —N-D is an /-ample Cartier
divisor on W. If we define the filtration {Fn}weZ by:

Fk = {xEA\divw,(f*(x))>k-D},

then the attached Rees algebra & is a Noetherian normal graded domain and
Proj(^) - W.

(ii) Conversely, every our filiations of (2.2) can be obtained in this way. That is:
t

Put W'= Proj(^) and D = £ (ajq^ Ei9 where Et is the irreducible closed subvariety of
i=i

W defined by the homogeneous prime ideal Pf, 1 < i < t.

Example (2.5). (a) Let A = fc[[x, y, z]]/(x2 + y3 + z3), where k is a field and m be
the maximal ideal of A. Then the Rees algebra of A with respect to the m-adic
filtration is normal, since mk is integrally closed for every k as A is a rational singularity
((7.1) of [28]).

On the other hand, if we define another filtration on A by: Fk(A) = m^k/2\ where
{k/2} is the smallest integer not less than fc/2, then the corresponding Rees algebra is
not normal. In fact, x2 = — j;3 — z3 e m3 = F6, while x $ F3 = m2.

Furthermore, if we define the new filtration {Fk}kez
 so that (J) FkTfe is the

fc>0

normalization of © FkTfc in K[T], then this filtration coincides with the one induced
k>0

by grading of A defined by: deg(x) = 3 and deg(j;) = deg(z) = 2.
In this example, "Proj" of the three Rees algebras are the same scheme.
(b) Let A = /c[[x3y?z]]/(x2 + y3 + z4) and define the filiations (Ffc}keZ and

(Ffe}keZ by the same process as above. In this example, the associated graded ring of
{F*}kez is k[x, y, z]/(x2 + y3) with: deg(x) = 3 and deg(y) = 2 deg(z) = 2 (cf. Example
(6.19)).

(2.6) Now, we will investigate the divisor class groups of ^ and 01' using the
diagram (1.2.1). We will denote by:

Div(l7) (resp. P(U)): the group of divisors (resp. principal divisors) of a normal
scheme U

C1(17): the divisor class group of a normal scheme 17
cl(D): the class of a Weil divisor D of 17 in C1(17).

If K is a prime divisor of X9 we put:
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Fv: the prime divisor (n~l(V))red of Y.
For Pt (1 < i < t) of (2.2), we denote:

EI'. the prime divisor of X — Proj(^) defined by Pt

Ft: = FEi,l<i<t.
The morphism n induces the homomorphism n*: Div(X) -> Div(F) so that 7i*(£i) =
qi'Fi9 1 < i < t, and 7i*(F) = Fv for 7 ^ E£ (1 < i < t).

Proposition (2.7). (i) We have the isomorphisms'.

C1(«)^C1(7), and

d(dT) s C1(F) s C1(7)/Z cl(S).

(ii) We have the exact sequences:

and

0 -> C1(X) -> Cl(7) -> 0 Z/qtZ -* 0.

(iii) TTiere are exact sequences:

0 -> Zf

0 -> Coker(a) -* Cl(«') -> Cl(yl) -> 0,

where a: Z -> Zf fs defined by a(l) = (al5 . . . , a,), /n particular, &' is factorial if and only
if A is factorial, t = 1 am/ aL = 1 (or, equivalently, if and only if A is factorial and G is
an integral domain).

Proof, (i) By (1.3), (iv) and (v), (p and cp' are isomorphisms in codimension one.
Hence they induce isomorphisms of divisor class groups.

(ii) Let HDiv(7) be the subgroup of Div(7) generated by "homogeneous" divisors
of Y: That is, the subgroup of Div(7) generated by S and the set {FV\V is a prime
divisor of X}. Also let HP(7) be the subgroup of Div(7) generated by the set
{divy(/)|/ is a homogeneous element of K[T, T"1]}. Then, by (7.1) of [39], we have
the relation Cl(7) ̂  HDiv(7)/HP(Y). From the relations HP(7) ̂  P(X) © Z divy(T)

t
and diVy(T) = — divy(w) = S — ]T a£-F£, we can easily see that Cl(Y) is generated by the

i=l

set {cl(FF)|F is a prime divisor of X}. Our assertion follows from the relations
7c*(cl(£i)) = ^-clCFj), 1 < i < t, and n*(d(V)) = cl(Fv) for prime divisor V of X with

Ei9 \<i<t.
(iii) Since n has no ramification outside £, we have H-Div(F) ^ 7c*^*(Div(^4)) ©

/ / r \\
Z-S resp. H • Div(F') ^ 7r*^*(Div(^)) © Y Z • Ei . The exact se-

\ V=i //
quences follow in the same manner as in (ii). Q.E.D.



696 MASATAKA TOMARI AND KEI-ICHI WATANABE

Example (2.8). Let A = k[_X, F](n) and {Fk}keZ be the m-adic filtration on A,
where m = (X, Y)(n\ Then C\(£) ^ Z and Cl(A) ^ Z/nZ. This shows that the first
exact sequence in (2.7) (iii) does not split in general.

Remark (2.9). The characterization of the filtrations satisfying our conditions can
be found in [36]. The calculation of Cl(#) and Cl(#') in the case t = 1 and a1 = I can
be found in [17] also in [5], [18] under certain conditions. Also S. Itoh orally showed
us a simple ring-theoretic computation method for C\(&) and Ci(^f ) under the same
assumption as ours.

§ 3. The 01 the Filtered Blowing-Up
and the Criterion for Gorenstein Property

(3.1) In this section, we keep the notation of §1 and let D°x (resp. cox) be the
dualizing complex (resp. the dualizing module) of X = Proj(^) (see Appendix to this
section, for the generalities of such materials). The aim of this section is to express the
module o)x in terms of known data and to relate to some criterion for G or & to be
Gorenstein.

Proposition (3.2)o The dualizing module COY of Y is given by O)Y = @ o}x(n).
n>0

Proof. Let Y(N} = Spec* ( 0 Ox(nN) } . Since OX(N) is invertible, the dualizing
\«>o /

sheaf on Y(N} is given by 0 Q)x(nN) (p. 144 of [16]). Since the canonical morphism
n>0

Y -» Y(N) is finite, <% is given by O)Y = Hom0(y(N))(Oy, CQ(YW)). This formula gives us our
desired result, (cf. Proof of Proposition (1.6) of [46]).

Corollary (33).
( i ) o)Y, ^ 0 o)x(n).

(ii) Ka*a®H°(X,a>x(n)).

(iii) K» £0 H°(X, a>x(n)).
neZ

Proof, (i) is given by localizing (3.2).
(ii) and (iii) cp and <p' are both isomorphisms in codimension one. Since the

canonical module always satisfy the condition (S2), we obtain the relations <?*(<%) = o>z

and (p'*(coY') = &>z-- Hence the assertions follow.

Proposition (3.4)0 Assume that G is Cohen- Macaulay. Then KG^(Ka>/uK#.)(—l).

Proof. As G is Cohen-Macaulay, so is #' (cf. (1.6)). The normalized dualizing
complex D°G of G is given by D°G = RHom^(G, D°g>). From the exact sequence

we have the exact sequence of complexes
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Taking the cohomology groups, we have the desired result. Here note the vanishing
H~d(Da^) = Q(d = dim G) because 9f is Cohen-Macaulay.

Theorem (3.5). Suppose G is Gorenstein with a(G) = a. Then:
(i) The relation cox = Ox(a + 1) holds.
(ii) K# is a free ^-module if and only if a = — 2.

Proof. If G is Gorenstein, we have the relation G(a) = KG by [12]. Then £%' is
Gorenstein by (i) of Proposition (1.6), and K&, = $'(a 4- 1) by Proposition (3.4). So,
by Corollary (3.3), Km is isomorphic to ® £%'n+a+l. Thus we obtain the relations

n>0

cox = (K^ = Ox(a + 1). Since 0 ^+fl+1 is isomorphic to ^ if and only if a = -2,
n>0

we obtain (ii).

Remark (3.6). (i) of Theorem (3.5) is a generalization of Theorem (5.4) of [41].

Proposition (3e7)0 Suppose G is Cohen-Macaulay. Then, i//*(cox) is reflexive if and
only if a(G) < 0.

Proof. For every integer n, a)x(n) and cow are isomorphic over X — E. Further
(p*(a}x(n)) is reflexive O^-module if n is sufficiently small. Hence we obtain the relation
(p^(cox(n)) = cow for sufficiently small n. By (ii) of Corollary (3.3) and Proposition (3.4),
the relation (p*(cox) = cow holds if and only if (KG)n = 0 for n < 0.

Corollary (3.8). Assume that A is a rational singularity and that G is Cohen-
Macaulay. Then a(A) = a(G) < 0 (cf. § 1. for the definition of a(A) and §4. for rational
singularity.)

Proposition (3.9)*. Suppose that G is Cohen-Macaulay and that KG is generated by
the elements of degree not greater than one. Then a)x is generated by H°(X, cox) as an
Ox-module.

Proof. By Proposition (3.4), we have the relation KG^((K^)/uK^,)(—l). Our
assumption implies that K#> is generated by the elements of degree not greater than 0
over $'. So, there exists a free ^-module L = St(b^)@ ••• © M(bm), where bt > 0 for
every i and a homomorphism h: L -> K@ for which hn: Ln -> (K#)n is surjective for every
n > 0. We can take a positive integer N such that fflb'$N = &b+N for b > 0. Hence
(K#)0 generates (K@)(N) as an ^(jv)-module. Therefore a>x is generated by its global
sections, because H°(X9 cox) = (K@)0 and cox =

(3.10) In the rest of this section we assume that ^ is normal, and describe the
class of the dualizing sheaf as an element of the divisor class group. We preserve the
notation in § 2 in the below.

Proposition (3.11). We have the relation

cl(o>r) = 7c*(d(o>x)) + elf £ (qt - 1)F£ - s] in C1(Y) .
\i=i /

* See Note Added in Proof (1).
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Proof. See Proposition (1.6) of [46].

Theorem (3.12). Suppose that A is Gorenstein and that G is an integral domain.
(i) Then there exists an integer a such that the relations cox ^ Ox(a + 1) and

CDE = 0E(a) hold. In particular, if we put G = (J) H°(E, 0E(n))9 we have the relation
_ n>0

KS * G(a).
(ii) Further suppose that G is Cohen-Macaulay. Then G is Gorenstein.

Proof, (i) Since the restriction cox\x_E is trivial and E is irreducible, there is an
integer m such that the relations cox ^ Ox( — mE) ^ Ox(m) hold. By the adjunction
formula, we have the relation COE ̂  OE(m — 1).

(ii) See [12].

t
Corollary (3=13). (i) Km is a free ^-module if and only if £ (1 + at — qJ/qiEi is

1=1
an integral Weil divisor on X and linearly equivalent to Kx on X.

t
(ii) K&. is a free @K -module if and only if n*(Kx) + £ (qt — l)Ft is linearly

equivalent to the integral divisor m I £ ^i 1 far some integer m.
V=i /

Proof, (i) As Cl(#)'^ Cl(7) and TT*: Cl(X) -> C1(Y) is injective, our result follows
t

from Proposition (3.11) and the equality: divr(T) = S — £ afFf.
i=l

(ii) follows from Proposition (3.11) and the isomorphism: C1(F) ̂  C1(7)/(Z cl(S)).

Example (3.14). Put G=0(m"/mn + 1) and assume that G is a Gorenstein
_ «>o

domain with a(G) = a. If we define the filtration {Fk}keZ
 bY: pk = m^kplq^ for k > 0, we

have the relation Kx = —(a+l)E, because X = Proj(^) coincides with the m-adic
blowing-up and KY is linearly equivalent to the divisor { — q(a + 1) + (q — 1) — p}F9

where F = n~l(E)red. Hence, K@ is free if and only if p = —aq— 1.
For example, if A = fc[[x, y, z]]/(x2 — yz\ we have a(G) = — 1. Hence K@ is free

if and only if p = q - 1. In the case q = 2, ^ = A[_xT9 yT, zT, xT2, yT2, zT2], which
turns out to be a Gorenstein ring.

Corollary (3.15). Assume that I (see § 1) = F^ is m-primary and that & is nor-
mal Gorenstein. Further assume that q{ = 1 holds for all i. Then KA is free and
K@,/uK@, ^ G(— 1). Moreover, if G is Cohen-Macaulay, then G is Gorenstein with
a(G)=~2.

Proof. By Corollary (3.13), Kx is supported on E, hence KA is free. By the
t

freeness of K$, Kx is linearly equivalent to £ a{E{ on X. In another word, cox is
i=l

isomorphic to Ox(— 1). By (iii) of Proposition (1.6) and (iii) of Corollary (3.3), K#> =
&(-!). Hence G s Sf/udf s (K@,/uK<%,)(l). The remaining assertion follows from
Proposition (3.4).
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Appendix to § 3. Graded Dualizing Complex
for Graded Rings and Duality for Projeetive Morphisms

(A.3.1) In this section, let R = (J) Rn be a Noetherian graded ring with A = R0
n>0

a local ring with maximal ideal m. We always assume that A is a quotient of a
Gorenstein local ring.

For a complex of graded JR-modules C", we denote (C'(n)) [p] the complex of graded
j^-modules defined by: (((C'(n))[_p])q)m = (Cp+q)n+m, where upper index means the degree
as a complex and the lower index means the degree as graded modules. We always
assume that the boundary homomorphisms of complexes of graded ^-modules are
homogeneous of degree 0.

Our aim in this section is to describe the duality on Proj(K) in terms of the
dualizing complex of R which is a complex of graded ^-modules.

Proposition (A.3.2). There exists a dualizing complex of R which consists of graded
R-modules.

Proof. By our assumption, A has a dualizing complex. As R is finitely generated
over A, we can describe R in the form: R = S/J, where S is a polynomial ring over A
and J a graded ideal of S. If we can prove that S has a dualizing complex D"
consisting of graded S-modules, then RHoms(-R, D") is a dualizing complex on R con-
sisted of graded ^-modules. The existence of such D' is proved in the following lemma:

Lemma (A.3.3). Let X be a Noetherian scheme which possesses a dualizing complex D",
/ / \\

L an invertible Ox-module, B= 0 LnTn and Y = Specx(B). Then D' ®0x 0 LnTn ] )
n>0 \ * \n>0 //

is a dualizing complex of Y.

Proof. See [16], V.8.3.

Proposition (A3.4). Let D° be a complex of graded R-rnodules in D*(R) (that is,
Dp = 0 for sufficiently small p and Hq(D') is finitely generated for every q\ then D" is a
dualizing complex if and only if there exist integers d and n for which the following
conditions hold:

where A/m is the graded R-module whose component of degree 0 is A/m and other
components are 0.

Proof. By [16], V.3.4, the complex D' is dualizing if and only if for every maximal
ideal M of R there exists an integer d' such that

If Jt = R+ + mR, the above isomorphism is contained in our assumption. If Ji is
not homogeneous, let ^ be the maximal among homogeneous prime ideals contained in
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Jl. Then, after the localization by homogeneous elements of R — 9, which does not
affect Extjj(R/«^, De), we may assume that the relation Ji = & 4- t R holds for some
ttJt-9 (cf. § 1 of Chapter 1 of [12]). Now, by Lemma (A.3.5) below, R/0> is
dualizing with respect to D° and by the exact sequence

0 -» R/& A R/& -> R/Jf -> 0 ,

we have the desired result.

Lemma (A.3.5). Under the assumption of Proposition (A.3.4), every graded R-module
H is reflexive with respect to D\ That is, the natural map H -» RHor%(RHor%(Il ', D'), D°)
is an isomorphism. Moreover, if £P is a graded prime ideal of R, which does not contain
R+ and dim R/0> = 1, then

Proof. The proof of the former part of our assertion goes exactly the same as
[16], V.3.5. As CR/^V) is H-simple, every graded (K/^)(^-module is free (cf. [12], I,
§ 1). As R/& is reflexive with respect to D\ [Extjf (R/&, Dm)\^ equals (R/^\^ if it is
not zero. Taking a homogeneous element t such that P + tR is (R+ + mjR)-primary,
we see i = d — 1.

Proposition (A306)e // D° and D" are dualizing complexes of R both of which are
complexes of graded R-modules, then they are isomorphic up to grading of complex and
shift of grading s as R-modules.

Proof. By [16], V. 3.1, D" and D" differ only by shift of gradings and multiplication
by an invertible J?»module L. On the other hand, L equals RHom°(D°, D") up to shift
of gradings. Hence L is a graded K-module. Since A = R0 is a local ring, L is free.

Definition (A3.7). A dualizing complex D° of J^ consisted of graded J?-modules
and graded homomorphism of degree zero is a normalized graded dualizing complex of
R i f

fc ;:;;::.
As we have seen, the normalized graded dualizing complex of R is unique up to

isomorphism.
As usual, if M is a graded .R-module and if d is a positive integer, we put

M(d) = 0 Mnd. If C° is a complex of graded .R-modules, we put (Ca)(d) by: (C°)(d) =

Lemma (AJJ), Let D°R be a normalized dualizing complex of R, J a homogeneous
ideal of R and d a positive integer.

(i) Then (D'R)(d) (resp. RHomR(R/J, D°R)) is a normalized dualizing complex of R(d}

(resp. R/J).
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(ii) We have a canonical isomorphism

DR ^ RHomjyd^jR, D°R(d))

for every integers n and d with d > 0.
(ill) If we put a>x(n) = (KR(n))~, then the canonical homomorphism

cox(n) -» Hom0x(0x(-n), a)x)

is an isomorphism for every integer n.

Proof, (i) We can easily check the following relations

Ext l
RW(A/m, (DR)W) = [Extern, Di)](d) = j°. J°r ! * °

- - (Aim lor i = U

And similarly for R/J. Thus we can conclude that (D*R)(p) (resp. RHomRCR/J, D^)) is a
normalized graded dualizing complex of R(d) (resp. jR/J).

(ii) Since both sides are normalized dualizing complexes of R9 twisted by degree n,
they should be isomorphic.

(iii) From (ii) we have an isomorphism

If we take d so that R(d) = R0tRd^ and if we operate the functor ( )~ of both sides and
take cohomology of the lowest degree term, we get the desired isomorphism.

Theorem (A.3.9). If D* is a normalized graded dualizing complex of R, then (D°)~ =
((Dp)~)peZ is a dualizing complex on X = Pioj(R). More precisely, for every closed
point x of X, we obtain the following relations:

Proof. We have only to show the isomorphism for Ext group as above. Now, a
closed point x of X corresponds to a graded prime ideal & of R which does not contain
R+ and dim R/0* = 1. In this correspondence, k(x) is the degree zero part of (R/^)(^.
Then our assertion is the case d = n = 0 of Lemma (A.3.5).

Remark (A.3.10). If R = © Rn is a graded ring with both positive and negative
neZ

graded parts and assume R satisfies the following conditions;
(i) R is finitely generated over a local ring (A, m) contained in R0, which is a

quotient of a Gorenstein local ring.
(ii) ,R has a unique graded maximal ideal Ji and the inclusion A a R induces an

isomorphism of A/m and R/Jf.
Then we can also prove the existence and uniqueness of a complex De of graded

.R-modules with the property
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in the same manner as in (A.3.6). We will call this D", also, the normalized dualizing
complex of JR.

Remark (A.3.11). Let D° be as in (A.3.7) or (A.3.10). We define

where d = dim R and call this module the canonical module of R. By (A. 3.9) and the
exactness of the functor ( )~, (KR)~ is a dualizing module on X = Proj(R) if R is as in
(A.3.1) (cf. also (A.3.12)).

Remark (A.3.12). Let X be a Noetherian scheme with a dualizing complex D°.
Recall that D" is normalized if for every closed point x of X.

k(x) for i = 0 .

If dim X = d and if D° is a normalized dualizing sheaf on X, we define the dualizing
sheaf a>x of X by c% = H~d(Da). By this definition, cox is defined up to tensor product
of an invertible sheaf.

Proposition (A.3.13)- Let D° be the normalized dualizing complex of R and Jf the
unique graded maximal ideal of R. Then there is a canonical isomorphism of graded
R-modules

fl>(M) * Honu(Exti' (M, D8), £A(A/m))

for a finitely generated graded R-module M and every i. In particular, we obtain the
relation.

Hd^(M) ^ HomA(KR, E(A/m)) , where d = dim A .

This shows that our KR is the same module as is defined in [12] if R is positively graded
and finitely generated over R0 = k, afield.

Proof. The same as in [16], V.6.2.

Remark (A. 3. 14). Let the situation be as in §1. Then our dualizing complex
D'x — CDi)~[~l]j where D'R is the normalized dualizing complex of R, is isomorphic to
il/l(DA) in the notation of [16], Chapter III by our construction of DR. So, by [16] III,
11.1, for every coherent Ox-module F, we have the isomorphism

(F, Dm
x))^KRomA(R^F9 DA) .

(We identify a sheaf G on W = Spec(^) with H°(W, G).)

§ 4. Criterion for Normality Singularity

(4.1) In this section, we assume the following conditions on A:
(4.1.1) A is essentially of finite type over a field of characteristic 0.
(4.1.2) Spec(v4) — {m} has only rational singularities (hence, is Cohen-Macaulay).
(4.1.3) / = FN (see (1.1)) is m-primary. That is, X - E is isomorphic to W - {m}.
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Also, let X' be the normalization of X and X a desingularization of X', so that we
have the following commutative diagram:

W <—z— X
In this situation,

Hq(X, Ox) ̂  H^(A) holds for q with 0 < q < d - 1, and
Hd-l(X,Ox)^HomA(coA/Ucox), EA(A/m)\ where d = dim A (cf. [8], [35], [51]).

We define the geometric genus of the singularity (A, m) (or of (W, w)) by the
integer pg(A) = lA(Hd~l(X, Ox)) = lA(o)A/f*((Dx)), where 1A means the length as an
^4-module.

In particular, A is a rational singularity if and only if A is Cohen-Macaulay and
pg(A) = 0 in our situation.

First, we shall prove the following:

Theorem (4.2). Assume one of the following conditions',
(i) [Hd

G~l (G)]n = 0 for every n<0.
(ii) X has only rational singularities (in particular, X is normal).
(iii) Hd-l(C/F°(C)) = 0 holds.
Then the inequality pg(A) > 1A(H*~1(X, Ox)) holds.
Furthermore if, in particular, G is Cohen-Macaulay (resp. Gorenstein with a(G) = a),

then we can describe the right hand side of the inequality above as follows:

lA(Hd~l(X, Ox)) = lA(F°(H<m(A))) = £
n>0

(resp. = £ UGJ (cf.[46])
\ 0<n<a

Proof. Let E be the scheme theoretic inverse image of E in X. By our assumption
on A, Hq(X - E, Ox) = Hq(X - E9 Ox) for every q > 0. If our condition (iii) holds, then
the canonical map Hd~l(X, Ox)^>Hd~1(X - E9 Ox) is injective (see §1). Since this ca-
nonical map factors through Hd~l(X, Ox\ we have an injection Hd~l(X, Ox) -> Hd~l(X, Ox).
Condition (i) implies the condition (iii) by Lemma (1.18). By the following lemma, the
condition (ii) implies the injectivity of the map Hd~l(X, Ox) -»H d ~ l (X - £, Ox).

Lemma (4.3). (i) // X has only rational singularities, then the canonical map
Hq(X, Ox) -»Hq(X - E, Ox) is injective for every q > 0.

(ii) // Y has only rational singularities, then [H§+(G)]n = 0 for every couple (n, q)
with n < 0 and q < d.

(iii) Suppose that X is normal and that Ox(n) is Ox-invertible with the relation
Ox(n) ^ Ox(l)®

n for every n e Z. Further we assume Ox(n) is base point free for n > 0 or
dim A = 2. Then [ff£+(G)]n = 0 for every n<Q.

Proof, (i) By Leray's spectral sequence and Grauert-Riemenschneider's vanishing
theorem ([13]), 0 = Hl(X, a)x) = Hl(X, g*(a>x)) for i > 0. Since X has only rational sin-



704 MASATAKA TOMARI AND KEi-icm WATANABE

gularities, Hl(X, o)x) = 0 for i > 0. Hence, by the duality theorems (cf. (2.d) of [29]),
HE~I(X, Ox) = 0 for i > 0, because X Is Cohen-Macaulay. Therefore our assertion
holds.

(ii) By similar argument as above, we obtain Hl(Y, COY) = 0 for i > 0. Hence
Hl(X9 a)x(n)) = Q for every i>0 and n > 0 by Proposition (3.2). Therefore
HE~I(X, Ox( — n)) = 0 for i > 0 and n > 0 by the duality theorems as above and (iii) of
Lemma (A.3.8). Our assertion follows by the exact sequence (1.18.1) and the vanishings
H''(C7FB(C)) = 0 for i = 0, 1 and n < 0.

(ill) Put Ox(n) = g*(Ox(n)) for every n. By the Grauert-Riemenschnelder vanishing
([13], see also [29]), Rrf+(<Dx ®0;Ox(n)) = 0 for r > 0 and n > 0. By duality theorems
(cf. (2.d) of [29]), H~~*(X,Ox(-n)) = Q for r>0 and n > 0. By the Leray spectral
sequence

HRX, Rq9*(0x(n))) => Hj+*(X, Ox(n)),

HE(X, Ox(n)) = 0 for n < 0. The rest of proof goes as In (II).

Let q be an integer with 0 < q < d — 1.
(i) // [H&+(G)]B = O/or every n<®, then the canonical map Hq(X, Ox) -* H*(X', Ox.)

is injective.
(ii) Furthermore suppose Ox(n) is invertible for every neZ and put Ox,(n) = h*(Ox(n))

for every n e Z. Then the canonical map Hq(X,Ox(n))-j>Hq(X',Ox>(n)) is injective for
every n < 0.

Proof. By (iv) of Proposition (1.17), the canonical map Hq(X, Ox(n)) -»
Hq(X — E, Ox(n)) is Injective for n < 0. Since X — E is normal, this map factors
through Hq(X', Ox.(n)) when Ox(n) is invertible.

Corollary (45)0 Assume that A is a Cohen-Macaulay ring in the situation (4.1).
Consider the following three conditions.

(a) [ffc^1 (<?)]„ = 0 holds for every n<Q.
(b) X has only rational singularities.
(c) H£-+

l(G) = Q holds.
Then: (i) Suppose that A is a rational singularity and that (a) holds. Then a(A) < 0 in the
sense o/(1.15).

(Ii) Suppose (b) holds. Then A is a rational singularity if and only if Hd~1(X, Ox) =
F°(Hd

m(A)) = 0.
(iii) Suppose (b) and (c) hold. Then A is a rational singularity if and only if

a(A) = a(G) < 0 (cf. (1.15)).

This is a direct consequence of Theorem (4.2).

Now, we shall seek conditions for X to be normal or to have only rational
singularities in terms of numerical data which relates to the geometric genus pg(A).
First we shall treat the case d = dim A = 2 In the following:

Theorem (4.6). Assume that A is normal with dim A = 2 and that the following
conditions hold for A:
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(a) lHh+mn = Qforn<Q.
(b) Ox(n) is invertible Ox-module and Ox(n) = (Oy(l))®" for every n e Z.
(c) F1 - m.

Then: (i) X is normal if and only if the relation 1A(H1(X', Ox,)) = 1A(H1(X, Ox)) holds.
(ii) X is normal and has only rational singularities if and only if the relation

Pg(A)=lA(H^(X,Ox)) holds.

Proof. (I) We shall show X = X' from the condition \A(H1(X,0X)) =
\A(Hl(X', Ox.)) in the below.

Define an O^-module N by the exact sequence:

and denote N ® Ox(n) by N(n). Then the support of N(n) is contained in E, which
is a projective scheme of dimension one over A/m. So, %(N(n)) = 1A(H°(X, N(n))) —
1A(H1(X, N(n))) is a polynomial of degree one. Let us set P(n) = %(N(ri)) = a±n + a0

with integers a1 and a0 for n e Z. Note that a1 > 0 holds as Ox(l) is ample on
E. Since H°(X, Ox) = H°(Xf, Qx.) = A and Bl(X,Ox)-^Hl(X\Ox,) is bijective by
Corollary (4.4) and our assumption, we obtain the relation P(0) = a0 = 0. For al,
we see similarly the followings: H°(X, Ox(l)) = H°(X', Ox,(l)) = m and the injectivity
of Hl(X,Ox(l))^>Hl(X',Ox.(l)) follow by Proposition (1.17), Corollary (4.4) and our
assumption (c). These imply the relations P(l) = ax = — 1A(H1(X, N(l)) < 0. Hence
P(n) = 0 for every n 6 Z. This implies the assertion N = 0. The converse implication
is trivial.

(ii) Assume that the relation 1A(H1(X, Ox)) = pg(A) holds. Then 1A(H1(X, Ox)} =
1A(H1(X', Ox,)) holds by Corollary (4.4). Hence X is normal by (i). By Leray's spec-
tral sequence, we have the exact sequence:

0 -» Hl(X, Ox) -> Hl(X, Ox) -> H°(X, R^^Ox)) -+ 0 .

Our assumption implies that ^1^(Py) = 0, which means that X has only rational
singularities as desired. The converse implication is trivial. Q.E.D.

To prove a theorem generalizing Theorem (4.6) to arbitrary dimension, we shall
rewrite Theorem (4.2) and Corollary (4.4) in terms of dualizing sheaves. Here we
denote by a)v the dualizing sheaf on a scheme V. We can choose the dualizing module
as "Zariski sheaf" with the property (see the carefull treatment in the article [30]): If we
restrict the dualizing sheaves a>w, CDX, and cox> to X — E, they are isomorphic by the
morphisms induced canonically. Further g^(ojx)-^o}x gives the isomorphism on X —
E. ... etc.

Proposition (47). There are canonical inclusions, g*(cox) c: h^(ojx-) c o>x, and,
consequently,

Moreover, if [H^~1(G)]n = 0 for every n<Q, then the relation
1A(H'-*(X90X)) holds.
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Proof. Since X' is normal, (f\(cox) c= (%, follows. Further we have the canoni-
cal inclusions, as desired, by the relation h%(a>x>) — Hom0x(Ox.9 cox). Our additional
assumption implies that the canonical map Hd~l(X, Ox)-»Hd~l(X — E9 Ox) is injective.
By the duality theorems (cf. (2d) of [29]), cow/\l/^(cox) is dual to the ^-module
Ker{Hd~1(Jr - E, Ox) -» H%.(X, Ox)}, which is isomorphic to Hd~l(X, Ox). Q.E.D.

Proposition (4.8). Assume that G is Cohen-Macaulay and cox is generated by
H°(X9 cox) as Ox-module. Then:

(i) X is normal if and only if the relation

0<n<a(G)

= UfaWW •&)*(<%-))
holds.

(ii) X is normal and has only rational singularities if and only if

pg(A) = lA(Hd-\X, Ox))
holds.

Proof, (i) By Proposition (4.7),

holds if and only if \l/^(cox) = ^^(h^(cox.)) holds. In this case, we have the following
commutative diagram:

natural

By our assumption, rj is surjective. Hence the relation h^.(a)X') = cox follows. Since X
is Cohen-Macaulay,

Ox = Hom0x (CDX, CDX) = Hom0x (h+(a)x.\ h+(a>x.D ^ AJHom^. (a>x.9 a>x.)) = h+(0x.) .

Therefore X is normal. The converse implication is trivial.
(ii) Suppose the relation pg(A) = lA(Hd~l(X, Ox)) holds. Then, by Proposition

(4.7), \f/J(CDx) = ils*(h*(a}x>)) = ^*(g*(a>x))- By the proof of (i), X is normal. Again we
have the following commutative diagram:

Since ?7 is surjective, g#(cox) = cox. Therefore X has only rational singularities, because
X is Cohen-Macaulay (see pp. 50-51 of [24]). Q.E.D.
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Theorem (4.9)*. Let us assume that G is Cohen-Macaulay and that one of following
two conditions holds:

(a) G is Gorenstein with a(G) > — 1.
(b) KG is generated by the elements of degree < 1 as G-module. Then the relations

pg(A) = \A(Hd~l(X, Ox)) = X li([#<L(G)]n) hold if and only if X is normal and has
0<n<a(G)

only rational singularities.

Proof. This follows from (4.8), (i) of (3.5) and (3.9).

We apply Theorem (4.9) to the following situation.

(4.10). Let A be the local ring of ^-dimensional hyper surface isolated singularity of
multiplicity p written as follows: A = fc[[x0, x l 5 . . . , xd] ]/(/), fe S = fc[[x0,..., xd]],

P
and f = x0

p+ £ gt(xl9...9xd) x0
p~l with gi(x1,...,xd)e(xl9...,xd)

i for i = 1, ..., p.

Let r be the integer defined by r = min —:—- (>1). Let us introduce a filtration
l < i < p [ _ ? J

{Fk(S)}k>0 on S by putting weights on each monomials as follows; wt(x0) = r and
wt(x£) = 1 for 1 < i < d. We shall introduce the filtration {Fk(A)}k>0 on A by; Fk(A) =
Fk(S)A for k > 0. Then we can easily see that G = @ pk/pk+^ js a hypersurface of the

fc>0

form fc[x0, xls ..., x>d\l(frp\ where frp is a weighted homogeneous polynomial of degree
rp. By [12], we have a(G) = r(p — 1) — d. Now we obtain the following:

Corollary (411)*. Let (A, m) be the local ring of a d-dimensional hypersurface
isolated singularity of multiplicity p as in (4.10). Then

(i) We have the following inequalities

where the binomial coefficient I . J means 0 for j < i.

(ii) Furthermore assume the relation r(p — 1) > d — 1. Then the equality holds in
( \

the first inequality of (i) if and only if X = Proj (+) Fk j is normal and has only rational' \ VLX

singularities. \k>o /
(iii) Assume the relation p > d. Then the equality pg(A) = ( ) holds if and

only if the blowing-up of A with center maximal ideal is normal and has only rational
singularities.

Proof. Let the notations be as in (4.10). Since a(G) < rp = deg(/rp), we have
Z lA(Gk) = Z dim(Fk(S)/Fk+i(S)). Hence (i) and (ii) follow from (4.2), (4.9)

0<fc<a(G) 0<fc<a(G)

and (4.10). For (iii), apply the arguments above for the maximal-ideal-adic filtration
of A

Remark (4.12). This corollary is a generalization of Theorem (3.14) of [26] and
Theorem (1.3) of [50].

* See Note Added in Proof (1).
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(i) Let A be the local ring of the singularity {x3 + ya + zb = 0}
in k3 at the origin, where a and b are integers with 3 < a < b. Then the blowing-up X
of A with center maximal ideal m is normal and has only rational singularities if and
only if (a, b) is one of followings: (3, 3), (3, 4), (3, 5) and (4, 4).

(ii) Let A be the local ring of the singularity {x4 + ya + zb + wc = 0} in fc4 at the
origin, where a, b and c are integers with 4 < a < b < c. Then the blowing-up X of A
with center maximal ideal m is normal and has only rational singularities if and only if
(a, b, c) is one of followings: (4, 4, c) with 4 < c < 7, (4, 5, 5), (4, 5, 6) and (5, 5, 5).

Proof. In these cases, one can easily see that G = 0 mk/mk+1 is Gorenstein with
fc>0

a(G) = 0. Hence X has only rational singularities if and only if pg(A) = I. For (i),
by using the fact that A is quasi-homogeneous with deg(x) = afc, deg(y) = 31? and
deg(z) = 3<z, we can see that pg(A) = 1 if and only if 3ab — ab — 3b — 3a <3a (cf. [46]
(2.13)). For (ii), by using the fact that A is quasi-homogensous with deg(x) = afoc,
deg(y) = 4bc9 deg(z) = 4ca, and deg(w) = 4ab, pg(A) = 1 if and only if 4abc — abc —
4bc — 4ca — 4ab < 4ab.

(5.1) We always keep the notation of Section 1. Moreover, in this section, we
assume that (A, m) is a normal local ring containing a field fe, I is m-primary and that G
is an integral domain. We assume there is no integer r > 2 with G(r) = G. Also these
assumptions imply that St is normal and we have Ffc = \li^(Ox(K)) = \l/^(Ox( — k ' E ) ) by
(iii) of Proposition (1.6) and the arguments of (2.2). In the first part of this section, our
purpose is to prove Theorem (5.6). In the second part, we will show that our space X
is a deformation of Proj(G^) (Proposition (5.17)). In the case dim A — 2, this implies
that the canonical partial resolution of a singularity with ''star-shaped" resolution is a
deformation of that of a quasi-homogeneous singularity (cf. Corollary (5.18)).

Let G be the integral closure of G in the quotient field of G. We note the
following lemma for a graded ring over a field.

Lemma (5=2)0 Let G = 0 Gn be a Noetherian graded ring with dim G > 2 which is
n>0

an integral domain with G0 = k, a field. Then the following conditions are equivalent to
each other.

(i) Spec(G) - V(G+) is normal
( i i ) G/G has finite length.
(iii) 0 H°(E, OE(k)) is normal, where E = Proj(G).

&eZ _
// these equivalent conditions hold, then G/G is isomorphic to H^+(G).

Proof. We have (§ 5 of [23])

0 _> G -> 0 H°(E9 0E(k)) -» H^(G) -> 0.
k e Z

Since E is reduced and irreducible with dim E > 1, 0 H°(E, 0E(k)) is also an integral
fceZ

domain which is finitely generated over k = G0. Hence HQ+(G) has finite length.
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If we assume (i), then G/G is a finite G-module supported by V(G+). Hence G/G
has finite length. We get the converse implication by localizing by a homogeneous
element of G+.

If we assume these equivalent conditions (i) and (ii), we obtain the relations 0E(k) =
G(k)~ = G(k)~ on E = Proj(G) = Proj(G) for k e Z. By the exact sequence being
above, the relations G = © HQ(E, OE(k)) and G/G = H^+(G) follow.

fceZ
Next suppose the condition (iii). Since the length of H^+(G) is finite, 0 H°(E, 0E(k))

_ + keZ
is integral over G. Therefore G = © HQ(E, OE(k)). The condition (ii) follows. Q.E.D.

keZ

Corollary (5.3). Let the situation be as in (5.1). // E is a normal Cartier divisor on
X, then G/G has finite length.

Proof. By the exact sequence of T.N.-isomorphisms;

0 -> 3t(n + 1) -> 3t(n) -> G(n) -> 0,

Ox(n)/Ox(n + 1) ̂  0E(n) for n E Z. By the isomorphism Ox(n) ̂ Ox(-n-E)^ Ox(-E)®n,
we see that 0E(n) is invertible and isomorphic to 0E(l)®n for every integer n. Since E is
normal, so is © H°(E, 0E(k)).

fceZ

Remark (5.4). There is an example with non-singular Weil divisor E and infinite
length G/G (see Example (2.5), and Example (6.19)).

Remark (5.5). Under the equivalent conditions of Lemma (5.2), we represent G by
Demazure's construction [7]: G = R(E, D) with ample Q-Weil divisor D on E. The
correspondence between R(E, D) and A in the exact sequence

0 -» G -» R(E, D) -+ H^+(G) -* 0

is fundamental in Chapter 2. Taking the long exact cohomology sequence of

for k e Z, we often represent H^+(G) as G-module U as follows:

U = © Ker{KV*(Q*(* + 1)) -^ R^(
k>0

Further we can easily show the equality 1A(V) = X (-
k > l

U(^V*(Py))}j where M|0 denotes the non-negative part for a graded module M.

Now, we will state the theorem which is our aim in the first half of this section.
Although this result was treated by Flenner [9], our statement is not mentioned
explicitly there and we also want to clarify the role of our spaces Y and Y' there.

Theorem (506)0 Assume that G is an integral domain and both Spec(^L) — {m} and
Spec(G) — V(G+) are regular (resp. have at most rational singularities), then X has at most
"cyclic quotient singularities'" (resp. rational singularities). Moreover, if dim A = 2, then
A has a "star-shaped" resolution.
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Here, the definition of a "star-shaped" resolution is given in (0.5) and the definition of
a "cyclic quotient" singularity (especially, in characteristic p > 0) is given below. Also, if
we mention a "rational singularity", we assume that char(fc) = 0 and that A is essentially
of finite type over k.

Definition-Proposition (5.7). Let (B, m) be a d-dimensional Noetherian local ring
which contains a field k = B/<m and NB a positive integer. Then the following conditions
are equivalent to each other.

(i) There is a normal subsemigroup H of Nd defined by

H = <(sl9...,sd)e*

for some d-tuple (al9..., ad) of integers such that the -m-adic completion J3A is isomorphic
to feCCT*1 T d

S d \ ( s 1 , . . . , sd)e H]]. Further each Tt is an indeterminate over k and is
integral over B, for 1 < i < d.

NB-1

(ii) There is a regular overring (C, m*) of B such that there is a grading C = (J) Cn

by Z/NBZ on C such that Cn c m* for n = I, ..., NB - 1 and C0 - B.
We say that B is a cyclic quotient singularity if B satisfies these equivalent conditions.

Of course, if NB is prime to char(fc), then B is an invariant subring of a regular local ring
by a cyclic group Z/NBZ.

Proof. If we assume (i), put CA = fc[[T1?..., TJ] and C = B[T l5..., TJ. Then
CA (resp. C) is certainly a Z/NBZ-graded ring with (CA)0 = BA (resp. C0 = B). Since C
contains Tl5 ..., Td, C

A is the completion of C. So, C is a regular local ring and we
have our condition (ii).

NB-1
If we assume the condition (ii), then we* = m, + (J) Cn and we can take a homoge-

H = 0

neous element / which is not contained in (m*)2. Repeating this process in C/f- C and
so on, we can claim that we can take a regular parameter system ( t l 9 . . . 9 t d ) of C
consisting of homogeneous elements. Then the completion of C is fc[[tl3..., £d]] and
we have the condition (i).

The proof of Theorem (5.6) is divided into several parts.

(5.8) Let /e Fm - Fm+1 and put /* =f-TmE @m as in § 1. Then u = T"1 is a
non-zero divisor on ^-* = ^}* and we obtain the following exact sequence

. _ _ .. T~1
IC O 1 \ A . (Tftt * ^ fjftl /"• •^ f\
[J.O.LI U * -y£ f* ^ ,3% f* —r {If * U .v ' J J J

Here we have the relation

Lemma (5.8.2). Under the assumption of Theorem (5.6), Y' is regular (resp. has at
most rational singularities).

Proof. Here &f*/u$f* = Gj is regular (resp. has rational singularities) by our
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assumptions. So @tf* is regular (resp. has rational singularities by Elkik [8]) at the
= $f*

the prime ideals not containing u.
prime ideals containing M, and, since (ffif*)u = $f*[u~l~\ = Af[T, T"1], so does Sfcf* at

(5.8.3) For our claim in (5.6) concerning rational singularities, we can finish our
proof using Boutot's theorem, stating that a direct summand of a rational singularity is
a rational singularity (cf. [4], [46]), because Ox is a direct summand of Or.

(5.9) We are interested in the singularities of X = Proj(^). For this investigation,
the integer N such that 0X(N) is invertible plays an essential role. The integer N we
have defined in (1.1) has such a property at any point of X. Since we study locally on
X, our minimal positive integer n with Ox(n) invertible may be smaller than our N of
(i.i).

Let x be a point of E c X and P (resp. P) the homogeneous prime ideal of $
(resp. G) associated to x. At the point x = V(P\ we note the following:

Lemma (5.9.1). Let the situation be as in the above. Then, the integers
N(X, x) = min{a e Z|a > 0 and Ox(a)x ^ (^(P))a contains a unit of 3t(P)}9

N(E, x) = rm'n{a G Z|a > 0 and OE(a)x = (G(P))a contains a unit of G(P)},
N(P) = G.C.D.{n eZ\n>Qand («/P)B ^ 0}, and
N(P) = G.C.D.{n eZ\n>Qand (G/P)n ± 0}

are, the same. Here $(P) (resp. G(P)) denotes the localization by all the homogeneous
elements of $, (resp. G) not contained in P (resp. P).

Proof. Being the homogeneous localization at the homogeneous prime P, $(P} has
the unique homogeneous maximal ideal P-^(P) and ^(P)/P-^(P) = (jyP)(P)^fe(x)[£, f1],
where k(x) = (^(P)/P • ̂ (P))0 = (G(P)/P ' G(P))0 and t is homogeneous of degree N(P) (cf.
Chapter 1 of [12]). This shows the equality N(X, x) = N(P). By the same arguments
for G(P) =^(P)/r~

1^(P), we obtain the equality N(E,x) = N(P). Here we have the
relation T~l&(P} c P-(#(P)). This implies the relation G(P)/P • G(P) ^ ^(P)/P • ̂ (P) and
the equality N(P) = N(P). Q.E.D.

(5.9.2) Let us denote the integer characterized in (5.9.1) by N0xx (or simply by Nx

or Np) in this section. Lemma (5.9.1) says that NP depends only on the associated
graded ring G.

(5.10) Z-graded regular rings. We will assume that Spec(G) — V(G+) is regular
until (5.11). By (5.8.2), #(P) is regular. We will show that the local ring Ox,x = (#(P))0

and the integer N0x x satisfy the conditions of (5.7).
For this purpose, we simplify the notation as follows:
(5.10.1) Let R = (J) Rn be a regular graded ring which satisfies the following

neZ

conditions;
(i) R1 ^Q and Rn contains a unit of R for some positive integer n so that

RW = JR0[t, r
1] if t e Rn is a unit.

(ii) #0 = B is a local ring with maximal ideal &*.
Now, we define the integer NB by NB = min {n > Q\Rn contains a unit of jR}. Then

we shall show the following:
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(5B1002)0 // we choose t e RNs so that RNs = t-B, then C = R/(t - !)• R is a
regular local ring.

Proof. Considering the homomorphism a: R -> C[f7, C/"1], defined by a(g) =
(g mod (t — !)• R) Um for g e Rm, where 17 is an indeterminate, we see that C[C7, U~l~] is
isomorphic to R[U^/(UNe — t)'R\_U~\ as a graded ring. Obviously it suffices to prove
that C[17, I7'1] is regular. By the minimality of NB, Rt-Rj a <m-RNg = m-t for 0<
i, j < A/g with i + j = NB. Hence our claim follows from the following lemma.

Lemma (5.10.3). Let R = @ Rn be a regular graded ring and t e RNg be a unit of

R. Assume R satisfies the following conditions;
(i) R0 = B is a local ring with maximal ideal *n.
(ii) For every integers z, j with 0 < i, j < NB and i +j = NB, Rt ° Rj c m. -1.
Then R* = R[Uy(UNB — t)R[U] is regular, too, where U is an indeterminate.

Proof. Let n be the unique graded maximal ideal of R. Then R/n = fc[t, t"1] and
R*/M-R* = kit, r1, [/]/([/** - t) = k[U, U'1']. Hence n-R* is the maximal among the
set of graded proper ideals of R*. Since R* is flat over R, (R*)n.R* is also flat over Ru

by the base change theorem. Since (R*)^R*/n • (R*)n.R* is regular, (R*)n.R* is regular by
(6.5.1) Chapter IV of [15]. Here (R*)Q is regular for any proper graded prime ideal Q
of R*. Therefore J?* is a regular ring by Corollary 4.14 of [52].

(5.11) Now we will complete the proof of Theorem (5.6). Take a point x of X
and put B = OXtX, R = OT ®0x B. Then R is regular by (5.8). Hence B has only
"cyclic quotient singularity" by (5.10) and (5.7). Moreover we show the following:

Claim (5.1 I.I). Let P (resp. P) be the homogeneous prime ideal of 01 (resp. G)
associated to x, and t be a homogeneous unit of $(P) with the minimal positive degree as
in (5.10).

Then T"1 —u defines a member of a regular parameter system of C = £%(P)/(t— 1)^(F).

Proof. Let T be the associated element of G(p}. We obtain "the exact sequence

0 —

Here G(P) is regular and t gives a homogeneous unit of G(P) with the minimal positive
degree by (5.9.1). Hence (G(P)/(F- 1)G(P)) is a regular local ring by (5.10.1). Q.E.D.

Suppose dim A = 2. Then X has only isolated singularities. So we can calculate
a resolution of the singularity (X, x) by a representative for the completion B. Here u
is a member of a regular parameter system of C (5.11.1), and u-C^B is the prime ideal
defining E in X. So, we have a "toric" resolution of Spec(B) where £ is transversal to
the exceptional curve (cf. [7]).

This completes the proof of Theorem (5.6).

Example (5.12). (1) Let (W, w) be a two-dimensional isolated singularity given as:
(O^JA =A = fc[[x, y, z]]/(x2 + y3 + z7 + yz5) with the filtration F on A induced by
putting the weights on each monomials as wt(x) = 21, wt(.y) = 14, wt(z) = 6 (cf. (4.10)).
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Then G ^ fc[x, y, z]/(x2 + y3 4- z7). Then the orders of the cyclic groups, which pro-
duce the cyclic quotient singularities of X, depend only on G by (5.9.1). For Px = (x),
Py = (y) and Ps = (z), we have the data JVFx = G.CD. (14, 6) = 2, NPy = G.C.D. (21, 6) = 3,
and NPz = G.C.D. (21, 14) = 7. In fact the dual graph of the exceptional set of the
minimal good resolution of Spec(y4) is given as follows:

(2) Let (W, w) be a three-dimensional isolated singularity given as: (O^>W)A = A =
/c[[x, y, z, w]]/(x2 + y3 + z7 4- w42) with the filtration F on A induced by putting the
weights on each monomials as wt(x) = 21, wt(y) = 14, wt(z) = 6, and wt(w) = 1 (cf.
(4.10)). Then G ^ fc[x, y, z, w]/(x2 4- y3 4- z7 4- w42). As in (1), we will compute the
orders of cyclic groups which produce the cyclic quotient singularities of X. For
Px = (x), Py = (y), Pz = (z\ and Pw = (w) of G, we have the data NPx = G.CJD. (14,6, 1)=1
NPy = G.CsD. (21, 6, 1) = 1, A/pz = G.C.D. (21, 14, 1) - 1, and NPw = G.C.D. (21, 14, 6) - 1.
These mean that X is regular at the generic points on V(PX\ V(Py\ V(PZ\ and V(PW).
For PXtW = (x, w), PyfW = (y, w), and PZjW = (z, w) of G, we have NPx w = 2, NP w = 3, and
JVpz w = 7. Here X and E = Proj(G) have cyclic quotient singularities with same orders
at each point (5.9.1).

Now, we will summarize our results obtained so far.

Summary (5.13). Let (A, m) be a normal two-dimensional local ring. Suppose that
there exists a filtration (Ffc}feeZ on A such that G is an integral domain with iso-
lated singularity. Then, in the minimal good resolution h: (X, /i-1(w)) -»(W9 w) with
W = Spec(yl) and w = V(m)9 the dual graph of h~1(w) is star-shaped. Furthermore

(5.13.1) h is obtained by the composition of morphisms as follows:

= Proj( ff) FkTk

U Wo
E = Proj(G)

where $ is the filtered blowing-up of W with respect to {Fk}keZ and i the morphism
induced from the minimal resolution of singularities of X.

(5.13.2) The filtration {Fk}keZ is reconstructed as Fk = ^(Ox(-k-E)) for k e Z in
the above.

Remark (5.14). See [31] for other methods of local studies of singularities of the
filtered blowing-ups of graded singularities of characteristic zero.

(5.15) Next, we shall study X as a deformation of Proj(Gk'). First, as is well
known, Spec(^l) is a small deformation of Spec(G) as follows: Let



714 MASATAKA TOMARI AND KEi-icm WATANABE

CD: Zr = Spec(dT) -> Specif-1]) = V

be the natural map. Then a)'l(Q) = Spec^'/T^') ^ Spec(G) and co~l(c) =
Spec^'/CF"1 - c)$') ^ Spec(.4) for c £ k and c ̂  0.

Moreover X and Proj(Gtl) are related as follows: Let { |̂̂ '}^0 ^e the filtra-
tion of 9K induced from {^}/>0 on M (see (iii) of Remark (1.3)). Then we have

the relations: #|,#' = 0 £ Fk'F8~k \TS = @ /rm«<s,O. -p for { > 0. Let 7" =
s e Z \ f c > ^ / seZ

/ \
Pr°j © ^ '&''U }, where 17 denotes an indeterminate. Then we obtain the fol-

\/>o /
lowing commutative diagram.

Y" — ±-+ Z' = Spec(dT)

X = Proj(^) —?—» PF = Spec(^l)

Claim (5.16).

Y" ^ Specif 0 Ox(max(fc, Q))Tk] = Specif (( 0 Ox- T
k] 0 (0 0*(fc)-:

\feeZ / \\\*<-l / \^^0

Proof. Let feFd-Fd+l. Then f-Tde@d and /• Td- I7d e «|d-«' - ^|d+1 -^'.
In the neighborhood of the exceptional locus of £ in Y", Y" is covered by open sets of

/ / / \ \ \
the form Spec 0 &\s *9K \ I I. Here we have the relation:

\ \V>o //-rd-i/d/o/

// \ \

\ \ ^>0 /f-Td-Ud/0 s>0

1 I I V* ff !7max(fc>^s)W/"s^. HTk—ds 1 Y^ E imax(fc,0)/'j \. yfc

s>0 \fceZ / fceZ

Q.E.D.

Proposition (5.17). Let the situation be as above. Then the morphism £ is defined
over the scheme Spec^fT"1]) as follows:

Y" > Z'

= V

On the point 0= F(T~1) of F, f is the filtered blowing-up o/'-^O) = Proj(G^) ->
co'^O) = Spec(G) induced by the grading of G.

On the point c = V(T~l - c) of V with 0 =£ c e k, £> is the filtered blowing-up
a}"~l(c} ^X^> w~l(c} ^ SpGc(A) induced by the filtration {Fk}keZ.
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Proof. We have the relations:

o/'-^O) = Spec/ 0 (Ox(max(fc, 0))/Ox(max(fc + 1, 0))Tfc )
\fceZ /

= SpQcx(@(Ox(k)/Ox(k+l))Tk

\k>0

= Spec/ 0 0E(k)} = Proj(G^), and
\fc>0 /

a)"-l(c) = Spec J 0 (Ox(max(k, 0))/(T~l - c)Ox(max(k + 1, 0)))7*
\fceZ

= Specx(Ox).

The remaining assertions are easy.

Corollary (5.18). Let the situation be as in Proposition (5.17) and the conditions of
Lemma (5.2) hold. Then the singularities of X are obtained as small deformation of
singularities ofProj(R(E, D)q).

Chapter 2. Normal Two-Dimensional Singularities
with "Star-Shaped" Resolution

§ 6, "Star-Shaped" Resolution and the Filtration

(6.1) Throughout this chapter, we assume (A, m) is a normal two-dimensional local
ring over an algebraically closed field k. By Theorem (5.6), if A is a local ring which
possesses a filtration {Fk}keZt such that G is an integral domain with an isolated
singularity, then the dual graph of exceptional set in the minimal good resolution of the
singularity is star-shaped written as follows:

Here we shall employ the standard notation as in [41] and [43].
In this chapter, conversely, we shall study the filtrations on A from the resolution

as above.

(6.2) Let /: (X9 f ~ l ( w ) } -»(W, w) be a resolution of singularity (W, w) such that the
dual graph of /-1(w) is a star-shaped graph as above. We contract the branches (J Atj

i,j

to normal points. Then we get the normal surface X and the commutative diagram as
follows:
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~x(w) c X > X ID E .

Here F is the Image of £. T and ^ are the morphisms induced canonically.
By Pinkham [34] and Demazure [7], we can construct the normal two-dimensional

graded ring R(E, D) as follows:
Let Q be an integral divisor on E with relation N~\~ = 0E(Q), and P{ the

intersection point Er\An for i = 1, . . . , /J. Let the rational divisor D on £ be as

follows: D = Q — Y, QiPh where the rational number qt is defined by continued fraction
i = l

- = [&fi, bi2, . . . , b^] = 6£1 -- - - , for i = 1, . . . , 0.

Let R(E, D) = 0 H°(E, OE(kD))Tk c Jc(£)[T]3 where fc(£) is the field of rational func-
k>0

tions of £, and T an indeterminate.
Then the dual graph of the minimal good resolution of Spec (R(E, D)) at jR+ Is the

same as that of (W9 w). We shall relate R(E, D) with A in the following.

(6.3). Let r.(X,f-l(w))-+(X,E') and \jj: (X, E) -+(W, w) be as above.
Let the filtration {Fk}keZ on A be defined by Fk = il/*(Ox(-k'E')) for k e Z.

Then G = ff) (Fk/Fk+1)Tk is an integral domain with isolated singularities. Further
k>0

(6.3.1) The Pinkham-Demazure construction R(E, D) is the normalization of G. We
have the exact sequence of graded G-modules

0 _» G -> R(E, D) -> 17 ̂  H^+(G) -> 0

w/zere

fc>0

can identify E and E' by T.
(6.3.2) We obtain the equality (cf. Remark (6.20))

1A(U)= X &mHl(E90E(kD))'-
k>0

= pg(R(E,D))-pg(A).

Furthermore the following conditions are equivalent to each other:
( I ) G is normal
(ii) Rl^(Ox(-(k + l)-£))->/?V*(Py(-fc-£)) is injectivefor keZ.
(ii)' R^(Ox(-(k + !)•£)) -> H^) ^ Hl(X - E, Ox(-k-E)) is injectivefor k e Z.
(iii)
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Proof. The key lemma is the following:

Lemma (6B4)0 Let the situation be as in (6.2). Then we have the following
isomorphisms:

(6.4.1) Ox(-k-E')/Ox(-(k + !)•£') ^ r*(OE(kD)) on X for fc e Z.

By this lemma, we have the condition (ii) of Lemma (5.2). The assertions of
Theorem (6.3) follow from Proposition (1.17), Lemma (5.2), and Remark (5.5). Since G
is an integral domain, our {Fk}keZ is determined as in (2.2) (cf. (5.13)).

Before we proceed to the proof of Lemma (6.4), we shall give some easy con-
sequences of Theorem (6.3) here.

First note the following fact:
(6.5) Since \I/^(OX) -> *I/+(OE) = k is surjective, R^^O^-E)) -* KV*(°x) is alwavs

injective.

Corollary (6,6). Let the situation be as in (6.2). // a(R(E9 D)) < 1, i.e.,
Hl(E9 0E(kD)) = 0 for k > 2, then G = R(E, D). In this case, A is a Gorenstein (resp. a
complete intersection, resp. a hypersurface) when R(E, D) is Gorenstein (resp. a complete
intersection, resp. a hypersurface).

Proof. By our assumption and Lemma (6.4), we obtain R1\ls^(0x( — kE)) = 0 for
k > 2 (cf. Proposition (1.13) and (5.5)). Hence 17 = 0 by (6.5).

Remark (6.7). Let e(R(E, D)) = min{fc e Z | fc> 0, R(E, D)k ^ 0}. Then the condi-
tion a(R(E, D)) < s(R(E, D)) implies U = 0 by similar argument.

Example (6.8). Let (W9 w) be a singularity with minimal good resolution
/: (X, /~1(w)) -»(W, w). Suppose the dual graph F of f ~ l ( w ) is a star-shaped graph
given as follows:

A2.

The normal class of £ is —KE — P1—P2 — -' — Pp, where /? > 0 1 resp. ft > 0, resp.

- 2 > if g > 2 (resp. g = 1, resp. g = 0).

Then R(E, D), with D = KE + ]T — - Pi9 is a Gorenstein domain with
i = l bi

a(R(E, D)) = 1 ((2.9) of [45]). Hence G = R(E, D) by Corollary (6.6). Therefore (W, w)
is always a Gorenstein domain.
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In case a(R(E, D)) > 2, our U is not necessarily zero as in the following example
which has been discussed in [37] (For the relation between the explicit form in [37] and
the description below, we refer to [21]).

Example (6.9) (O. Riemenschneider [37]). Let £ be a non-singular algebraic curve
of genus g and L -»E a line bundle of positive degree. We denote the invertible sheaf
associated to L also by the same notation L in the below. Let ^eH1(E,L)^
Ext^ (L"1, OE). Let M be the locally free O£-module of rank 2 obtained from the
following extension of L"1 by OE associated to the cohomology class £

0 -> OE -> M -»IT1 -> 0 .
/ \

Let S be the ruled surface over E obtained as S = Proj © Sd(M) -> E and X a
\d>0 /

suitable neighborhood of the negative section, which we also denote by E, in S such
that ((X, E) blows down to a normal singularity (W, w). We are interested in U for)
(W, w). In our terminology, Riemenschneider's arguments say "H°(E, !/)•£ = 0 in
Hl(E, Lfe+1) for fc > 1, if U = 0". Further he shows the existence of L with property
H°(E, L)H1(E, L) 7^ 0 when g > 2. In particular, we can construct examples with
17/0 when g > 2.

We have assumed that we always take the representative A of local ring 0Wt w as
being essentially of finite type over a field. For this reason, we shall replace the local
ring up to analytic equivalence (see the studies of [19], [20]).

(6.10) The proof of Lemma (6.4) is divided into several steps. The key step to the
proof is to prove the following equalities

(6.10.1) t-*(Ox(-kE')) ®0~ OE = 0E(kD) on E for any k e Z .

In order to study the inverse image of divisorial sheaves on X by T, we shall
use Giraud's terminologies [10] (Similar description is introduced also in [27].). Here
the inverse image t~l(J() of a coherent O^-sheaf M is defined by t~l(Jt) =
(T*GJf) (x)0^ Of )/Ojr torsion.

(6.11) Giraud's inverse image [10]. Let X be a normal two-dimensional scheme
which can be embedded in an algebraic variety, and T: X -»X a proper modification
(i.e., a proper birational morphism) such that X is non-singular. The exceptional locus

r

B of i in X is the set of points where T is not isomorphic. Let B = \J A{ be the
i=l ^

decomposition into irreducible components. Let us denote the divisors on X whose
r T

supports are contained in B as follows: NSfa Z) = 0 ZAi9 and NSfa Q) = © QAt.
i=l i=l

For D G ATS(T, Z), we define the intersection number D-At by D-At = degree of 0Ai (g)
OX(D\ and extend it on NS(t, Q) by ®ZQ.

Definition (6.11.1). For DeNSfaQ), we denote D >> 0 if DAt < 0 holds for
any i.

In particular, D is effective (we shall denote as D > 0) when D >> 0.
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Lemma-Definition (6.11.2). For any D e JVS(r, Q), there exists a unique divisor
[D]G e NS(t, Z) such that

(1) D<<[D]G,
(2) if W E ATS(T, Z) and if D << W9 then [D]G < W.

In fact, we can easily prove the relation [D]G = min {We JVS(r, Z)|D « W}.

Definition (6.11.3). For an invertible sheaf 5£ on X, er(^) is the unique element in
NS(n9 Q) which satisfies ex(&)At = deg (& ® 0A) for all i.

Proposition (6.11.4). Let i\ X ^> X be as above. Let M be a divisorial sheaf on X
and denote as Jf = OX(M) by using a Weil divisor M on X. Then there exists a pair
(j£f, u) where $£ is an invertible sheaf on X such that [eT(^?)]G = 0 and u: fc#(^)\x-C(B) ~*
^lx-x(B) is an isomorphism. The pair (J*?, u) is unique up to a unique isomorphism.
Furthermore M =

We shall call this J§? Giraud's inverse image of M by T. Let Ml be the strict
transform of M by T. Then we can easily prove the relation:

J2? = QjKL) , where L = Mx - [ej(MJ\G .

(We shall call this L Giraud's inverse image of the Weil divisor M by T.)

Proposition (6.11.5). Let the situation be as above. If Rlt+(0x) = 0, then 3? =
in the sense of (6.10) and K%(^) = 0.

(6.12) A computation sequence for Giraud's inverse image ((1.4) of [10]). Let Z
be an integral divisor on X such that Z equals Ml outside of B and satisfies the relation
Z > L = Ml — [et(M1)]G (cf. (6.12.2) below for existence of such Z). Then we can find
out L explicitly from Z as follows:

(6.12.1) Let us define a sequence of integral divisors {Z(k)}fc>0 inductively as
follows: Z(0) = Z, Z(i) = Z('-1} - Ah when there exists ASi with Z(i~^A^ < 0.

Then this procedure ends in finite steps. Let Z(s) be the last member in the
above. Then Z(s) = L.

Proof. By definition, LA{ > 0 for any component At of B. Hence (Z — L)At < 0
holds for At with ZAt < 0. Since Z — L is effective, Z — L > Al holds for such A{.
Hence L<Z-Ah = Z(1). Similarly we obtain the relations L < Z(k) for all k. There-
fore the sequence (6.12.1) ends in finite steps. Let Z(s) be the last of this sequence. By
definition, the relation eT(Z(s)) << 0 holds. Hence [>T(Z(S))]G < 0. On the other hand,
0 < Z« - L = [Z^> - L]G = IZ^ -L + ex(L)-]G = |>t(L)]G. Q.E.D.

(6.12.2) Actually, if we set Z = Ml — {^(MJ), then we can choose a computation
sequence for Z as in (6.12.1). Here {a} means min{x £ Z|a < x} for a rational number

r r
a and {D} means £ {aiMi f°r a Q-divisor D = £ a fA f . The divisors of the form

MI ~~ {^(Mx)} have been studied precisely by D. Mumford and F. Sakai (see [38]).

(6.13) Here we shall assume that the exceptional locus B of i is of the form:
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B consists of ft
connected components

Lemma (6.14). Let the situation be as above. Then the coefficients of the divisors
Z = Ml — (e^Mi)} and L = M1 — [^t(M1)]G are equal on the irreducible components Atl

and Aifi for i = 1, ... , ft.

Now, we will prove (6.10.1) assuming (6.14).

(6.15) Proof of the relations (6.10.1). By Proposition (6.11.1) and Lemma (6.14), we
obtain the relations

on E for any k e Z. Further one can easily show the relation

«.(*)•= -II -j
m=l

(6.16) Proof of Lemma (6.14). The assertion of Lemma (6.14) is local on X. Hence
we assume the exceptional locus B is connected as follows:

A Ai-A^-b^-2 for alii.A, A2

Let us denote ^(MJ and ex(Z) in the form:

r

eT(Mi) = ]T yt^-i with .Vi eQ f°r i = l , . . . ? r ,

and

r

er(Z) = J^ (XiAi with a,- e Q for i = 1,..., r .

Then, by definition, we obtain the relations

for i = l , . . . , r .

We have the relations

ZA1 = er(Z)A1 = -blal + a2 ,

(6.16.1) ZAt = er(Z)At = -b^ + a^ + a£+1 for 1 < i < r ,
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We have to show A1 and Ar do not appear as Ajt in a computation sequence (6.11.1)
{Z(k)\k = Q, . . . , s, Z(0) = Z and Z(s) = L}. Or, equivalently, Z(k}Al and Z(kUr are
non-negative for fc = 0, 1, . . . , s. Since the situation is symmetric with Al and Ar, we
will prove the relation Z(k}A1 > 0 for 0 < k < s.

Now, take any integers i, j with 1 < i < j < r. Then we have

Z(At + -~ + Aj) = fl^ + a£+1 + (1 - ^)af 4- (1 - bfa + I (2 - 6m)am
m=i + l

> <*;_! 4- 0,.+!

(if i = 1 or j = r, put a0 = 0 and a^ = 0).

Hence we have the inequalities

(1) Z(At + '" + Aj)^ -1,

(2) Z^+ ' - ' + ^O,

for every i, j, with 1 < i < j < r. From these inequalities, we can easily see;

(6.16.2). (1) ZAi > -1 for every i and ZAt>0.
(2) // ZAt = — 1 for some i, then there exists an integer m, 1 < m < i with

ZAm > 1.
(3) // ZAt = ZAj = — 1 for some integers i and j with i < j, then there exists an

integer m, i < m < j with ZAm > 1.

Now, assume that ZAt = — 1 for some i, and put Z(1) = Z — At, then we have the
relations Z(1Uf = -1 + bt > 1, Z(1Ui_1 = ZA^ - 1, and Z(1Um = ZA^ - 1.

Thus the conditions of (6.12.2) hold, if we put Z(1) in place of Z. Hence we can
prove the conditions of (6.16.2) for every Z(k\ k = 0, . . . , s in place of Z inductively.

This completes the proof of Lemma (6.14).

Using the relation (6.10.1), we can prove Lemma (6.4).

(6.17) Proof of Lemma (6.4). Let L_k be Giraud's inverse image (6.11) of the Weil
divisor — kE' by T. Since i^(Ox(L,k)) is reflexive and L_ f c_x < L_f t — £, the sheaf
i;f:(Oj(L_fc — £)) is also reflexive and equal to Ox( — (k + !)£'). Therefore we obtain the
following exact sequence on X:

0^0x(-(k+ !)£')-> Ox(-kE') - ̂ (

where K^^O^^.J) = 0 by (6.11.5).
Hence, what we have to show is the vanishing of R1T.JS(Of (L_fc — £)).

Sublemma (6.17.1). Let effective divisor W_k e NS(i, Z) be as follows:
L_ f c_x — L_fc + E for keZ. Then we have the equality £ dim(K1Tsjs(Ojf(L_fc —

qeX
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pa(W^k) — 1 4- (W-k)E — (WK_fc)(L_fe), where pa(W-k) is the virtual arithmetic genus of W_k

defined as follows: pa(W.k) = I - %(0w_k).

Proof of Sublemma (6.17.1). Let X be a normal projective variety which contains
X as a Zariski open set and is non-singular at points of X — X. Let T:X~-*X
be the morphism induced canonically from t:X-+X. Since Tj.(Ox~(L-k-i)) =
T*(°X~(L-* - £)) = Ox(-(k + 1)F) and R^Ox^L,^) = 0, we obtain the
relations ^(O^(L.k - £)/()* ~(L_ f c_x)) = 0 and Rlr+(Ox~(L-k - E)/O^(L_k^ =
R^+(Ox~(L-k — E)). By the Riemann-Roch formula for surfaces, we obtain the following
equalities:

.k - E))

(Ox~(L_k - E)))q = -
qeX

--{-Kf4L-k - E) + (L_fc - E)2} -

= l- { -Kz~(L.k - E) + KX~ W.k + (L_fe - E)2

- 2(L_fc - E)W.k + (W_k)
2} -l-{-K^(L-k -E) + (L.k - E)2}

= Pa(W-k) - 1 - W_k(L_k - E)

where K^ is the canonical divisor of X~. Q.E.D. for Sublemma (6.17.1).

(6.17.2) We shall complete the proof of Lemma (6.4). Let Wit-k be the part
rt

of W_k over connected component \J Atj. Then W-k = Wlt_k + W 2 f - k + ••• + F^s_k.
j=i

We obtain

Pa(w_k] _ i _ W.k(L.k - E) = X {Pa(W^k) - 1 - W^k(L.k - E)} .

We shall show the relation pa(Wit-k) — 1 — Wt9-k(L_k — E) < 0 for each i. In case
Wit -k = 0, this is obvious. Suppose Wit -k is a non-zero effective divisor. First,
Pa(wt,-k)^® follows from the fact JR^JOy-) = 0 ([1], [2]). Second, W ^ _ k - L _ f c > 0
follows from the fact 0T(L_fe)]G = 0 (see (6.11)). Third, by (6.10.1);

the coefficient of Wit_k at the irreducible component Atl

k 1 f fc+1

Hence EW-^k < 1, and pa(Wi^k) - 1 4- EWt>_k - Wit-kL-k < 0.
Q.E.D. for Lemma (6.4).
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Example (6.18) (Computation sequence for Giraud's inverse image). Let the situ-
ation be as in Theorem (6.3) and the dual graph of/-1(w) be as follows:

Here Al U A2 U A3 is contracted to a normal point by r. X -> X. Let the divisor L_k on
X be Giraud's inverse image of Weil divisor — kE on X, for k e Z. If we denote
— kE — {ex( — kE)} by Z_fc on X, we have

3 for fceZ.

By Lemma (6.14) and Assertion (6.16.2), Z_ fc^x > 0 and Z,kA3 > 0 for any k e Z. For

Z_k,42> we

Z_fe^2 = -3m + 4m-m = Q if fc = 0 (mod 4) ,

Z_&^L2 = -3m - 1 + 2(2m + 1) - (m + 1) = 0 if k = 1 (mod 4) ,

Z^kA2= -3m-2 + 2(2m+ 1) - (m + 1) = -1 if k = 2 (mod 4) ,

Z_kA2 = -3m - 3 + 2(2m + 2) - (m + 1) = 0 if k = 3 (mod 4) .

Hence Z_fc = L_fc if fc ̂  2 (mod 4) by (6.12). In case k = 2 (mod 4), we set Z_fe - A2 =
Z(-l. Then Z(^A2 = 1, and ZL1^ = L_fc in this case. Therefore we obtain the
followings:

L_fc = -kE - /c^ - t + lA2 - fcx3 if fc = 2 (mod 4) .

Example (6.19). Let the situation be as in Theorem (6.3) and the dual graph of
/-1(w) be as follows:

Here A1UA2(^A3(JA4UA5 is contracted to a normal point by i:X^>X. Let us
define the filtration {Ffe}fceZ on A by Fk = ̂ (Ox(-kE)) and study 0 (Fk/Fk+1) by

fc>0

the technique of the proof of Theorem (6.3). Let the divisor L_k on X be Giraud's
inverse image of Weil divisor — k-E on X, for fe E Z. If we denote —kE — [ex( — kE)}
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by Z_fe on X, we have

V = ]ff^ J — I y^ ĵ y|

We can see the behaviour of Z_kAt:

Z_kA, = Z_kA3 = Z_kA5 = 2( - > 0 .

k ffc

Hence Z_k = L_fe when k is even, and L_fc = Z_k — A2 — A3 — A4 when k is odd.
Let the effective divisor W_k be defined as follows: W_k = L_fc — L_ f c_x — £ for k e Z.
Then we can easily check the conditions: pa(W-k) — 1 + Wlk£ — W_kL-k = 0 for £ e Z.
Therefore Ox( - *JE)/OX( - (fc + 1)£) = 1^(0^ ® Of (L_fc)) follow for fc e Z. Since
ff1^, O£ (x) Qy(L_fc)) = 0 for k > 0, we obtain the isomorphism

Further one can easily see the isomorphism

0 (Fk/Fk+l) ^ k[x, y, z]/(x2 + y3) (cf. Example (2.5)) .

Remark (6.20). The inequality p,(>4) < pg(R(E, D)) had already been pointed out in
Corollary (2.22) [47]. This fact is used implicitly in the proof of (2.3) [27].

§ 7o Gorensleln Singularities with "Star-Shaped"

(7.1) Let the situation be as in Theorem (6.3). In this section, we shall study the
relationship of Gorenstein property of A, G and R(E, D). Then we will study U =
HG+(G) and the morphisms H1(X, Ox(n)) -* H%(A) in the case A is a Gorenstein domain.
First we characterize Gorenstein property of A in terms of the morphisms above and
Gorenstein property of R(E, D) in the following.

Theorem (702)0 Let the situation be as in (6.2). Then the following two conditions
are equivalent.

(1) (^4, m) is a Gorenstein local domain.
(2) R(E, D) is a Gorenstein domain, and the canonical restriction map

Hl(X, Ox(-aE)) ^ *V,(Qr(-o£)) - Hl(X - E, Ox(-aE)) ^ H2
m(A),

induced from inclusion X — E -> X, is infective. Here a = a(R(E, D)).

Remark (7.3). The criterions in [48] of Gorenstein property for elliptic singularities
are in some sense analogous to ours.
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The following argument shows that the latter half of the second condition of
Theorem (7.2) is essential.

Remark (7.4) ([19], [20]). Let the situation be as in Example (6.9). Suppose the
singularity (W9 w) is Gorenstein and £ is not zero in Hl(E, L). Then:

(1) If the characteristic of base field is zero, a(R) is one, i.e., L ^ KE.
(2) If the characteristic of base field is positive, say p, then a(R) is positive and p

divides a(R) — !.
(The proof is contained in page 153 of [19]. See [21] for a proof by using our

Theorem (7.2).)

Conversely, in Example (6.9), if L^ KE, then U = 0 and (W, w) is Gorenstein by
Corollary (6.6) (see also [19], [20]).

Remark (7.5). Let the situation be as in Example (6.9). Suppose the characteristic
of base field is zero and £ ^ 0. If the relation La = KE holds for some integer a > 2,
then (W3 w) is not Gorenstein by Theorem (7.4) though R(E, L) is a Gorenstein domain
[45].

Concerning the theorem and remarks in the above, we will propose the following:

Problem (7.6.1)** When (A, m) is a Gorenstein local ring with "star-shaped" resolu-
tion, does our U always vanish!

By Theorem (6.3), this is equivalent to the following (cf. (5.16)).

Problem (7.6.2). When (A, m) is a Gorenstein local ring with "star-shaped" resolu-
tion, is (A, m) a pg-constant small deformation 0/(Spec(jR(£, D), R+)l

By Theorem (5.6), this is equivalent to the following.

Problem (7.6=3). Let (A, m) be a normal two-dimensional Gorenstein domain over an
algebraically closed field with filtration {Fk}keZ on A such that G = (J) (Fk/Fk+^) is an

k>0

integral domain with isolated singularity. Then, is G normal (i.e., Cohen-Macaulay, or
equivalently Gorenstein in this case)!

Up to now, we do not know a counterexample to them. In this section and
Section 8, we shall show some partial affirmative answers to them.

In the proof of Theorem (7.2), we will obtain the following (see (7.12)):

Corollary (7.7). Let the situation be as in (6.2). // (A, m) is Gorenstein with
a(R(E, D)) < 2, then U = 0.

Then after some lemmas on generality of I/, we will show in (7.18):

Theorem (7.8). Let the situation be as in (6.3). Suppose the characteristic of the
base field k is not 2. If (A, m) is Gorenstein, then dim U =£ 1.

To state Theorem (7.9), we use the partial resolution of Spec(jR(£, D)) in the
/ / \ \

following: Let v: (C, £) = SpecJ 0 OE(kD) , E -»(Spec(K(E, D)), p = V(mR)) be the
\ \fc>o / /

* See Note Added in Proof (2).
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partial resolution of (Spec(K(E, D)), p) obtained by the filtration on R(E9 D) induced by
the grading on R(E, D) (cf. Sections 1, 5, and 6, and [34], [7], [32], [33]).

Theorem (1.9). Let the situation be as in (6.2). Suppose the characteristic of the
base field k is zero. If (A, rn) is Gorenstein with dim(mR- Rlv^.(Oc)/(mR)2 - Rlv^(0c)) < 1,
then U = 0.

Here recall the inequalities for the arithmetic genus pa(F) of the dual graph F:

(see Theorem (3.4) and the arguments in (3.3) of [42]). See (0.7) for the definition, and
[43], [41], [42] for the arguments about the arithmetic genus.

Corollary (7.10). Let the situation be as in (6.2). Suppose the characteristic of the
base field k is zero. If (A, m) is Gorenstein with pa(F) < 1, then U = 0.

In the rest of this section, we prove Theorem (7.2), Corollary (7.7), Theorem (7.8),
and Theorem (7.9). We shall begin with the following:

Lemma (7.11). Let the situation be as in (6.2). Suppose (A, m) is Gorenstein. Let
a = a(R) where R = R(E9 D) and n an integer with 0 < n < a + 1. Then we have the
duality of k-vector spaces:

' Covert ' Ker{KV,(Qr(-(fl + 1 - «)'£)) - >*>*«>*)}.

Proof. By Theorem (3.12), the canonical sheaf cox of X is written in the form
Ox( — mE) with the integer m satisfying the relation R(m—l) = KR, and R is Gorenstein.
Here m— 1 equals a(R). From the relations o)x ^ Ox( — (a +!)•£) and cow ̂  A,
we obtain RHomx{R\l/^(Ox(-n- £), CDX) ^ Ox( — (a + 1 - n} E). By the relative
duality

for \//: X -> W and 3F = Ox( — n-E), we obtain the following spectral sequence:

Then we obtain the following exact sequence

Here £2'° = ^ and E|'° = Ext%(A/Fn, A), since A is a Cohen-Macaulay integral domain.
Let E(A/m) be the injective hull of A/m. Then we obtain the equality Extj(^, A) =
Horn^, E(A/m))9 which we shall denote by [#]', for an Artinian ^-module 9 (Pro-
position (4.13) of [14]). Since Rl\l/^(Ox(-(a + !)£)) = 0 by Grauert-Riemenschneider
vanishing theorem ([13], [10]), we obtain the following:
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0 > Fa+

Now it is easy to see the isomorphism Coker a = Ker /?. Q.E.D.

(7.12) Proof of the implication of (2) from (1) in Theorem (7.2). As we have
noted in (7.11), R(E, D) is Gorenstein. Since Rl^(Ox(-E)) ->#V*(0*) is injective by
(6.5), Rl\l/^(Ox(-a'E))^>Rl\lt^(Ox) is also injective by Lemma (7.11).

By the Grauert-Riemenschneider vanishing theorem ([13], [10]) and the relative
duality (see p. 188 of [29]), H|(JT, 0X) ^ [#V*(<%)1' = 0 and Rl*l/*(Ox)-+
Hl(X - £, Ox) ̂  H^(A) is injective. Therefore R^^O^-a- E)) -» #m(4) is injective.

(7.13) Proof of the implication of (1) from (2) in Theorem (7.2). Here we shall use
the notation in Section 6. Let us consider the minimal good resolution / (resp. fj) and
the partial resolution cp (resp. v) of the singularity (W, w) (resp. (Spec(#(£, D), V(R+) = p))
in the following:

(X,E) (C,^(p)) - - - > (C,£)

where T (resp. 9) is the contraction of the j3 branches of resolution manifold X (resp. C)
(cf. (6.1)). Since R(E, D) is Gorenstein, there is an integral divisor, say Kg, on C whose
support is contained in Supp(fi~1(p)) and Q% = OC(KC). Here the condition R10^0c = 0
implies the relations 0*(Oc(Kc)) = o>c = Oc( — (a 4- !)•£) on C. Denote Giraud's inverse
image of — (a 4- !)•£ by L_a_ t on C. Then we obtain the inequality Kg > L-fl-i on
C. We have ^(Kc)<cO, because 0 is induced by the minimal resolution. Hence

Therefore Kg = L-fl-i on C.
Now we shall compare O| with Giraud's inverse image of — (a + !)•£ on X by

T. Here the dual graph of/-1(w) with respect to X and the dual graph of n~l(p) with
respect to C are the same. Hence Giraud's inverse image of — k-E on X by T and
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Giraud's inverse image of — k-E on C by 9 have the same multiplicity on each
components of supports. We shall denote both divisors uniformly by L_fc.

Clearly g/(L_fl_1) = e/(Of) in NS(f, Z) (i.e., numerically the same). We shall show
/ \

the relation Of ^ Ox(L,a^\ Let us set B = E U I \J Atj j c= X. We have the following
\i ,j /

exact sequences:

0 - H*(X, 0X(L_J) -> H^X - B, Os (L.J) -> H|(X, Qj (L_J) -> 0,

and

Hl(X9 Ox(L-a.J) -> HHl - B, QjKL-,-!)) - #J(*, Of (L-,-i)) - 09

where Hl(X, Ox(L,a-J) ^ Rl^(0x(-(a + 1)E)) = 0 (since H1(0E(kD)) = Q for fc > a + 1)
and HHl - 5, Qj(L_fl)) ^ H^X - B, O^L.^)) ^ H%(A) (see Sections 1, 5, and 6).
Taking the dual over E(A/m) ( = the injective hull of A/m), we obtain the following exact
sequence:

0 -* IH°(X, Ox(Ki - L.fl))]
 A s [ ( Q ? ( X f - L_J)] A

where (^)A denote the m-adic completion of an ^4-module ^ (see p. 188 of [29]). Since
Hl(X, Ox(L.a))^Hl(E, 0E(a-D)) is not zero, the natural injection H°(X, O^(K^ - L_fl))-»
H°(X, OX(KX — L_a_J) is not surjective. There is a meromorphic two-form /? on X
which is holomorphic on X — B and does not belong to H°(X, Ox(K$ — L-a)). We
represent the divisor div(jS) as: div(jS) = B^(p) + B2(P) where Supp(Bi(j8)) cz B, B2(jS)
is effective and has no common irreducible component with B. By assumption
B,(P) £ L_a. Since ef(div(0)) = ef(Q

2$) = ef(L,a^\ ef(B^) - L_a_,) = ef(- B2(fi)) »Q
and BM) - L-a-! > 0.

Assertion (7.13.1). B^(ft) = L_a^.

Otherwise B^f}) — L_a_x > 0. Then, by definition, B^(P) — L_a_! > Artin's fundamen-
tal cycle Z0 on B. We can easily see Z0 s> L^ = — E — [et( — E)]G. Further L_a_x >
L_! + L_a by a characteristic of Giraud's [ ]G [10]. Therefore B^ft) > L_fl. However
this contradicts our assumption on /?.

Hence div(jB) = L_a_j, and fi| ^ Of (L_fl_!).
This completes the proof of Theorem (7.2).

(7.14) We shall discuss the generalities of our U = H^+(G) which are used in the
proof of Theorems (7.8) and (7.9).

Let the situation be as in (6.2). Let riitj with i >j and £p with p > 0 denote the
following canonical morphisms:

rlij.R
1^(Ox(-i-E))-+R^(Ox(-j'E)) with i>j
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Then U = © Uk = © Ker ?/fc+1)fe. Let 0 be a non-zero element of U"fe. Then one can
k>0 k>0

easily see the existence of an integer p and an element W of R1\j/^(Ox( — p- E)) satisfying
the following conditions: p > k + 1, riptk(V) = 0 in Rl\l/^(Ox(-k- £)), and £p(¥) / 0 in
Hl(E,0E(p'D)). Such a couple (p, W) is not unique for 0 of [7fc, in general. For
(p, f ), we shall prove the following:

Lemma (7.15). Let 0 and (p, W) be as above. Let y be an element of Rk =
H°(E,0E(k-D)) corresponding to 0 by Rk-»Uk. Suppose ty^ZpCF) *s not zero in

Hl(E, OE(((t - l)fc 4- p)'D)) for an integer t > 1.
Then there is a non-zero element 0(t) in

Pi r t^

such that

Proof. Let ^ = {%}j6./ be an affine open covering of X with index set «/. We
shall construct an element ^(f) in Cech-cohomology. Take a zero-cochain _y = {yi}ies
of C°(^, Ox( — kE)) which is mapped to y as follows:

H°(%,0x(-fe£)) - v H°(*(J 0E(kD)) - » 0

UJ

)?; - > y|^z = the restriction of y to 6Ui .

Then one-cocycle {j?,- — j?j}U6t/ represents 0 of Hl(tfl, Ox( — (k + !)•£)). By assumption
we can take {j?/},^./ so that

(7.15.1) yj-yieH°(<&jn<yi,Ox( -p-E)) for i, ; e ./ and the cocycle (^ - j; J
represents !P of H1 (X, Ox(-p- E)).

For the one-cocycle {(%)' — (y$}itjes of Z1^, O^( — t-k-E)\ we have the relations

on
s=l

where ( 1 's denote the binomial coefficients, i, j e J,

and

for s > 1 and i, j e ./.
Hence {(j?,-)' - (fa)*} e Z1^, Ox(-((t - l)fe + p)-£)), and defines an element of

KV*(Qy(-((t - !)fc + P)'£))- We denote it by 0(t\ We can easily see that 0(t) has
the desired properties.

Next we shall show the following:

Lemma (7.16). Let the situation be as in (6.2) and (7.14). Then we have the
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equality
dimU= X dim(^k(KQT{R^(Ox(-k-E))^Rl^(Ox)})).

k>l

Proof. Take the subvector spaces Wk of R1i//^(Ox( — k-E)), fc > 1, with following
properties: Wk c= Ker ??fc>0 and the restriction £k\Wl\ Wk-+ £fc(Ker rjkt0) is isomorphic, i.e.,
injective and surjective, for k > 0. Then the surjectivity of £k's imply the relations;

^a c Z fk.a+iTO in ^V*(Pr(-(a 4- !)•£)) for a > 0.

Further we can easily show the relations:

f ^ \( Z »/*,«(Wi) IH Wa = 0 for a > 1.

Hence we obtain

dim[/= X dimfl/.nf
«>0 \ \fc

dim

fc>a+l / \k>a+l

Q.E.D.
«>i .

Lemma (7.17). Let the situation be as in (6.2) and (7.14). Suppose (W, w) w
Gorenstein. Then

Image {F^KJ = {x e Rk\x- ta.

= 0 in

for k > 0, w/zere a = a(R(E, D)).

Proof. In general

By Theorem (7.2) and (7.12), these are zero in our case. Hence we can show the
following relations:

(7.17.1) Image{Ffe -» Rk} ^{xe Rk\x£a,k(Ker na^0) = 0 in Hl(E, 0E(aD})}

for k > 0 .

By the Serre duality Rk^Hl(E, 0E((a~k)D)) (cf. [45]), {x E Rfc|x{fl_fc(Ker ??fl_fc,o) =
0} is the dual of H1^, 0E((a - fe)D))/^fl_k(Ker i/fl_ki0). Therefore we obtain

(7.17.2) dim Uk = dim Rk - dim(Image{Fk -» Rk})

> dim ̂ fc - dim{x e Rk\x • £,_fc(Ker !/._». 0) = 0}

= dim ^_fe(Ker ^ f l_k f 0) for fe > 0.
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Then the equalities in (7.17.2) follow from Lemma (7.16). Hence the equalities hold in
(7.17.1). Q.E.D.

Now the proof of Theorem (7.8) is a corollary of Theorem (7.2) and above Lemmas.

(7.18) Proof of Theorem (7.8). Suppose dim 17 = 1, say Uk ^ 0 here, and take a
non-zero element 0 of Uk. Let y e Rk and ¥ e Rl\l/^(Ox( — p-E)) be as in (7.14) and
Lemma (7.15).

Since dim 17 = 1, we obtain the equality 0 ^(Ker rjh 0) = k^p(W) by Lemma
h > i

(7.16). Then, p = a-k and ytp(¥)^Q in H^E, 0E(aD)) by Lemma (7.17). Here
2'y£p(Y) / 0 in Hl(E, 0E(aD)) because char(/c) ^ 2. Hence Ker rja0 is non-trivial by
Lemma (7.15). This is a contradiction to the fact Ker?? f l0 = 0 (Theorem (7.2) and
(7.12)). ' Q.E.D.

The rest of this section is devoted to the proof of Theorem (7.9).

(7.19) Proof of Theorem (7.9) in the case mRR\(Oc) = (m^R^Oc). Then
mR^lv*(0c) = 0 by Nakayama's lemma. Since R(E, D) is Gorenstein, pg(R) < 1 by the
proof of Corollary (2.10) of [42]. Hence (W, w) is rational or minimally elliptic. In
these cases, the vanishing of U is classical ([2] [26]).

(7.20) For the proof of remaining cases, we need some properties of H%+(R) =
0 H^E, 0E(k-D))Tk where R = R(E, D) (cf. [45], [12], [42]).
fceZ

Let the situation be as in (6.2) and Theorem (6.3). Let k be a positive integer with
R^ = H°(E, OE(W)) =£ 0 and x a non-zero element of R^. Since

the product with the element x

(7.20.1) x: Hl(E, OE(kD)) -> Hl(E, OE((k -

is surjective for k e Z.
We shall use this fact freely in the below.

Let us consider the filtered blowing-up v: (C, E) = ( Spec£( ff) 0E(kD)), E
\ \k>0 J

(Spec(R(E, D)), p = V(mR)) (cf. Sections 1, 5, and 6). Let e = 8(R(E, D)) be the positive
integer as in (6.7). Then mR = R+ = @ Rk, and we have the following relations (see

k>E

the proof of Theorem (3.4) of [42]):

(™ V^j?1!, (n \ (fe+i)-£-i
for k > 0.

Henceforce we shall assume
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Let y e (0, . . . ,£- 1} be the integer with Hl(E, 0E((e 4- y)D)) = k and x a non-zero
element of Re. Then, by the surjectivity of (7.20.1),

(7.20.2) dimH1(E90E(hD)) = 0 if h =£ y (mod e) and h > e,

dimHl(E,OE(hD))<l if h = y (mod e) and h>e.

Hence there is a positive integer v such that a(R(E, D)) = y + vs. Then, we have
the following commutative diagrams for integer u with 1 <u <v:

k = Hl(E, 0E((s + y)D)) n""tip"cati'"'wi"'x'"'

(1 20.3)V '

Hence, by the surjectivity of (7.20.1), we obtain

(7.20.4) H1 (£, OE((y + u • e)D)) = k for u with \<u<v9

(7.20.5) the morphisms in the diagram (7.20.3) are isomorphic.

(7.21) We shall prove the remaining case by continuing the studies of (7.20) on
assuming that (W, w) is Gorenstein.

By (7.20.2), (7.20.4), and the Serre duality: Rx*-»Hl(E, OE((a - <x)D)) (cf. [45]),

(7.21.1) Ra = 0 if a =£ 0 (mod e) and 0 < a < y + (v - l ) -e ,

Ra = k if a = 0 (mode) and 0 < a < y + (v - l ) -e .

By the exact sequence 0->G->JR-*l /-*0, we obtain the relations: U"a = 0 if a ^ 0
(mod e) and 0 < a < y + (i; - 1) • e. Further C70 = 0 by (6.5).

Assertion (7.22). Ue = 0.

Proof. Suppose UE ̂  0 and take a non-zero element <P of UE. Let j eK a

KV*(Qjf(-p-£)) be as in (7.14) and Lemma (7.15) in the following:

3 W such that fp(!P) * 0 .

Then p = y (mod e) by (7.20.2). Let us write p = y + u • e with 1 < u < v. Then
y M ~ u £pW^O in Hl(E,0E(aD)) by (7.19.5). Further (H - v -h l)-^"'17- (JP(P) * 0 in
Hl(E,0E(aD)), because char(lc) = 0. Hence Ker?/a50 is non-trivial by Lemma (7.15).
This is a contradiction by Theorem (7.2) and (7.12).

Therefore Up = 0.
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(7.23) By assertion (7.22), there is an element g of FE — FE+1 whose divisor
div(\l/~1(g)) is written as follows:

div(^-1(^)) = — e-E + Dg, where Dg is a divisor whose support does not contain E.
Hence di\(\l/~l(gz))= -z-£-E + z-Dg on X and gz E FZ'E - Fz'e+l for any integer

z > 0. By (7.21.1), Gz.e -> RZ.E is surjective and Uz.e = 0 for 0 < z- e < y + (u - 1)- e.
By (7.20.2), ^V*(^x(-«'£)) = ^V*(°x(-(« - 0'^)) for 0 < i < y - 1. Therefore
[/a_£_! =0 for 0 < i < 7 - 1 by Theorem (7.2) and (7.12).

This completes the proof of Theorem (7.9).

§ 8. The Case with pa = 2

(8.1) Let (W, w) be a normal two-dimensional singularity, ij/:(X, A)-+(W,w) a
resolution of (W, w) and F the dual graph of A. For the definition of the arithmetic
genus pa(W, w) = pa(F\ we refer to (0.7). For a star-shaped graph F, we have the
following formula (Theorem (3.8) of [42]):

(8.1.1) pa(r) = max \r(g - 1) + 1 - f deg([fcD])j ,
r>l (_ k=0 }

where [fcD] denotes the maximum among the set {the integral divisor G on E \ G < k • D}
for k E Z.

By (7.10), if pa(F) = 1, then the answer to Problem (7.6) is affirmative. So the
purpose of this section is to examine the case pa(F) = 2. For the case pa(F) = 2 with
g > 1, the answer is affirmative, too (Corollary (8.3) and Theorem (8.4)). Further we
shall classify unsolved cases with pa(F) = 2 in Lemma (8.11) (cf. Example (8.14)).

We begin with the following:

Lemma (882)8 Let the situation be as in (6.2). If pa(F) = pa(E)( = g) > 2, then
a(R) < 2.

Proof. We define the function h(r) by

(8.2.1) h(r) = r(0 - 1) + 1 - § deg([W)]) for r > 1 .
fc=0

Since h(\) = g, pa(F) = g is equivalent to h(r) < g for r > 0. In particular h(2) < g
implies deg([/cD]) >g-L Hence deg([feD]) > k deg([D]) > k(g - 1) for k > 0. There-
fore Hl(E, OE(kD)) = 0 for k > 3. Q.E.D.

By Corollary (7.7), we obtain the following:

Corollary (83). Let the situation be as in (6.2). // (A, m) is Gorenstein with
pa(F) = g>2, then U = 0.

Next we shall show the following:

Theorem (8.4). Let the situation be as in (6.2). Suppose that the characteristic of
the base field is not two and that the graph F satisfies pa(F) = 2 with g = 1. If (A, m) is
Gorenstein, then U = 0.
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For the proof, we need the following:

Lemma (8.5). Let the situation be as in (6.2).
(1) // pa(F) = 2 and g = 1, then there is an integer JLI with 2 < jU < 6 such that

deg([D]) = - 1, deg([kD]) = 0 for 1 < k < ft, deg(I>D]) > 1, deg([(/z + 1)D]) > 0 and
deg([kD]) > 1 for k > p + 2.

(2) If Pa(n = 2, g = 1 and R(E, D) is Gorenstein, then p ^ 5 in (I).
(3) // g = 1, there is no graph P with the conditions: deg([D]) = — 1, [2D] and

[3D] are linearly equivalent to zero, and deg([4D]) = 0.

Proof of Lemma (8.5). (1) By Corollary (3.9) of [42], deg([D]) < -1. Then
h(2) = 1 - deg([D]) < 2 by (8.1.1). Hence deg([D])=-l. Put the integer VL by:
/^ = min{aeZ|a>2,deg([aD])> 1}. Then fc(jx) = 2 - £ deg([kD]) < pa(F) = 2.

l<k<n

Therefore deg([kD]) = 0 for k with 1 < k < fi by definition of /i.
To show the relation JLI < 6, we represent D by:

(8.5.1) D = Q - Y, <liPi , where Pt = E D An and 1 > q1 > q2 > - • • > q^ (6.2) .
i=i

Here deg(Q) - j» = deg([D]) = - 1.
Now assume fi > 1. Then deg([2D]) = deg([3D]) = deg([6D]) = 0. From the

relations [(m -h n)/>] > [nD] -f [wD] for m, n e Z, the relations [6D] = 2 • [3D] = 3 •
ft

[2D] follow. If we denote [6D] as [6D] = 6-g - £ vP£ by integers zi9 1 < f < ft
t=i

then all zf are divisible by 6. Hence deg([6D]) < 6(deg(g) - j8) < -6. This is a
contradiction.

The remaining assertions of (1) are easy to show.
(2) By the Gorenstein property of R(E, D), [aD] = [kD] + t(a - k)D] for k e Z

and [aD] is linearly equivalent to zero (see [45]). Hence we obtain a = ILL + 1 and
deg([/iD]) - 1 by (1). If p = 5, then deg([2D]) = deg([3D]) = deg([6D]) = 0 follow.
These produce a contradiction by the arguments of (1).

(3) Suppose there is a graph F with conditions: g = 1, deg([D]) = — 1, [2D] and
[3D] are linearly equivalent to zero, and deg([4D]) = 0. Let us denote D as in (8.5.1).

P
Then [D] = g - £ Pt with deg(Q) - j8 = - 1. By the condition deg([2D]) = 0, we

i=l p-2

can easily show the following relation: [2D] = 2 - Q — £ 2-P£ — P^ — Pft. Further
i=l

deg([4D]) = 2 deg([2D]) implies [4D] = 2 • [2D]. In particular 4qt > 3 for i < ft - 2,
P-2

and [3D] is written as [3D] = 3-Q- £ 3-P f - x^_ t • F .̂! — x^ - Pp by integers x^ and

x^. Since 1 < xp < xp^ < 2 (by the forms of [2D] and [4D]) and deg([3D]) = 09

we obtain the relations x^ = 2 and x^ = 1. Hence 3 • [2D] — 2- [3D] = F^_x — Pp is
linearly equivalent to zero by assumption. Since Pp-i and Pp are distinct points on the
elliptic curve, this is a contradiction.

(8.6) Proof of Theorem (8.4). As we have seen in the proof of Lemma (8.5),
a(R) = fj, + 1 and p = 2, 3, 49 or 6. Here R± = H°(E, 0£([D])) = 0 implies Ul = 0.



FILTERED BLOWING-UPS OF SINGULARITIES 735

Hence KV^O^- 2 •£))-> Rl^^(0x) is injective. By Lemma (7.11),
KV*(P*(-(0(K)- 1)'£))-»#V*(0A:) is also injective. Hence we obtain Ua(R)-2 = °-
Further U0 = 0 and l/a^j-x = 0 by (6.5) and Lemma (7.11).

Therefore U = 0 for the case a(R) < 4.
For the case a(R) = 5, we obtain the following relations: dim U = dim U2 <

dim R2 = dim H°(E, O£([2D])) < 1. Then U = 0 by Theorem (7.8).
In the case a(R) = 7, we have the folio wings: deg([D]) = — 1, deg([2D]) =

deg([3D]) = deg([4D]) = deg([5D]) = 0, deg([6D]) = 1, deg([7D]) = 0, [7D] = [/cD] +
[(7 — k)D~] for k e Z, and [7D] is linearly equivalent to zero. Then we can easily show
that [2D] is not linearly equivalent to zero by (3) of Lemma (8.5). Hence R2 = 0
and l/2 = 0 follow. Then Rl\l/^(Ox(-3E))^> JR^JOy) is injective. By Lemma (7.11),
JRV*(Qy(-5£)) -> Rl*ls*(Ox) is also injective. Hence U4 = 0. Thus dim U = dim l/3 <
dim K3 = dim H°(E, O£([3D])) < 1. Therefore 17 = 0 by Theorem (7.8).

This completes the proof of Theorem (8.4).

(8.7) In the rest of this paper, we discuss the case g = 0 with pa(F) = 2. Then
we obtain the equality dim(,R1vJ!!(Oc)/mjR^1vJt:(Oc)) = 2 by [42] Theorem (3.4) and Corol-
lary (3.6). Let e = e(R(E, D)) be the integer as in (6.7). Then, by the equality

R\(Oc)/mRR\(Oc) = X H*(E, 0E([hD'])) (7.20), one of the following two cases
h=0

occurs.

Case (8.7.1). There is an integer y with 1 < y < e — 1 such that deg([yD]) = — 3
and deg([iD]) = — 1 for any i e {i, . . . , e — 1} — {7}.

Case (8.7.2). There are two integers yl and y2 in { ! , . . . , £— 1} with yl < y2 such
that deg([y1D]) = deg([72D])= -2 and deg(pD])=-l for any ie {1, ..., e - 1} -

{71,72}-

Proposition (8.8). Let the situation be as in (6.2), pa(F) = 2, and R satisfies the
conditions in the case (8.7.1). Then

dimim^v^Oc^m^R^Oc)) < 1 .

Proof. We have the relation -3 = deg([yD]) > deg([y - !)£]) + deg([D]). Hence
y = 1 in Case (8.7.1). For the function h(r) (8.2.1), we have

r 1 2 3 -

h(r) 0 2 2 -

8

• 2

8 + 1

1 - deg([eD])

In the case deg([eD]) > 1, we obtain the following relations: deg([(e +
deg([eD]) + deg([D]) > -2, deg([(e + i)D]) > deg([eD]) + deg([iD]) > 0 for 1 < i < e.

Then tim(mRR\(Oc)/(mR)2R\(Oc))= E dim^1^, 0£([/iD]))) < 1. This agrees
h=E+l

with our assertion.
Let us assume deg([eD]) = 0. Then /i(e + 1) = 1 and fc(e + 2) = -deg([(e +
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By the formula (8.1.1), deg([(e + 1)D]) > -2. Since deg([(e + f)D]) > deg([eD]) +
deg(pD]) > -1 for i with 1 < i < s, dim(mR • R\(Oc)/(mR)2 - R\(OC)) =

£ dimtff1^, 0E([hD]))) > L Q.E.D.
h=e+l

By Theorem (7.9), we obtain the following:

Corollary (8.9). Let the situation be as in (8.8). Suppose the characteristic of the
base field k is zero. If the singularity (W9 w) is Gorenstein, then U = 0.

(8.10) In the case (8.7.2), we can not apply Theorem (7.9) directly in general.
Since deg([(m + n)D]) > deg([mD]) + deg(pi/)]) for m, n e Z, we obtain the

following:

deg(pDJ) > — 2 if i = yl or y2 (mod g), and i > 0 ,

deg(pD])>0 if i = 0(mode), and i > 0 ,

deg([)'D]) > — 1 if i = 05 yi, or y2 (
m°d fi), and i > 0 .

In particular a(R) = y1 or y2 (mod e).

Lemma (8.11). L^t the situation be as in (6.2), pa(T) = 2, and R satisfies the
conditions in the case (8.7.2). Suppose that R(E9 D) is Gorenstein and
dim(mR • R\(Oc)/(mR)2 - R\(0C)) = 2. Then:

(1) In the case a(R) = y1 + u • e for an integer u, we have u>3 and

deg([iD])= -2 if i = yl + k-s for ®<k<u

or i = y2 + k • e for 0 < k < u — 2 ,

deg(pD]) = 0 if i = k-£ for Q<k<u

or i = y1 — y2 + k-s for 2 < k < u ,

deg(pD]) = -1 for other indices i, 0<i< a(R).

In particular pg(R) = 2 • u.

(2) In the case a(R) = y2 + u-s for an integer u, we have u>2, and

deg(pD])=-2 if i ^ y ^ + k-s for Q<k<u-i

or i = y2 4- k • e for 0 < k < u ,

deg(pD]) = 0 if i = k-s for Q<k<u

or i = y2 — 7i + k • s for 1 < k < u — I ,

deg(p/>]) = -1 for other indices i, 0<i< a(R).

In particular p (R) = 2 • u + 1.
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By the above data, we obtain: s > 4, y1 > 1, y2 > 3 and a(R) > 13 for (1) of Lemma
(8.11), a(R) > 11 for (2) of Lemma (8.11). Hence we obtain the following by Theorem
(7.9).

Corollary (8,12). Let the situation be as in (6.2). Suppose the characteristic of the
base field k is zero and the graph F satisfy pa(F) = 2 with a(R) < 10. // the singularity
(W, w) is Gorenstein, then U = 0.

(8.13) Proof of Lemma (8.11). We shall show the assertion for the case (1). First
-2 = deg([oD]) = deg([(y1 + k-e)D]) + deg([((ii - k)-e)D]) > deg([7lD]) +
u deg([eD]) > -2, implies degd^ft + fc-e)D]) = -2, and deg([fc e /)]) = 0 for 0 < k <
u. For the function h(r) (8.2.1), we have:

r 1 • • • }'t yl + 1

h(r) 0 ••• 0 1

y2 y2 + i -
1 2

e

2

£ + 1

1

Assertion (8.13.1). There is an integer S with e < 5 < 2 • s and Rd ^ 0.

Proof of Assertion (8.13.1). Suppose Rk = 0 for k with s<k<2-s. Then
deg([fcD]) < — 1 for k with s < k < 2-s. We can easily show h(2e) > 3 by using the
relations deg([(yt + s)D]) = deg([(y2 + e)D]) = — 2. This contradicts the assumption
pa(JT) = 2. Q.E.D. for (8.13.1).

By the Serre duality: R^H^E, OE([_(a - fc)D])) (see [45]), deg([(a - 5)D]) <
-2. Hence d = 2s + ̂  - y2, deg([(a - 6)D]) = deg([(y2 + (M - 2)- e)D]) = -2 and
deg([(2e + y1 — y2)D]) = 0. In particular e + y2 = 2• s + yl - y2.

The remaining assertions are not difficult to show.

The arguments in the proof of (2) are similar to (1). So we shall omit them.

Example (8.14). Let the situation be as in Theorem (6.3) and the dual graph F of
f ~ l ( w ) be as follows:

Then Pinkham's construction R(E, D) is a Gorenstein domain with pa(F) = 2 and
has the invariants y1 = 1, y2 = 3, e = 4, and a(R) = 11 in the terminologies of (2) of
Lemma (8.12). In fact, with D = 3P0 - |PX - f P2 - ^P3 - |P4 - ±PS, where Pc = E fl
Xa, 1 < i < 5, P0 a point of £, and D' = |PX + |P2 + |P3 + ^P4 + ^P5, K£ + D' - 11 D
is linearly equivalent to zero on E. Further we have
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r 1 2 3 4 5 6 7 8 9 1 0 1 1

deg(D(r)) - 2 - 1 - 2 0 - 2 0 - 2 0 - 1 0 - 2

h(r) 0 1 1 2 1 2 1 2 1 1 0

deg([rD]) > -land h(r) < 1 for r > 12 .

(In general we have the relation pa(F) = max h(r)).

Hence pg(R(E, D)) = 5.
We shall study our U. Firstly Uk = 0 for k>a = H9 by the relation Uk =

Ker{K V»(0*(-(* + !)£)) -> £ V*(Qr(-*£)} (see §§ 1, 5, 6). Secondly I70 = 0 by the fact
(6.5). Thirdly Uk = 0 for k = I 2, 3, 5, 7, 9. Hence R^O^-kE))-^ R^(OX) is
injective for fc < 4. By Lemma (7.16), we obtain

dim 17= £ dim(^(Ker{«V*(Ox(-/c£))^J?V*(^)}))< I dim H\E, 0E(kD)) = 3 .
k>5 k>5

From here we assume (W, w) is a Gorenstein singularity.
We have the injections R1\I/*(OX(-(12 - k)E))-> Rl\lt*(Ox) for fc<4 by Lemma

(7.11). Hence C/8 = C/10 = 0. Further if we assume that the characteristics of the base
field is not two, dim U ^ 1 by Theorem (7.8). Hence dim U = 0, or 2.

We do not know an example with dim U = 2 for this graph.
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Note Added in Proof.
(1) In (3.9) we need the assumption "G is generated by Gj over G0". In fact, without this

assumption, let A = C{x, y, z, w}/(x2 + y3 + z10 + w15) with the "natural" filtration so that G =
C[.x, y, z, w]/(x2 + y3 + z10 + w15). Then a(G) = 0, but a>x = Ox(l) = 0X( — E) is not generated by
H°(X, a}x) = m = F1 = F2, because G1 — 0. Accordingly, we add the same assumption to (4.9). Also, the
statement "if and only if" in (ii) of (4.11) should be replaced by "if".

(2) Actually, there is a counter example for (7.6.1) in positive characteristics (see [21]). In characteristic
zero, we still do not know the answer.


