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§1. Introduction and Results

Let @, be the quaternionic quasi-projective space (cf. [11]). Then it is a
2-connected CW-complex having one 4/—1 dim cell for each 7 with 1=</<n. It
is known that the order of the cokernel of the stable Hurewicz homomorphism
h: 50 -(Qn)>Hyn-(Qr; Z) is equal to a(n—1)-(2n—1)! (see Theorem 3.10),
where and throughout the paper a(?) denotes 1 if 7 is an even integer and 2 if
7 is an odd integer. Then, for any generator x of the free part of w$,_,(Q.),
the mod p Adams filtration F,(x) is less than or equal to vy(a(n—1)-2n—1)1),
where vp(s) denotes the exponent of a prime p in the prime power decomposi-
tion of an integer j. Let G, denote the tensor product GRZ p for an abelian
group G, where Z,, is the ring of integers localized at p. Then, one of the
results in this note is the following.

Theorem 1. For n=1 we have an element x,=ni,-1(Qrn)wy Which is a gen-
erator of the free part and whose mod 2 Adams filtration is equal to v,(a(n—1)
2n—1)1".

In [6] M.C. Crabb and K. Knapp has proved that F,(¢")=y,(r!) for the
generator ¢” of the free part of z§,(CP*), where CP> is the complex projective
space and o7 is the r-fold product of the canonical generator ¢=ni(CP~) by
the H-space structure of CP~. Theorem 1 is an analogy of their result for the
case of the quaternionic quasi-projective space. For the case of an odd prime p,
the element gu(c®* )en, (Q.)p> satisfies the corresponding properties, that is,
it is a generator of the free part and satisfies Fp(gs(o?"!))=vy(a(n—1)-2n—1)1),
where ¢: YCP*"'—>(Q, is the map canonically defined by the definition of Q,
(cf. [200).
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In [18] D.M. Segal has obtained some results about zi(HP™) by applying
the Adams spectral sequence, whose method originated with M. Mahowald [12],
where H'P™ denotes the quaternionic projective space. Our proof of Theorem 1
will be done as an application of Segal’s method and of Crabb-Knapp’s result
mentioned above. Then by our method some properties concerned with the
Im(J) classes are also shown, which is the second result of this note. To state
them, we prepare some notations.

Let Im(J), be the image of J-homomorphism in 7$,-,(S%) . Then it is a
cyclic group of order 2** and a direct summand of x$,.,(S°), where y(n)=
vo(n). (Cf. [2]). We denote by a,, the element of Im(J), of order 2, and by
azn; the element of Im([J), satisfying 2'~'a;,,,—=a,, for i=1. Let 7: S*—»CP"
and 7: S®*—Q, be the inclusions to the bottom spheres respectively. Then we
have the following theorems.

Theorem 2. Let 715 w8n_(S)=275,41(S)— w1 (CPF).

(i) When n=2m=2, we have (a) ix(ain)#0 if 1=<k<4m, and (b) isx(@in)
=0 and ix(@sm;2)#0 if k=4dm+1.

(i) When n=2m+1=1, we have (a) ix(@ym-2)=0 if k=2, (b) ix(Asm+22)F0
if 1Zk<4m+-2, and (¢) ix(@um+2/2)=0 and ix(@im+2/)#0 1f k=4m+-3.

Theorem 3. Let ix: T5n-1(S)=75n22(SP)— 75, 12(Q1).

(1) When n=2m=2, ix(a@yn)*0 if k=1.

(ii) When n=2m~+1=1, (a) ix(@um+2)#0 if 1Sk<2m+1, and (b) ix(®sm+2)
=0 and ix(@im2r3)#0 if B=2m+2.

This paper is organized as follows: In §2, we show Proposition 2.1, which
proves a part of Theorems 2 and 3, and which we need in the proof of Theorem 1.
In §3, we prove Theorem 1 by applying the Adams spectral sequences for
7L (CP™) and =%(Q,), which also proves a part of Theorems 2 and 3. In §4,
we complete the proof of Theorems 2 and 3.

The author thanks K. Morisugi, H. Oshima and T. Watanabe for their
valuable comments.

32. Estimation by ,-Theory

Let (Y., d)=(CP?",2) or (Q.,3), and let ix|, be the restriction of 7y:
i (S)=ri e a-1(SY)=nra1(Yw) to Im(J),, where 7: S¢—Y, is the inclusion
into the bottom sphere and Im(/), is the 2-primary part of the image of the
J-homomorphism in 7§,-,(S°). In this section, we prove the following

Preposition 2.1. (i) When YV,=CP*" and n=2m=2, ix|; is injective.
(ii) When Y,=CP? and n=2m-+1=1, v,(|7xIm()).))=v(|Im( ). )—1,
where |G| denotes the order of the group G.
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(iii) When Y ,=Q, and n=1, iy|; is injective.

Let ¢*: KO —KO, be the stable Adams operation on the KO-theory
localized at 2, and k0 and kSpin the (—1) and 3 connective cover of KO res-
pectively. Then we have a lifting ¢: 20 —kSpine, of the operation ¢°*—1:
KO ,—KO,, and we define j to be the fiber spectrum of ¢. (Cf. [7], [16]).
Then ; is a connected 2-local spectrum, and ny(j)=Z ;. We denote by 7;(X)
and ;% X) the reduced homology and cohomology groups of a space X respec-
tively. Then the j-theory is known to be closely related to the J-groups as
follows, where h;: w%(X)w—7«(X) is the stable Hurewicz homomorphism.

Lemma 2.2. The restriction of hj: wn-1(S)@y—J1a-1(S°) fo Im(J). is an
isomorphism.

Thus we investigate the homomorphism 74: 7,,-1(S)—Jin+a-1(Y ») to prove
Proposition 2.1. For example, to prove (i) and (iii) it is sufficient to show that
7% is injective. To make use of the known results about the KO-cohomology
of Y,, we consider the S-dual of Y,, and denote it by V,. Then by [4], the
stable homotopy type of V, is given as follows:

Lemma 2.3. When Y ,=CP?" (resp. Q,), V, is stably homotopy equivalent
to the stunted complex (resp. quaternionic) projective space CP3N-1_,=
CP2N-L/CP2N-n-D (ygsp, HPN-L=HP¥-'/HPY-"-1) for some sufficiently large

integer N which we can take so as to satisfy N>n and N=0mod8.

We regard V, as the stunted projective space as in Lemma 2.3. Let p:
V.—S*¥-1 be the collapsing map to the top cell, and let M=N—n—1. Then
through the S-duality, the homomorphism 74: 74,-1(S®)—Jin+e-1(Y ») is identified
with p*: j-4o+1(S)x jAM+1(SHN-D)_, 4¥+1(Y/ ) Thus to prove Proposition 2.1 we
determine the order of the image of p*. Let ¢: 2O*(X)@,—kSpin*(X)e, denote
the homomorphism defined by the operation ¢*—1 mentioned at the first of this
section. Then we have the following commutative diagram ;

¢ 5
£O™M(S") 0y —> kSPin (S ey —> j~H(S") —> 0
(2.4) | o p | 2 s

RO (V) —> kSpin* (Vi) —> j*(Va),

where and throughout the paper the cohomology and homology groups are
assumed to be reduced. Let ¢, be the generator of kSpin=*"(S%)wy=Zs,. Then
0(¢n) is a generator of ;j*"+*(S"), and thus our task is to determine the order of
p*(en) in RSPin*™(V3)a/image(d).

The group structure of KO*(CP™) has been determined by M. Fujii [8], and
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that of KO*(HP™) is classically well-known, since the Atiyah-Hirzebruch spectral
sequence for KO*(HP™) collapses. In particular both groups KO*¥(CP*¥-Y)
and KO*"(HPY-') are free abelian groups of rank N—1. Using [8] and the
elementary properties of the Adams operation, we have the following lemmas.

Lemma 2.5. Let V,=CP3{7°. Then we have

(1) RSpin*™(V,) and RO*™(V,) are identified with the following subgroups
of KO*M(CP*¥-Y) through the collapsing map CP?*¥-D—-V,: For a suitably
chosen basis { X, X,, -+, Xy-1} of KOY™(CP?>V-b),

d kspin4A‘I(Vn)gZ{2X11[+1, XM-rZ) Tty XN—I}
an
ROM(V )= Z{ Xors1, Xuszs =y Xy-a}.

(ii) pMen)=Xn_y1 if n is even, and p*(¢n)=2Xy_, if n is odd, where p* and
tn, are those as in (2.4).
(iii) (P*—I(X)=(3Y"—1)X; mod (X4, -+, Xy-1) for M+1<j<N—L

Lemma 2.6. Let V,=HPY-L. Then RO™(V,)=kSpin*(V,)=KO**(V,)=
Z{Y., Y, -, Y.} for a basis {Y;} satisfying

(i) p*ea)=Y, and

(i) (@P*—1)Y )=E@*—=1Y; mod(Y 41, -+, Y4) for 1< n.

Proof of Proposition 2.1. Let ¢, be the order of p*(c,) in ESpin*(V,)w/
image(¢). Then for the case (i) and (iii), we have v;(c.)=1(3""—1) by Lemmas
2.5 and 2.6 respectively. Since vy(| fin-1(S%)|)=ws(32"—1), p*: j-*+(SO)— (V)
is injective, and thus we have the desired results for (i) and (iii). Similarly,
we have (ii), because in this case we have v,(c,)=v,(3**—1)—1 by Lemma 2.5.
Thus we have completed the proof.

§3. Proof of Theorem 1

In this section, we consider the classical Adams spectral sequence [1] con-
verging to w(S°), ni(CP™) and n{(Q,) at a prime 2. Let E{%X) be the E,-
term of the Adams spectral sequence based on the ordinary Z/2-coefficient
cohomology groups and converging to ni(X)®Z,, where Z, denotes the ring
of 2-adic integers, and let d,: ESY{(X)—E+ 7Y X) be the differential between
E.-terms. Thus, EYYX)=Ext{Y(H*X; Z/2), Z/2), and E%%X) is the bigraded
group associated with the Adams filtration of 7%(X), where A denotes the mod 2
Steenrod algebra. We refer to [17] with respect to the definitions and the
general properties for the Adams spectral sequences. Sometimes, we abbreviate
s and { from E$YX) and simply denote by E.(X), and we say that ESX) is
in the u-stem if it satisfies {—s=wu. For a continuous map f: X-Y, fix: E¥¥X)
—ES4YY) denotes the homomorphism between the spectral sequences induced
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from f.

Let 74,,: CP*~CP™ and p,: CP™—>5?" be the inclusion map and the col-
lapsing map respectively. If we have a relation (p;)«(x)=g for some element
geEyY(S**)=Ey*t2*S° and xEyYCP*), then we denote by ,g the element
(i, n)x(x) for n=k. Of course ,g is not unique for g and % in general. We
use these notations similarly for the elements of E$ Q).

Let h,=E}*(S°)=Z/2 be the generator. Then, for each i>1, hAf is a per-
manent cycle and represented by 2:=xi(S?). Let (X,, d)=(CP", 2) or (XQ,, 4),
where YQ,=Q,AS' denotes the reduced suspension. If we have an
element hisELi+2"(X,), then it satisfies (p.)x(zh)=h} by definition, where
(Pa)x: Ebi+en(X,)—ERi+en(Se)=F%%S%. Thus, if ,h} is a permanent cycle
furthermore, then we have an element y of =%,(X,) with the property that
Fy(y)=vy(h(y))=:, where F,(y) denotes the Adams filtration of y and A(y)
denotes the image of the stable Hurewicz homomorphism A : z$,(X,)—Hx( X, ; Z)
=Z. Hence Theorem 1 is equivalent to the existence of an element ,hic
ELi+17-1Q.) for i=w(a(n—1)-(2n—1)!) by Theorem 3.10 which appears later
on, and we will show the existence of such an element.

Let a(n) denote the number of 1 in the diadic expansion of n. We remark
that yy(n!)=n—a(n). Then Crabb-Knapp’s theorem mentioned in §1 can be
stated as follows:

Theorem 3.1. (M.C. Crabb-K. Knapp [6]) There exists an element ,h? %™
EEové—n(n)Jn—a(n)(CPn)'

In §1 we defined the element @,,;; of Im(J),Cxi,_(S°. For 1<i<3 we
use the same notation as,;; for the element of E,(S°) represented by aaqji.
Thus the element ,a@s,,, € E,(CP*) for k=1 is the image of @s,/,,E E,(S°) through
ix: E3YSOH=E$ ¥ SH)—Ey™**(CP*). It is known that a,,, of E,(S°) are in
neighborhood of the vanishing line (cf. [13]), which we will describe below.

The vanishing theorem for E,(S°) is given as follows:

Theorem 3.2. (J.F. Adams [3]) E$¥S%=0 for 0<t—s<q(s), where q(s)=
2s—e for e=1,2 and 3 if s=0,1 mod4, s=2 mod4 and s=3 mod 4 respectively.

The vanishing line is formed by the equality t—s=q(s) when we treat the
spectral sequence by writing each E§*S°) in the plane with the ({—s, s) coor-
dinate. Then, by the periodicity theorem [3] and the calculations for the lower
stems (cf. [19]), the structure of E,(S°) is well investigated for some range
near the vanishing line (cf. [17; Chapter 3]). Thus we have the following
lemma which is a direct consequence of it.

Lemma 3.3. Let m=1 and 1<7<3, and let h, € E} *(S°)=7/2 be the generator.
(i) Concerning the (8m—1)-stem, we have E}™+'~7 2m-3(SN=7/2{a,n;;} and
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E{i+m-1(SN=0 for i=4m+1, and asm,; is not divisible by h;.

(ii) Concerning the (Bm-+1)-stem, we have an element oum+1 such that
Eim+tizmee( GO — 7 /o @ym1}, and we have E}+3m+Y(SO)=0 for i=4m+2

(iii) Concerning the (8m-+2)-stem, E§{m+22m+4(SN=Z7/2{h;@ym+1} and
E}i+8m+23(SO=0 for i=4m+3.

(iv) Concerning the (8m—+3)-stem, we have E4™+=312m+1=i(SN=7/2{Ctsm 42/}
and ELim+3(SO=0 for i=4m-+4, dimi2=h3Qun+1, aNd @smi2/; 1S not divisible by
hy for =2 and 3.

(v) Concerning other stems, we have E§*3™(S°)=0 for i=4m, E}**™-¥S%)
=0 for i=dm—1, and EL*$m-3(S°)=E}*3m-4SN=0 for i=4m—2.

. i P .
The cofibering CP*'—-CP*—S?* induces a long exact sequence

7 X 0
(3.4) o> BpH(CPE) — > EpH(CPY) —> E3YS™) —>
EtH Y CP* 1) —> -

where § is the connecting homomorphism (cf. [17; Chapter 27). J is compatible
with the boundary homomorphisms, and §: E¢-1(S** )= ESY(S**)—ESHH {(CP*-Y)
is associated with (¢.)s: wW(S** " )—ri(CP*'), where ¢, is the attaching map
of the top cell of CP* In particular, since the stable homotopy class of the

.. ¢ p ..
composition Ser-1"2 O pre-1l, gui- represents the nontrivial class p&z{(S%)=7/2,
we have the following lemma.

Lemma 3.5. The composition py0: E§‘*(S)=FE${(S**)— Estt{(CP**-1)—
Eg+y(S4k-2) Fs+l. t-tk+2(Q0) g the mmultiplication by h,.

By Lemmas 3.3 and 3.5 and Theorem 3.1 we have the following

Lemma 3.6. (i) For d<k<4m, EL 3™ (CPH=01if i=dm+]1, =Z/2{,aun}
if i=4m, and =Z/2{,a4mpn} if i=4m—1.

(ii) For m=1 and 2Zk<4dm-+2, EL3™5(CP*=0 if i{=4m+3, =
Z/2{s@mazsa} if i=4m+2, and =Z/2{,@im42ss} if i=4dm+1.

(ili) For i=2m+2=4, E}*™(CP*)=0 if 1k<2m—1, and Ey***™(CP*)=
EL™(CP*MY=Z/2{snhl} if E=2m.

Proof. (i) Assume that ;=4m—1=3. For 5<%k <4m, since E}*+3m+(S2*)
=0 and E}~"#8m+4(S?5)—( by Lemma 3.3, we have an isomorphism (7., :)s:
Ejirsmiy(CPpH S EL U8+ (CP) by (3.4). Thus we may consider the case for
CP*. First, to investigate CP? we consider (3.4) for k=2. Then, since 9:
E$(S*)— E$t%(S?) multiplies each element by %, by Lemma 3.5, we have §=0
on Ei-t##sm+i(S4) hy Lemma 3.3 (i). Thus we have an isomorphism (i1 )
ELirsmal(§2) , pLitsmel(CP?) from (3.4), because E%**5™+1(S9)=0 by Lemma 3.3
(v). We also have E*#sm+i(CP?)=(, because [E}t! [+sm+1(§2)— [i+l.ivem+1(G4)
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=0 by Lemma 3.3 (v). Next, consider (3.4) for £=3 to investigate CP®. Since
Ei-ti+8m+1(§8)—() by Lemma 3.3 (v), we have a short exact sequence

Z.
0 — > Eé,i+8m+l(cP2) _j) E;,i+8m+1(cP3) ﬁ) Eé i+8m+1(56) — > 0 .

By Lemma 3.3 (iv), E4™ 4 2"(S)=Z/2{a,n_»} and E}/*™+(S)=0 for j=4m.
Now, consider (3.4) for k=4 as the last step. By Lemma 3.5, the composition
px0: ESYS®)—ES((CP?)—E$ Y(S®) multiplies each element by h,. Therefore
we have py0(hiasm-s)=hi@m-s=a;m_» by Lemma 3.3 (iv). Then, using the
above short exact sequence and (3.4), we have an isomorphism iy : E{8m+(CP?)
— ELiHsmil(C P because E3™%12™(S8)=Z/2{haym-s} and E}+™+%($%)=0 for
j=4m—1 by Lemma 3.3 (iii). Thus we have an isomorphism zy: E} #+3m+1(S?)
—E§8m+(C P4 and we have the desired result by Lemma 3.3 (i).

(ii) Assume that 7=4m+1=5. Then, considering similarly as (i), we have
an isomorphism iy : E #m+3(CP2)—EL H5m+5(CP*) for 3<k<4m-+2. Thus, we
may consider the case for CP? and to prove this case we consider (3.4) for
k=2. Then, concerning the boundary 0 in the sequence, we have 0(@sm41)=
hi@im+1#0 and 0(A @4ms1)=asm+2: by Lemma 3.3 (iii), (iv) and Lemma 3.5, where
Ay 1 € E4™HL12M48(G4) - Since @ym4se and aynm4; are not divisible by h; by
Lemma 3.3 (iv), we have an isomorphism iy : E&**3™+5(S%) /(aym 12)— EL 3™ +5(C P?).
Thus we have the desired result by Lemma 3.3 (iv).

(iii) Assume that :=2m-+2=4. Then we have that iy : E§***™(CP*1)—
Eii**m(CP*) is an isomorphism if £+#2m and £=2, by using Lemma 3.3 similarly
as in (i) and (ii). Thus we have the first half of the desired result, because
Eii*+m(CPY)=0. Then py: EL+™(CP>™)—ELi+m(S*™ = Z/2{h}} is injective.
But by Theorem 3.1 we have an element ,, A which is a permanent cycle mapped
by psx to h¥{ by definition. Thus we have E}***™(CP*™)=EL+*™(CP*™)=
Z/2{,mhl}. Since (fym,w)s: ELP*™(CP*™)—EL¥*™(CP*) is an isomorphism for
k=2m and r=2, we have the latter half of the desired result. Q.E.D.

Proposition 3.7. Let m=1. Then we have the following :
(1) 1an#0 in EVEE™H(CP™),
(1) 1@umaien#0 in  EARE212mF7(C pem+s)

where a(m) denotes the number of 1 in the diadic expansion of m.

Proof. To treat both cases (i) and (ii), we denote by j the element ;@n
for (i) and ;aym4e2 for (ii) respectively, and by ! the integer 4m-1 for (i) and
4m+3 for (ii) respectively. First we must show that f+0 in EL~"*-*(CP").
By (3.4), we have the exact sequence

P« 0 ik .
Eg t(CPl) - > Eg, t(S2l) > E;+L£(CPZ—-1) > Eg+l,t(cP )

for s=[—2 and t=3/—2. By Theorem 3.1 we have an element A} *P e
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Ei-a.3i-abCpPh and so hi2€Im py because a(/)=2. Thus 7y is injective,
and we have f+0 in E,(CP') by Lemma 3.6. Since d,(8)=0 for any »=2 by
Lemma 3.6 (iii), we have B€FELi;3(CPY). Assume that =0 in E,qy-1(CPY)
for some [ with a(/)=4. Then there is an integer r with 2<r<a(/)—2 and an
element ye EL-7"13-7"}(CP') which satisfy that d,(y)=8+0. By Theorem 3.1
we have an element ;A" '€ E.(CP"), and we have that iy: EZ™-}(CP!"')—
Epi+2-1(CPY is an isomorphism for ;=/—a(l)+r—1. Then we have that y or
y—ht ™ is in the image of iy: E,(CP'"Y)—E,.(CPY), that is, it is equal to
ix(z) for some element z€ EL-""13-m-Y(CP!-1), Then we have ixd.(2)=d.(y)=
B. Since EL'3-¥CP'"")=Z/2{B'} by Lemma 3.6 (i) and (ii), we have d.(z)
=f’, where B’ denotes the element ,a;-; or ia;_i2 0f E,uy-,(CP'™*) which
satisfies 7x(8')=p. This contradicts Proposition 2.1, because 8’ is represented
by ix(a)#0 of ni(CP'™'), where a=a,n<EIm(/)sn for (i) and a=aim+22E
Im(/)em+ for (ii). Thus we have B+#0in E,q,-,(CP'), and we have completed
the proof. Q.E.D.

Proposition 3.8. Let 2 be an odd integer with k=3. Then we have an
element ,hi~et-1g Fi-at-13k-aO)-Y CP¥) satisfying the following property:

(i) hepghb 2Ot E(CP*).

(ii) pht 2 ®'eE,4(CP?) and dauy(phi *®Y=1a,-, if k=1 mod4 and
=1&p-12 1f k=3 mod 4.

Proof. We prove by induction on a(k). First, we prove the case a(k)=2.
Consider the exact sequence (3.4), and let §: E§ ¢-2#(SO)= ES {(S**)—Est{(CP*-1)
be the boundary homomorphism in it. If there is not any element ,A%® in
E§335-3(CP*) then by Lemma 3.6 we have 0(h: )= ,@im/» and j0umies if k=
4m+1 and 4m+3 respectively. Then d(h%2)+#0 by Lemma 3.6. But this con-
tradicts Theorem 3.1, and thus we have an element ,Af® satisfying (i). Then
this element also satisfies (ii). In fact, if it does not satisfy (ii), then it is a
permanent cycle by Lemma 3.6 and it contradicts Theorem 3.1. Now we
assume that a(k)=u=3 and that we have a desired element for the case a(k)
<u—1. Let t be the integer such that 2!:<k=<2*'—1, and [=%(—2°% Then
a(l)=a(k)—1, and so by the inductive hypothesis we have an element ;h§{=%¢*
of Euwy-1(CPY) with the property (i) and (ii) for /. Let s=2! Then by
Theorem 3.1 we have ;hi'=EL(CP?%). Let X be the product hj!-;hf e
E.ry-1(CP*) by the H-space structure of CP~, Then, X is an element ,hk ("1

since the binomial coefficient (f)sl mod 2, and we have h,- X€E(CP*). If

dacry-1(X)#0, then by Lemma 3.6 it is equal to ja,_,, if =1 mod 4 and ;a;_y/s
if k=3 mod4. Then dacy-1(he- X)#0 by Proposition 3.7, but this cannot occur.
Thus X€E, ), (CP*) and satisfies (i). If X does not satisfy (ii), then we have
X€E.(CP*). In fact, since, for i=k, E}**2*-}(CP*')=0 by Lemma 3.6 and
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ig: E}iF2R-}(CPR-D)EL+2%-Y(CP*) is  surjective, we have d,Xe
Ejtnitre2k-3(CP*Y=() for r=a(k)+1, where j=k—a(k)—1. Then we have an
element x=x§,(CP*) such that h(x)=2%-*-!¢ for some odd integer ¢, where
h: 75 (CP*)—H,,(CP*; Z)=Z is the stable Hurewicz homomorphism. But
this contradicts the well known fact that the image of & is generated by %!
and v,(k)=Fk—a(k). Thus X satisfies (ii), and we have completed the proof.
Q.E.D.

Next we consider the mod2 Adams spectral sequence for z3(Q.). The
following lemma can be proved similarly as Lemma 3.6.

Lemma 3.9. (i) For an odd integer n=3, Ei***"*Q,)=0 if i=2n—1,
and =Z/2{102n-13} if i=2(n—1).

(ii) For an even integer n=2, EL™"~%Q,)=0 if i=2n, and =Z/2{1@scn-1>}
if i=2n—1.

In [9] B. Harris shows that the homotopy group m,,_,(Sp(n—1)) of the
symplectic group is isomorphic to the cyclic group of order a(n—1)-2n—1)],
which is a consequence of a result of R. Bott [5]. Hence the degree of ¢u:
Tyn-1(SP(N)) > Tyn-1(Sp(n)/Sp(n—1))=Z is equal to a(n—1)-(2n—1)!, where ¢ is
the canonical quotient map. Let 0 : m,-(Sp(n))—ns,-1(Q,) be the homomorphism
given by .M. James (cf. [11]), and p: Q,—Q,/Q,-1=S*""*! denote the collaps-
ing map. Then @ is an isomorphism onto the free part of z§,_,(Q.), and g« is
identified with the composition py°0: m,,-1(SP(n))—>7s,-1(S**"1). Thus we have
the following theorem which is also shown by several authors (cf. [21], [14],

[15D).

Theorem 3.10. Let h: n5,-1(Qr)—Hin1(Qrn; Z)=Z be the stable Hurewicz
homomorphism. Then an element x of win-1(Q) is a generator of the free part
if and only if it satisfies h(x)=a(n—1)-2n—1)!, where a(?)=1 for even i and
=2 for odd i.

Let ¢g: YCP%—Q.. be the map obtained by the symplectification (cf. [20]),
and ¢q: YCP* '@, the restriction of it by the cellular approximation. Then
g*: H¥Q,; Z)»>H*'(CP*"'; Z) is the map of degree 2, that is, it maps a
base of H* Y Q,; Z)=Z to +2b for a base beH*}CP*'; Z)=Z for each
1<7<n. Thus ¢ raises the mod2 Adams filtration by 1, and we have a map
qx: EXYCP™ ") Est+%(Q,) between the spectral sequences.

For t=2n—1—a@@n—1)=2n—a(n—1) and n=3, let anh§ e
EiLiin-3(CP? ') be the element in Proposition 3.8. Then gx(sn-1A57") is an
element A= ELEAL4(Q,), and we have

Lemma 3.11. Let t=2n—a(n—1). Then we have the following.
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(i) For an odd integer n=3, ,hiSEL(Q,).
(ii) For an even integer n=2, dan-14:1(nh8)=10sc1_1-

Proof. For an odd n=3, since d,( h¢)EELimttrn-2(Q V=0 for r=a(n—1)
+1 by Lemma 3.9 (i), we have (i). For even n, if (ii) is not true, then
Qan-11(zhE)=0 and hi€E(Q,) by Lemma 3.9 (ii). Then there exists an
element x of =$,.,(Q,) which satisfies 2¢|h(x) but 2!*! f h(x), where h is the
stable Hurewicz homomorphism. But it contradicts Theorem 3.10, because t=
vo(2n—1)!). Thus we have the desired result. Q.E.D.

Proof of Theorem 1. We assume n=2, since the assertion is clear for n=1.
Let y,=E,(Q,) denote ,hf{ for odd n=3 and ,h{*' for even n=2, where i=
2n—a(n—1). Then vy, is an element of E.(Q,) by Lemmas 3.9 and 3.11. Let
%2 E7w5,-1(Q,) be an element which represents y,. Then the mod2 Adams
filtration of x, is equal to y,(a(n—1)-(2n—1)!), and x, is a generator of the
free part by Theorem 3.10. Thus we have the desired result.

Remark 3.8. For even n, g«(6*"*~*') is a generator of the free part of x§,-.(Q)
by Theorem 3.10, where o¢*"'c=xi,..,(CP~) is the element mentioned in §1.
Thus for even n Theorem 1 is a corollary of Crabb-Knapp’s theorem [6].

§4. Proof of Theorems 2 and 3

Theorem 2 (i)(a) and (ii) (b) and Theorem 3 (i) follow from Proposition 2.1.
Theorem 2 (ii)(a) follows from Lemma 3.6 (ii). The equation 74(a,»)=0 and
15%(@um+2/2)=0 in Theorem 2 (i)(b) and (ii) (c) respectively follow from Proposi-
tion 3.8 (ii). Also the equation 7u(@,m..)=0 in Theorem 3 (ii) follows from
Lemma 3.11 (ii).

Let W, be the stunted projective space CP"/S? or @Q,/S°, and u=2n or
4n—1 for the respective case. When W,=CP"/S?(resp. @./S%), we denote by
A, (resp. B,) the value vy(|Coker k!), where |Coker A| is the order of the
cokernel of the stable Hurewicz homomorphism h: zs(W,)—H,(W.,.; Z). By
[10; Theorem II and Corollary III], we have

Proposition 4.1. (i) Aymi=v(@m+1)1)—1.
(ii) Bem+s1=wv((dm+1)1), and Byn=v,((dm—1)1)—2.

Consider the following diagram:

m5:(S%*)
wis(CPF) —> 1, (CP*/S?) —> 13, 1(S*) —> @5, ,(CP*)
lie o e

wi(CP*71/S?) —> 18, i(S?) —> @5, o(CPFY),



Apams FILTRATIONS OF n8(Q4) 657

where the horizontal and vertical sequences are derived from the cofiber se-
quences. From this diagram and Proposition 4.1, we have

(4.2) iyms,(CP*-'/S%) is the torsion part of =§,(CP*/S?), and

(4.3) g¢x=2x,+w, where x and x, are the generators of the free parts of
75,(CP*) and =§,(CP*/S?) respectively and w is some torsion element
of #§,(CP*/S?).

We complete the proof of Theorem 2 by the following lemma.
Lemma 4.4. 74(@n2)#0 in 75, (CP™Y) and i4(Qun+2/5) %0 in Tins(C P2,

Proof. Let 7 denote ayn;, Or @unies for k=4n-+1 or 4n+3 respectively,
and assume that i4y=0 in =z$,_,(CP?). Then in the above diagram we have
an element yenx$,(CP*/S?) satisfying 0y=y. Then we can put y=tx,+v for
some integer ¢t and some torsion element v. By (4.3) we have 2r=20(tx,+v)
=0(tg(x)+2v—tw)=02v—tw), and so ix(27)=0 in m§,-,(CP*"') by (4.2). But
2r is the non zero element of Im(J), and 7/4(27)#0 by Proposition 2.1. Thus
we have a contradiction, and we conclude 7.7 +0. Q.E.D.

Similarly, by using Propositions 2.1 and 4.1 (ii), and by considering the
analogous diagram for @Q,, we have fx(@n)#0 in Tinio(Qom+1) and u(@im2/s)
#0 in win4+e(Qam42). Thus we complete the proof of Theorem 3.

Remark. We have not determined whether 7u(@imi22)=0 or #0 in
Tim+(@am+2). By using [10; Theorem [], we can prove that ix(@sm42/2+8)=0
for an element B which is not in Im(J) and the order of which is less than or
equal to 4.
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