On the Adams Filtration of a Generator of the Free Part of $\pi_*^s(Q_n)$

Dedicated to Professor Shoro Araki on his sixtieth birthday

By

Mitsunori IMAOKA*

§ 1. Introduction and Results

Let Q_n be the quaternionic quasi-projective space (cf. [11]). Then it is a 2-connected CW-complex having one $4i-1$ dim cell for each i with $1 \le i \le n$. It is known that the order of the cokernel of the stable Hurewicz homomorphism $h: \pi_{4n-1}^s(Q_n) \to H_{4n-1}(Q_n ; Z)$ is equal to $a(n-1) \cdot (2n-1)!$ (see Theorem 3.10), where and throughout the paper $a(i)$ denotes 1 if *i* is an even integer and 2 if *i* is an odd integer. Then, for any generator x of the free part of $\pi_{4n-1}^s(Q_n)$, the mod p Adams filtration $F_p(x)$ is less than or equal to $\nu_p(a(n-1)\cdot(2n-1)!)$, where $\nu_p(j)$ denotes the exponent of a prime p in the prime power decomposition of an integer *j*. Let $G_{(p)}$ denote the tensor product $G \otimes Z_{(p)}$ for an abelian group G, where $Z_{(p)}$ is the ring of integers localized at p. Then, one of the results in this note is the following.

Theorem 1. For $n \ge 1$ we have an element $x_n \in \pi_{4n-1}^s(Q_n)_{(2)}$ which is a gen*erator of the free part and whose* mod 2 Adams filtration is equal to $\nu_2(a(n-1))$ $(2n-1)!)$.

In [6] M.C. Crabb and K. Knapp has proved that $F_p(\sigma^r) = \nu_p(r!)$ for the generator σ^r of the free part of $\pi^s_{2r}(CP^{\infty})$, where CP^{∞} is the complex projective space and σ^r is the r-fold product of the canonical generator $\sigma \in \pi_2^s(CP^{\infty})$ by the H-space structure of \mathbb{CP}^{∞} . Theorem 1 is an analogy of their result for the case of the quaternionic quasi-projective space. For the case of an odd prime *p,* the element $q_*(\sigma^{2n-1}) \in \pi_{4n-1}^s(Q_n)_{(p)}$ satisfies the corresponding properties, that is, it is a generator of the free part and satisfies $F_p(q_*(\sigma^{2n-1})) = \nu_p(a(n-1)\cdot(2n-1)!),$ where $q: \Sigma CP^{2n-1} \rightarrow Q_n$ is the map canonically defined by the definition of Q_n (cf. [20]).

Communicated by N. Shimada, January 19, 1989.

Department of Mathematics, Faculty of Education, Wakayama University, Wakayama 640, Japan.

In [18] D.M. Segal has obtained some results about $\pi_*(HP^n)$ by applying the Adams spectral sequence, whose method originated with M. Mahowald [12], where HP^n denotes the quaternionic projective space. Our proof of Theorem 1 will be done as an application of Segal's method and of Crabb-Knapp's result mentioned above. Then by our method some properties concerned with the $Im(J)$ classes are also shown, which is the second result of this note. To state them, we prepare some notations.

Let Im(*J*)_{*n*} be the image of *J*-homomorphism in $\pi_{4n-1}^s(S^0)_{(2)}$. Then it is a cyclic group of order $2^{3+\nu(n)}$ and a direct summand of $\pi_{4n-1}^s(S^0)$, where $\nu(n)=$ $\nu_2(n)$. (Cf. [2]). We denote by α_{2n} the element of $\text{Im}(J)_n$ of order 2, and by $\alpha_{2n/i}$ the element of $\text{Im}(J)_n$ satisfying $2^{i-1}\alpha_{2n/i} = \alpha_{2n}$ for $i \geq 1$. Let $i: S^2 \to CP^n$ and $i: S^3 \rightarrow Q_n$ be the inclusions to the bottom spheres respectively. Then we have the following theorems.

Theorem 2. Let i_* : $\pi_{4n-1}^s(S^0) \cong \pi_{4n+1}^s(S^2) \rightarrow \pi_{4n+1}^s(CP^k)$.

(i) When $n=2m\geq 2$, we have (a) $i_*(\alpha_{4m})\neq 0$ if $1\leq k\leq 4m$, and (b) $i_*(\alpha_{4m})$ $=0$ and $i_*(\alpha_{4m/2})\neq 0$ if $k\geq 4m+1$.

(ii) When $n=2m+1\geq 1$ *, we have (a)* $i_*(\alpha_{4m+2})=0$ if $k\geq 2$, (b) $i_*(\alpha_{4m+2/2})\neq 0$ *if* $1 \leq k \leq 4m+2$, and (c) $i*(\alpha_{4m+2/2})=0$ and $i*(\alpha_{4m+2/3})\neq 0$ if $k \geq 4m+3$.

Theorem 3. Let i_* : $\pi_{4n-1}^s(S^0) \cong \pi_{4n+2}^s(S^3) \to \pi_{4n+2}^s(Q_k)$.

(i) When $n=2m\geq 2$, $i_*(\alpha_{4m})\neq 0$ if $k\geq 1$.

(ii) When $n=2m+1\geq 1$, (a) $i_*(\alpha_{4m+2})\neq 0$ if $1\leq k\leq 2m + 1$, and (b) $i_*(\alpha_{4m+2})$ $=0$ and $i_*(\alpha_{4m+2/3}) \neq 0$ if $k \geq 2m+2$.

This paper is organized as follows: In $\S 2$, we show Proposition 2.1, which proves a part of Theorems 2 and 3, and which we need in the proof of Theorem 1. In § 3, we prove Theorem 1 by applying the Adams spectral sequences for $\pi^*_*(CP^n)$ and $\pi^*_*(Q_n)$, which also proves a part of Theorems 2 and 3. In §4, we complete the proof of Theorems 2 and 3.

The author thanks K. Morisugi, H. Oshima and T. Watanabe for their valuable comments.

§ 2. Estimation by *j*-Theory

Let $(Y_n, d) = (CP^{2n}, 2)$ or $(Q_n, 3)$, and let $i_*|_J$ be the restriction of i_* : $\pi^s_{4n-1}(S^0) \cong \pi^s_{4n+d-1}(S^d) \longrightarrow \pi^s_{4n+d-1}(Y_n)$ to $\text{Im}(J)_n$, where $i: S^d \longrightarrow Y_n$ is the inclusion into the bottom sphere and $\text{Im}(J)_n$ is the 2-primary part of the image of the *J*-homomorphism in $\pi_{4n-1}^s(S^0)$. In this section, we prove the following

Proposition 2.1. (i) When $Y_n = CP^{2n}$ and $n=2m \geq 2$, $i_*|_J$ is injective.

(ii) When $Y_n = CP^{2n}$ and $n=2m+1\geq 1$ *where* $|G|$ *denotes the order of the group G.*

(iii) When $Y_n = Q_n$ and $n \geq 1$, $i_*|_J$ is injective.

Let ϕ^3 : $KO_{(2)} \to KO_{(2)}$ be the stable Adams operation on the *KO*-theory localized at 2, and kO and $kSpin$ the (-1) and 3 connective cover of KO respectively. Then we have a lifting ψ : $kO_{(2)} \rightarrow kSpin_{(2)}$ of the operation ψ^3-1 : $KO_{(2)} \rightarrow KO_{(2)}$, and we define *j* to be the fiber spectrum of ϕ . (Cf. [7], [16]). Then *j* is a connected 2-local spectrum, and $\pi_0(j) \cong Z_{(2)}$. We denote by $j_i(X)$ and $j^{\ell}(X)$ the reduced homology and cohomology groups of a space X respectively. Then the j -theory is known to be closely related to the J -groups as follows, where $h_j: \pi_*^s(X)_{(2)} \to j_*(X)$ is the stable Hurewicz homomorphism.

Lemma 2.2. The restriction of $h_j: \pi_{4n-1}^s(S^0)_{(2)} \rightarrow j_{4n-1}(S^0)$ to $\text{Im}(J)_n$ is an *isomorphism.*

Thus we investigate the homomorphism i_* : $j_{4n-1}(S^0) \rightarrow j_{4n+d-1}(Y_n)$ to prove Proposition 2.1. For example, to prove (i) and (iii) it is sufficient to show that i_* is injective. To make use of the known results about the KO -cohomology of Y_n , we consider the S-dual of Y_n , and denote it by V_n . Then by [4], the stable homotopy type of V_n is given as follows:

Lemma 2.3. When $Y_n = CP^{2n}$ (resp. Q_n), V_n is stably homotopy equivalent *to the stunted complex (resp. quaternionic) projective space* $CP_{2(N-n)-1}^{2(N-1)}=$ $CP^{2(N-1)}/CP^{2(N-n-1)}$ (resp. $HP_{N-n}^{N-1} = HP^{N-1}/HP^{N-n-1}$) for some sufficiently large *integer* N which we can take so as to satisfy $N > n$ and $N \equiv 0 \mod 8$.

We regard V_n as the stunted projective space as in Lemma 2.3. Let p : $V_n \rightarrow S^{4(N-1)}$ be the collapsing map to the top cell, and let $M=N-n-1$. Then through the S-duality, the homomorphism $i_* : j_{4n-1}(S^0) \rightarrow j_{4n+d-1}(Y_n)$ is identified with p^* : $j^{-4n+1}(S^0) \cong j^{4M+1}(S^{4(N-1)}) \to j^{4M+1}(V_n)$. Thus to prove Proposition 2.1 we determine the order of the image of p^* . Let $\phi: kO^*(X)_{(2)} \to kSpin^*(X)_{(2)}$ denote the homomorphism defined by the operation ϕ^3-1 mentioned at the first of this section. Then we have the following commutative diagram;

$$
kO^{-4n}(S^0)_{(2)} \longrightarrow kSpin^{-4n}(S^0)_{(2)} \longrightarrow j^{-4n+1}(S^0) \longrightarrow 0
$$

(2.4)

$$
\downarrow p^* \qquad \qquad \downarrow p^* \qquad \qquad \delta \qquad \qquad \downarrow p^*
$$

$$
kO^{4M}(V_n)_{(2)} \longrightarrow kSpin^{4M}(V_n)_{(2)} \longrightarrow j^{4M+1}(V_n),
$$

where and throughout the paper the cohomology and homology groups are assumed to be reduced. Let ι_n be the generator of $kSpin^{-4n}(S^0)_{(2)} \cong Z_{(2)}$. Then $\delta(r_n)$ is a generator of $j^{-4n+1}(S^0)$, and thus our task is to determine the order of $p^*(c_n)$ in $kSpin^{*M}(V_n)_{(2)}/\text{image}(\phi)$.

The group structure of $KO^*(CP^n)$ has been determined by M. Fujii [8], and

that of $KO^*(HP^n)$ is classically well-known, since the Atiyah-Hirzebruch spectral sequence for $KO^*(HP^n)$ collapses. In particular both groups $KO^{*M}(CP^{2(N-1)})$ and $KO^{*M}(HP^{N-1})$ are free abelian groups of rank $N-1$. Using [8] and the elementary properties of the Adams operation, we have the following lemmas.

Lemma 2.5. Let $V_n = CP_{2M+1}^{2(N-1)}$. Then we have

(i) *kSpin*^M (Vn) and kO*^M (Vn) are identified with the following subgroups of KO^{4M}*($CP^{2(N-1)}$) through the collapsing map $CP^{2(N-1)} \rightarrow V_n$: For a suitably \mathcal{L} *chosen basis* $\{X_1, X_2, \cdots, X_{N-1}\}$ *of*

and

$$
kSpin^{4M}(V_n) \cong Z\{2X_{M+1}, X_{M+2}, \cdots, X_{N-1}\}
$$

$$
kO^{4M}(V_n) \cong Z\{X_{M+1}, X_{M+2}, \cdots, X_{N-1}\}.
$$

(ii) $p^*(\ell_n) = X_{N-1}$ if n is even, and $p^*(\ell_n) = 2X_{N-1}$ if n is odd, where p^* and c_n are those as in (2.4) .

$$
\text{(iii)} \quad (\phi^{\text{s}}-1)(X_j)\!\equiv\!(3^{\text{a}(j-M)}-1)X_j\ \ \text{mod}\ (X_{j+1},\ \cdots\ ,\ X_{N-1})\ \ \text{for}\ \ M+1\!\leq\!j\!\leq\!N\!-\!1.
$$

Lemma 2.6. Let $V_n = HP_{N-n}^{N-1}$. Then $kO^{iM}(V_n) \cong kSpin^{iM}(V_n) \cong KO^{iM}(V_n) \cong$ $Z\{Y_1, Y_2, \cdots, Y_n\}$ for a basis $\{Y_i\}$ satisfying

 (i) $p^*(t_n) = Y_n$ and

(ii) $(\phi^3 - 1)(Y_j) = (3^{2j} - 1)Y_j \mod (Y_{j+1}, \cdots, Y_n)$ for $1 \leq j \leq n$.

Proof of Proposition 2.1. Let c_n be the order of $p^*(c_n)$ in $kSpin^{*M}(V_n)_{(2)}/n$ image(ϕ). Then for the case (i) and (iii), we have $\nu_2(c_n) = \nu_2(3^{2n}-1)$ by Lemmas 2.5 and 2.6 respectively. Since $\nu_2(|j_{4n-1}(S^0)|)=\nu_2(3^{2n}-1)$, $p^*: j^{-4n+1}(S^0) \rightarrow j^{4M+1}(V_n)$ is injective, and thus we have the desired results for (i) and (iii). Similarly, we have (ii), because in this case we have $\nu_2(c_n) = \nu_2(3^{2n}-1) - 1$ by Lemma 2.5. Thus we have completed the proof.

§3. Proof of Theorem 1

In this section, we consider the classical Adams spectral sequence [1] converging to $\pi_*^s(S^0)$, $\pi_*^s(CP^{\pi})$ and $\pi_*^s(Q_{\pi})$ at a prime 2. Let $E_r^{s,t}(X)$ be the E_r term of the Adams spectral sequence based on the ordinary $Z/2$ -coefficient cohomology groups and converging to $\pi_*(X)\otimes Z_2$, where Z_2 denotes the ring of 2-adic integers, and let $d_r: E_r^{s,t}(X) \rightarrow E_r^{s+r,t+r-1}(X)$ be the differential between E_r -terms. Thus, $E_2^{s,t}(X) = \text{Ext}_{\Lambda}^{s,t}(H^*(X; Z/2), Z/2)$, and $E_{\infty}^{s,t}(X)$ is the bigraded group associated with the Adams filtration of $\pi_*(X)$, where A denotes the mod 2 Steenrod algebra. We refer to [17] with respect to the definitions and the general properties for the Adams spectral sequences. Sometimes, we abbreviate is and *t* from $E_r^{s,t}(X)$ and simply denote by $E_r(X)$, and we say that $E_r^{s,t}(X)$ is in the *u*-stem if it satisfies $t-s=u$. For a continuous map $f: X \rightarrow Y$, $f_*: E_r^{s,t}(X)$ $\rightarrow E^{s,t}_r(Y)$ denotes the homomorphism between the spectral sequences induced

from f .

Let $i_{k,n}$: $CP^{k} \rightarrow CP^{n}$ and p_{n} : $CP^{n} \rightarrow S^{2n}$ be the inclusion map and the collapsing map respectively. If we have a relation $(p_k)_*(x)=g$ for some element $g \in E^{s}_{2}$ $\cdot^{\iota}(\mathbb{S}^{2}) \cong E^{s}_{2}$ $\cdot^{\iota-2k}(\mathbb{S}^{0})$ and $x \in E^{s}_{2}$ $\cdot^{\iota}(CP^{k})$, then we denote by ${}_{k}g$ the element $(i_{k,n})*(x)$ for $n \geq k$. Of course $_k g$ is not unique for *g* and *k* in general. We use these notations similarly for the elements of $E_2^{s,t}(Q_n)$.

Let $h_0 \in E_2^{1,1}(S^0) = Z/2$ be the generator. Then, for each $i \ge 1$, h_0^i is a permanent cycle and represented by $2^i \in \pi_0^s(S^0)$. Let $(X_n, d) = (CP^n, 2)$ or $(\Sigma Q_n, 4)$, where $\sum Q_n = Q_n \wedge S^1$ denotes the reduced suspension. If we have an element $nh_0^i \in E_i^{i,i+dn}(X_n)$, then it satisfies $(p_n)_*(n h_0^i) = h_0^i$ by definition, where $(p_n)_*: E_2^{i,i+dn}(X_n) \rightarrow E_2^{i,i+dn}(S^{dn}) = E_2^{i,i}(S^0)$. Thus, if $_nh_0^i$ is a permanent cycle furthermore, then we have an element y of $\pi_{d,n}^s(X_n)$ with the property that $F_2(y) = \nu_2(h(y)) = i$, where $F_2(y)$ denotes the Adams filtration of y and $h(y)$ denotes the image of the stable Hurewicz homomorphism $h : \pi^s_{d\,n}(X_n){\rightarrow} H_{d\,n}(X_n\,;\,Z)$ $=$ Z. Hence Theorem 1 is equivalent to the existence of an element nh_0^i $E_{\infty}^{i,i+1n-1}(Q_n)$ for $i = \nu_2(a(n-1)\cdot(2n-1))$ by Theorem 3.10 which appears later on, and we will show the existence of such an element.

Let $\alpha(n)$ denote the number of 1 in the diadic expansion of *n*. We remark that $\nu_2(n!) = n - \alpha(n)$. Then Crabb-Knapp's theorem mentioned in § 1 can be stated as follows:

Theorem 3.1. (M.C. Crabb-K. Knapp [6]) There exists an element $_n h_0^{n-\alpha(n)}$ \subset $F^{n-\alpha(n)},3n-\alpha(n)/CP^n$

In § 1 we defined the element $\alpha_{2n/i}$ of $\text{Im}(J)_n \subset \pi_{4n-1}^s(S^0)$. For $1 \leq i \leq 3$ we use the same notation $\alpha_{2n/i}$ for the element of $E_2(S^0)$ represented by $\alpha_{2n/i}$. Thus the element ${}_{1}a_{2n/i} \in E_{2}(CP^{k})$ for $k \ge 1$ is the image of $a_{2n/i} \in E_{2}(S^{0})$ through $i_*: E^{s,t}_2(S^0)=E^{s,t+2}_2(S^2)\rightarrow E^{s,t+2}_2(CP^k)$. It is known that $\alpha_{2n/2}$ of $E_2(S^0)$ are in neighborhood of the vanishing line (cf. [13]), which we will describe below.

The vanishing theorem for $E_2(S^0)$ is given as follows:

Theorem 3.2. (J.F. Adams [3]) $E_2^{s,t}(S^0)=0$ for $0 < t-s < q(s)$, where $q(s)$ $2s - \varepsilon$ for $\varepsilon = 1$, 2 and 3 if $s = 0$, 1 mod 4, $s = 2$ mod 4 and $s = 3$ mod 4 respectively.

The vanishing line is formed by the equality $t-s=q(s)$ when we treat the spectral sequence by writing each $E_2^{s,t}(S^0)$ in the plane with the $(t-s, s)$ coordinate. Then, by the periodicity theorem [3] and the calculations for the lower stems (cf. [19]), the structure of $E_2(S^0)$ is well investigated for some range near the vanishing line (cf. $[17;$ Chapter 3]). Thus we have the following lemma which is a direct consequence of it.

Lemma 3.3. Let $m \ge 1$ and $1 \le j \le 3$, and let $h_1 \in E_2^{\perp}$ $^2(S^0) = Z/2$ be the generator. (i) Concerning the $(8m-1)$ -stem, we have $E_2^{(m+1-j-12m-j)}(S^0) = Z/2\{\alpha_{m+j}\}\$ and

 $E_{2}^{i,i+8m-1}(S^{0})=0$ for $i \geq 4m+1$, and $\alpha_{4m/j}$ is not divisible by h_1 .

(ii) Concerning the $(8m+1)$ -stem, we have an element α_{4m+1} such that $E_2^{4m+1,12m+2}(S^0) = Z/2\{\alpha_{4m+1}\},$ and we have $E_2^{i,i+8m+1}(S^0) = 0$ for $i \ge 4m+2$

(iii) Concerning the $(8m+2)$ -stem, $E_2^{4m+2,12m+4}(S^0) = Z/2\{h_1a_{4m+1}\}$ and $E_2^{i,i+8m+2}(S^0)=0$ for $i \ge 4m+3$.

(iv) Concerning the $(8m+3)$ -stem, we have $E_2^{4m+4-j,12m+7-j}(S^0) = Z/2\{\alpha_{4m+2/j}\}$ and $E_2^{i,i+8m+3}(S^0)=0$ for $i \ge 4m+4$, $\alpha_{4m+2}=h_1^2\alpha_{4m+1}$, and $\alpha_{4m+2/j}$ is not divisible by *hi for j=2 and* 3.

(v) Concerning other stems, we have $E_2^{i,i+8m}(S^0)=0$ for $i \ge 4m$, $E_2^{i,i+8m-2}(S^0)$ $=0$ for $i \ge 4m-1$, and $E^{i,i+8m-3}_2(S^0) = E^{i,i+8m-4}_2(S^0) = 0$ for

The cofibering CP^{k-1} \rightarrow CP^{k} \rightarrow S^{2k} induces a long exact sequence

$$
(3.4) \qquad \qquad \cdots \longrightarrow E_{2}^{s} \cdot {}^{t}(CP^{k-1}) \xrightarrow{i_{*}} E_{2}^{s} \cdot {}^{t}(CP^{k}) \xrightarrow{\hat{D}_{*}} E_{2}^{s} \cdot {}^{t}(S^{2k}) \xrightarrow{\delta}
$$
\n
$$
E_{2}^{s+1} \cdot {}^{t}(CP^{k-1}) \longrightarrow \cdots,
$$

where δ is the connecting homomorphism (cf. [17; Chapter 2]). δ is compatible with the boundary homomorphisms, and δ : $E_{\infty}^{s,t-1}(S^{2k-1}) \cong E_{\infty}^{s,t}(S^{2k}) \rightarrow E_{\infty}^{s+1,t}(CP^{k-1})$ is associated with $(\phi_k)_*: \pi_*^*(S^{2k-1}) \to \pi_*^*(CP^{k-1}),$ where ϕ_k is the attaching map of the top cell of $\overline{CP^k}$. In particular, since the stable homotopy class of the composition $S^{4 \, k - 1} \stackrel{\varphi_{2k}}{\rightarrow} CP^{2 \, k - 1} \stackrel{\rho}{\rightarrow} S^{4 \, k - 2}$ represents the nontrivial class η \in we have the following lemma.

Lemma 3.5. The composition $p_*\delta$: $E_5^{s,t-4k}(S^0) \cong E_5^{s,t}(S^{4k}) \to E_5^{s+1,t}(CP^{2k-1}) \to$ $E_2^{s+1, t}(S^{4k-2}) \cong E_2^{s+1, t-4k+2}(S^0)$ is the multiplication by h_1 .

By Lemmas 3.3 and 3.5 and Theorem 3.1 we have the following

Lemma 3.6. (i) For $4 \leq k \leq 4m$, $E_2^{i,i+8m+1}(CP^k)=0$ if $i \geq$ if $i=4m$, and $=Z/2\{ {}_{1}\alpha_{4m/2}\}$ if $i=4m-1$.

(ii) For $m \ge 1$ and $2 \le k \le 4m+2$, $E_2^{i,i+8m+5}(CP^k)=0$ if $i \ge 4m+3$, $=$ $Z/2\{ {}_{1}\alpha_{4m+2/2} \}$ if $i=4m+2$, and $=Z/2\{ {}_{1}\alpha_{4m+2/3} \}$ if $i=4m+1$.

(iii) For $i \geq 2m+2 \geq 4$, $E_2^{i,i+4m}(CP^k)=0$ if $1 \leq k \leq 2m-1$, and $E_2^{i,i+4m}(CP^k)=$ $E_{\infty}^{i,i+4m}(CP^k) = Z/2\{{}_{2m}h_0^i\}$ if $k \geq 2m$.

Proof. (*i*) Assume that $i \ge 4m-1 \ge 3$. For $5 \le k \le 4m$, since $E_i^{i,i+5m+1}(S^{2k})$ $=0$ and $E_{2}^{i-1,i+8m+1}(S^{2k})=0$ by Lemma 3.3, we have an isomorphism $(i_{4,k})_{*}$: $E_2^{i,(1+8m+1)}(CP^4) \rightarrow E_2^{i,(1+8m+1)}(CP^k)$ by (3.4). Thus we may consider the case for $\mathbb{C}P^4$. First, to investigate $\mathbb{C}P^2$, we consider (3.4) for $k=2$. Then, since δ : $E_2^{s,t}(S^4) \rightarrow E_2^{s+1,t}(S^2)$ multiplies each element by h_1 by Lemma 3.5, we have $\delta = 0$ on $E_2^{i-1, i+m+1}(S^4)$ by Lemma 3.3 (i). Thus we have an isomorphism $(i_{1,2})_*$: $E_2^{i,i+8m+1}(S^2) \rightarrow E_2^{i,i+8m+1}(CP^2)$ from (3.4), because $E_2^{i,i+8m+1}(S^4)=0$ by Lemma 3.3 (v). We also have $E_2^{i+1,i+8m+1}(CP^2)=0$, because $E_2^{i+1,i+8m+1}(S^2)=E_2^{i+1,i+8m+1}(S^4)$

 $=0$ by Lemma 3.3 (v). Next, consider (3.4) for $k=3$ to investigate CP^3 . Since $E^{i-1,i+8m+1}(S^{\epsilon})=0$ by Lemma 3.3 (v), we have a short exact sequence

$$
0 \longrightarrow E_2^{i, i+8m+1}(CP^2) \xrightarrow{i_*} E_2^{i, i+8m+1}(CP^3) \xrightarrow{\hat{p}_*} E_2^{i, i+8m+1}(S^6) \longrightarrow 0.
$$

By Lemma 3.3 (iv), $E_2^{4m-1,12m}(S^6) = Z/2\{\alpha_{4m-2}\}\$ and $E_2^{j,j+8m+1}(S^6) = 0$ for $j \ge 4m$. Now, consider (3.4) for $k=4$ as the last step. By Lemma 3.5, the composition $p_*\delta$: $E_2^{s-1,\ell}(S^s) \rightarrow E_2^{s,\ell}(CP^s) \rightarrow E_2^{s,\ell}(S^s)$ multiplies each element by h_1 . Therefore we have $p_{\ast}\delta(h_1\alpha_{4m-3})=h_1^2\alpha_{4m-3}=\alpha_{4m-2}$ by Lemma 3.3 (iv). Then, using the above short exact sequence and (3.4), we have an isomorphism $i_*: E_i^{i,i+8m+1}(CP^2)$ $\rightarrow E_2^{i,i+8m+1}(CP^i)$, because $E_2^{4m-2,12m}(S^s) = Z/2\{h_1\alpha_{4m-3}\}\$ and $E_2^{j,j+8m+2}(S^s) = 0$ for $j \ge 4m-1$ by Lemma 3.3 (iii). Thus we have an isomorphism $i_* : E_2^{i_*i+8m+1}(S^2)$ $\rightarrow E_2^{i,i+8m+1}(CP^4)$, and we have the desired result by Lemma 3.3 (i).

(ii) Assume that $i \ge 4m+1 \ge 5$. Then, considering similarly as (i), we have an isomorphism i_* : $E_2^{i,i+8m+5}(CP^2) \rightarrow E_2^{i,i+8m+5}(CP^k)$ for $3 \le k \le 4m+2$. Thus, we may consider the case for \mathbb{CP}^2 , and to prove this case we consider (3.4) for $k=2$. Then, concerning the boundary δ in the sequence, we have $\delta(\alpha_{4m+1})=$ $h_1\alpha_{4m+1}\neq 0$ and $\delta(h_1\alpha_{4m+1})=\alpha_{4m+2}$ by Lemma 3.3 (iii), (iv) and Lemma 3.5, where $\alpha_{4m+1} \in E_2^{4m+1,12m+6}(S^4)$. Since $\alpha_{4m+2/2}$ and $\alpha_{4m+2/3}$ are not divisible by h_1 by Lemma 3.3 (iv), we have an isomorphism i_* : $E_2^{i.i+8m+5}(S^2)/(\alpha_{4m+2}) \to E_2^{i.i+8m+5}(CP^2)$. Thus we have the desired result by Lemma 3.3 (iv).

(iii) Assume that $i \ge 2m+2 \ge 4$. Then we have that $i_*: E_2^{i, i+m}(CP^{k-1}) \rightarrow$ $E_2^{i,i+4m}(CP^k)$ is an isomorphism if $k \neq 2m$ and $k \geq 2$, by using Lemma 3.3 similarly as in (i) and (ii). Thus we have the first half of the desired result, because $E_2^{i,(i+1)m}(CP^1)=0$. Then $p_*\colon E_2^{i,(i+4m}(CP^{2m})\to E_2^{i,(i+4m}(S^{4m})\cong Z/2\{h_0^i\}$ is injective. But by Theorem 3.1 we have an element $_{2m}h_0^i$ which is a permanent cycle mapped by p_* to h_0^i by definition. Thus we have $E_2^{i,i+4m}(CP^{2m})=E_{\infty}^{i,i+4m}(CP^{2m})=$ $Z/2\{i_m h_0^i\}$. Since $(i_{2m,k})_*$: $E_r^{i,i+m}(CP^{2m}) \to E_r^{i,i+m}(CP^k)$ is an isomorphism for $k \geq 2m$ and $r \geq 2$, we have the latter half of the desired result. Q. E. D.

Proposition 3.7. Let $m \geq 1$. Then we have the following: $(\; \mathrm{i} \;) \; \mathbf{1}_{1}\alpha_{4m} \neq 0 \quad in \quad E^{4m,12m+1}_{\alpha(m)}(CP^{4m+1}),$ $f_i(i)$ $_{1} \alpha_{4m+2/2} \neq 0$ *in* $E^{4m+2, 12m + 7}_{\alpha(m)+1}(CP^{4m+3}),$ *where* $\alpha(m)$ denotes the number of 1 in the diadic expansion of m.

Proof. To treat both cases (i) and (ii), we denote by β the element $i\alpha_{4m}$ for (i) and $_1\alpha_{4m+2/2}$ for (ii) respectively, and by *l* the integer $4m+1$ for (i) and $4m+3$ for (ii) respectively. First we must show that $\beta \neq 0$ in $E_2^{l-1,3l-1}(CP^l)$. By (3.4), we have the exact sequence

$$
E_2^{s,\,t}(CP^l)\stackrel{\hat{p}_*}{\longrightarrow} E_2^{s,\,t}(S^{2l})\stackrel{\hat{\delta}}{\longrightarrow} E_2^{s+1,\,t}(CP^{l-1})\stackrel{i_*}{\longrightarrow} E_2^{s+1,\,t}(CP^l)
$$

for $s=l-2$ and $t=3l-2$. By Theorem 3.1 we have an element $_{l}h_{0}^{l}e^{i\omega}$

^l), and so $h_0^{l-2} \in \text{Im } p_*$ because $\alpha(l) \geq 2$. Thus i_* is injective, and we have $\beta \neq 0$ in $E_2(CP^l)$ by Lemma 3.6. Since $d_r(\beta)=0$ for any $r \geq 2$ by Lemma 3.6 (iii), we have $\beta \in E^{1-1}_{\alpha} S^{1-1}_{\alpha} (C P^l)$. Assume that $\beta = 0$ in $E_{\alpha(l)-1} (C P^l)$ for some *l* with $\alpha(l) \geq 4$. Then there is an integer r with $2 \leq r \leq \alpha(l)-2$ and an element $y \in E_r^{l-r-1, 3l-r-1}(CP^l)$ which satisfy that $d_r(y)=\beta \neq 0$. By Theorem 3.1 we have an element $_{l}h_{0}^{l-r-1} \in E_{\infty}(CP^{l})$, and we have that $i_{*}: E^{i,i+2l-1}_{r}(CP^{l-1}) \rightarrow$ $E_r^{i,i+2l-1}(CP^l)$ is an isomorphism for $i \geq l-\alpha(l)+r-1$. Then we have that y or $y - i h_0^{l-r-1}$ is in the image of $i_* \colon E_r(CP^{l-1}) \to E_r(CP^l)$, that is, it is equal to $i_*(z)$ for some element $z \in E^{l-r-1, 3l-r-1}_r(CP^{l-1})$. Then we have $i_*d_r(z) = d_r(y) =$ β . Since $E_r^{l-1, 3l-2}(CP^{l-1}) = Z/2{\{\beta'\}}$ by Lemma 3.6 (i) and (ii), we have $d_r(z)$ $= \beta'$, where β' denotes the element α_{l-1} or $\alpha_{l-1/2}$ of $E_{\alpha(l)-1}(CP^{l-1})$ which satisfies $i_*(\beta') = \beta$. This contradicts Proposition 2.1, because β' is represented by $i_*(\alpha) \neq 0$ of $\pi_*(CP^{1-1})$, where $\alpha = \alpha_{4m} \in \text{Im}(J)_{2m}$ for (i) and $\alpha = \alpha_{4m+2/2} \in$ Im(*J*)_{2*m*+1} for (ii). Thus we have $\beta \neq 0$ in $E_{a(l)-1}(CP^l)$, and we have completed the proof. Q. E. D.

Proposition 3.8. Let k be an odd integer with $k \ge 3$. Then we have an *element* $\mathbf{h}_0^{k-\alpha(k)-1} \in E_2^{k-\alpha(k)-1}$, $3k-\alpha(k)-1$ (CP^k) satisfying the following property:

(i) $h_0 \cdot {}_k h_0^{k-\alpha(k)-1} \in E_\infty(CP^k)$.

(ii) $_{k}h_{0}^{k-a(k)-1} \in E_{\alpha(k)}(CP^{k})$ and $d_{\alpha(k)}({}_{k}h_{0}^{k-a(k)-1}) =_{1}a_{k-1}$ if $k \equiv 1 \mod{4}$ and $= \binom{n}{k-1/2}$ *if* $k \equiv 3 \mod 4$.

Proof. We prove by induction on $\alpha(k)$. First, we prove the case $\alpha(k)=2$. Consider the exact sequence (3.4), and let δ : $E_2^{s,t-2k}(S^0) \cong E_2^{s,t}(S^{2k}) \rightarrow E_2^{s+1,t}(CP^{k-1})$ be the boundary homomorphism in it. If there is not any element $_{k}h_{0}^{k-3}$ in $E_2^{k-3,3k-3}(CP^k)$, then by Lemma 3.6 we have $\delta(h_0^{k-3}) = {}_1\alpha_{4m/2}$ and ${}_1\alpha_{4m+2/3}$ if $k =$ $4m+1$ and $4m+3$ respectively. Then $\delta(h_0^{k-2})\neq 0$ by Lemma 3.6. But this contradicts Theorem 3.1, and thus we have an element $_{k}h_{0}^{k-3}$ satisfying (i). Then this element also satisfies (ii). In fact, if it does not satisfy (ii), then it is a permanent cycle by Lemma 3.6 and it contradicts Theorem 3.1. Now we assume that $\alpha(k)=u\geq3$ and that we have a desired element for the case $\alpha(k)$ $\leq u-1$. Let *t* be the integer such that $2^{t} \leq k \leq 2^{t+1}-1$, and $l=k-2^{t}$. Then $\alpha(l) = \alpha(k) - 1$, and so by the inductive hypothesis we have an element $_{l}h_{0}^{l - \alpha(k)}$ of $E_{\alpha(k)-1}(CP^l)$ with the property (i) and (ii) for *l*. Let $s=2^t$. Then by Theorem 3.1 we have ${}_s h_0^{s-1} \in E_\infty(CP^s)$. Let *X* be the product ${}_s h_0^{s-1}$. $E_{a(k)-1}(CP^k)$ by the *H*-space structure of CP^{∞} . Then, *X* is an element $_{k}h_0^{k-\alpha(k)-1}$ since the binomial coefficient $\binom{k}{s} \equiv 1 \mod 2$, and we have $h_0 \cdot X \in E_{\infty}(CP^k)$. If $d_{\alpha(k)-1}(X) \neq 0$, then by Lemma 3.6 it is equal to $\alpha_{k-1/2}$ if $k \equiv 1 \mod 4$ and $\alpha_{k-1/3}$ if $k \equiv 3 \mod 4$. Then $d_{\alpha(k)-1}(h_0 \cdot X) \neq 0$ by Proposition 3.7, but this cannot occur. Thus $X \in E_{a(k)}(CP^k)$ and satisfies (i). If X does not satisfy (ii), then we have $X \in E_{\infty}(CP^k)$. In fact, since, for $i \geq k$, $E_2^{i,i+2k-1}(CP^{k-1}) = 0$ by Lemma 3.6 and

 $i_*: E_2^{i,(i+2k-1)}(CP^{k-1}) \rightarrow E_2^{i,(i+2k-1)}(CP)$ *}* is surjective, we have $d_r X \in$ $E_1^{j+r, j+r+2k-1}(CP^k)=0$ for $r \ge a(k)+1$, where $j=k-a(k)-1$. Then we have an element $x \in \pi_{2k}^s(CP^k)$ such that $h(x)=2^{k-\alpha(k)-1}c$ for some odd integer c, where $h: \pi_{2k}^s(CP^k) \rightarrow H_{2k}(CP^k; Z) = Z$ is the stable Hurewicz homomorphism. But this contradicts the well known fact that the image of h is generated by $k!$ and $\nu_2(k!) = k - \alpha(k)$. Thus X satisfies (ii), and we have completed the proof. Q.E.D.

Next we consider the mod 2 Adams spectral sequence for $\pi^*(Q_n)$. The following lemma can be proved similarly as Lemma 3.6.

Lemma 3.9. (i) For an odd integer $n \ge 3$, $E_2^{i,i+4n-2}(Q_n) = 0$ if $i \ge 3$ *and* $=Z/2\{ {}_1\alpha_2 \ldots {}_1 \}$ *if* $i=2(n-1)$.

(ii) For an even integer $n \ge 2$, $E_2^{i,i+n-2}(Q_n)=0$ if $i \ge 2n$, and $=$ *if* $i=2n-1$.

In [9] B. Harris shows that the homotopy group $\pi_{4n-2}(Sp(n-1))$ of the symplectic group is isomorphic to the cyclic group of order $a(n-1)$ ⁻(2n-1)¹, which is a consequence of a result of R. Bott [5]. Hence the degree of q_* : $\pi_{4n-1}(Sp(n)) \to \pi_{4n-1}(Sp(n)/Sp(n-1)) \cong Z$ is equal to $a(n-1) \cdot (2n-1)$, where q is the canonical quotient map. Let θ : $\pi_{4n-1}(Sp(n)) \rightarrow \pi_{4n-1}^s(Q_n)$ be the homomorphism given by I.M. James (cf. [11]), and $p: Q_n \to Q_n/Q_{n-1} \approx S^{4n-1}$ denote the collapsing map. Then θ is an isomorphism onto the free part of $\pi_{i,n-1}^s(Q_n)$, and q_* is identified with the composition $p_{*} \cdot \theta : \pi_{4n-1}(Sp(n)) \to \pi_{4n-1}(S^{4n-1})$. Thus we have the following theorem which is also shown by several authors (cf. $[21]$, $[14]$, [15]).

Theorem 3.10. Let $h: \pi_{4n-1}^s(Q_n) \rightarrow H_{4n-1}(Q_n; Z)=Z$ be the stable Hurewicz *homomorphism. Then an element* x of $\pi_{n-1}^s(Q_n)$ is a generator of the free part *if and only if it satisfies* $h(x)=a(n-1)\cdot(2n-1)$!, where $a(i)=1$ for even i and *=2 for odd i.*

Let $q: \Sigma CP_{+}^{\infty} \rightarrow Q_{\infty}$ be the map obtained by the symplectification (cf. [20]), and $q: \Sigma CP^{2n-1} \rightarrow Q_n$ the restriction of it by the cellular approximation. Then q^* : $H^*(Q_n; Z) \rightarrow H^{*-1}(CP^{2n-1}; Z)$ is the map of degree 2, that is, it maps a base of $H^{i,j-1}(Q_n; Z) \cong Z$ to $\pm 2b$ for a base $b \in H^{i,j-2}(CP^{2n-1}; Z) \cong Z$ for each $1 \leq j \leq n$. Thus q raises the mod 2 Adams filtration by 1, and we have a map $q_*: E^{s,t}_r(CP^{2n-1}) \rightarrow E^{s+1,t+2}_r(Q_n)$ between the spectral sequences.

For $t=2n-1-\alpha(2n-1)=2n-\alpha(n-1)$ and $n\geq 3$, let $a_{n-1}h_0^{t-1}$ \in $E_{\alpha(n-1)+1}^{t-1,t+n-3}(CP^{2n-1})$ be the element in Proposition 3.8. Then $q_{*}(q_{n-1})$ is an element $_n h_0^t \in E_{\alpha(n-1)+1}^{t,t+n-1}(Q_n)$, and we have

Lemma 3.11. Let $t=2n-\alpha(n-1)$. Then we have the following.

- (i) For an odd integer $n \geq 3$, $nh_0^t \in E_\infty(Q_n)$.
- (ii) For an even integer $n \geq 2$, $d_{\alpha(n-1)+1}(n h_0) = \alpha_{2(n-1)}$.

Proof. For an odd $n \ge 3$, since $d_r(nh_0^t) \in E_r^{t+r, t+r+4n-2}(Q_n) = 0$ for $r \ge \alpha(n-1)$ +1 by Lemma 3.9 (i), we have (i). For even *n,* if (ii) is not true, then $d_{\alpha(n-1)+1}(n_0^t)=0$ and $n_0^t\in E_\infty(Q_n)$ by Lemma 3.9 (ii). Then there exists an element x of $\pi_{4n-1}^s(Q_n)$ which satisfies $2^t | h(x)$ but $2^{t+1} \nmid h(x)$, where h is the stable Hurewicz homomorphism. But it contradicts Theorem 3.10, because *t=* $\nu_2((2n-1)!)$. Thus we have the desired result. Q. E. D.

Proof of Theorem 1. We assume $n \ge 2$, since the assertion is clear for $n=1$. Let $y_n \in E_2(Q_n)$ denote nh_0^t for odd $n \ge 3$ and nh_0^{t+1} for even $n \ge 2$, where $t=$ $2n-\alpha(n-1)$. Then y_n is an element of $E_\infty(Q_n)$ by Lemmas 3.9 and 3.11. Let $x_n \in \pi_{4n-1}^s(Q_n)$ be an element which represents y_n . Then the mod 2 Adams filtration of x_n is equal to $\nu_2(a(n-1)\cdot(2n-1))$, and x_n is a generator of the free part by Theorem 3.10. Thus we have the desired result.

Remark 3.8. For even *n*, $q_*(\sigma^{2n-1})$ is a generator of the free part of $\pi^s_{4n-1}(Q_n)$ by Theorem 3.10, where $\sigma^{2n-1} \in \pi_{4n-2}^s(CP^\infty)$ is the element mentioned in § 1. Thus for even *n* Theorem 1 is a corollary of Crabb-Knapp's theorem [6].

§ 4. Proof of Theorems 2 and 3

Theorem 2 (i)(a) and (ii)(b) and Theorem 3 (i) follow from Proposition 2.1. Theorem 2 (ii)(a) follows from Lemma 3.6 (ii). The equation $i_*(\alpha_{4m})=0$ and $i_*(\alpha_{4m+2/2})=0$ in Theorem 2 (i)(b) and (ii)(c) respectively follow from Proposition 3.8 (ii). Also the equation $i_*(\alpha_{4m+2})=0$ in Theorem 3 (ii) follows from Lemma 3.11 (ii).

Let W_n be the stunted projective space CP^n/S^2 or Q_n/S^3 , and $u=2n$ or $4n-1$ for the respective case. When $W_n = CP^n/S^2$ (resp. Q_n/S^3), we denote by A_n (resp. B_n) the value ν_2 (Coker *h*), where Coker *h* is the order of the cokernel of the stable Hurewicz homomorphism $h : \pi_u^s(W_n) \to H_u(W_n; Z)$. By [10 ; Theorem II and Corollary III], we have

Proposition 4.1. (i)
$$
A_{2m+1} = \nu_2((2m+1)!)-1
$$
.
(ii) $B_{2m+1} = \nu_2((4m+1)!)$, and $B_{2m} = \nu_2((4m-1)!)-2$.

Consider the following diagram:

$$
\pi_{2k}^s(S^{2k})
$$
\n
$$
\uparrow p_* \qquad \qquad \hat{\uparrow} p_* \qquad \hat{\downarrow}
$$
\n
$$
\pi_{2k}^s(CP^k) \longrightarrow \pi_{2k}^s(CP^k/S^2) \longrightarrow \pi_{2k-1}^s(S^2) \longrightarrow \pi_{2k-1}^s(CP^k)
$$
\n
$$
\uparrow i_* \qquad \hat{\uparrow} i_* \qquad \hat{\uparrow} i_* \qquad \qquad \hat{\uparrow} i_*
$$
\n
$$
\pi_{2k}^s(CP^{k-1}/S^2) \longrightarrow \pi_{2k-1}^s(S^2) \longrightarrow \pi_{2k-1}^s(CP^{k-1}),
$$

where the horizontal and vertical sequences are derived from the cofiber sequences. From this diagram and Proposition 4.1, we have

(4.2) $i_{\ast}\pi_{2k}^{s}(CP^{k-1}/S^{2})$ is the torsion part of $\pi_{2k}^{s}(CP^{k}/S^{2})$, and

(4.3) $q_*x=2x_1+w$, where x and x_1 are the generators of the free parts of $\pi_{2k}^s(CP^k)$ and $\pi_{2k}^s(CP^k/S^2)$ respectively and *w* is some torsion element of $\pi_{2k}^s(CP^k/S^2)$.

We complete the proof of Theorem 2 by the following lemma.

Lemma 4.4. $i_*(\alpha_{4n/2})\neq 0$ in $\pi_{8n+1}^s(CP^{4n+1})$ and $i_*(\alpha_{4n+2/3})\neq 0$ in $\pi_{8n+5}^s(CP^{4n+3})$.

Proof. Let γ denote $\alpha_{4n/2}$ or $\alpha_{4n+2/3}$ for $k=4n+1$ or $4n+3$ respectively, and assume that $i_*\gamma=0$ in $\pi_{2k-1}^s(CP^k)$. Then in the above diagram we have an element $y \in \pi_{2k}^s(CP^k/S^2)$ satisfying $\partial y = \gamma$. Then we can put $y = tx_1+v$ for some integer t and some torsion element v. By (4.3) we have $2\gamma = 2\partial (tx_1+v)$ $=\partial(tq_*(x)+2v-tw)=\partial(2v-tw)$, and so $i_*(2\zeta)=0$ in $\pi_{2k-1}^s(CP^{k-1})$ by (4.2). But 2 γ is the non zero element of Im(*J*), and $i_*(2\gamma)\neq0$ by Proposition 2.1. Thus we have a contradiction, and we conclude $i_*\gamma \neq 0$. Q. E. D.

Similarly, by using Propositions 2.1 and 4.1 (ii), and by considering the analogous diagram for Q_n , we have $i_*(\alpha_{4m})\neq 0$ in $\pi_{8m+2}^s(Q_{2m+1})$ and $i_*(\alpha_{4m+2/3})$ $\neq 0$ in $\pi_{8m+6}^s(Q_{2m+2})$. Thus we complete the proof of Theorem 3.

Remark. We have not determined whether $i_*(\alpha_{4m+2/2})=0$ or $\neq 0$ in $\pi_{8m+6}^s(Q_{2m+2})$. By using [10; Theorem I], we can prove that $i_*(\alpha_{4m+2/2}+\beta)=0$ for an element β which is not in Im(*J*) and the order of which is less than or equal to 4.

References

- [1] Adams, J.F., On the structure and applications of the Steenrod algebra, *Comm. Math. Helv.,* 32(1958), 180-214.
- $[2]$ $\frac{1}{2}$, $\frac{1}{2}$, On the groups $J(X)$ —IV, Topology, 5 (1966), 21-71.
- $\begin{bmatrix} 2 \end{bmatrix}$ $\begin{bmatrix} 4 \end{bmatrix}$, on the groups $f(A) W$, *roportogy*, **3** (1966), 21-41.
 $\begin{bmatrix} 3 \end{bmatrix}$ $\begin{bmatrix} 3 \end{bmatrix}$ $\begin{bmatrix} 4 \end{bmatrix}$, $\begin{bmatrix} 4 \end{bmatrix}$, $\begin{bmatrix} 4 \end{bmatrix}$, $\begin{bmatrix} 6 \end{bmatrix}$, $\begin{bmatrix} 7 \end{bmatrix}$, $\begin{bmatrix}$ 62(1966), 365-377.
- [4] Atiyah, M.F., Thom complexes, Proc. London Math. Soc., 11 (1961), 291-310.
- [5] Bott, R., The space of loops on a Lie group, *Michigan Math.* /., 5 (1958), 35-61.
- [6] Crabb, M. C. and Knapp, K., Vector bundles of maximal codegree, *Math. Z.,* 193 (1986), 285-296.
- [7] , James numbers, *Math. Ann.*, 282 (1988), 395-422.
- [8] Fujii, M., K₀-groups of projective spaces, Osaka J. Math., 4 (1967), 141-149.
- [9] Harris, B., Some calculations of homotopy groups of symmetric spaces, *Trans. Amer. Math. Soc.,* 106(1963), 174-184.
- [10] Imaoka, M. and Morisugi, K., On the stable Hurewicz image of some stunted projective spaces, II, *Publ. RIAfS Kyoto Univ.,* 20 (1984), 853-866.

658 MITSUNORI IMAOKA

- [11] James, I. M., *The topology of Stiefel manifolds,* London Math. Soc. Lecture note series 24, 1976.
- [12] Mahowald, M., The metastable homotopy of $Sⁿ$, Mem. Amer. Math. Soc., 72(1967).
- [13] ------, The order of the image of the *J*-homomorphism, *Bull. Amer. Math. Soc.*, 76(1970), 1310-1313.
- [14] Morisugi, K., Stable self maps of the quaternionic (quasi-) projective space, *Publ. RIMS Kyoto Univ.,* 20 (1984), 971-976.
- [15] Mukai, J., The order of the attaching class in the suspended quaternionic quasiprojective space, *Publ. RIMS Kyoto Univ.,* 20 (1984), 717-725.
- [16] Oshima, H., Remarks on the j-codegree of vector bundles, *preprint.*
- [17] Ravenel, D. C., *Complex cobordism and stable homotopy groups of spheres,* Mathematics 121, Academic Press, 1986.
- [18] Segal, D.M., On the stable homotopy of quaternionic and complex projective spaces, *Proc. Amer. Math. Soc.,* 25(1970), 838-841.
- [19] Tangora, M. C., On the cohomology of Steenrod algebra, *Math. Z.,* 116(1970), 18-64.
- [20] Toda, H. and Kozima, K., The symplectic Lazard ring, /. *Math. Kyoto Univ., 22* (1982), 131-153.
- [21] Walker, G., Estimates for the complex and quaternionic James numbers, *Quart. J. Math. Oxford,* (2) 32 (1981), 467-489.