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§ 1. Introduction and Results

Let Qn be the quaternionic quasi-projective space (cf. [11]). Then it is a
2-connected CW-complex having one 4f— 1 dim cell for each i with l<Li<n. It
is known that the order of the cokernel of the stable Hurewicz homomorphism
h: ^In-i(On)->//in-i(On ; Z) is equal to a(n-l)-(2n-l}\ (see Theorem 3.10),
where and throughout the paper a(i) denotes 1 if i is an even integer and 2 if
i is an odd integer. Then, for any generator x of the free part of nln-i(Qn\
the modp Adams filtration Fp(x) is less than or equal to up(a(n— l)-(2n— 1)!),
where vp(j) denotes the exponent of a prime p in the prime power decomposi-
tion of an integer /. Let GCp) denote the tensor product G®Z(P) for an abelian
group G, where ZCp) is the ring of integers localized at p. Then, one of the
results in this note is the following.

Theorem 1. For n^l we have an element xn^nln-\(Qn)u» which is a gen-
erator of the free part and whose mod 2 Adams filtration is equal to u2(a(n — 1)

In [6] M. C. Crabb and K. Knapp has proved that Fp(a
r)=vp(r !) for the

generator ar of the free part of xs
2r(CP°°\ where CP°° is the complex projective

space and ar is the r-fold product of the canonical generator ffe7r|(CP°°) by
the #-space structure of CP°°. Theorem 1 is an analogy of their result for the
case of the quaternionic quasi-projective space. For the case of an odd prime p,
the element q*(a2n~l}^7cin-i(Qn}w satisfies the corresponding properties, that is,
it is a generator of the free part and satisfies Fp(q*(<jzn-ly)=vp(a(n— l)-(2n— 1) !),
where q\ ICPzn~l—>Qn is the map canonically defined by the definition of Qn

(cf. [20]).

Communicated by N. Shimada, January 19, 1989.
Department of Mathematics, Faculty of Education, Wakayama University, Wakayama
640, Japan.



648 MITSUNORI IMAOKA

In [18] D. M. Segal has obtained some results about n%(HPn} by applying
the Adams spectral sequence, whose method originated with M. Mahowald [12],
where H'Pn denotes the quaternionic projective space. Our proof of Theorem 1
will be done as an application of Segal's method and of Crabb-Knapp's result
mentioned above. Then by our method some properties concerned with the
Im(/) classes are also shown, which is the second result of this note. To state
them, we prepare some notations.

Let lm(J)n be the image of /-homomorphism in 7r47l_i(S0)c2). Then it is a
cyclic group of order 23+v(7° and a direct summand of nln-i(S°), where u(n)=
vz(n). (Cf. [2]). We denote by a2n the element of Im(/)n of order 2, and by
azn/i the element of Im(/)n satisfying 2i~laZnii — ci2n for z'^1. Let /: Sz-*CPn

and i\ S*-*Qn be the inclusions to the bottom spheres respectively. Then we
have the following theorems.

Theorem 2. Let z * : nln-1(S
0)^nln+1(S*)-+iuln+1(CPk).

(i ) When n—2m^2, we have (a) /*(a4m)^0 // l<k^m, and (b} /#(a4TO)
=0 and 2*(a4m/2)^0 // fe^4m+l.

(i i ) When w=2m+l^l, we have (a] **(a4m,.2)=0 // k^2, (b) i*(a4 m +2/2)=£0
if l^k^m+2, and (c) i^(aim+z/2}=Q and 2*(a4m +2/3)^0 if &^4ra+3.

Theorem 3. Let i*: ^Jn-i(S°)^^!B+2(S8H7r;n+2(0*).
( i ) When n=2m^2, **(a4TO)=£0 if k^l.
( i i ) When n=2m+l^l, (a) 2*(a4m+2)^0 if l^jfe^2m + l, and (b) z*(a4m+2)

=0 and z*(tf4m+

This paper is organized as follows: In §2, we show Proposition 2.1, which
proves a part of Theorems 2 and 3, and which we need in the proof of Theorem 1.
In § 3, WQ prove Theorem 1 by applying the Adams spectral sequences for
ns*(CPn) and n**(Qn}, which also proves a part of Theorems 2 and 3. In §4,
we complete the proof of Theorems 2 and 3.

The author thanks K. Morisugi, H. Oshima and T. Watanabe for their
valuable comments.

§ 2= Estimation by ./-Theory

Let (Yn, d}=(CP2n, 2) or ((?„, 3), and let z* j be the restriction of /*:
^4n-i(50)^^In+d_i(Sd)->^Jn+d_i(Fn) to Im(/)n, where /: Sd-^Yn is the inclusion
into the bottom sphere and Im(/)n is the 2-primary part of the image of the
/-homomorphism in xs

4n-i(S°}. In this section, we prove the following

Proposition 2.1. ( i ) When Yn = CPZn and n=2m^2, i*\j is injective.
( i i ) When Yn = CP2n and 7i=2m+l^l

where \ G \ denotes the order of the group G.
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(iii) When Yn = Qn and n^l, f*| j is injective.

Let ^3: KOw-*KOw be the stable Adams operation on the KO -theory
localized at 2, and £0 and kSpin the (—1) and 3 connective cover of #0 res-
pectively. Then we have a lifting <f>: kO^-^kSpin^ of the operation 0s— 1:
KOw->KOw, and we define / to be the fiber spectrum of ^. (Cf. [7], [16]).
Then j is a connected 2-local spectrum, and n*(j) = Z<n. We denote by j\(X)
and y*(^0 the reduced homology and cohomology groups of a space X respec-
tively. Then the /-theory is known to be closely related to the /-groups as
follows, where hji 7c%(X\n-+ j *(X) is the stable Hurewicz homomorphism.

Lemma 2.2. The restriction of hj\ xln-i(S°)w-^J4ri-i(S0) to lm(J)n is an
isomorphism.

Thus we investigate the homomorphism z* : j\n-i(S
0)-^j\n+d-i(Yn) to prove

Proposition 2.1. For example, to prove (i) and (iii) it is sufficient to show that
2* is injective. To make use of the known results about the KO -cohomology
of Yn, we consider the S-dual of Yn, and denote it by Vn. Then by [4], the
stable homotopy type of Vn is given as follows:

Lemma 2.3. When Yn = CP2n (resp. Qn}, Vn is stably homotopy equivalent
to the stunted complex (resp. quaternionic) projective space CPl($-n)-i=

Cp^N-i,/Cp2,N-n-i, (respf HP%-l
n=HPN-l/HPN-n~1} for some sufficiently large

integer N which we can take so as to satisfy N>n and A/"=Omod8.

We regard Vn as the stunted projective space as in Lemma 2.3. Let p :
Vn-^S4^-1' be the collapsing map to the top cell, and let M=N—n — l. Then
through the S-duality, the homomorphism z* : j\n-i(S

0)-^j\n+d-i(Yn) is identified
with p*: j-'n+\S°)^j*K+\S«N-1>)-+j4*+l(Vn). Thus to prove Proposition 2.1 we
determine the order of the image of p*. Let (p: kO*(X}w-*kSpin*(X}w denote
the homomorphism defined by the operation <^3— 1 mentioned at the first of this
section. Then we have the following commutative diagram ;

p*

where and throughout the paper the cohomology and homology groups are
assumed to be reduced. Let cn be the generator of kSpin~4n(S°)^ = Zm. Then
d(tn) is a generator of y~4n+1(5°), and thus our task is to determine the order of
/>*(<„) in kSpin'M(Vn)w/image(<f>).

The group structure of KO*(CPn} has been determined by M. Fujii [8], and
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that of KO*(HPn] is classically well-known, since the Atiyah-Hirzebruch spectral
sequence for KO*(HPn} collapses. In particular both groups KO*M(CP^N-v}
and KO*M(HPN-1} are free abelian groups of rank N— 1. Using [8] and the
elementary properties of the Adams operation, we have the following lemmas.

Lemma 2.5. Let Vn = CP2
2

(/+-1
1\ Then we have

( i ) kSpin*M(Vn) and kO*M(Vn) are identified with the following subgroups
of KO4M(CP2<N-v) through the collapsing map CP*<N-»-+Vn: For a suitably
chosen basis {Xl9 Xz, ••• , XN^} of

and
l} X

( i i ) p*(cn}=1XN-l if n is even, and p*(cn)—2XN-l if n is odd, where p* and
cn are those as in (2.4).

(iii) (0"-l)(X,)=(3'<>-">-l)X, mod(*,+1, - , XN^} for

Lemma 2.6. Let Vn=HP^l Then kOiM(Vn)=kSpiniM(Vn) =
Z{Y1} Y2, ••• , Yn} for a basis { Y t } satisfying

( i ) p*(in)=Yn and
( i i ) («&8-l)aO)=(3"-l)IO mod(FJ+1, - , Yn) for l^j^n.

Proof of Proposition 2.1. Let cn be the order of />*(*„) in kSpin*M(Vn)w/
image(^). Then for the case ( i ) and (iii), we have P2(c7i)=

:y2(3271— 1) by Lemmas
2.5 and 2.6 respectively. Since y2(iy4n-i(S°)|)=va(32n-l), p* : j-in+1(S0^jiM+1(Vn')
is injective, and thus we have the desired results for ( i ) and (iii). Similarly,
we have (ii), because in this case we have V2(cn)=vz(3zn — 1)— 1 by Lemma 2.5.
Thus we have completed the proof.

§3= Proof of Theorem 1

In this section, we consider the classical Adams spectral sequence [1] con-
verging to 7rl(S°), ns*(CPn} and xs*(Qn) at a prime 2. Let E^^X) be the Er-
term of the Adams spectral sequence based on the ordinary Z/2-coefficient
cohomology groups and converging to n*(X)$§Zz, where Z2 denotes the ring
of 2-adic integers, and let dr: E^X^E^'^^X} be the differential between
£r-terms. Thus, £i^(Z)=Extl'J(#*(Z; Z/2), Z/2), and ES^(X) is the bigraded
group associated with the Adams filtration of n%(X}} where A denotes the mod 2
Steenrod algebra. We refer to [17] with respect to the definitions and the
general properties for the Adams spectral sequences. Sometimes, we abbreviate
s and t from Ef-'^X) and simply denote by Er(X\ and we say that Es

r'
l(X) is

in the w-stem if it satisfies t—s = u. For a continuous map /: X-^Y, /*: Es
r'

l(X)
-»££-£(F) denotes the homomorphism between the spectral sequences induced
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from /.
Let ik,n: CPk-^CPn and pn: CPn->S2n be the inclusion map and the col-

lapsing map respectively. If we have a relation (/>*)*(#)—£ for some element
^jE!''(S2*)^Ei-*-a*(S°) and ^e£|-*(CP*), then we denote by kg the element
(ik,n)*(x) for n^&. Of course kg is not unique for g and & in general. We
use these notations similarly for the elements of El'Wn).

Let h^E\'\S*}=Z/2 be the generator. Then, for each f^l, h\ is a per-
manent cycle and represented by 2ieEjr?(S°). Let (Xn, d)=(CPB, 2) or CTQB, 4),
where SQn=Qn/\S

1 denotes the reduced suspension. If we have an
element M^Ei't+dn(Xa\ then it satisfies (pn)*(nh$=hl by definition, where
(PJ*: ^•f+dB(^n)->jBi'i+dn(Sdn)=Ei'*(S0). Thus, if Bfc{ is a permanent cycle
furthermore, then we have an element y of n*dn(Xn) with the property that
Fz(y)=V2(h(y))=i, where F2(y) denotes the Adams filtration of y and h(y)
denotes the image of the stable Hurewicz homomorphism h : Ksdn(Xn}-^Hdn(Xn ; Z)
=Z. Hence Theorem 1 is equivalent to the existence of an element nhi^
Ehi+^n-l(Qn) for i=vz(a(n-l)-(2n-l)\) by Theorem 3.10 which appears later
on, and we will show the existence of such an element.

Let a(ri) denote the number of 1 in the diadic expansion of n. We remark
that v2(ni)=n—a(n). Then Crabb-Knapp's theorem mentioned in § 1 can be
stated as follows:

Theorem 3.1. (M. C. Crabb-K. Knapp [6]) There exists an element M~*w

£= Z77i-a(t t ) ,3t t-a(7O/ /^ pn\

In § 1 we defined the element azn/i of Im(/)nC;rJn_i(S0). For l^z'^3 we
use the same notation aznn for the element of EZ(SQ) represented by azn/i-
Thus the element la2n/i^Ez(CPk) for k^l is the image of azn/l^ EZ(S°) through
/*: £l-t(S0)=£l't+2(S2H£S'*+2(CP*). It is known that <z2 n / l of E2(S°) are in
neighborhood of the vanishing line (cf. [13]), which we will describe below.

The vanishing theorem for EZ(SQ) is given as follows :

Theorem 3.2. (J. F. Adams [3]) £i-s(S°)=0 for 0<t-s<q(s\ where q(s)=
2s — s for e = l, 2 and 3 if s=0, 1 mod 4, s=2 mod 4 and s=3 mod 4 respectively.

The vanishing line is formed by the equality t—s=q(s} when we treat the
spectral sequence by writing each £^(5°) in the plane with the (/ — s, s) coor-
dinate. Then, by the periodicity theorem [3] and the calculations for the lower
stems (cf. [19]), the structure of EZ(S°) is well investigated for some range
near the vanishing line (cf. [17 ; Chapter 3]). Thus we have the following
lemma which is a direct consequence of it.

Lemma 3.3B Let m^l and l^j'^3, and let h^E\ '2(S°)=Z/2 be the generator.
( i ) Concerning the (8m—l)-stem, we have Ez

m+1-j 12m-'(S°)=Z/2{a,m/j} and
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£J-i4-8m-1(S°)=0 for z^4m+l, and atn/J is not divisible by h^
( i i ) Concerning the (8ra+l)-sfem, we have an element a4m+i such that

Etm+1'lZM(S*)=Z/2{a4m+i}, and we have £!'i+8m+1(S°)=0 for i^m+2
(iii) Concerning the (8ro+2)-stero, E4

2
m+2 '12m+4(5°)=Z/2{/i1a4m+i} and

El'i+8m+2(S°)=Q for *^4ro+3.
(iv) Concerning the (8m+3)-stem, w;e have Eim+*-j'l2m+1-J(S^=Z/2{atm+2/j}

and F|'*+8m+3(S°)=:0 /or 2^4m+4, a4m+z=hla4m+it and aim+z/j is not divisible by
hi for j=2 and 3.

(v) Concerning other stems, we have E\> *+8m(S°)=0 for f^
-0 /or i^4m-l, and E^+sm-3(S°)-£:i'i+sm-4(50)=0 /o

The cofibering CPk~l—>CPk—>Szk induces a long exact sequence

(3.4)

where 5 is the connecting homomorphism (cf. [17 ; Chapter 2]). d is compatible
with the boundary homomorphisms, and d: Eiit-1(S*k-1)=*E!it(S*k)-+E'0+

1't(CPk-1)
is associated with (0*)*: z:5:(S2*"1)->^*(CP*~1), where ^^ is the attaching map
of the top cell of CPk. In particular, since the stable homotopy class of the

composition S ^ ' C P 2 * " 1 4 * " 2 represents the nontrivial class ^e
we have the following lemma.

Lemma 3050 The composition p*d: El-'-^S^El'^S'^E
E'2

+l't(S'k-*)^Ei+1't-*k+\S°') is the multiplication by h,.

By Lemmas 3.3 and 3.5 and Theorem 3.1 we have the following

Lemma 3960 (i) For 4^&^4m, El
2'

i+8m+1(CPk)=Q if /^

(i i ) For m^l and 2^^^
+2, and =

(iii) For z^2m+2^4, F^ i+4m(CP')=0 i/ 1^^^2m-l, and
hi} if k^2m.

Proof. ( i ) Assume that i^4m— 1^3. For 5^^^4m, since El
z'

i+sm+1(Szk)
=0 and £j- l l i+8m+1(52*)=0 by Lemma 3.3, we have an isomorphism (/4,*)* :
Ei'i+8m+\CP*)-*Ei'i+8m+1(CPk) by (3.4). Thus we may consider the case for
CP4. First, to investigate CP2, we consider (3.4) for fe=2. Then, since d:
El'^S^E^-^S2) multiplies each element by hi by Lemma 3.5, we have d=Q
on FrM+8m+1(S4) by Lemma 3.3 ( i ) . Thus we have an isomorphism (*'i,2)*:
Fp+8m+1(S2)->Fp+8m+1(CP2) from (3.4), because Fp+Bm+1(S4)=0 by Lemma 3.3
(v). We also have Ej+1-*+sm+1(CP2)=0, because Fl+1-'+sm4-1(S2)=Fi+1-^8m+1(54)
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=0 by Lemma 3.3 (v). Next, consider (3.4) for k=3 to investigate CP3. Since
^i-i.i+am+i^ej-.Q by Lemma 3.3 (v), we have a short exact sequence

0 — > El
2

i+sm+1(CP2} -^> £p+8m+1(CP3) — t El
2

i+8m+1(SG) — > 0 .

By Lemma 3.3 (iv), E|TO-1'12m(S6)=Z/2{a4ni-2} and £F+8m+1(S6)=0 for j^4m.
Now, consider (3.4) for &=4 as the last step. By Lemma 3.5, the composition

p*3: El-^^S^El'^CP^El'^S*) multiplies each element by h,. Therefore
we have p^d(hia4m-^=hlaim-3=aim-z by Lemma 3.3 (iv). Then, using the
above short exact sequence and (3.4), we have an isomorphism /#: jE|-*+8m+1(CP2)
->£i''+8m+1(CP4), because E4

2
m~z'1Zm(S8)=Z/2{hla4m-,} and £^'+8m+2(S8)^0 for

y^4m— 1 by Lemma 3.3 (iii). Thus we have an isomorphism /* : El
z'

i+8m+l(Sz)
-+£I'*+8m+1(CP4), and we have the desired result by Lemma 3.3 ( i ) .

(ii) Assume that z^4m+1^5. Then, considering similarly as (i), we have
an isomorphism i*: El

2
i+8m+5(CPz)-+El

2'
i+sm+5(CPk) for 3^&^4m+2. Thus, we

may consider the case for CP2, and to prove this case we consider (3.4) for
k=2. Then, concerning the boundary d in the sequence, we have 5(a4m+i)=
/iif lUm+i^O and d(h ia4m +1)=a4m +2 by Lemma 3.3 (iii), (iv) and Lemma 3.5, where
tf4m+ie£tm+1'12m+6(S4). Since a4m+2/2 and aim+2/3 are not divisible by hi by
Lemma 3.3 (iv), we have an isomorphism z* : £i'i+877l+5(S2)/(a4m+2)->£:p+sm+5(CP2).
Thus we have the desired result by Lemma 3.3 (iv).

(iii) Assume that z^2m+2^4. Then we have that /*: El
2

Mm(CPk-l)->
El

2'
i+im(CPk) is an isomorphism if k^2m and k^2, by using Lemma 3.3 similarly

as in (i) and (ii). Thus we have the first half of the desired result, because
JBi-*+4m(CP1)=0. Then p*\ E\Mm(CPZ7ri}^Ei'Mm(S^}=Z/2{hi} is injective.
But by Theorem 3.1 we have an element 2 m / i j which is a permanent cycle mapped
by p* to hi by definition. Thus we have El

2'
Mm(CPZm)=E^i+^m(CPZm}=

Z/2{2mhi}. Since (i2m,*)*: El
r'

i+im(CPZm)->El
r'

Mm(CPk) is an isomorphism for
k^2m and r^2, we have the latter half of the desired result. Q. E. D.

Proposition 3.7. Let m^l. Then we have the following:
( \ \ ,-, -4-{\ «<n Z7'4m-, 12m + l//^ D477l + l\
V, 1 ) iflUm^FU in J C f a ( m ) W-* )>
f ii \ sv -f-C\ -ivt 77'4m+2, 12m + 7//^ D4?7l + 3\
(II) 1^4771+2/2^^ in £Sa(m)+l (^* )t

where a(m) denotes the number of 1 in the diadic expansion of m.

Proof. To treat both cases (i) and (ii), we denote by ft the element ia4m

for (i) and ia4m+2/2 for (ii) respectively, and by / the integer 4m+l for (i) and
4m +3 for (ii) respectively. First we must show that /3^0 in
By (3.4), we have the exact sequence

— t £§'

for s=/— 2 and t=3l—2. By Theorem 3.1 we have an element
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*), and so hl
Q~2^lmp* because a(/)^2. Thus 2* is injective,

and we have /3^0 in E2(CPl) by Lemma 3.6. Since dr(^)=0 for any r^2 by
Lemma 3.6 (iii), we have ^E^dA'^CP1}. Assume that 0=0 in Ea^-i(CPl)
for some / with a(/)^4. Then there is an integer r with 2^r^a(l)— 2 and an
element y^.El

r-
r-^l'r'\CPl) which satisfy that dr(y)=fi^Q. By Theorem 3.1

we have an element M'^^EJiCP1), and we have that f*: E^-'CCP'-1)-*
£M+2z-i(£pz) jg an isomorphism for *^/— a(/)+r— 1. Then we have that y or
3>— zAo"1""1 is in the image of z* : Er(CPl-l}^>Er(CP1}, that is, it is equal to
*"*(z) for some element z^El

r-
r-l>zl-r-\CP1-1). Then we have **dr(z)=dr(;y)=

0. Since El
r'^

l'\CPl-^=Z/Z{^'} by Lemma 3.6 (i) and (ii), we have dr(z)
= 0', where 0' denotes the element lai-1 or iaz~i / 2 of Ea^-i(CPl~l) which
satisfies i*(f}')=p. This contradicts Proposition 2.1, because 0' is represented
by **(a)=£0 of xs*(CPl~l), where a=tf4melm(/)2m for (i) and a=«4m+2/2e
Im(/)2m+i for (ii). Thus we have 0^0 in Ea^-\(CPl\ and we have completed
the proof. Q. E. D.

Proposition 3.80 Let k be an odd integer with k^3. Then we have an
element ftAJ-«c*>-ie£*-«c*)-i,s*-ac*>-i(cp*) satisfying the following property:

( i ) hfkhl-*™-ls=EJ^CPk).
(ii) M~^-^Ea,k,(CPk} and datMi-^-^a*-! if k = l mod4 and

= iak-i/2 if k=3 mod 4.

Proof. We prove by induction on a(k\ First, we prove the case a(k)=2.
Consider the exact sequence (3.4), and let d: ^^-"(S^sEl-^S^^ES^-'CCP*-1)
be the boundary homomorphism in it. If there is not any element M~z in
E*-*>*k-\CPk\ then by Lemma 3.6 we have 5(/i?-3)=ia4OT/2 and ^4^+2/3 if * =
4?72+l and 4m+3 respectively0 Then d(hl~z)^0 by Lemma 3.6. But this con-
tradicts Theorem 3.1, and thus we have an element khl~z satisfying (i). Then
this element also satisfies (ii). In fact, if it does not satisfy (ii), then it is a
permanent cycle by Lemma 3.6 and it contradicts Theorem 3.1. Now we
assume that a(k)=u^3 and that we have a desired element for the case a(k)
^u-l. Let t be the integer such that 2£^&^2i+1-l, and l=k-2c. Then
a(l)=a(k)—l, and so by the inductive hypothesis we have an element z / io~ Q ( f e )

of EaC*)-i(CP') with the property (i) and (ii) for /. Let s=2l. Then by
Theorem 3.1 we have M-^E^CP8). Let X be the product shl~l'

by the #-space structure of CP°°. Then, X is an element
k/ k\

since the binomial coefficient I } = 1 mod 2, and we have ho-X^E^CP11). If

Q, then by Lemma 3.6 it is equal to ia&-i/2 if k = l mod 4 and iak-i/s
if k=3 mod 4. Then da(k)-i(hQ'X)^Q by Proposition 3.7, but this cannot occur.
Thus X ^ E a ( k ) ( C P k ) and satisfies (i). If X does not satisfy (ii), then we have
Xt=EJiCPk\ In fact, since, for i^kf Ei'i+2k-l(CPk-l)=$ by Lemma 3.6 and



ADAMS FILTRATIONS OF xl(Qn) 655

**: Ei'Mk-\CPk-l}-*Ei>Mk-\CPk} is surjective, we have
Ejr+r.J+r+*k-i(Cp*)=Q for r^a(k)+l, where j=k-a(k}-l. Then we have an
element ze7rL(CP&) such that h(x)=2fc~a<-k'>~lc for some odd integer c, where
h : 7Z2k(CPk)—»H2k(CPk ; Z}—Z is the stable Hurewicz homomorphism. But
this contradicts the well known fact that the image of h is generated by k \
and vz(k\)=k—a(k). Thus X satisfies (ii), and we have completed the proof.

Q.E.D.

Next we consider the mod 2 Adams spectral sequence for K*(Qn)- The
following lemma can be proved similarly as Lemma 3.6.

Lemma 3.9. (i) For an odd integer w^3, £|>t+4n-2(Qn)=0 if i^
and =Z/2{1aaCn-»} if i=2(n-l).

(ii) For an even integer n^2, ££- i + 4 n~2(Qn)=0 if i^2n, and —
if i=2n-L

In [9] B. Harris shows that the homotopy group 7ctn-z(Sp(n — iy) of the
symplectic group is isomorphic to the cyclic group of order a(n — l )-(2n— 1) !,
which is a consequence of a result of R. Bott [5]. Hence the degree of <?*:
n*n-i(Sp(ny)-+i!:tn-l(Sp(n)/Sp(n — iy)^Z is equal to a(n — l}'(2n-l}\, where q is
the canonical quotient map. Let 6 : 7r4re_i(S/>(H))-»;rJn-i((?n) be the homomorphism
given by I.M. James (cf. [11]), and p: Qn^Qn/Qn-i-S*71'1 denote the collaps-
ing map. Then 0 is an isomorphism onto the free part of K\n-i(Qn\ and q* is
identified with the composition p*°6: n^n-i(Sp(n))-^7i:tn-i(S*n~l). Thus we have
the following theorem which is also shown by several authors (cf. [21], [14],
[15]).

Theorem 3.10. Let h: nln-\(Qn)-*Hin-\(Qn', Z}=Z be the stable Hurewicz
homomorphism. Then an element % of xln-i(Qn) is a generator of the free part
if and only if it satisfies h(x)=a(n — l)-(2n — l)\f where a(i)=l for even i and
=2 for odd i.

Let q: ICP^-^Q^ be the map obtained by the symplectification (cf. [20]),
and q: !CPZn~l-^Qn the restriction of it by the cellular approximation. Then
q*: H*(Qn', Z)->H*-\CP*n~l\ Z} is the map of degree 2, that is, it maps a
base of H*'-\Qn; Z}^Z to ±26 for a base bs=H*'-\CP2n-l\ Z} = Z for each
1<^/<J?2. Thus q raises the mod 2 Adams filtration by 1, and we have a map
q*: E*T-\CP*n-l)-*E?-l'M(Qn) between the spectral sequences.

For f=2n— 1— a(2n— l)=2n— a(n— 1) and n^3, let 2n-M~1^
E^lt^r^CP271'1) be the element in Proposition 3.8. Then q^n-M'1) is an
element n/ijeJS^+fR+^OJ, and we have

Lemma 3.11. Let t=2n — a(n — l). Then we have the following.
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( i ) For an odd integer n^3, n
( i i ) For an even integer n^2, d

Proof. For an odd n^3, since dr(nht>)<=E!.+r't+r+4n-2(Qn}=Q for r^a(n-l)
+1 by Lemma 3.9 (i), we have (i) . For even n, if (ii) is not true, then
dacn-i>+i(n/io)=0 and nhl^EJ^Qn) by Lemma 3.9 (ii). Then there exists an
element x of 7rJn-i(Qn) which satisfies 2*\h(x) but 2i+1 K h(x), where h is the
stable Hurewicz homomorphism. But it contradicts Theorem 3.10, because t=

n — l)l). Thus we have the desired result. Q. E. D.

Proof of Theorem 1. We assume n^2, since the assertion is clear for n=L
Let yn^Ez(Qn) denote nh\ for odd n^3 and nho+1 for even n^2, where £=
2n—a(n — l\ Then 3;^ is an element of EJiQn) by Lemmas 3.9 and 3.11. Let
tfjieTrJn-iCQn) be an element which represents yn. Then the mod 2 Adams
filtration of xn is equal to v2(a(n — l)-(2n — 1) !), and xn is a generator of the
free part by Theorem 3.10. Thus we have the desired result.

Remark 3.8. For even n, q^(a2n~1} is a generator of the free part of xin-\(Qn)
by Theorem 3.10, where (727i-1e^|ri_2(CPQO) is the element mentioned in § 1.
Thus for even n Theorem 1 is a corollary of Crabb-Knapp's theorem [6].

§ 4. Proof of Theorems 2 and 3

Theorem 2 ( i ) (a) and (ii)(b) and Theorem 3 (i) follow from Proposition 2.1.
Theorem 2 (ii)(a) follows from Lemma 3.6 (ii). The equation /*(a4m)=0 and
i*(&4m+2/2)=Q in Theorem 2 ( i ) (b ) and (ii)(c) respectively follow from Proposi-
tion 3.8 (ii). Also the equation zH!(a4wl+2)=0 in Theorem 3 (ii) follows from
Lemma 3.11 (ii).

Let Wn be the stunted projective space CPn/Sz or Qn/S
3, and u—2n or

4w— 1 for the respective case. When Wn=CPn/S2 (rssp. Qn/S3), we denote by
yln(resp. Bn) the value i>2( \ Coker h \ ), where Coker h \ is the order of the
cokernel of the stable Hurewicz homomorphism h : Ks

u(Wn)-*Hu(Wn ; Z). By
[10 ; Theorem II and Corollary III], we have

Proposition 4.1. ( i ) AZm+l=vz((2m+l} !)-!.
(i i) Bam+i=p,((4m+l)!), and £8m=

Consider the following diagram:

l

t'
3

—

1* 3
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where the horizontal and vertical sequences are derived from the cofiber se-
quences. From this diagram and Proposition 4.1, we have

(4.2) i*ns
2k(CPk-l/S2) is the torsion part of ns

2k(CPk/Sz), and

(4.3) q*x=2xi+w, where x and xi are the generators of the free parts of
xs

zk(CPk) and nlk(CPk/S*) respectively and w is some torsion element
of 7rS*(CP*/S8).

We complete the proof of Theorem 2 by the following lemma.

Lemma 4.4. z*(a47l/2)^0 in 7rL+1(CP4n+1) and i*(atn+t/J±Q in 7rIra+5(CP4n+3).

Proof. Let 7 denote a4n/2 or oun+2/s for &=4n + l or 4n+3 respectively,
and assume that 2*7=0 in 7rf*-i(CP*). Then in the above diagram we have
an element y^nlk(CPk /S2) satisfying dy=T. Then we can put y=txi+v for
some integer t and some torsion element v. By (4.3) we have 2f=2d(tXi+v)
=d(tq*(x)+2v-tw)=d(2v-tw), and so f*(2r)=0 in jrl^CCP*-1) by (4.2). But
2^ is the non zero element of Im(/), and ^(2^)^=0 by Pro-position 2.1. Thus
we have a contradiction, and we conclude 2*7*^0. Q. E. D.

Similarly, by using Propositions 2.1 and 4.1 (ii), and by considering the
analogous diagram for Qn, we have z*(«4m)=? fcO in Tcs

8m+z(QZm+i) and z*(a4m+2/s)
^=0 in 7rim+6(Q2m+2). Thus we complete the proof of Theorem 3.

Remark. We have not determined whether i^(oL^m+ziz}=^ or ^0 in
^lm+&(Qzm+2\ By using [10; Theorem I], we can prove that i*(a4m+2/2+jS)=0
for an element /3 which is not in Im(/) and the order of which is less than or
equal to 4.
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