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Whispering Gallery Waves in a Neighborhood
of a Higher Order Zero of the
Curvature of the Boundary

By

Gen NAKAMURA*, Yoshihiro SHIBATA** and Kazumi TANUMA***

§1. Introduction

Let 2CR? be a domain with a smooth boundary I'. Suppose £ is a media
where some wave propagates with a speed, say 1 for simplicity. When £ is
strictly convex, there is a high frequency wave well known by the name of
whispering gallery waves which propagates along I'. Mathematically, it can
be described as an asymptotic solution u to the reduced wave equauion

(1.1) Au+to’u=0 in 2
with the Dirichlet boundary condition
(1.2) u|r=0

whose energy is concentrated near I.

Here w>»1 is the frequency of the wave, and u satisfies (1.1) asymptotically
as w—oo. By using the boundary layer method, Babich and Kirpichnikova [1]
constructed an asymptotic solution u which describes the whispering gallery
wave.

However, if we merely assume that £ is convex, their asymptotic solution
is ineffective in a neighborhood of a point Pl  at which the curvature K, of
I' is zero, i.e. one of its first order derivatives blows up at P.

On the other hand, Popov [4] considered the case K, (P)=0, K{(P)+0. He
constructed an asymptotic solution u to (1.1) and (1.2) in a relatively open
neighborhood GC Q2 of P with the following property. Namely, the dominant
term of u converges in the L? sense to that of whispering gallery wave con-
structed in [1] as w—o in a relatively open neighborhood G,CG of I'.=
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{Qel'NG ; Ky(Q)>0}. (In §2 we will give the precise definition of G,.) More-
over, he showed that, by appropriate coordinate transformation and scaling
transformation, the dominant term of u is determined by a certain Dirichlet
boundary value problem for a certain type of Schrédinger equation with an un-
bounded potential, and constructed its formal solution on the image of G. under
the composite mapping of these transformations.

In this paper, we have extended the results of Popov under the condition
1.3) =g, KPP)=0 <k, KPP)#0

for some positive integer k. Moreover, we have improved his result in the
following two points. (1) The dominant term ¢ (cf. (2.12) below) of the asymp-
totic solution u to (1.1) and (1.2) is smooth up to the boundary of G.. (2) ¢
converges to the dominant term ¢, (cf. (2.9) below) of the asymptotic solution
of the whispering gallary wave constructed in [1] with respect to a higher
regularity norm as w—c on G,.

Although we have restricted our study to improving Popov’s result, our
analysis is a starting point for constructing a local paramatrix which describes
the gliding wave generated by an incident wave grazing at an inflection point
at the boundary.

Recently, we have noticed that Babich and Smyshlyaev [2] cbtained the
same result for the special case k=1. However, their method is quite different

from ours.
The rest of this paper is organized as follows. After some preparations,

we state the results of [1], [4] and our results in §2. §3 and §4 are devoted
to the proof of our main theorem.

Acknowledgement. We appreciate the referee for several valuable com-
ments on revising this paper.

§2. Some Preparations and Results

Let s be the arclength of I measured from a fixed point P, of I", and I’
is described by 7=%(s). Let 7(s) be the unit normal vector at #(s) pointing in-
ward to £ and ¢ be the length measured along 7(s). Then we can take (s, q)
as a coordinate in a relatively open neighborhood GC2 of I'. Thus each point
M=M(x, y)G with a cartesian coordinate (x, y) is represented in the form

M=M(s, q)=7%(s)+qii(s) .

When the wave propagates with speed c¢(x, y), the corresponding Dirichlet
boundary value problem becomes
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Au+w*c™(x, y)u=0 in 2
(2.1) {

ulr=0.

Now by taking the center of curvature in 2, let Ky(s) be the curvature of I’
at s. Then we define the effective curvature K(s) by

(2.2) K(s)=Ky(s)+ (s, 0)-0g¢(s, 9)|g=0-

Clearly, K(s)=K,(s) if the speed c(s, gq) of the wave is constant. For the wave
with non constant speed, we have to replace the condition (1.3) by

2.3) Ii={seI'NnG; Ks)>0+@¢, K»0)=0 <k,
K®(0)=0.

Here we have taken P=P,=(0, 0) and identified Q=" with s. Hence K(s)=
0s"+0(s*") (s—+0) for some 0>0. Moreover we define G, by G.={(s, 9)=G;
K(s)>0}. In terms of the coordinate (s, ¢), (2.1) becomes

(1—=gKy($)) [0 {(1—gK(5))70s} +0{(1 —gK(5))0g} ]
(2.4) +w?c¥(s, q)U=0 in G
Ul 4-0=0.

Hereafter, we mainly use (2.4) instead of (2.1) and we construct an asymptotic
solution U (=u) of (2.4) with the properties stated in § 1.
Let

v(x)=g:° cos(£/3+x0)dt  (xER)

be one of the Airy functions which is rapidly decreasing as x—-+oco together
with all of its derivatives and has the zeros only on the negative real axis.
Now let —v<0 be a zero of v(x). Then corresponding to this zero, there is an
asymptotic solution U to (2.4) on G, which describes the whispering gallery
wave. More precisely we have the following. (see pp. 37~47 in [1])

Theorem 2.1. For any sufficiently small ¢>0, there is an asymptotic soluiion
U of (2.4) in G (e)={(s, 9)=G ; K(s)>¢e} with the following properties.
1. U admits the following asymptotic expansion as w— o :

(2.5) U(s, g)~exp {ins c (s, O)ds—i—z'a)”sh(s)}- i 0 "*U,(s, q)
£ n=0
where

h(s)=—uS: K23(s)2¢(s, 0)]-1*ds,

(2.6) Us=[2K(s)c(s, 0)]°-v(@**gn(s)—v).
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n(s)=[2K(s)]"/*-c™*/*(s, 0),

and so<I" with K(so)>e.
2. U, (n=l) can be obtained successively by solving a certain recursive equa-
tion. In particular, U, is given by

U,=[(—1/2)c"*(s, 0)2K (s))"**{(2/3)2K () K'(s)
—(2/3)c™(s, 0)0sc(s, 0)} y*+Ai(s)Jv(y—v)

where
y=w**q7(s)

and A.(s) is a C* function in s.

Remark. Each U, (n=2) is a linear combination of v(y—y) and v'(y—v)
whose coefficients are C* function in s. By the asymptotic behavior of v(x) as
x—-+oo and the definition of —y, we can easily see that the asymptotic solu-
tion U(s, q) decays exponentially as w—o if ¢>0 and U(s, gq) satisfies the
Dirichlet boundary condition. Thus this asymptotic solution corresponds to the
whispering gallery wave. From (2.6), the asymptotic solution U(s, g) is no
longer valid as s—0.

Our next aim is to construct an asymptotic solution U to (2.4) in G which
still has a meaning at s=0 and behaves like the whispering gallery wave in
G;:. As we had already assumed at the beginning of this section, note that

2.7) K(s)=0s"*+0(s**") (s—+0)
for some 0>0 and positive integer k. Introduce the scaling transformation

t:Swl/(25+3)[526-1]1/(2/c+3)
(2.8) {

X =q@ DR FoE-2 1 et
where ¢=¢(0, 0), and U, is the one given by (2.6). Then
(2.9 exp (10" *h(s))Upy=¢(t, x)(1+O0(@ D)) (w—o0)
where
(2.10) bo(t, x)=D25t"1% exp{—iu(3/2k+3))2 13t s+D I3} y( QU552 x —y)
D= FHDIEREO G AE+6) )=k (12+18) exp(—z'a)”gyX:OK”’s(s)(Zc(s, 0)-%ds).

The following theorem is a simple extension of Popov’s result (cf. [4]).

Theorem 2.2. There is an asymptotic solution U to (2.4) in a relatively open
neighborhood GC 2 of (s, ¢)=(0, 0) with the following properties.
(1) U admits the following asymptotic expansion as w—co:
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U=exp z'a)Ss ¢~ (s, O)ds)V(s, Q,

0
2.11) V(s, O~ B oIV, x).

@) Vot, x)=d¢(t, x) LARXR") is uniquely determined by the following con-
ditions :
L¢p=(i0,4(1/2)0%— x1*)p=0 (teR, x=0),
(212) ¢[z=0:0 (tER)y
I, ) —dult, llzecesy —> 0 (t—400).

Here ¢o(t, x) is the one given by (2.10).
(3) (2.12) admits the following formal solution ¢e(t, x) as t—-oo.

(2.13)  ¢pult, x)=D2"%t/° exp{—iv(3/(2k+3))271/3>=+9 13} i}ot‘“””"/@n(}()

where

X=213ps3y | Dy(X)=v(X—v).
QD (X)= P (X )(X—2)+ Qen o X' (X—p)  (n=1)

for some polynomials Pyn(X) and Qun-1(X) (Q2n-1(0)=0) of respective orders 2n
and 2n—1.
(4) For each nonnegative integer N, let ¢n be the truncated sum of ¢«(t, x)
up to n=N and fy(, x)=L¢n. Then for any nonnegative integer k,!l, m,n
satisfying
(4k+6)N+5—k=6k-+4km~+2kn,

(2.14) Suoplthlal"a;‘flv(z‘, x)|—>0 (t—+o0)
holds.

Remarks. 1. When k=1, Theorem 2.2 is exactly the same as Popov’s
result (cf. [4]). Since the proof of Theorem 2.2 can be done in the same way
as that of Popov’s result (cf. [4]), we omit the proof.

2. Since s>0 in G,, t—+ as w—o in G,. Noting this and (2.9) (2.12),
the dominant term of the asymptotic solution U given in Theorem 2.2 approaches
that of the whispering gallery wave with respect to the L? norm as w—oo in
G,.

3. ¢(t, x) is the first term in the formal expansion (2.13) of ¢.

Let X(t)e C=(R*) satisfy
2.15) =0 0=<t<1), AH=1 @¢=2).

Then we can easily see that, for any nonnegative integer &, [, m, n, j,
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(2.16) |£# 1P {1 DIRD (X VU(e )} | S C ot =1/ MHE 9= E04DI/3
J J

where Cimz;>0 is a constant which does not depend on 1>¢,;>0. Now take ¢;
(y=0, 1, ---) such that

(2.17) Cimn,e;5277 for any [, m, n, ;7 (+m+n<j)

and define ¢y(t, x), dy(t, x) (N=0, 1, ---), §(, x) by the following equations

Gult, x)= D21 exp{—i(3/ e+ 3)2 DI 3 eI (X)
pe

Falt, x)=D2V4t 1 exp{—in(3/(Qe-+3)2 D) 3 B P (X (e )
P

F(t, x)=D2%11* exp{—in(3/ 2+ 3)2 DI} 310 (XOU(e ).
7

From (2.16) and (2.17) we can easily see

0

(2.18) Sup thlaznag 2 {t—(2f5+3)j/3@J(X)x(e]t)} étk—/cl/3—1n+lin/3—(21c+3)N/3+1
z20

j=N+1
for nonnegative integers k&, [, m, n ((4+m+n<N). Moreover we have

(2.19) §§glt"xlal"32{t“‘“”’“ O X)AD—X(e,tN} | —> 0 F—+o0)
for nonnegative integers k&, [, m, n.

Our next result gives a more detailed information about the asymptotic be-
havior of the first term ¢ of the asymptotic solution given in Theorem 2.2.
Theorem 2.3. (Main result). There exists
o, x)e LZ(RXR*f)f\C”(R*XR*)/\(Q)S(R*X[&, 0)))

with the following properties.
(1) ¢ is a solution to

Lp=i0,0+(1/2)0%p—xt°p=0 (t€R, x=0).

(2.20) { 9=i0:g ¢

Gl 2m0=0.

(2) For each fixed t=0, ¢(t, HeS(RY).
B) Given a nonnegative integer N, we have

Sup | 1*x'8PIAS—gu)(t, )[—> 0 (t=+e0)

for any nonnegative integer k, [, m, n with 3k+2cm~+en<2c+3)N+25+2.
@) Moreover

Sup|*x'PIUp—P)t, )| —> 0 (F—c0).
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for any nonnegative integer k, [, m, n.

§3. Proof of Main Theorem (Part 1)
Let N be a nonnegative integer and A(Z, x)e(@)&(l_ﬁx[é, o)) satisfy A, O
=0 and the estimate

3.1) Sgg)lt’*xlalnagh(t, %) —> 0 (t—+o0)

for any nonnegative integer k, [, m, n with
k+l4+m+n<N.

Corsider the following unique solution w(t, x)e LA RXR*) to

Lw=h{, x) (R, x=0)
(3.2) W] z20=0

w(t, -)—> 0 (t—4o0) in L¥RY).
Here we claim the following. Claim: There is a function p(N) such that p/N)
—oo as N—oo and

(3.3 SuElthla?‘agw(t, %) —> 0 (t—+o0)

for any nonnegative integer &, [, m, n with
k+i+m+n=p(N).

We postpone the proof of this claim for a while and show that the properties
(3) (4) of Theorem 2.3 follows from the claim.

As for (4), let h=—L(¢) and X(t)e C=(R*) be the function already given by
(2.15). If we decompose h into the form

h=—LAM)px)— LG y—XOPx)— LG —Fx)

and remained the estimates (2.14), (2.19), (2.18), we have (3.1) for any nonnega-
tive integer k, [, m, n. Then (4) immediately follows from the claim.

As for (3), fix nonnegative integers N, ! and let k2, m, n be nonnegative
integers which satisfy 3£-+2em-+£n<(2k+3)N+2x-+2. Take nonnegative integers
N'=N and M so that

o(M)=1+Q2e+3)N+2k+2
and
Sgg)lthlal’LazL(X(t)ngf)l —0 (t—+o)

for any nonnegative integer &, [, m, n with

k+l4+m+n<M.
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Since w=¢—X(t)¢y- is the solution to (3.2) with A=—LA(#)¢x') and
Szliglt”x‘a?‘aﬁ(gbzv'—tﬁzv)i —> 0 (t—+o0)

for any nonnegative integer £, [, m, n with
3k+2em+en<2k+3)N+2k+2,
(3) immediately follows from the claim.

Now let us give the outline of the proof of the claim. By Duhamel’s prin-
ciple, w(t, x) is given by

(3.4) w(t, x):(l/i)S:cu(t, x: TYT

if u(t, x; T) is the strong L? solution to the following problem:
10, u+(1/2)0%2u—xtfu=0 (=R, x=0)
(3.5) %] 220=0
ulir=h(T, x).

Hence it is enough to show the existence, regularity and decay of u(t, x; T)
0=t<T, x=0).

In this section, we prove the existence and the uniqueness of the strong L*
solution u(t, x; T) to (3.5) in each finite time interval [T*, T]. Then in the
next section, we extend u(t, x; T) to t=0 and prove its regularity and decay
by using certain energy inequalities.

Let T*, T satisfy 0<T*<T and fix them. Applying Cauchy’s method, we
will construct the unique solution to the problem
10, u+(1/2)0%u—xtru=0 (T*<t<T, x>0)
(3.6) Ulz=o=0 (T*<t<T)
ulir=h(T, x) (x=0).

For this purpose, let
A TH=t, <tp- < o <<ty =T

be a partition of [T*, T] and define u,(¢, x) by
upt, x)=uP, x) (k=0,1, -, m—1; t, 1 St<1y)
where each u{®(¢, x) is the unique solution to the problem
0,ufP+(1/2)0%2uP —xtyruP=0 (tp1<t<ty, x>0)
(3.7.k) UP | zo0=0 (r<t<te

U imr,=uf (e, x) (x=0)
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such that
uf (o, x)=nT, x).

Now let z, be the n-th negative zero of the Airy function v(x) and set
An(tr)=—2,27 3,/
3.3) Dulte, £)=—2°1,5"0(2)/ (V" (2)] z=0)

where z=2'/3f,72/3(¢,*x —2,({x)). Then according to Titchmarsh ([5] pp. 90~
92), for each k& (0=Zk=<m—1), {¢a(ts, x)}5-0 are eigenfunctions of

(3.9 H(ty)=(—1/2)0,*+ xt*

with eigenvalues {2,(¢:)}%_, satisfying the Dirichlet boundary condition and form
an orthonormal system of L% (R™).

Next we define several norms and function spaces associated to these norms.

Let HYR*) be the completion of C%(R*) with respect to the Sobolev norm
H'Hw;um and K be Sobolev’s constant such that

1 O) =K ([ ullzecrs> T+l | zeca>+ 1" || L2cr+y) -

Definition 3.1. For u(x)= 3 undn(x, t) SRHNHYR®), set

”unl t,— Ezn(tk)lunlz ”unz tp— Zln(tk)2|un]2
Il = 2 Aalt) [ P12 2 [un?

+{(BADH2E 3 A A+ Rt [ 2.

Moreover we define the space @,(¢;) as the completion of S(R*NHIR*) with
respect to - |ls, ¢ -

Definition 3.2. For wu(x)eSE® HNHYR"), set

SO(Z Noul?+xts|u|?dx
[ulf:,= r( 00| 2 x| 0 u | 2 X2 u | B)d x

[uls.,= 50(8 19,00 | (3/4) x| 0,2 | 2 (3/2) 5% | 81 |®

+x° | )d x /2D ull 24T ull e,
T”””ztk —|0zu(, 0)[%}.

Moreover we define the space @i(t,) as the completion of S(R*)NHIR*) with
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respect to [-Js, .

Lemma 3.3. The two spaces (D(tr), ||-lls.:,) and (Di(te), [-1s.:,) are iso-
metric to each other. Thus from now on we also denote (Dy(ty), [+ Js.¢,) by (Ds(ts),

- ls,2)-

Proof. Set u‘”’(x):éun;bn(tk, x) where u,€C (0<n<N). Then we can
easily see

lu 8, =H (e u™, Hte)u™ ) rean | u™ || 2eass
F27 KDt { N u ™ o o +EHE DD, u)10g+
+IHE)u |22}

Since ¢a(0, tx)=05"¢n(0, t,)=0, integrating the right hand side of the above
yields [u™|3,,=[u¥]2,,. Then Lemma 3.3 immediately follows from this
and the fact {¢a(x, t:)}5-o is an orthonormal system in L*(E™). Q.E.D.

Next we return to the existence of wu,(f, x).

Lemma 3.4. For any partition Aof [T*, T, there exists u,(t, x)= L¥[T*, T],
Oy(T)). These {u,(t, x)} are bounded in L [T*, T], @(T)).

Proof. First we note that each u{® has the representation

(3.10) u(t, )= 3 exp{—An(ta )t —1) AP buts, 2)

aP :S:Ouék_l)ak » X)Palte, x)dx.

Combining this with Lemma 3.3, u{’(¢, -)=®@,(¢:) and

@.11) lugP @, s, e, =1ufP@ lse,  for any t€[tss, 1]
Now according to Definition 3.2 and Lemma 3.3

(3.12) Nl Eerry sy, S NufCerrs llsey -
Moreover, by the definition of ug®

3.13) Nl Cesry Moty =l Crrns Moty -

Hence combining (3.11)~(3.13) and taking account of |||, r.~|]l,r, there is a
constant ¢>0 such that

3.14) lualt, s r=cl|A(T, s,z (T*<t<T) for any A.
Q.E.D.

Lemma 3.5. There is a constant ¢>0 such that
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3.15) lutt, Marzclualt, Nugan (T*StT)  for any A,
Proof. This is almost clear from Definition 3.2.

Theorem 3.6. There is a solution ut, x)e LX[T*, T], @(THNEL(T*, T)
XR*) to (3.6).

Here
ELA(T*, T)XRY)={uc2'(T*, T)XR*); 0id%ult, x)= L*(T*, T)XR")
(J=p, k=q—25)}

for nonnegative integers p, ¢ (2p<¢) and we will see later in Corollary 4.4 that
this u(t, x) is unique.

Proof of Theorem 3.6. By Lemma 3.4, {u,(, x)} is uniformly bounded in
the Hilbert space L*[T*, T], @«(T)). Hence there exists
(3.16) ut, x)e LX[T*, T], O«T))

and a sequence of functions {u,(¢, x)}C{u,(¢, x)} such that wu,f, x)—ult, x)
(j—o0) weakly in L¥[T*, T, @«(T)). On the other hand, using the definition
of u,(¢, x), each wu,{¢, x) is the approximate solution to the equation of (3.6).
Hence u(t, x) satisfies the same equation in the distribution sense.

Now by Lemma 3.5, the argument which led to (3.16) yields

(3.17) ut, x)€EL(T*, T)YXE*).

Combining (3.16), (3.17) with the equation of (3.6) and reminding the definition
of @,(T), we have
u(t, x)e LX([T*, T], @(T)NEL(T*, T)XR™).

Thus u(t, x) satisfies the equation in the L? strong sense and it has the traces
to t=0 and x=0.

Finally, to see that u(f, x) satisfies the boundary condition and the initial
condition of (3.6) is a routine argument (see Mizchata [3] p. 333). Q.E.D.

§ 4. Prool of Main Theorem (part 2)

In this section, we study the regularity and decay at infinity of the prin-
cipal term V,=¢(¢, x) of the expansion (2.11).
To begin with, we generalize (3.6) as follows:

[zatu (—1/2)02u+xt"u+f(t, x) in (T* T)XR*
@1 iu =0
|
L
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Lemma 4.1. Let f(t, x)e L¥[T*, T1, @«(T)) and uy(x)ESEBHNHYR*) then
there exists a solution

ut, x)e LX[T*, T, O(THNEL(T*, T)XR™)
to (4.1) which satisfies
T 1/2
[ e, loycerrd] “=hutt, Dlzscern.rs.opcrr
SCUT —=T*) [ uollogers HT =TS f@, 2)llzocrs 1. 050}
where C is a constant depending only on T*, T.

Proof. As in part 1, we apply Cauchy’s method. Take a partition A: T*
=t <tma< - <t <t,2=T and define u,(¢, x)=uP(, x), (k=0,1, -+, m—1;1ts4
<t<t,) by

W0,uP=—1/2)02uPFxt " uP+ 1, x), (Fra<ti<tr, x>0)

U 200=0 (r1=t=ts)
uPts, x)=uf s, x) (x=0)

such that uf{(t,, x)=u.x).
Then, using the eigenfunctions {¢,(tx, x)}%-0, and eigenvalues {4,(Zz)}5-0 of
the operator H(t,)=—(1/2)0%-+xt,*, we have

u(t, x)= 3 exp{—idaEn)t—t)}dPgults, %)

+ 3 [ " expt—itataXt—Nif P(s)dsgutts, )
where

do={"ug 0, D, DAz, uE s, D=u)

and fff)(t)zgjf(t, xX)pa(te, x)dx. By applying Minkowski’s inequality, we can
easily see
t
[ 2y SN, Doy + 16, loncyds.

Now following the same argument as in the proof of Lemma 3.4,fwe have

42 st Dl Sl ogers+] 176, Vagerrds
Thus t

T 1/2
@2y [ Justs Dlbyers de] < AT =T

+@=1)|[] 1565, lpsnds] "}
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The rest of the proof is the same as that of Theorem 3.6. Q.E.D.
Remark. Later in Corollary 4.4, we show that this solution is unique.
To derive the energy inequality for (4.1), we need the following lemma.

Lemma 4.2. Let u(t, x) L¥[T*, T1, @«T)) be the solution to (4.1), where
f@, x)ECA[T*, T1, LXR")YNLX[T*, T, O«T)) and ux)SSER*). Then
lut, DI, lxut, Ol, 105u¢, I, lw'E, HNeCALT*, TI.

Notation. Hereafter, for simplicity, we denote the L2 R*) norm by |-,
and the differential with respect to ¢ by “’”.

Proof of Lemma 4.2. From the assumptions, 0,u(t, x)e L¥[T*, TIXR™).
Then by Radon Nikodym’s theorem

u(t, x)—u(’, x):S;asu(s, x)ds for a.e. x.
So we have u(t, x)eCY[T*, T]1, L}(R*)). Therefore
lu(t, HeCA[T*, TJ).

To prove |xu(t, |€CALT*, TT), put (wilt, x)=(gs* u)t, x) where @5 is a
mollifier such that

BiD=390/,  $020,  FOSCIR),

supp g {t | =1}, SR¢(t)dt=1 .

Now let u,(¢, x) be the one defined in the proof of Lemma 4.1. Then by inte-
gration by parts,

| Lt I

<2010(up)st, - xCuy)slt, Hl+20xfst, Ol Nx(uy)st, .
Thus

[ s,

L2([T*,T]
Z102(un)s(t, ) z2cre. raxrer+ 15 f 5@, %) L2ccrs, r1xR+>
S0z up, X zoccre. rixro>+ 12 fE, ) zoccrs Tty =M,

where M is a constant independent of A. On the other hand,

[ att, D=z, SFde—>0 (3-0).
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Therefore taking an appropriate subsequence {0’} {d},

d d .

d—tllx(uA)ar(t, Dl —>Ellqu(t, Sl (@—0) in 9°(T*, T))
and

4.3) Hg;nm(t, Il

M for any A.
L2([T*,TD

Here d/dt is the distribution derivative. Next, we will show
(4.4) Nxun(t, I —> llxu@, I (JA]=0) in 2°((T*, T)).

From (4.2), ||x'%u,(¢, +)| is uniformly bounded on [T*, T] with respect to A.
By (4.2), 0:x%u,(¢, x) is uniformly bounded in L*[T*, T]XR*) with respect
to 4, and by Radon Nikodym’s theorem we have

2 2up(, )= xMPup(t, PS8 —t] ’ 105 2up(s, -)l*ds .
T*

Thus x'/?u,(t, x) is uniformly bounded and equi-continuous in C*([T*, T], LA R*)
with respect to A. So for an appropriate sequence {A’}C{A},

Sup [lx!*uy(t, -)—x'ult, Ol —>0 (JA"j—0)

T*stsT

and
|57 e e, =zt O-g0di|
<([71gorear) " {[7 et @, —utt, xpz
(g @, B, Ddxdt)

é(S:J¢<f)|2dt)1”{gijm!x“”(um, x)—ult, x))|*dxdt
)7ty —ute, )1 dxat)™

(1, 160012dr) “(T—T*p(Sup |2y, 9—x5utt, )
X {ZS;SRJ 2Puy |2 | xmuvdxdt}‘“ 0,

(147]-0)

for any ¢=C3(T*, T)). Hence we have proved (4.4). Since (4.3) and (4.4)
imply

Llxutt, e LT, T,

we have |xu(t, -)|eC%[T* T]). The same argument can also be applied to
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S

prove ||02u(t, -)|=C%[T*, T]). Finally, by using the equation of (4.1), |u'(z, -)|
eCA[T*, T). Q.E.D.

Relying on Lemma 4.2, we will give the following energy estimate for the
solution to (4.1).

Lemma 4.3 (Energy Inequality). Let f(t, x)€LX[T*, T1, @(T)), 9., x)
€L [T*, T], LAR")), ux)=u(T, x)ESR*) and let u(t, x) LX([T*,T], P«T))
be the solution to (4.1). Then we have the following energy inequality:

e, l+Helxut, DI+, )
ST, HIHATF2u(T, D+HT /0T, -
FAT/FIAT, 1 I+ G,
+26(1/sXS /LG5, DI+ASAYNSs, s for a.e. t[T*, T1.
Proof. Since
Slhutt, D=21m {77, < Ddx,
we have |(d/dD)lut, I SIf@ I Thus
@5) e, N HT, W+ 15, lds.
By integrating by parts,

S:iﬁ,u-xﬁdx=S:{(——1/2)6§u+xt‘u+f}xrzdx

:S:o(l/Z)axu-xax_udx—}-gj(l/Z)axu.ﬁdx_}_S:]xulztxdx+8:fxﬁdx )
Hence,

(1/2)S:°x 19, 1 |2dx+5:| xuldx

=S:°z'8zu-xfzdx—S:(l/Z)axu-ﬁdx—S:fxadx.
Taking the real parts of the right hand side, we have
t"S:]xulzdxgna,u(t, OMlxutt, HI+17E, Dllxut, DI,
Thus
(4.6) tlxu@, OI=lo.utt, HI+IfE, .

Now let ¢s() be the mollifier used in the proof of Lemma 5.3 and put us{, x)
—(¢s* u)t, x). Then
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i0,us=—(1/2)0%us+ xt*us+ f(t, x)
where f(t, x)=x[s*, t*Ju+f5t, x), [@s*, t"Ju=@s*"u—t*us;. Since

i0cuy =—(1/2)02uys + xt*us’ +ext*us+ f't, x),

we have
d )
T lusI7=2 Re Soatua’-ﬁa’dx
=2Im S:Q{ —(1/2)8%u5’+xt”u5’+xxt”“u,;+f’}ﬁa’dx
=2Im S:(/cxt”“u5+f’)ﬂa’dx .
So
‘ d ’ < k-1 Zr
Tl e, Ol S lextustt, A+ -
From (4.6)

el xust, IS 10.ust, DI+I7E, .
Thus we have

e, DN S/l €, D+, A+ -

Applying the comparison theorem, we have

(4.7)s lus'@, N=(T/t)llus'(T, -)II+S:(1/S)(S/t)‘(fcllf(s, M+sl (s, Hds

ST/t (T, 1+ /X7y el Do, 57Tul
R 75, l+s(Ux0Lgat, sTul +10.f s, Dis -

Since
x[@ax, s*]u(s, -)=¢5*(3”xu)-—s"¢5*xu=SR¢5(s—a)(a"—s")xu(o‘, x)dao ,
we have

| x[ox, s*]u(s, .)||_<__{SR¢5(3—0)|o-ﬂ__s,c]2||xu(a, .)sza}llg

1/2
<C(T, T*) -(525R¢(t)t2uxu<s—5t, ->n2dt)

—> 0 (0—0) uniformly with respect to s<[t, T].
Similarly, we have

gfnxas[m*, sTJus, Ylds —> 0 (5-0).

Moreover, taking account of the assumption and Lemma 4.2, it is clear
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Nus't, O —> lJu't, D (6—0)  for a.e. t[T*, T].
llus'(T, ')||2§SR¢6(T—7)|Iu’(‘L', rde —s [u/(T, > (3-0),
and S:“fa(S, )—f(s, )|ds—0 (6—0). Hence by letting 6—0, (4.7); implies

@7 '@, IN=T /08w (T, -)Il+ST(1/S)(S/t)“‘(/cI|f(s, I+s18sf(s, -))ds
é(T/t)‘((l/Z)llaiu(T,t-)ll+IIxT”u(T, IM+AT, D
+Sf(l/3)(3/t)”(lcﬂf(s, D+slf'Gs, Dds .
Combining (4.5), (4.6) and (4.7), we have the desired inequality. Q.E.D.
Next Corollary 4.4 follows from (4.5).

Corellary 4.4 (Uniqueness). Let u(t, x)e LX[T*, T1XR™*) be the solution to
(4.1) such that 02u(t, x), xu(t, x) L¥[T*, TIXR*). Then u(t, x) is a unique
solution to (4.1).

Next using Lemma 4.3, we will prove the higher order regularity of
the solution u(t, x) to (3.5) with respect to ¢. But, for a while, we restrict the
the domain of ¢ to the bounded interval [T*, T].

Now, taking a positive integer m large enough, we seek the solution #(¢, x)
to (3.6) in the form

it x)= U il D
(4.8) 4@, x)=ud(x)+E—Tu(x)+ - + D ()
+Sj<€n:i);)—;v(s, x)ds (&, x)S[T*, T1xR").

Then we have the following.

Lemma 4.5. In order that (4.8) is the solution to (3.6), it is necessary and
sufficient that the following conditions (4.9) and (4.10) hold. Namely,

ul(x)=n(T, x)
() =(1/i)(—1/2)32us()+ 2 T<us())
. rp—1\ .
(4.9) up()=(1/{(—=1/20%15-s)+ 3 (7] )50 T uperes()f

2sp<m—1, r=min(p—1, )

u(0)=0 0<p<m—1
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oT, D=/~ 1/20m s+ 3 (" ) Tt (0}
7=min (m—1, k)

@1y 0 D=(=1/20%0, D+, o+ 33 (] )6

T (t—s)t?
¢ (I—1)!
7=min (m, &)

X {nl U_—Wf—um_n(x)ﬂ

> =] v(s, x)ds}

u(t, 0)=0.

Proof. From (3.6), it follows that
00(10, i +(1/2)03ti— xt°¥) | :-r=0  0=p<=m—1
[ 0710, i+ (1/2)02 i — xt*9)=0 .
Substituting (4.8) into the above equations, we obtain (4.9), (4.10). Conversely,

from the above equations we can easily see that #(¢, x) is the solution to (3.6)
if (4.9), (4.10) are valid.

Remark. Since the equation in (3.2) is non characteristic with respect to
x=0, we can assume that h(¢, x) is flat at x=0 by modifying w(, x). Then
the conditions (4.9) and (4.10) are valid.

Now we prove the existence of the solution to (4.10) by the successive ap-
proximation.
Define {v,(t, x)}$ inductively by

z'atvj—i—(l/Z)a%v,——xt‘v,:lé (";)x(agtﬂ)

T (t—s)t!

><{ G s A=D1

R R COR vjls, £)ds}

7=min (m, &)

(4.11.5)
v(T, x)=un(x)
vl(t; O)ZO ]:1: 2; ) Uﬂ(ty X)EO

where u,(x)=uv(T, x) (cf. (4.10)).

As for the solvability of each (4.11.j), we need the following Lemma 4.6.

Lemma 4.6. Let @y(T) be the completion of S(RYNHYR*') with respect to
the norm |+ |s.z. We can find the solution v,(t, x)= LX[T*, T1, @«T)) to (4.11.j),
(=12, ).

Proof. We will prove this by induction on j. By Lemma 4.1, this is true
for the case j=1. Assume v, =L*[T*, T1], @(T)). Denote by g(, x) the
right hand side of the first equation of (4.11.j). Then g(¢, x)= CY[T*, T1, L¥A(R*))
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and g'(¢, x)=0,8(t, x)eL¥[T*, T], L*(R*)) exists for almost everywhere <
[T*, T1.

Let ¢u(T, x)=¢n(x) n=0, 1, --- be the orthonormal system defined by (3.8)
and expand g(t, x) as follows:

gt )= 3 n0n(x),  where gu(0)="8(t, pa(x)dx .

Let gx(¢, x) be its N-finite sum:

gntt, )= 32 gaDha(x) .

Then it follows that

gx(t, ) —> g, ) in L(T% TIXR?)
(4.12) {

0:gn(t, x) —> 0,8(t, x) in LX[T* TIXR*) as N—oo

and gy(t, x)e L¥[T*, T], @(T)).
Now we rewrite (4.11.j) as follows:

10,u=(—1/2)0%2u~+xt*u+g in (T*, T)XR*
Ulz=0=0,  ulier=un(x)
Un(X)ESR*)
(4.13)
and
geCY[T*, T], LXR™")) satisfies (4.12) for some
{gn(t, O)}CLXLT*, T], O(T)).

If we can find the solution u(f, x) to (4.13), the lemma is proved.
By Lemma 4.1, there is a solution uy(t, x) LX[T*, T1, @4(T)) to

[ i0,uy=(—1/2)0%uy+xt"un+gxn
Unlz=0=0, Uylicr=un(x) for each N (N=0, 1, 2, ---).

From the energy inequality (cf. Lemma 4.3), we have
(4.14) lun(t, Ol+tlxun, l+105uxt, -l
< C[Iluzv(T, AT /7 103un(T, HI+(T?/t)llxun(T, -

HT/t¥lgn(T, -+ lgxt, i+, {lgxs, -

+u(L/s) s/ gn(s, lH-(s/t)rlgns, -)II}dS]-

On the other hand, since
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[ 10 (uy—uy)=(—1/2)02(uy—un)+ xt(Un—Uu)+8n—8n
(uy—uy)|z=0=0, (uy—ux)l-r=0,

we have

lun(t, )—uut, N+tlxunt, )—xuxt, dl+103unC, )—02un, )l

< C{T/t¥1gn(T, )—gu(T, H+Igntt, )—gult, I
+Sf(llgzv(s, D= &u(s, D +u(1/s)s/t)Fllgn(s, -)—&u(s, )l

+(s/tY1g(s, )= giuls, )Dds} -
Hence applying Schwarz’s inequality, we have

[ e, =ty et @] xuntt, = wute, lPdt
+{] Iozuntt, H—0tunte, 1t
< C[(@ /TP =TH)en(T, = gu(T, M+, lent, )—gutt, IPdt
r
+1/2XT—T*¢{], lextz, )—gutz, HlPde
+RUTT /T I8tz )—gulr, Iz

T
HT/TH gtz ) gite, IPde}].
Then it is clear that the limit

ut, x)=lim uy(t, x)E LX[T*, T], @«(T))
N oo
is the unique solution to (4.13), and Lemma 4.6 is proved. Q.E.D.
Lemma 4.7. There exists a solution v(t, x) L¥[T*, T, @«(T)) to (4.10).

Proof. By (4.14) and Minkowski’s inequality, we have

T T T
[ Huste, dipde+ @ 1vuste, Slde+{ 105uste, irde

= C[(T—t)lluzv(T, IMPHT/T*PAT —D)05un(T, I

HT/T*P(T =Dl xun(T, NP +(T/T*PT -0 gn(T, )I*
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T T
+{ Igwte, rderazr—er{{ lgnte, ide
T
+e(1/TIT/ T gnte, Irde)

+A/2XT/T*PT =17 lghtr, )I7de ]
Tecr
T/ 7T =) | lghte, irdeds).

Letting N—oo, and applying Lebesgue’s dominated convergence theorem, this
implies

T T T
@.15) [ uce, ledeHTo| Ixuce, e+ ozt lrde

< C[T=0lT, DT/ TP =)oz, P
HTY TP T xuT, T/ THT—D]g(T, I
+{ g, rar+2xT—on{] lete, e

T
+eU/ YT /T g, lFde}

+1/2XT/THAT =t 18z, -)lPde]
T
+HT/ T | Ig'(e, irdeds).

Therefore, we have proved that (4.13) admits a unique solution u(t, x)e
L¥[T*, T], ®,(T)) with the energy inequality (4.15) whenever g(t, x) CX[T*, T,

L*R*)) and 0.8, x) L¥[T*, T1, L} R*)) exists for almost everywhere t<
[T*, T]. From (4.11.j),

iat(vj+1—vj)+(1/2)a§(y1+1—UJ)_xtx(vjﬂ__yj)
o 7 m Lok T(t___s)l—l
=2 ( l )x(a,t )Stm(vf—vj~z)(3, x)ds

Win—v;XT, x)=0, (W;11—vy)E, 0)=0, wvyt, x)=0.
Applying (4.15) to the above,
T
t

[ i@, drde+ T x0m—v)e, iede
T
+{, 10305 —v))z, lde

T¢T
<o, 7%, m, )| | 1xw,—v,)6, Olrdsde.
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Here we have used the estimate:

T & Yol S s, 2

H/\

45, & (e Ty sl))l,lllij—vj_;)(s, lds} de

=S {S (m)(al ,c)(‘z' sl))l'1‘

Now by Lemma 4.1,

}{ST %@—v;-1Xs, l*ds}de.

[ 1xi—v)s, irds=M.
Hence by putting
w,O={ 1ws—v)e, edet @ Ixwu—v e, lds

T
+{, 10303 —v)(z, Jdz

we have
(= chMdm CM(T—1), and wm@)< CSjwj(r)dr.
So
e

which tends to zero as j—oo. Therefore {v,{, x)}5- is a Cauchy sequence in
L¥[T*, T], @T)), and there exist a solution wv(t, x)e L¥[T*, T1, @«(T)) to
(4.10) such that

vit, x) —> v(t, x) as j—oo.

This completes the proof of Lemma 4.7. Q.E.D.

From the above arguments, we have constructed #(f, x) of the form (4.8)
satisfying (3.6). This shows that
4@, x)sC™[T*, T], LXR™)),
and
03a(t, x), xi(t, x)eC™ X ([T*, T], LAR")).

Also, by Corollary 4.4, #@(t, x)=u(t, x) where u(f, x) is the solution to (3.6).
Summing up, we have proved the following result.
Proposition 4.8. Let u(t, x) be the solution to (3.6). Then
u(t, x)eC™[T*, T1, LXR*)),

and
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0zu(t, x), xu(t, x)esC™Y[T*, T], L(R*)),
that is
ut, x)e C™Y([T*, T], Ox(T)).

Next, by using this result, we show that if t[T*, T, u(t, x) has higher
order derivatives with respect to x, and is rapidly decreasing as x—-oo.

Before going further we introduce some notation which will be frequently
used in the subsequent arguments.

Notation. We define the @,-norm [lu(t, -)llp, (n=0) of u(t, -) by |u, e,
=§}0||x1”232‘1’u(t, ll, and call the set {x?202-Pu(t, x), 0<p<n} @,-class of

=

u(t, x).

Lemma 4.9. Let u(t, x)=C™[T*, T, LXR)NC™ X [T*, T, @«T)) be the
solution to (3.6). Then x?9:™?u(t, x)= L=([T*, T1, L*(R*)), 0<p=<2m.

Proof. We will show that the @,,-norm (n<m) of u(t, -) is in L=([T*, TJ).
The proof is done by induction on n. By Proposition 4.8, this is true for the
case n=1. Suppose that the @,,-norm (k<n)is in L=([T*, T]). If we inte-

grate S:xa?u-xa?‘ludx<oo te[T*, T]) by parts using (3.6), ||x@+P/2g2n-1-Py2

0=p=2n—1 appear as its positive parts, and the other terms are bounded by
the @,,-norms (k<n). So we have x@+P/292"-1-Pyc= [=([T*, T], LAR*)) 0<p
<2n—1. Furthermore, 070, ucs L>([T*, T], L*(R*)) implies 03***uc L=([T*, T,

L*R*)), and from S:@i"“u-xm dx<oo (t€[T*, T]), we have x'29%"uc
L=([T*, T], LAR*)). Thus the @,,.;-norm of u(¢, -) is in L*([T*, T]). In the
same way, integrating S:xaz‘u x07u dx<oo (#<[T*, T]) by parts, it follows
x@rmign-ry e [=([T*, T1, LAR*") 0=<p=<2n,
and 0Fdiucs L>([T*, T], L*(R™*))implies 02***uc L=([T*, T], L*R*)). Moreover,
from |"ow 2w x0Tu dx<oo (t€[T*, TD), it follows
2129 tue L>([T*, T], LY(R")).
Thus the @,,,,-norm of u(t, -) is in L([T*, T]). Q.E.D.

Finally, we show Lemma 4.9 still holds for T*=0, and also prove the ex-
istence of a function p(N) satisfying (3.1), (3.2) and (3.3).

Lemma 4.10. Suppose that

Sl.zlg)it”xlazﬂaﬁh(t, x)]—>0 (t—+c0)
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for any nonnegative integer k, 1, m, n with
b+l+m+n=<e(N*+2N)+3N+2
and let u(t, x) be the solution to (3.5). Then for each nonnegative integer k, I,

m, n such that 2k +2[+2m+n<2N||t* x'070%u(t, -)| is bounded for all t (0=t<oo).

Proof. First we prove that each @,-norm of u(t, x) (m=0, 1, 2, ---, 2N) is
bounded as t—+40. We prove this by induction on m.

Since (4.5) implies |u(t, )| Z|A(T, -)|, this is true for m=0. Now assume
that @,-norm (m<2n) is bounded as t—-+0. From (3.5) we can easily derive
for n=0,1, 2, ---, N—1

10,(x™0; u)=(—1/2)0%(x™0, u)+ xt*(x™0  u)+ -,
10,(x™ u)=(—1/2)02(x™ u)+ xt"(x* ' u)+ x"0; u+ -+,
10,(x™*#710,01 * u)=(—1/2)02(x"~*10,0}** u)

(4.16)
+ x5 (2™ *10,0  u)tertt i *0,08u+ - for k=0,1, -, n—1,
10,(x™ k0t u)=(—1/2)02(x™ %0} u)+ xt*(x™ %0} F u)
+ektr xRkt c xR0 ,05 u+ - for B=0,1,2, -, n.
Here ------ means the terms of the functions in @, (m<2n) class. Using these

equations and L? estimate (4.5) repeatedly, we find that the @,-norm (m=<2n-+2)
of u(t, x) is bounded as {—-+0. This completes the induction.

Next, by roughly estimating the number of ¢ included in each term of
(4.16), each [x'0Toru(t, -)| (2l+2m~+n<2N) is estimated from above by
IT*x'0r™0,." (T, -)| (E<k(N?+2N), 21+2m+n=<2N). Moreover from

10;(t" u)+(1/2)02(t" u)— xt*(t"w)=int"'u (n=1, 2, ---).

ltku(t, -)| is estimated from above by |T*A(T, -)|. Summing up, each
lt% 20, ™0, "u(t, -)|l (2k+2I+2m+n<2N) is estimated by |T*x'0,™3."h(T, -)|
(B+14+m+n=k(N?*+2N)+3N). This completes the proof. Q.E.D.

Finally we remark about the proof of the existence of p(N). First note
that

IT*x'%0,™0,"h(T, -)| (k+i+m+nZk(N?*+2N)+3N)
is integrable with respect to T on [0, o) if
STL.l_FO’“T"xlat’"aI"h(T, <o (B+l+m+n=<g(N*+2N)+3N+2).

Then using Duhamel’s principle and the stimate stated in the proof of Lemma
4.10, we have

Itk xt, ™0, "w(t, H|<oo Q2E+2+2m-+n<2N, t=0).
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This shows the existence of a function p(/N) such that

P(N) —> oo as N—co,

Thus we have proved Theorem 2.3.
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